Properties

Label 740.2.ce.a.263.1
Level $740$
Weight $2$
Character 740.263
Analytic conductor $5.909$
Analytic rank $0$
Dimension $12$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(3,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([18, 27, 26])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.3"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.ce (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{36})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{9}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{36}]$

Embedding invariants

Embedding label 263.1
Root \(-0.984808 - 0.173648i\) of defining polynomial
Character \(\chi\) \(=\) 740.263
Dual form 740.2.ce.a.287.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.15846 - 0.811160i) q^{2} +(0.684040 - 1.87939i) q^{4} +(-1.86603 - 1.23205i) q^{5} +(-0.732051 - 2.73205i) q^{8} +(-1.02606 - 2.81908i) q^{9} +(-3.16110 + 0.0863678i) q^{10} +(-6.19084 + 2.88683i) q^{13} +(-3.06418 - 2.57115i) q^{16} +(1.17380 + 0.547351i) q^{17} +(-3.47537 - 2.43348i) q^{18} +(-3.59193 + 2.66421i) q^{20} +(1.96410 + 4.59808i) q^{25} +(-4.83013 + 8.36603i) q^{26} +(5.38250 - 9.32277i) q^{29} +(-5.63533 - 0.493027i) q^{32} +(1.80378 - 0.318056i) q^{34} -6.00000 q^{36} +(1.11243 - 5.98018i) q^{37} +(-2.00000 + 6.00000i) q^{40} +(-0.281457 - 0.102442i) q^{41} +(-1.55859 + 6.52463i) q^{45} +(-6.89365 - 1.21554i) q^{49} +(6.00510 + 3.73347i) q^{50} +(1.19069 + 13.6097i) q^{52} +(-0.652550 - 7.45868i) q^{53} +(-1.32686 - 15.1661i) q^{58} +(4.61767 - 12.6869i) q^{61} +(-6.92820 + 4.00000i) q^{64} +(15.1090 + 2.24052i) q^{65} +(1.83161 - 1.83161i) q^{68} +(-6.95074 + 4.86696i) q^{72} +(12.0263 + 12.0263i) q^{73} +(-3.56218 - 7.83013i) q^{74} +(2.55005 + 8.57305i) q^{80} +(-6.89440 + 5.78509i) q^{81} +(-0.409153 + 0.109632i) q^{82} +(-1.51597 - 2.46755i) q^{85} +(13.7467 + 11.5349i) q^{89} +(3.48696 + 8.82276i) q^{90} +(5.09731 - 19.0234i) q^{97} +(-8.97199 + 4.18371i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{5} + 12 q^{8} - 24 q^{17} - 18 q^{25} - 6 q^{26} + 30 q^{34} - 72 q^{36} - 24 q^{40} + 24 q^{41} - 42 q^{58} + 72 q^{61} + 30 q^{73} + 30 q^{74} + 84 q^{85} + 60 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{3}{4}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.15846 0.811160i 0.819152 0.573576i
\(3\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(4\) 0.684040 1.87939i 0.342020 0.939693i
\(5\) −1.86603 1.23205i −0.834512 0.550990i
\(6\) 0 0
\(7\) 0 0 0.0871557 0.996195i \(-0.472222\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(8\) −0.732051 2.73205i −0.258819 0.965926i
\(9\) −1.02606 2.81908i −0.342020 0.939693i
\(10\) −3.16110 + 0.0863678i −0.999627 + 0.0273119i
\(11\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(12\) 0 0
\(13\) −6.19084 + 2.88683i −1.71703 + 0.800664i −0.723087 + 0.690757i \(0.757277\pi\)
−0.993942 + 0.109907i \(0.964945\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −3.06418 2.57115i −0.766044 0.642788i
\(17\) 1.17380 + 0.547351i 0.284688 + 0.132752i 0.559717 0.828684i \(-0.310910\pi\)
−0.275029 + 0.961436i \(0.588688\pi\)
\(18\) −3.47537 2.43348i −0.819152 0.573576i
\(19\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(20\) −3.59193 + 2.66421i −0.803181 + 0.595735i
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(24\) 0 0
\(25\) 1.96410 + 4.59808i 0.392820 + 0.919615i
\(26\) −4.83013 + 8.36603i −0.947266 + 1.64071i
\(27\) 0 0
\(28\) 0 0
\(29\) 5.38250 9.32277i 0.999506 1.73119i 0.472529 0.881315i \(-0.343341\pi\)
0.526977 0.849880i \(-0.323326\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) −5.63533 0.493027i −0.996195 0.0871557i
\(33\) 0 0
\(34\) 1.80378 0.318056i 0.309346 0.0545461i
\(35\) 0 0
\(36\) −6.00000 −1.00000
\(37\) 1.11243 5.98018i 0.182882 0.983135i
\(38\) 0 0
\(39\) 0 0
\(40\) −2.00000 + 6.00000i −0.316228 + 0.948683i
\(41\) −0.281457 0.102442i −0.0439562 0.0159988i 0.319948 0.947435i \(-0.396334\pi\)
−0.363905 + 0.931436i \(0.618557\pi\)
\(42\) 0 0
\(43\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(44\) 0 0
\(45\) −1.55859 + 6.52463i −0.232341 + 0.972634i
\(46\) 0 0
\(47\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(48\) 0 0
\(49\) −6.89365 1.21554i −0.984808 0.173648i
\(50\) 6.00510 + 3.73347i 0.849249 + 0.527992i
\(51\) 0 0
\(52\) 1.19069 + 13.6097i 0.165119 + 1.88732i
\(53\) −0.652550 7.45868i −0.0896346 1.02453i −0.899211 0.437514i \(-0.855859\pi\)
0.809577 0.587014i \(-0.199697\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) −1.32686 15.1661i −0.174225 1.99140i
\(59\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(60\) 0 0
\(61\) 4.61767 12.6869i 0.591232 1.62440i −0.176989 0.984213i \(-0.556636\pi\)
0.768221 0.640184i \(-0.221142\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) −6.92820 + 4.00000i −0.866025 + 0.500000i
\(65\) 15.1090 + 2.24052i 1.87404 + 0.277902i
\(66\) 0 0
\(67\) 0 0 0.0871557 0.996195i \(-0.472222\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(68\) 1.83161 1.83161i 0.222115 0.222115i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(72\) −6.95074 + 4.86696i −0.819152 + 0.573576i
\(73\) 12.0263 + 12.0263i 1.40757 + 1.40757i 0.772246 + 0.635323i \(0.219133\pi\)
0.635323 + 0.772246i \(0.280867\pi\)
\(74\) −3.56218 7.83013i −0.414095 0.910234i
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(80\) 2.55005 + 8.57305i 0.285104 + 0.958497i
\(81\) −6.89440 + 5.78509i −0.766044 + 0.642788i
\(82\) −0.409153 + 0.109632i −0.0451834 + 0.0121068i
\(83\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(84\) 0 0
\(85\) −1.51597 2.46755i −0.164430 0.267643i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 13.7467 + 11.5349i 1.45715 + 1.22269i 0.927149 + 0.374694i \(0.122252\pi\)
0.529999 + 0.847998i \(0.322192\pi\)
\(90\) 3.48696 + 8.82276i 0.367557 + 0.930001i
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 5.09731 19.0234i 0.517553 1.93153i 0.241287 0.970454i \(-0.422431\pi\)
0.276267 0.961081i \(-0.410903\pi\)
\(98\) −8.97199 + 4.18371i −0.906308 + 0.422618i
\(99\) 0 0
\(100\) 9.98508 0.546034i 0.998508 0.0546034i
\(101\) 2.48051 + 4.29637i 0.246820 + 0.427505i 0.962642 0.270778i \(-0.0872811\pi\)
−0.715822 + 0.698283i \(0.753948\pi\)
\(102\) 0 0
\(103\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(104\) 12.4190 + 14.8004i 1.21778 + 1.45130i
\(105\) 0 0
\(106\) −6.80613 8.11123i −0.661070 0.787832i
\(107\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(108\) 0 0
\(109\) 3.33016 18.8863i 0.318971 1.80898i −0.230063 0.973176i \(-0.573893\pi\)
0.549034 0.835800i \(-0.314996\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 10.1317 + 14.4696i 0.953109 + 1.36118i 0.932413 + 0.361396i \(0.117700\pi\)
0.0206968 + 0.999786i \(0.493412\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −13.8392 16.4929i −1.28494 1.53133i
\(117\) 14.4904 + 14.4904i 1.33964 + 1.33964i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −5.50000 9.52628i −0.500000 0.866025i
\(122\) −4.94177 18.4429i −0.447407 1.66975i
\(123\) 0 0
\(124\) 0 0
\(125\) 2.00000 11.0000i 0.178885 0.983870i
\(126\) 0 0
\(127\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(128\) −4.78138 + 10.2537i −0.422618 + 0.906308i
\(129\) 0 0
\(130\) 19.3205 9.66025i 1.69452 0.847260i
\(131\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0.636111 3.60757i 0.0545461 0.309346i
\(137\) −1.56986 5.85879i −0.134122 0.500550i −1.00000 0.000294847i \(-0.999906\pi\)
0.865878 0.500255i \(-0.166761\pi\)
\(138\) 0 0
\(139\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −4.10424 + 11.2763i −0.342020 + 0.939693i
\(145\) −21.5300 + 10.7650i −1.78797 + 0.893985i
\(146\) 23.6871 + 4.17668i 1.96036 + 0.345665i
\(147\) 0 0
\(148\) −10.4781 6.18136i −0.861295 0.508105i
\(149\) 17.2651i 1.41441i 0.707008 + 0.707205i \(0.250044\pi\)
−0.707008 + 0.707205i \(0.749956\pi\)
\(150\) 0 0
\(151\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(152\) 0 0
\(153\) 0.338638 3.87065i 0.0273772 0.312923i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −4.24178 + 9.09653i −0.338531 + 0.725982i −0.999706 0.0242497i \(-0.992280\pi\)
0.661175 + 0.750232i \(0.270058\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 9.90823 + 7.86301i 0.783314 + 0.621626i
\(161\) 0 0
\(162\) −3.29423 + 12.2942i −0.258819 + 0.965926i
\(163\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(164\) −0.385056 + 0.458892i −0.0300678 + 0.0358335i
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(168\) 0 0
\(169\) 21.6364 25.7853i 1.66434 1.98348i
\(170\) −3.75777 1.62885i −0.288207 0.124927i
\(171\) 0 0
\(172\) 0 0
\(173\) −15.5669 + 10.9000i −1.18353 + 0.828715i −0.988372 0.152057i \(-0.951410\pi\)
−0.195156 + 0.980772i \(0.562521\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 25.2816 + 2.21185i 1.89493 + 0.165785i
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 11.1962 + 7.39230i 0.834512 + 0.550990i
\(181\) −21.4455 7.80552i −1.59403 0.580180i −0.615837 0.787873i \(-0.711182\pi\)
−0.978194 + 0.207693i \(0.933404\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −9.44370 + 9.78859i −0.694315 + 0.719672i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(192\) 0 0
\(193\) 5.90914 + 22.0532i 0.425349 + 1.58742i 0.763160 + 0.646210i \(0.223647\pi\)
−0.337811 + 0.941214i \(0.609686\pi\)
\(194\) −9.52602 26.1725i −0.683928 1.87908i
\(195\) 0 0
\(196\) −7.00000 + 12.1244i −0.500000 + 0.866025i
\(197\) 2.54252 + 3.63110i 0.181147 + 0.258705i 0.899448 0.437028i \(-0.143969\pi\)
−0.718301 + 0.695733i \(0.755080\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) 11.1244 8.73205i 0.786611 0.617449i
\(201\) 0 0
\(202\) 6.35860 + 2.96506i 0.447390 + 0.208621i
\(203\) 0 0
\(204\) 0 0
\(205\) 0.398993 + 0.537929i 0.0278668 + 0.0375706i
\(206\) 0 0
\(207\) 0 0
\(208\) 26.3923 + 7.07180i 1.82998 + 0.490341i
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) −14.4641 3.87564i −0.993399 0.266180i
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −11.4619 24.5802i −0.776300 1.66478i
\(219\) 0 0
\(220\) 0 0
\(221\) −8.84691 −0.595107
\(222\) 0 0
\(223\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(224\) 0 0
\(225\) 10.9470 10.2549i 0.729803 0.683657i
\(226\) 23.4742 + 8.54392i 1.56148 + 0.568333i
\(227\) 0 0 −0.996195 0.0871557i \(-0.972222\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(228\) 0 0
\(229\) −9.01148 10.7395i −0.595495 0.709684i 0.381157 0.924510i \(-0.375526\pi\)
−0.976652 + 0.214827i \(0.931081\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −29.4105 7.88053i −1.93090 0.517382i
\(233\) 27.0647 7.25196i 1.77307 0.475092i 0.783775 0.621045i \(-0.213292\pi\)
0.989291 + 0.145953i \(0.0466250\pi\)
\(234\) 28.5405 + 5.03246i 1.86575 + 0.328982i
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(240\) 0 0
\(241\) −7.94917 + 1.40165i −0.512051 + 0.0902884i −0.423703 0.905801i \(-0.639270\pi\)
−0.0883481 + 0.996090i \(0.528159\pi\)
\(242\) −14.0988 6.57440i −0.906308 0.422618i
\(243\) 0 0
\(244\) −20.6850 17.3568i −1.32422 1.11115i
\(245\) 11.3661 + 10.7616i 0.726155 + 0.687531i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) −6.60584 14.3653i −0.417790 0.908544i
\(251\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 2.77837 + 15.7569i 0.173648 + 0.984808i
\(257\) 24.4493 17.1196i 1.52511 1.06789i 0.553047 0.833150i \(-0.313465\pi\)
0.972058 0.234741i \(-0.0754241\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 14.5459 26.8630i 0.902101 1.66597i
\(261\) −31.8044 5.60797i −1.96864 0.347125i
\(262\) 0 0
\(263\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(264\) 0 0
\(265\) −7.97180 + 14.7221i −0.489704 + 0.904369i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 3.74167 2.16025i 0.228134 0.131713i −0.381577 0.924337i \(-0.624619\pi\)
0.609711 + 0.792624i \(0.291286\pi\)
\(270\) 0 0
\(271\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(272\) −2.18941 4.69519i −0.132752 0.284688i
\(273\) 0 0
\(274\) −6.57102 5.51374i −0.396970 0.333097i
\(275\) 0 0
\(276\) 0 0
\(277\) −7.23388 + 10.3310i −0.434642 + 0.620733i −0.975399 0.220446i \(-0.929249\pi\)
0.540758 + 0.841178i \(0.318138\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 21.3729 25.4712i 1.27500 1.51949i 0.539447 0.842020i \(-0.318633\pi\)
0.735554 0.677466i \(-0.236922\pi\)
\(282\) 0 0
\(283\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 4.39230 + 16.3923i 0.258819 + 0.965926i
\(289\) −9.84918 11.7378i −0.579364 0.690459i
\(290\) −16.2094 + 29.9351i −0.951851 + 1.75785i
\(291\) 0 0
\(292\) 30.8285 14.3756i 1.80410 0.841266i
\(293\) −6.16238 + 8.80080i −0.360010 + 0.514148i −0.957773 0.287525i \(-0.907168\pi\)
0.597763 + 0.801673i \(0.296056\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) −17.1525 + 1.33858i −0.996969 + 0.0778035i
\(297\) 0 0
\(298\) 14.0047 + 20.0008i 0.811273 + 1.15862i
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −24.2477 + 17.9850i −1.38842 + 1.02982i
\(306\) −2.74741 4.75866i −0.157059 0.272035i
\(307\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(312\) 0 0
\(313\) −14.8186 + 31.7786i −0.837597 + 1.79623i −0.297218 + 0.954810i \(0.596059\pi\)
−0.540378 + 0.841422i \(0.681719\pi\)
\(314\) 2.46482 + 13.9787i 0.139098 + 0.788863i
\(315\) 0 0
\(316\) 0 0
\(317\) −29.6974 + 2.59819i −1.66797 + 0.145929i −0.881656 0.471893i \(-0.843571\pi\)
−0.786318 + 0.617822i \(0.788015\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 17.8564 + 1.07180i 0.998203 + 0.0599153i
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 6.15636 + 16.9145i 0.342020 + 0.939693i
\(325\) −25.4333 22.7959i −1.41079 1.26449i
\(326\) 0 0
\(327\) 0 0
\(328\) −0.0738359 + 0.843948i −0.00407691 + 0.0465992i
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(332\) 0 0
\(333\) −18.0000 + 3.00000i −0.986394 + 0.164399i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −27.0418 + 12.6098i −1.47306 + 0.686899i −0.982799 0.184676i \(-0.940876\pi\)
−0.490261 + 0.871576i \(0.663099\pi\)
\(338\) 4.14886 47.4216i 0.225668 2.57940i
\(339\) 0 0
\(340\) −5.67447 + 1.16119i −0.307741 + 0.0629746i
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) −9.19187 + 25.2544i −0.494158 + 1.35769i
\(347\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(348\) 0 0
\(349\) 23.9433 28.5345i 1.28165 1.52742i 0.581045 0.813871i \(-0.302644\pi\)
0.700609 0.713545i \(-0.252912\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0.0557449 0.119545i 0.00296700 0.00636276i −0.904819 0.425797i \(-0.859994\pi\)
0.907786 + 0.419434i \(0.137772\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 31.0817 17.9450i 1.64733 0.951086i
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(360\) 18.9666 0.518207i 0.999627 0.0273119i
\(361\) −17.8542 + 6.49838i −0.939693 + 0.342020i
\(362\) −31.1752 + 8.35337i −1.63853 + 0.439043i
\(363\) 0 0
\(364\) 0 0
\(365\) −7.62436 37.2583i −0.399077 1.95019i
\(366\) 0 0
\(367\) 0 0 −0.819152 0.573576i \(-0.805556\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(368\) 0 0
\(369\) 0.898562i 0.0467773i
\(370\) −3.00000 + 19.0000i −0.155963 + 0.987763i
\(371\) 0 0
\(372\) 0 0
\(373\) −9.79917 + 13.9947i −0.507382 + 0.724616i −0.988363 0.152115i \(-0.951392\pi\)
0.480981 + 0.876731i \(0.340281\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −6.40891 + 73.2541i −0.330075 + 3.77278i
\(378\) 0 0
\(379\) 0 0 −0.342020 0.939693i \(-0.611111\pi\)
0.342020 + 0.939693i \(0.388889\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 0.906308 0.422618i \(-0.138889\pi\)
−0.906308 + 0.422618i \(0.861111\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 24.7341 + 20.7544i 1.25893 + 1.05637i
\(387\) 0 0
\(388\) −32.2656 22.5926i −1.63804 1.14696i
\(389\) 5.21127 + 29.5546i 0.264222 + 1.49848i 0.771242 + 0.636542i \(0.219636\pi\)
−0.507020 + 0.861934i \(0.669253\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 1.72560 + 19.7236i 0.0871557 + 0.996195i
\(393\) 0 0
\(394\) 5.89080 + 2.14407i 0.296774 + 0.108017i
\(395\) 0 0
\(396\) 0 0
\(397\) 23.4187 + 6.27503i 1.17535 + 0.314935i 0.793082 0.609115i \(-0.208475\pi\)
0.382271 + 0.924050i \(0.375142\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 5.80399 19.1393i 0.290199 0.956966i
\(401\) 21.7321i 1.08525i 0.839976 + 0.542623i \(0.182569\pi\)
−0.839976 + 0.542623i \(0.817431\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 9.77130 1.72294i 0.486140 0.0857196i
\(405\) 19.9926 2.30087i 0.993443 0.114331i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 2.23221 12.6595i 0.110376 0.625971i −0.878561 0.477631i \(-0.841496\pi\)
0.988936 0.148340i \(-0.0473931\pi\)
\(410\) 0.898562 + 0.299521i 0.0443768 + 0.0147923i
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 36.3107 13.2160i 1.78028 0.647968i
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(420\) 0 0
\(421\) 4.31565 2.49164i 0.210332 0.121435i −0.391134 0.920334i \(-0.627917\pi\)
0.601466 + 0.798899i \(0.294584\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) −19.8998 + 7.24293i −0.966419 + 0.351748i
\(425\) −0.211303 + 6.47227i −0.0102497 + 0.313951i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.342020 0.939693i \(-0.388889\pi\)
−0.342020 + 0.939693i \(0.611111\pi\)
\(432\) 0 0
\(433\) −20.2317 + 5.42106i −0.972273 + 0.260520i −0.709787 0.704416i \(-0.751209\pi\)
−0.262485 + 0.964936i \(0.584542\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −33.2166 19.1776i −1.59079 0.918441i
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(440\) 0 0
\(441\) 3.64661 + 20.6810i 0.173648 + 0.984808i
\(442\) −10.2488 + 7.17625i −0.487483 + 0.341340i
\(443\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(444\) 0 0
\(445\) −11.4402 38.4610i −0.542316 1.82322i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 24.6087 20.6491i 1.16136 0.974493i 0.161432 0.986884i \(-0.448389\pi\)
0.999923 + 0.0123907i \(0.00394419\pi\)
\(450\) 4.36335 20.7596i 0.205690 0.978617i
\(451\) 0 0
\(452\) 34.1244 9.14359i 1.60507 0.430078i
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −17.3878 37.2882i −0.813365 1.74427i −0.653213 0.757174i \(-0.726579\pi\)
−0.160152 0.987092i \(-0.551198\pi\)
\(458\) −19.1508 5.13145i −0.894859 0.239777i
\(459\) 0 0
\(460\) 0 0
\(461\) −14.6757 40.3212i −0.683517 1.87795i −0.378511 0.925597i \(-0.623564\pi\)
−0.305006 0.952350i \(-0.598659\pi\)
\(462\) 0 0
\(463\) 0 0 −0.819152 0.573576i \(-0.805556\pi\)
0.819152 + 0.573576i \(0.194444\pi\)
\(464\) −40.4632 + 14.7274i −1.87846 + 0.683702i
\(465\) 0 0
\(466\) 25.4707 30.3549i 1.17991 1.40616i
\(467\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(468\) 37.1450 17.3210i 1.71703 0.800664i
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −20.3570 + 9.49264i −0.932085 + 0.434638i
\(478\) 0 0
\(479\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(480\) 0 0
\(481\) 10.3769 + 40.2337i 0.473147 + 1.83450i
\(482\) −8.07180 + 8.07180i −0.367660 + 0.367660i
\(483\) 0 0
\(484\) −21.6658 + 3.82026i −0.984808 + 0.173648i
\(485\) −32.9495 + 29.2180i −1.49616 + 1.32672i
\(486\) 0 0
\(487\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(488\) −38.0418 3.32822i −1.72207 0.150662i
\(489\) 0 0
\(490\) 21.8965 + 3.24704i 0.989183 + 0.146686i
\(491\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(492\) 0 0
\(493\) 11.4208 7.99693i 0.514367 0.360164i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(500\) −19.3052 11.2832i −0.863353 0.504601i
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 0.996195 0.0871557i \(-0.0277778\pi\)
−0.996195 + 0.0871557i \(0.972222\pi\)
\(504\) 0 0
\(505\) 0.664650 11.0732i 0.0295766 0.492753i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0.755029 + 2.07443i 0.0334661 + 0.0919473i 0.955300 0.295637i \(-0.0955319\pi\)
−0.921834 + 0.387584i \(0.873310\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) 0 0
\(514\) 14.4367 39.6646i 0.636777 1.74953i
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −4.93933 42.9187i −0.216604 1.88211i
\(521\) 7.92548 + 44.9476i 0.347222 + 1.96919i 0.194050 + 0.980992i \(0.437838\pi\)
0.153172 + 0.988200i \(0.451051\pi\)
\(522\) −41.3929 + 19.3018i −1.81172 + 0.844819i
\(523\) 0 0 0.0871557 0.996195i \(-0.472222\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 19.9186 + 11.5000i 0.866025 + 0.500000i
\(530\) 2.70696 + 23.5213i 0.117583 + 1.02170i
\(531\) 0 0
\(532\) 0 0
\(533\) 2.03819 0.178318i 0.0882838 0.00772383i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 2.58225 5.53765i 0.111329 0.238745i
\(539\) 0 0
\(540\) 0 0
\(541\) 10.1119 5.83810i 0.434744 0.250999i −0.266622 0.963801i \(-0.585907\pi\)
0.701365 + 0.712802i \(0.252574\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −6.34488 3.66322i −0.272035 0.157059i
\(545\) −29.4830 + 31.1393i −1.26291 + 1.33386i
\(546\) 0 0
\(547\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(548\) −12.0848 1.05728i −0.516236 0.0451648i
\(549\) −40.5035 −1.72865
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 17.8359i 0.757775i
\(555\) 0 0
\(556\) 0 0
\(557\) 33.0084 23.1127i 1.39861 0.979316i 0.400599 0.916253i \(-0.368802\pi\)
0.998010 0.0630631i \(-0.0200869\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 4.09833 46.8441i 0.172878 1.97600i
\(563\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(564\) 0 0
\(565\) −1.07877 39.4833i −0.0453841 1.66108i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −14.3476 24.8508i −0.601482 1.04180i −0.992597 0.121456i \(-0.961244\pi\)
0.391115 0.920342i \(-0.372090\pi\)
\(570\) 0 0
\(571\) 0 0 −0.766044 0.642788i \(-0.777778\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 18.3851 + 15.4269i 0.766044 + 0.642788i
\(577\) −4.08604 46.7037i −0.170104 1.94430i −0.302604 0.953116i \(-0.597856\pi\)
0.132500 0.991183i \(-0.457700\pi\)
\(578\) −20.9311 5.60846i −0.870618 0.233281i
\(579\) 0 0
\(580\) 5.50420 + 47.8269i 0.228549 + 1.98590i
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 24.0526 41.6603i 0.995302 1.72391i
\(585\) −9.18653 44.8923i −0.379816 1.85607i
\(586\) 15.1940i 0.627659i
\(587\) 0 0 −0.996195 0.0871557i \(-0.972222\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −18.7846 + 15.4641i −0.772043 + 0.635571i
\(593\) 3.49276 + 3.49276i 0.143431 + 0.143431i 0.775176 0.631745i \(-0.217661\pi\)
−0.631745 + 0.775176i \(0.717661\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 32.4477 + 11.8100i 1.32911 + 0.483757i
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(600\) 0 0
\(601\) 39.1711 14.2571i 1.59782 0.581560i 0.618843 0.785515i \(-0.287602\pi\)
0.978980 + 0.203954i \(0.0653794\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.47372 + 24.5526i −0.0599153 + 0.998203i
\(606\) 0 0
\(607\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) −13.5012 + 40.5035i −0.546646 + 1.63994i
\(611\) 0 0
\(612\) −7.04279 3.28411i −0.284688 0.132752i
\(613\) −0.870501 9.94987i −0.0351592 0.401871i −0.993299 0.115571i \(-0.963130\pi\)
0.958140 0.286300i \(-0.0924254\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 16.3027 + 23.2827i 0.656324 + 0.937328i 0.999998 0.00176117i \(-0.000560597\pi\)
−0.343675 + 0.939089i \(0.611672\pi\)
\(618\) 0 0
\(619\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −17.2846 + 18.0622i −0.691384 + 0.722487i
\(626\) 8.61081 + 48.8343i 0.344157 + 1.95181i
\(627\) 0 0
\(628\) 14.1943 + 14.1943i 0.566416 + 0.566416i
\(629\) 4.57902 6.41063i 0.182578 0.255609i
\(630\) 0 0
\(631\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −32.2956 + 27.0992i −1.28262 + 1.07625i
\(635\) 0 0
\(636\) 0 0
\(637\) 46.1865 12.3756i 1.82998 0.490341i
\(638\) 0 0
\(639\) 0 0
\(640\) 21.5553 13.2428i 0.852046 0.523466i
\(641\) 8.79173 49.8604i 0.347253 1.96937i 0.157991 0.987441i \(-0.449498\pi\)
0.189262 0.981927i \(-0.439390\pi\)
\(642\) 0 0
\(643\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(648\) 20.8522 + 14.6009i 0.819152 + 0.573576i
\(649\) 0 0
\(650\) −47.9545 5.77757i −1.88093 0.226615i
\(651\) 0 0
\(652\) 0 0
\(653\) 37.6721 17.5668i 1.47422 0.687441i 0.491220 0.871036i \(-0.336551\pi\)
0.983002 + 0.183595i \(0.0587735\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0.599041 + 1.03757i 0.0233886 + 0.0405103i
\(657\) 21.5633 46.2427i 0.841266 1.80410i
\(658\) 0 0
\(659\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(660\) 0 0
\(661\) 13.1772 + 15.7040i 0.512534 + 0.610814i 0.958799 0.284087i \(-0.0916904\pi\)
−0.446264 + 0.894901i \(0.647246\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) −18.4187 + 18.0762i −0.713711 + 0.700440i
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 38.0755 + 3.33117i 1.46770 + 0.128407i 0.792792 0.609492i \(-0.208627\pi\)
0.674910 + 0.737900i \(0.264182\pi\)
\(674\) −21.0982 + 36.5431i −0.812671 + 1.40759i
\(675\) 0 0
\(676\) −33.6603 58.3013i −1.29463 2.24236i
\(677\) −5.21871 19.4765i −0.200571 0.748542i −0.990754 0.135671i \(-0.956681\pi\)
0.790183 0.612871i \(-0.209986\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −5.63170 + 5.94809i −0.215966 + 0.228099i
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 0.422618 0.906308i \(-0.361111\pi\)
−0.422618 + 0.906308i \(0.638889\pi\)
\(684\) 0 0
\(685\) −4.28893 + 12.8668i −0.163872 + 0.491615i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 25.5718 + 44.2917i 0.974208 + 1.68738i
\(690\) 0 0
\(691\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(692\) 9.83701 + 36.7122i 0.373947 + 1.39559i
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −0.274302 0.274302i −0.0103899 0.0103899i
\(698\) 4.59121 52.4778i 0.173780 1.98631i
\(699\) 0 0
\(700\) 0 0
\(701\) 39.4251 + 6.95171i 1.48907 + 0.262563i 0.858195 0.513324i \(-0.171586\pi\)
0.630872 + 0.775887i \(0.282697\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) −0.0323923 0.183706i −0.00121910 0.00691387i
\(707\) 0 0
\(708\) 0 0
\(709\) −30.0000 −1.12667 −0.563337 0.826227i \(-0.690483\pi\)
−0.563337 + 0.826227i \(0.690483\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 21.4505 46.0008i 0.803892 1.72395i
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.642788 0.766044i \(-0.277778\pi\)
−0.642788 + 0.766044i \(0.722222\pi\)
\(720\) 21.5516 15.9852i 0.803181 0.595735i
\(721\) 0 0
\(722\) −15.4120 + 22.0107i −0.573576 + 0.819152i
\(723\) 0 0
\(724\) −29.3392 + 34.9651i −1.09038 + 1.29947i
\(725\) 53.4386 + 6.43829i 1.98466 + 0.239112i
\(726\) 0 0
\(727\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(728\) 0 0
\(729\) 23.3827 + 13.5000i 0.866025 + 0.500000i
\(730\) −39.0549 36.9776i −1.44549 1.36860i
\(731\) 0 0
\(732\) 0 0
\(733\) 52.9928 + 4.63627i 1.95734 + 0.171245i 0.994945 0.100424i \(-0.0320200\pi\)
0.962391 + 0.271669i \(0.0875756\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0.728877 + 1.04094i 0.0268303 + 0.0383177i
\(739\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(740\) 11.9367 + 24.4441i 0.438801 + 0.898585i
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(744\) 0 0
\(745\) 21.2715 32.2171i 0.779326 1.18034i
\(746\) 24.1609i 0.884593i
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 51.9964 + 90.0603i 1.89360 + 3.27980i
\(755\) 0 0
\(756\) 0 0
\(757\) 35.8181 + 16.7022i 1.30183 + 0.607053i 0.944986 0.327111i \(-0.106075\pi\)
0.356844 + 0.934164i \(0.383853\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 25.1214 + 21.0794i 0.910651 + 0.764127i 0.972243 0.233975i \(-0.0751733\pi\)
−0.0615920 + 0.998101i \(0.519618\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −5.40074 + 6.80550i −0.195264 + 0.246053i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −25.0000 + 43.3013i −0.901523 + 1.56148i −0.0760054 + 0.997107i \(0.524217\pi\)
−0.825518 + 0.564376i \(0.809117\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 45.4885 + 3.97973i 1.63717 + 0.143234i
\(773\) −10.7804 23.1186i −0.387743 0.831517i −0.999190 0.0402322i \(-0.987190\pi\)
0.611448 0.791285i \(-0.290588\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −55.7044 −1.99967
\(777\) 0 0
\(778\) 30.0105 + 30.0105i 1.07593 + 1.07593i
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 17.9981 + 21.4492i 0.642788 + 0.766044i
\(785\) 19.1227 11.7483i 0.682517 0.419314i
\(786\) 0 0
\(787\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(788\) 8.56342 2.29456i 0.305059 0.0817403i
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 8.03787 + 91.8733i 0.285433 + 3.26252i
\(794\) 32.2196 11.7270i 1.14343 0.416175i
\(795\) 0 0
\(796\) 0 0
\(797\) 47.4234 + 22.1139i 1.67982 + 0.783314i 0.998691 + 0.0511525i \(0.0162894\pi\)
0.681131 + 0.732161i \(0.261488\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −8.80138 26.8800i −0.311176 0.950352i
\(801\) 18.4127 50.5885i 0.650581 1.78746i
\(802\) 17.6282 + 25.1756i 0.622472 + 0.888982i
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 9.92204 9.92204i 0.349056 0.349056i
\(809\) −40.9814 + 34.3875i −1.44083 + 1.20900i −0.501883 + 0.864935i \(0.667359\pi\)
−0.938946 + 0.344064i \(0.888196\pi\)
\(810\) 21.2942 18.8827i 0.748203 0.663470i
\(811\) 0 0 −0.173648 0.984808i \(-0.555556\pi\)
0.173648 + 0.984808i \(0.444444\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) −7.68294 16.4761i −0.268628 0.576074i
\(819\) 0 0
\(820\) 1.28390 0.381896i 0.0448358 0.0133364i
\(821\) −22.4461 + 18.8345i −0.783373 + 0.657328i −0.944096 0.329671i \(-0.893062\pi\)
0.160722 + 0.987000i \(0.448618\pi\)
\(822\) 0 0
\(823\) 0 0 −0.906308 0.422618i \(-0.861111\pi\)
0.906308 + 0.422618i \(0.138889\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.422618 0.906308i \(-0.638889\pi\)
0.422618 + 0.906308i \(0.361111\pi\)
\(828\) 0 0
\(829\) 15.3209 + 12.8558i 0.532116 + 0.446499i 0.868832 0.495108i \(-0.164871\pi\)
−0.336715 + 0.941607i \(0.609316\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 31.3440 44.7639i 1.08666 1.55191i
\(833\) −7.42644 5.20005i −0.257311 0.180171i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 −0.984808 0.173648i \(-0.944444\pi\)
0.984808 + 0.173648i \(0.0555556\pi\)
\(840\) 0 0
\(841\) −43.4427 75.2449i −1.49802 2.59465i
\(842\) 2.97837 6.38713i 0.102641 0.220115i
\(843\) 0 0
\(844\) 0 0
\(845\) −72.1428 + 21.4588i −2.48179 + 0.738205i
\(846\) 0 0
\(847\) 0 0
\(848\) −17.1779 + 24.5325i −0.589890 + 0.842450i
\(849\) 0 0
\(850\) 5.00526 + 7.66924i 0.171679 + 0.263053i
\(851\) 0 0
\(852\) 0 0
\(853\) −22.8697 32.6614i −0.783045 1.11830i −0.990153 0.139986i \(-0.955294\pi\)
0.207109 0.978318i \(-0.433595\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 18.8898 + 18.8898i 0.645263 + 0.645263i 0.951845 0.306581i \(-0.0991851\pi\)
−0.306581 + 0.951845i \(0.599185\pi\)
\(858\) 0 0
\(859\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 0.819152 0.573576i \(-0.194444\pi\)
−0.819152 + 0.573576i \(0.805556\pi\)
\(864\) 0 0
\(865\) 42.4776 1.16058i 1.44428 0.0394608i
\(866\) −19.0402 + 22.6912i −0.647011 + 0.771078i
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) −54.0361 + 4.72754i −1.82989 + 0.160095i
\(873\) −58.8586 + 5.14946i −1.99206 + 0.174283i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −9.15897 34.1818i −0.309277 1.15424i −0.929201 0.369574i \(-0.879504\pi\)
0.619925 0.784661i \(-0.287163\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 36.1352 30.3210i 1.21743 1.02154i 0.218471 0.975843i \(-0.429893\pi\)
0.998955 0.0456985i \(-0.0145514\pi\)
\(882\) 21.0000 + 21.0000i 0.707107 + 0.707107i
\(883\) 0 0 0.0871557 0.996195i \(-0.472222\pi\)
−0.0871557 + 0.996195i \(0.527778\pi\)
\(884\) −6.05164 + 16.6267i −0.203539 + 0.559218i
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −44.4509 35.2755i −1.49000 1.18244i
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 11.7583 43.8827i 0.392381 1.46438i
\(899\) 0 0
\(900\) −11.7846 27.5885i −0.392820 0.919615i
\(901\) 3.31656 9.11216i 0.110490 0.303570i
\(902\) 0 0
\(903\) 0 0
\(904\) 32.1146 38.2727i 1.06812 1.27293i
\(905\) 30.4010 + 40.9872i 1.01056 + 1.36246i
\(906\) 0 0
\(907\) 0 0 0.573576 0.819152i \(-0.305556\pi\)
−0.573576 + 0.819152i \(0.694444\pi\)
\(908\) 0 0
\(909\) 9.56664 11.4011i 0.317305 0.378150i
\(910\) 0 0
\(911\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −50.3896 29.0924i −1.66674 0.962293i
\(915\) 0 0
\(916\) −26.3478 + 9.58982i −0.870556 + 0.316856i
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) −49.7081 34.8060i −1.63705 1.14628i
\(923\) 0 0
\(924\) 0 0
\(925\) 29.6822 6.63064i 0.975946 0.218014i
\(926\) 0 0
\(927\) 0 0
\(928\) −34.9286 + 49.8831i −1.14659 + 1.63749i
\(929\) −16.2050 + 44.5228i −0.531667 + 1.46074i 0.325418 + 0.945570i \(0.394495\pi\)
−0.857086 + 0.515174i \(0.827727\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 4.88411 55.8256i 0.159984 1.82863i
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 28.9808 50.1962i 0.947266 1.64071i
\(937\) 15.7408 + 22.4802i 0.514230 + 0.734397i 0.989355 0.145522i \(-0.0464860\pi\)
−0.475125 + 0.879918i \(0.657597\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 43.8839 + 36.8229i 1.43057 + 1.20039i 0.945373 + 0.325991i \(0.105698\pi\)
0.485200 + 0.874403i \(0.338747\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(948\) 0 0
\(949\) −109.171 39.7348i −3.54383 1.28985i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −35.8970 16.7390i −1.16282 0.542231i −0.257213 0.966355i \(-0.582804\pi\)
−0.905604 + 0.424124i \(0.860582\pi\)
\(954\) −15.8827 + 27.5096i −0.514221 + 0.890657i
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 44.6571 + 38.1916i 1.43980 + 1.23135i
\(963\) 0 0
\(964\) −2.80331 + 15.8983i −0.0902884 + 0.512051i
\(965\) 16.1441 48.4322i 0.519696 1.55909i
\(966\) 0 0
\(967\) 0 0 −0.996195 0.0871557i \(-0.972222\pi\)
0.996195 + 0.0871557i \(0.0277778\pi\)
\(968\) −22.0000 + 22.0000i −0.707107 + 0.707107i
\(969\) 0 0
\(970\) −14.4701 + 60.5751i −0.464606 + 1.94495i
\(971\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) −46.7694 + 27.0023i −1.49705 + 0.864324i
\(977\) 2.07206 + 23.6837i 0.0662910 + 0.757709i 0.954489 + 0.298248i \(0.0964021\pi\)
−0.888198 + 0.459462i \(0.848042\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 28.0000 14.0000i 0.894427 0.447214i
\(981\) −56.6588 + 9.99047i −1.80898 + 0.318971i
\(982\) 0 0
\(983\) 0 0 −0.0871557 0.996195i \(-0.527778\pi\)
0.0871557 + 0.996195i \(0.472222\pi\)
\(984\) 0 0
\(985\) −0.270714 9.90823i −0.00862565 0.315703i
\(986\) 6.74371 18.5282i 0.214763 0.590058i
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 42.8629 30.0129i 1.35748 0.950518i 0.357619 0.933867i \(-0.383589\pi\)
0.999861 0.0166508i \(-0.00530035\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.ce.a.263.1 12
4.3 odd 2 CM 740.2.ce.a.263.1 12
5.2 odd 4 740.2.ce.b.707.1 yes 12
20.7 even 4 740.2.ce.b.707.1 yes 12
37.28 even 18 740.2.ce.b.583.1 yes 12
148.139 odd 18 740.2.ce.b.583.1 yes 12
185.102 odd 36 inner 740.2.ce.a.287.1 yes 12
740.287 even 36 inner 740.2.ce.a.287.1 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.ce.a.263.1 12 1.1 even 1 trivial
740.2.ce.a.263.1 12 4.3 odd 2 CM
740.2.ce.a.287.1 yes 12 185.102 odd 36 inner
740.2.ce.a.287.1 yes 12 740.287 even 36 inner
740.2.ce.b.583.1 yes 12 37.28 even 18
740.2.ce.b.583.1 yes 12 148.139 odd 18
740.2.ce.b.707.1 yes 12 5.2 odd 4
740.2.ce.b.707.1 yes 12 20.7 even 4