Properties

Label 740.2.cc.a.17.5
Level $740$
Weight $2$
Character 740.17
Analytic conductor $5.909$
Analytic rank $0$
Dimension $228$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(17,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.cc (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(228\)
Relative dimension: \(19\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 17.5
Character \(\chi\) \(=\) 740.17
Dual form 740.2.cc.a.653.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.42609 + 0.998562i) q^{3} +(-1.41528 - 1.73118i) q^{5} +(0.136680 + 1.56226i) q^{7} +(0.0105581 - 0.0290083i) q^{9} +(2.07693 - 1.19912i) q^{11} +(-2.59943 + 0.946115i) q^{13} +(3.74701 + 1.05558i) q^{15} +(0.0137279 - 0.0377171i) q^{17} +(-2.33571 - 3.33574i) q^{19} +(-1.75493 - 2.09144i) q^{21} +(1.98130 - 3.43171i) q^{23} +(-0.993958 + 4.90021i) q^{25} +(-1.33786 - 4.99294i) q^{27} +(1.14194 - 4.26176i) q^{29} +(6.05569 - 6.05569i) q^{31} +(-1.76451 + 3.78399i) q^{33} +(2.51111 - 2.44765i) q^{35} +(-2.40978 - 5.58506i) q^{37} +(2.76228 - 3.94494i) q^{39} +(-1.99128 - 5.47099i) q^{41} -3.96556 q^{43} +(-0.0651612 + 0.0227768i) q^{45} +(6.78359 - 1.81766i) q^{47} +(4.47169 - 0.788479i) q^{49} +(0.0180856 + 0.0674963i) q^{51} +(-0.974499 + 11.1386i) q^{53} +(-5.01532 - 1.89845i) q^{55} +(6.66189 + 2.42473i) q^{57} +(1.14585 - 13.0971i) q^{59} +(0.941466 - 2.01898i) q^{61} +(0.0467615 + 0.0125297i) q^{63} +(5.31682 + 3.16106i) q^{65} +(0.962767 - 0.0842312i) q^{67} +(0.601256 + 6.87238i) q^{69} +(-0.221860 + 1.25823i) q^{71} +(-5.46509 - 5.46509i) q^{73} +(-3.47568 - 7.98069i) q^{75} +(2.15720 + 3.08080i) q^{77} +(-10.1851 + 0.891079i) q^{79} +(6.96461 + 5.84400i) q^{81} +(7.88711 - 3.67782i) q^{83} +(-0.0847239 + 0.0296149i) q^{85} +(2.62713 + 7.21797i) q^{87} +(0.000139453 + 1.22005e-5i) q^{89} +(-1.83336 - 3.93166i) q^{91} +(-2.58900 + 14.6830i) q^{93} +(-2.46908 + 8.76455i) q^{95} +(-0.902154 - 0.520859i) q^{97} +(-0.0128557 - 0.0729086i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 228 q + 6 q^{3} - 12 q^{25} + 12 q^{27} - 36 q^{31} + 6 q^{33} + 24 q^{35} + 24 q^{37} - 72 q^{39} - 54 q^{41} - 12 q^{45} + 36 q^{49} - 6 q^{53} - 72 q^{57} - 36 q^{61} + 18 q^{65} + 42 q^{67} + 96 q^{69}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.42609 + 0.998562i −0.823356 + 0.576520i −0.907557 0.419929i \(-0.862055\pi\)
0.0842012 + 0.996449i \(0.473166\pi\)
\(4\) 0 0
\(5\) −1.41528 1.73118i −0.632933 0.774207i
\(6\) 0 0
\(7\) 0.136680 + 1.56226i 0.0516601 + 0.590478i 0.977270 + 0.211999i \(0.0679972\pi\)
−0.925610 + 0.378479i \(0.876447\pi\)
\(8\) 0 0
\(9\) 0.0105581 0.0290083i 0.00351938 0.00966942i
\(10\) 0 0
\(11\) 2.07693 1.19912i 0.626218 0.361547i −0.153068 0.988216i \(-0.548915\pi\)
0.779286 + 0.626669i \(0.215582\pi\)
\(12\) 0 0
\(13\) −2.59943 + 0.946115i −0.720952 + 0.262405i −0.676330 0.736599i \(-0.736431\pi\)
−0.0446223 + 0.999004i \(0.514208\pi\)
\(14\) 0 0
\(15\) 3.74701 + 1.05558i 0.967475 + 0.272549i
\(16\) 0 0
\(17\) 0.0137279 0.0377171i 0.00332951 0.00914774i −0.938017 0.346590i \(-0.887340\pi\)
0.941346 + 0.337442i \(0.109562\pi\)
\(18\) 0 0
\(19\) −2.33571 3.33574i −0.535849 0.765272i 0.456368 0.889791i \(-0.349150\pi\)
−0.992217 + 0.124519i \(0.960261\pi\)
\(20\) 0 0
\(21\) −1.75493 2.09144i −0.382957 0.456390i
\(22\) 0 0
\(23\) 1.98130 3.43171i 0.413129 0.715560i −0.582101 0.813116i \(-0.697769\pi\)
0.995230 + 0.0975562i \(0.0311026\pi\)
\(24\) 0 0
\(25\) −0.993958 + 4.90021i −0.198792 + 0.980042i
\(26\) 0 0
\(27\) −1.33786 4.99294i −0.257470 0.960892i
\(28\) 0 0
\(29\) 1.14194 4.26176i 0.212052 0.791390i −0.775131 0.631800i \(-0.782316\pi\)
0.987183 0.159589i \(-0.0510170\pi\)
\(30\) 0 0
\(31\) 6.05569 6.05569i 1.08763 1.08763i 0.0918632 0.995772i \(-0.470718\pi\)
0.995772 0.0918632i \(-0.0292823\pi\)
\(32\) 0 0
\(33\) −1.76451 + 3.78399i −0.307161 + 0.658709i
\(34\) 0 0
\(35\) 2.51111 2.44765i 0.424454 0.413728i
\(36\) 0 0
\(37\) −2.40978 5.58506i −0.396166 0.918179i
\(38\) 0 0
\(39\) 2.76228 3.94494i 0.442318 0.631696i
\(40\) 0 0
\(41\) −1.99128 5.47099i −0.310985 0.854425i −0.992458 0.122582i \(-0.960883\pi\)
0.681473 0.731843i \(-0.261340\pi\)
\(42\) 0 0
\(43\) −3.96556 −0.604742 −0.302371 0.953190i \(-0.597778\pi\)
−0.302371 + 0.953190i \(0.597778\pi\)
\(44\) 0 0
\(45\) −0.0651612 + 0.0227768i −0.00971366 + 0.00339537i
\(46\) 0 0
\(47\) 6.78359 1.81766i 0.989489 0.265133i 0.272453 0.962169i \(-0.412165\pi\)
0.717036 + 0.697036i \(0.245498\pi\)
\(48\) 0 0
\(49\) 4.47169 0.788479i 0.638813 0.112640i
\(50\) 0 0
\(51\) 0.0180856 + 0.0674963i 0.00253249 + 0.00945137i
\(52\) 0 0
\(53\) −0.974499 + 11.1386i −0.133858 + 1.53000i 0.571176 + 0.820828i \(0.306487\pi\)
−0.705034 + 0.709174i \(0.749068\pi\)
\(54\) 0 0
\(55\) −5.01532 1.89845i −0.676266 0.255987i
\(56\) 0 0
\(57\) 6.66189 + 2.42473i 0.882389 + 0.321163i
\(58\) 0 0
\(59\) 1.14585 13.0971i 0.149177 1.70510i −0.440739 0.897635i \(-0.645283\pi\)
0.589916 0.807465i \(-0.299161\pi\)
\(60\) 0 0
\(61\) 0.941466 2.01898i 0.120542 0.258504i −0.836773 0.547550i \(-0.815560\pi\)
0.957315 + 0.289046i \(0.0933382\pi\)
\(62\) 0 0
\(63\) 0.0467615 + 0.0125297i 0.00589139 + 0.00157859i
\(64\) 0 0
\(65\) 5.31682 + 3.16106i 0.659470 + 0.392081i
\(66\) 0 0
\(67\) 0.962767 0.0842312i 0.117621 0.0102905i −0.0281934 0.999602i \(-0.508975\pi\)
0.145814 + 0.989312i \(0.453420\pi\)
\(68\) 0 0
\(69\) 0.601256 + 6.87238i 0.0723827 + 0.827338i
\(70\) 0 0
\(71\) −0.221860 + 1.25823i −0.0263300 + 0.149325i −0.995138 0.0984860i \(-0.968600\pi\)
0.968808 + 0.247811i \(0.0797111\pi\)
\(72\) 0 0
\(73\) −5.46509 5.46509i −0.639640 0.639640i 0.310827 0.950467i \(-0.399394\pi\)
−0.950467 + 0.310827i \(0.899394\pi\)
\(74\) 0 0
\(75\) −3.47568 7.98069i −0.401337 0.921530i
\(76\) 0 0
\(77\) 2.15720 + 3.08080i 0.245836 + 0.351090i
\(78\) 0 0
\(79\) −10.1851 + 0.891079i −1.14591 + 0.100254i −0.644253 0.764812i \(-0.722832\pi\)
−0.501658 + 0.865066i \(0.667276\pi\)
\(80\) 0 0
\(81\) 6.96461 + 5.84400i 0.773846 + 0.649334i
\(82\) 0 0
\(83\) 7.88711 3.67782i 0.865722 0.403693i 0.0615605 0.998103i \(-0.480392\pi\)
0.804162 + 0.594410i \(0.202615\pi\)
\(84\) 0 0
\(85\) −0.0847239 + 0.0296149i −0.00918960 + 0.00321218i
\(86\) 0 0
\(87\) 2.62713 + 7.21797i 0.281658 + 0.773848i
\(88\) 0 0
\(89\) 0.000139453 0 1.22005e-5i 1.47820e−5 0 1.29326e-6i 0.0871631 0.996194i \(-0.472220\pi\)
−0.0871484 + 0.996195i \(0.527775\pi\)
\(90\) 0 0
\(91\) −1.83336 3.93166i −0.192189 0.412150i
\(92\) 0 0
\(93\) −2.58900 + 14.6830i −0.268467 + 1.52255i
\(94\) 0 0
\(95\) −2.46908 + 8.76455i −0.253322 + 0.899224i
\(96\) 0 0
\(97\) −0.902154 0.520859i −0.0915999 0.0528852i 0.453500 0.891256i \(-0.350175\pi\)
−0.545100 + 0.838371i \(0.683508\pi\)
\(98\) 0 0
\(99\) −0.0128557 0.0729086i −0.00129205 0.00732759i
\(100\) 0 0
\(101\) 8.34072 + 4.81552i 0.829932 + 0.479162i 0.853830 0.520553i \(-0.174274\pi\)
−0.0238971 + 0.999714i \(0.507607\pi\)
\(102\) 0 0
\(103\) 1.54796 0.893714i 0.152525 0.0880603i −0.421795 0.906691i \(-0.638600\pi\)
0.574320 + 0.818631i \(0.305267\pi\)
\(104\) 0 0
\(105\) −1.13694 + 5.99807i −0.110954 + 0.585352i
\(106\) 0 0
\(107\) −2.52760 1.17864i −0.244352 0.113943i 0.296584 0.955007i \(-0.404152\pi\)
−0.540937 + 0.841063i \(0.681930\pi\)
\(108\) 0 0
\(109\) −9.23197 6.46429i −0.884262 0.619167i 0.0407230 0.999170i \(-0.487034\pi\)
−0.924985 + 0.380004i \(0.875923\pi\)
\(110\) 0 0
\(111\) 9.01361 + 5.55851i 0.855534 + 0.527590i
\(112\) 0 0
\(113\) −11.9063 + 2.09939i −1.12005 + 0.197494i −0.702861 0.711327i \(-0.748094\pi\)
−0.417185 + 0.908822i \(0.636983\pi\)
\(114\) 0 0
\(115\) −8.74499 + 1.42685i −0.815474 + 0.133055i
\(116\) 0 0
\(117\) 0.0853942i 0.00789470i
\(118\) 0 0
\(119\) 0.0608001 + 0.0162913i 0.00557354 + 0.00149343i
\(120\) 0 0
\(121\) −2.62424 + 4.54532i −0.238568 + 0.413211i
\(122\) 0 0
\(123\) 8.30287 + 5.81373i 0.748644 + 0.524206i
\(124\) 0 0
\(125\) 9.88987 5.21446i 0.884577 0.466395i
\(126\) 0 0
\(127\) −6.43910 0.563348i −0.571378 0.0499891i −0.202194 0.979346i \(-0.564807\pi\)
−0.369184 + 0.929356i \(0.620363\pi\)
\(128\) 0 0
\(129\) 5.65526 3.95985i 0.497918 0.348646i
\(130\) 0 0
\(131\) −1.76644 + 0.823703i −0.154334 + 0.0719673i −0.498251 0.867033i \(-0.666024\pi\)
0.343916 + 0.939000i \(0.388246\pi\)
\(132\) 0 0
\(133\) 4.89204 4.10491i 0.424194 0.355941i
\(134\) 0 0
\(135\) −6.75023 + 9.38249i −0.580968 + 0.807516i
\(136\) 0 0
\(137\) −4.75539 + 17.7473i −0.406280 + 1.51626i 0.395403 + 0.918508i \(0.370605\pi\)
−0.801683 + 0.597750i \(0.796062\pi\)
\(138\) 0 0
\(139\) −20.0764 7.30721i −1.70286 0.619789i −0.706711 0.707502i \(-0.749822\pi\)
−0.996146 + 0.0877129i \(0.972044\pi\)
\(140\) 0 0
\(141\) −7.85900 + 9.36599i −0.661847 + 0.788759i
\(142\) 0 0
\(143\) −4.26433 + 5.08203i −0.356601 + 0.424981i
\(144\) 0 0
\(145\) −8.99404 + 4.05470i −0.746914 + 0.336724i
\(146\) 0 0
\(147\) −5.58970 + 5.58970i −0.461031 + 0.461031i
\(148\) 0 0
\(149\) 19.5882i 1.60473i −0.596835 0.802364i \(-0.703575\pi\)
0.596835 0.802364i \(-0.296425\pi\)
\(150\) 0 0
\(151\) 1.41804 + 0.250038i 0.115398 + 0.0203478i 0.231049 0.972942i \(-0.425784\pi\)
−0.115651 + 0.993290i \(0.536895\pi\)
\(152\) 0 0
\(153\) −0.000949167 0 0.000796446i −7.67356e−5 0 6.43888e-5i
\(154\) 0 0
\(155\) −19.0540 1.91298i −1.53045 0.153654i
\(156\) 0 0
\(157\) 2.37646 + 5.09634i 0.189662 + 0.406732i 0.978028 0.208475i \(-0.0668500\pi\)
−0.788365 + 0.615208i \(0.789072\pi\)
\(158\) 0 0
\(159\) −9.73283 16.8578i −0.771864 1.33691i
\(160\) 0 0
\(161\) 5.63201 + 2.62625i 0.443865 + 0.206977i
\(162\) 0 0
\(163\) 0.503054 + 0.599517i 0.0394023 + 0.0469578i 0.785386 0.619007i \(-0.212465\pi\)
−0.745983 + 0.665965i \(0.768020\pi\)
\(164\) 0 0
\(165\) 9.04804 2.30074i 0.704389 0.179113i
\(166\) 0 0
\(167\) 6.77505 + 1.19462i 0.524269 + 0.0924428i 0.429518 0.903058i \(-0.358683\pi\)
0.0947511 + 0.995501i \(0.469794\pi\)
\(168\) 0 0
\(169\) −4.09667 + 3.43752i −0.315129 + 0.264424i
\(170\) 0 0
\(171\) −0.121425 + 0.0325357i −0.00928560 + 0.00248807i
\(172\) 0 0
\(173\) −11.9443 + 17.0583i −0.908110 + 1.29692i 0.0464578 + 0.998920i \(0.485207\pi\)
−0.954568 + 0.297995i \(0.903682\pi\)
\(174\) 0 0
\(175\) −7.79124 0.883058i −0.588962 0.0667529i
\(176\) 0 0
\(177\) 11.4442 + 19.8219i 0.860199 + 1.48991i
\(178\) 0 0
\(179\) 9.08732 + 9.08732i 0.679218 + 0.679218i 0.959823 0.280605i \(-0.0905352\pi\)
−0.280605 + 0.959823i \(0.590535\pi\)
\(180\) 0 0
\(181\) 14.1431 5.14766i 1.05125 0.382623i 0.242114 0.970248i \(-0.422159\pi\)
0.809133 + 0.587625i \(0.199937\pi\)
\(182\) 0 0
\(183\) 0.673458 + 3.81937i 0.0497834 + 0.282336i
\(184\) 0 0
\(185\) −6.25822 + 12.0762i −0.460114 + 0.887860i
\(186\) 0 0
\(187\) −0.0167153 0.0947971i −0.00122234 0.00693225i
\(188\) 0 0
\(189\) 7.61740 2.77251i 0.554085 0.201670i
\(190\) 0 0
\(191\) 10.7672 + 10.7672i 0.779090 + 0.779090i 0.979676 0.200586i \(-0.0642845\pi\)
−0.200586 + 0.979676i \(0.564285\pi\)
\(192\) 0 0
\(193\) −2.66304 4.61252i −0.191690 0.332017i 0.754120 0.656736i \(-0.228063\pi\)
−0.945810 + 0.324719i \(0.894730\pi\)
\(194\) 0 0
\(195\) −10.7388 + 0.801206i −0.769021 + 0.0573755i
\(196\) 0 0
\(197\) 6.35339 9.07359i 0.452661 0.646466i −0.526352 0.850267i \(-0.676441\pi\)
0.979012 + 0.203801i \(0.0653294\pi\)
\(198\) 0 0
\(199\) 19.0018 5.09152i 1.34700 0.360928i 0.487975 0.872857i \(-0.337736\pi\)
0.859028 + 0.511929i \(0.171069\pi\)
\(200\) 0 0
\(201\) −1.28889 + 1.08150i −0.0909111 + 0.0762834i
\(202\) 0 0
\(203\) 6.81405 + 1.20150i 0.478253 + 0.0843288i
\(204\) 0 0
\(205\) −6.65304 + 11.1902i −0.464668 + 0.781560i
\(206\) 0 0
\(207\) −0.0786290 0.0937064i −0.00546510 0.00651305i
\(208\) 0 0
\(209\) −8.85105 4.12731i −0.612240 0.285492i
\(210\) 0 0
\(211\) −1.93788 3.35650i −0.133409 0.231071i 0.791580 0.611066i \(-0.209259\pi\)
−0.924989 + 0.379995i \(0.875926\pi\)
\(212\) 0 0
\(213\) −0.940029 2.01590i −0.0644097 0.138127i
\(214\) 0 0
\(215\) 5.61238 + 6.86509i 0.382761 + 0.468195i
\(216\) 0 0
\(217\) 10.2882 + 8.63286i 0.698411 + 0.586037i
\(218\) 0 0
\(219\) 13.2510 + 2.33650i 0.895416 + 0.157886i
\(220\) 0 0
\(221\) 0.111031i 0.00746877i
\(222\) 0 0
\(223\) 19.6240 19.6240i 1.31412 1.31412i 0.395766 0.918351i \(-0.370479\pi\)
0.918351 0.395766i \(-0.129521\pi\)
\(224\) 0 0
\(225\) 0.131652 + 0.0805701i 0.00877682 + 0.00537134i
\(226\) 0 0
\(227\) −1.17459 + 1.39982i −0.0779604 + 0.0929096i −0.803615 0.595150i \(-0.797093\pi\)
0.725654 + 0.688059i \(0.241537\pi\)
\(228\) 0 0
\(229\) −6.93291 + 8.26232i −0.458139 + 0.545989i −0.944820 0.327591i \(-0.893763\pi\)
0.486680 + 0.873580i \(0.338208\pi\)
\(230\) 0 0
\(231\) −6.15274 2.23942i −0.404821 0.147343i
\(232\) 0 0
\(233\) 3.17974 11.8669i 0.208312 0.777429i −0.780103 0.625651i \(-0.784833\pi\)
0.988415 0.151778i \(-0.0485000\pi\)
\(234\) 0 0
\(235\) −12.7474 9.17111i −0.831548 0.598257i
\(236\) 0 0
\(237\) 13.6351 11.4412i 0.885694 0.743185i
\(238\) 0 0
\(239\) −5.00091 + 2.33196i −0.323482 + 0.150842i −0.577575 0.816338i \(-0.696001\pi\)
0.254093 + 0.967180i \(0.418223\pi\)
\(240\) 0 0
\(241\) 3.53598 2.47592i 0.227773 0.159488i −0.454120 0.890941i \(-0.650046\pi\)
0.681892 + 0.731453i \(0.261157\pi\)
\(242\) 0 0
\(243\) −0.319577 0.0279593i −0.0205008 0.00179359i
\(244\) 0 0
\(245\) −7.69370 6.62537i −0.491532 0.423279i
\(246\) 0 0
\(247\) 9.22752 + 6.46118i 0.587133 + 0.411115i
\(248\) 0 0
\(249\) −7.57523 + 13.1207i −0.480060 + 0.831489i
\(250\) 0 0
\(251\) −6.10700 1.63636i −0.385470 0.103286i 0.0608794 0.998145i \(-0.480610\pi\)
−0.446349 + 0.894859i \(0.647276\pi\)
\(252\) 0 0
\(253\) 9.50321i 0.597462i
\(254\) 0 0
\(255\) 0.0912520 0.126836i 0.00571442 0.00794276i
\(256\) 0 0
\(257\) −7.43637 + 1.31123i −0.463868 + 0.0817925i −0.400698 0.916210i \(-0.631232\pi\)
−0.0631704 + 0.998003i \(0.520121\pi\)
\(258\) 0 0
\(259\) 8.39594 4.52807i 0.521698 0.281360i
\(260\) 0 0
\(261\) −0.111570 0.0781219i −0.00690599 0.00483563i
\(262\) 0 0
\(263\) 21.6511 + 10.0961i 1.33506 + 0.622549i 0.953388 0.301748i \(-0.0975702\pi\)
0.381673 + 0.924297i \(0.375348\pi\)
\(264\) 0 0
\(265\) 20.6621 14.0772i 1.26926 0.864755i
\(266\) 0 0
\(267\) −0.000211056 0 0.000121853i −1.29164e−5 0 7.45730e-6i
\(268\) 0 0
\(269\) 6.82799 + 3.94214i 0.416310 + 0.240357i 0.693497 0.720459i \(-0.256069\pi\)
−0.277187 + 0.960816i \(0.589402\pi\)
\(270\) 0 0
\(271\) 0.582593 + 3.30405i 0.0353900 + 0.200707i 0.997376 0.0723908i \(-0.0230629\pi\)
−0.961986 + 0.273098i \(0.911952\pi\)
\(272\) 0 0
\(273\) 6.54056 + 3.77619i 0.395853 + 0.228546i
\(274\) 0 0
\(275\) 3.81154 + 11.3693i 0.229844 + 0.685592i
\(276\) 0 0
\(277\) −1.79190 + 10.1624i −0.107665 + 0.610597i 0.882458 + 0.470392i \(0.155887\pi\)
−0.990122 + 0.140205i \(0.955224\pi\)
\(278\) 0 0
\(279\) −0.111728 0.239602i −0.00668900 0.0143446i
\(280\) 0 0
\(281\) −17.3751 1.52012i −1.03651 0.0906828i −0.443821 0.896115i \(-0.646378\pi\)
−0.592688 + 0.805432i \(0.701933\pi\)
\(282\) 0 0
\(283\) −5.99868 16.4812i −0.356585 0.979708i −0.980206 0.197982i \(-0.936561\pi\)
0.623621 0.781727i \(-0.285661\pi\)
\(284\) 0 0
\(285\) −5.23081 14.9646i −0.309846 0.886426i
\(286\) 0 0
\(287\) 8.27492 3.85866i 0.488453 0.227769i
\(288\) 0 0
\(289\) 13.0215 + 10.9264i 0.765972 + 0.642727i
\(290\) 0 0
\(291\) 1.80667 0.158063i 0.105909 0.00926581i
\(292\) 0 0
\(293\) −8.86675 12.6630i −0.518001 0.739782i 0.471883 0.881661i \(-0.343574\pi\)
−0.989884 + 0.141879i \(0.954686\pi\)
\(294\) 0 0
\(295\) −24.2952 + 16.5524i −1.41452 + 0.963720i
\(296\) 0 0
\(297\) −8.76575 8.76575i −0.508640 0.508640i
\(298\) 0 0
\(299\) −1.90345 + 10.7950i −0.110079 + 0.624292i
\(300\) 0 0
\(301\) −0.542011 6.19522i −0.0312410 0.357086i
\(302\) 0 0
\(303\) −16.7032 + 1.46134i −0.959576 + 0.0839520i
\(304\) 0 0
\(305\) −4.82766 + 1.22758i −0.276431 + 0.0702910i
\(306\) 0 0
\(307\) −19.6533 5.26608i −1.12167 0.300551i −0.350112 0.936708i \(-0.613857\pi\)
−0.771560 + 0.636157i \(0.780523\pi\)
\(308\) 0 0
\(309\) −1.31511 + 2.82025i −0.0748137 + 0.160439i
\(310\) 0 0
\(311\) 0.650807 7.43875i 0.0369039 0.421813i −0.955161 0.296087i \(-0.904318\pi\)
0.992065 0.125726i \(-0.0401262\pi\)
\(312\) 0 0
\(313\) −29.4252 10.7099i −1.66321 0.605359i −0.672349 0.740235i \(-0.734714\pi\)
−0.990863 + 0.134875i \(0.956937\pi\)
\(314\) 0 0
\(315\) −0.0444895 0.0986855i −0.00250670 0.00556030i
\(316\) 0 0
\(317\) 0.626337 7.15907i 0.0351786 0.402093i −0.958107 0.286409i \(-0.907538\pi\)
0.993286 0.115684i \(-0.0369061\pi\)
\(318\) 0 0
\(319\) −2.73863 10.2207i −0.153334 0.572249i
\(320\) 0 0
\(321\) 4.78154 0.843114i 0.266879 0.0470580i
\(322\) 0 0
\(323\) −0.157879 + 0.0423036i −0.00878463 + 0.00235383i
\(324\) 0 0
\(325\) −2.05244 13.6782i −0.113849 0.758727i
\(326\) 0 0
\(327\) 19.6206 1.08502
\(328\) 0 0
\(329\) 3.76683 + 10.3493i 0.207672 + 0.570574i
\(330\) 0 0
\(331\) 9.11428 13.0165i 0.500966 0.715454i −0.486431 0.873719i \(-0.661701\pi\)
0.987397 + 0.158266i \(0.0505902\pi\)
\(332\) 0 0
\(333\) −0.187456 + 0.0109357i −0.0102725 + 0.000599275i
\(334\) 0 0
\(335\) −1.50841 1.54751i −0.0824130 0.0845496i
\(336\) 0 0
\(337\) 5.18652 11.1225i 0.282528 0.605883i −0.712914 0.701251i \(-0.752625\pi\)
0.995442 + 0.0953684i \(0.0304029\pi\)
\(338\) 0 0
\(339\) 14.8831 14.8831i 0.808337 0.808337i
\(340\) 0 0
\(341\) 5.31577 19.8387i 0.287865 1.07433i
\(342\) 0 0
\(343\) 4.68420 + 17.4817i 0.252923 + 0.943922i
\(344\) 0 0
\(345\) 11.0464 10.7672i 0.594717 0.579688i
\(346\) 0 0
\(347\) 17.0603 29.5494i 0.915847 1.58629i 0.110191 0.993910i \(-0.464854\pi\)
0.805656 0.592384i \(-0.201813\pi\)
\(348\) 0 0
\(349\) −19.3414 23.0502i −1.03532 1.23385i −0.971784 0.235872i \(-0.924205\pi\)
−0.0635399 0.997979i \(-0.520239\pi\)
\(350\) 0 0
\(351\) 8.20156 + 11.7130i 0.437767 + 0.625196i
\(352\) 0 0
\(353\) 3.71258 10.2002i 0.197601 0.542904i −0.800831 0.598891i \(-0.795608\pi\)
0.998431 + 0.0559870i \(0.0178306\pi\)
\(354\) 0 0
\(355\) 2.49222 1.39667i 0.132273 0.0741277i
\(356\) 0 0
\(357\) −0.102975 + 0.0374797i −0.00545000 + 0.00198364i
\(358\) 0 0
\(359\) −12.0543 + 6.95955i −0.636201 + 0.367311i −0.783150 0.621833i \(-0.786388\pi\)
0.146949 + 0.989144i \(0.453055\pi\)
\(360\) 0 0
\(361\) 0.826751 2.27148i 0.0435132 0.119552i
\(362\) 0 0
\(363\) −0.796368 9.10253i −0.0417985 0.477759i
\(364\) 0 0
\(365\) −1.72641 + 17.1957i −0.0903642 + 0.900063i
\(366\) 0 0
\(367\) −19.9455 + 13.9660i −1.04115 + 0.729019i −0.963431 0.267957i \(-0.913652\pi\)
−0.0777161 + 0.996976i \(0.524763\pi\)
\(368\) 0 0
\(369\) −0.179728 −0.00935627
\(370\) 0 0
\(371\) −17.5345 −0.910347
\(372\) 0 0
\(373\) 1.90588 1.33451i 0.0986828 0.0690984i −0.523194 0.852214i \(-0.675260\pi\)
0.621876 + 0.783115i \(0.286371\pi\)
\(374\) 0 0
\(375\) −8.89692 + 17.3119i −0.459435 + 0.893985i
\(376\) 0 0
\(377\) 1.06374 + 12.1586i 0.0547852 + 0.626198i
\(378\) 0 0
\(379\) 4.18735 11.5047i 0.215090 0.590955i −0.784484 0.620149i \(-0.787072\pi\)
0.999574 + 0.0291946i \(0.00929425\pi\)
\(380\) 0 0
\(381\) 9.74530 5.62645i 0.499267 0.288252i
\(382\) 0 0
\(383\) 1.60400 0.583808i 0.0819605 0.0298312i −0.300714 0.953714i \(-0.597225\pi\)
0.382675 + 0.923883i \(0.375003\pi\)
\(384\) 0 0
\(385\) 2.28037 8.09470i 0.116219 0.412544i
\(386\) 0 0
\(387\) −0.0418689 + 0.115034i −0.00212832 + 0.00584750i
\(388\) 0 0
\(389\) −6.98479 9.97531i −0.354143 0.505768i 0.602069 0.798444i \(-0.294343\pi\)
−0.956212 + 0.292676i \(0.905454\pi\)
\(390\) 0 0
\(391\) −0.102235 0.121839i −0.00517025 0.00616166i
\(392\) 0 0
\(393\) 1.69659 2.93858i 0.0855815 0.148232i
\(394\) 0 0
\(395\) 15.9574 + 16.3711i 0.802902 + 0.823718i
\(396\) 0 0
\(397\) 6.12157 + 22.8460i 0.307233 + 1.14661i 0.931006 + 0.365004i \(0.118932\pi\)
−0.623773 + 0.781606i \(0.714401\pi\)
\(398\) 0 0
\(399\) −2.87751 + 10.7390i −0.144055 + 0.537622i
\(400\) 0 0
\(401\) −22.9473 + 22.9473i −1.14593 + 1.14593i −0.158589 + 0.987345i \(0.550695\pi\)
−0.987345 + 0.158589i \(0.949305\pi\)
\(402\) 0 0
\(403\) −10.0120 + 21.4707i −0.498732 + 1.06953i
\(404\) 0 0
\(405\) 0.260128 20.3279i 0.0129259 1.01010i
\(406\) 0 0
\(407\) −11.7021 8.71017i −0.580051 0.431747i
\(408\) 0 0
\(409\) −11.4320 + 16.3265i −0.565274 + 0.807294i −0.995433 0.0954584i \(-0.969568\pi\)
0.430160 + 0.902753i \(0.358457\pi\)
\(410\) 0 0
\(411\) −10.9402 30.0579i −0.539640 1.48265i
\(412\) 0 0
\(413\) 20.6177 1.01453
\(414\) 0 0
\(415\) −17.5294 8.44884i −0.860486 0.414737i
\(416\) 0 0
\(417\) 35.9275 9.62675i 1.75938 0.471424i
\(418\) 0 0
\(419\) 17.0399 3.00459i 0.832453 0.146784i 0.258850 0.965918i \(-0.416656\pi\)
0.573603 + 0.819134i \(0.305545\pi\)
\(420\) 0 0
\(421\) 5.95528 + 22.2254i 0.290243 + 1.08320i 0.944922 + 0.327294i \(0.106137\pi\)
−0.654680 + 0.755906i \(0.727196\pi\)
\(422\) 0 0
\(423\) 0.0188950 0.215971i 0.000918709 0.0105009i
\(424\) 0 0
\(425\) 0.171177 + 0.104759i 0.00830329 + 0.00508155i
\(426\) 0 0
\(427\) 3.28285 + 1.19486i 0.158868 + 0.0578232i
\(428\) 0 0
\(429\) 1.00661 11.5057i 0.0485998 0.555498i
\(430\) 0 0
\(431\) 14.3958 30.8719i 0.693422 1.48705i −0.171522 0.985180i \(-0.554869\pi\)
0.864944 0.501868i \(-0.167354\pi\)
\(432\) 0 0
\(433\) −10.2748 2.75313i −0.493776 0.132307i 0.00333379 0.999994i \(-0.498939\pi\)
−0.497110 + 0.867687i \(0.665605\pi\)
\(434\) 0 0
\(435\) 8.77747 14.7635i 0.420848 0.707855i
\(436\) 0 0
\(437\) −16.0750 + 1.40638i −0.768973 + 0.0672764i
\(438\) 0 0
\(439\) 3.58928 + 41.0256i 0.171307 + 1.95805i 0.269819 + 0.962911i \(0.413036\pi\)
−0.0985121 + 0.995136i \(0.531408\pi\)
\(440\) 0 0
\(441\) 0.0243403 0.138041i 0.00115906 0.00657337i
\(442\) 0 0
\(443\) 12.2460 + 12.2460i 0.581826 + 0.581826i 0.935405 0.353579i \(-0.115035\pi\)
−0.353579 + 0.935405i \(0.615035\pi\)
\(444\) 0 0
\(445\) −0.000176244 0 0.000258685i −8.35476e−6 0 1.22628e-5i
\(446\) 0 0
\(447\) 19.5600 + 27.9346i 0.925158 + 1.32126i
\(448\) 0 0
\(449\) 9.22806 0.807351i 0.435499 0.0381012i 0.132701 0.991156i \(-0.457635\pi\)
0.302798 + 0.953055i \(0.402079\pi\)
\(450\) 0 0
\(451\) −10.6961 8.97508i −0.503659 0.422620i
\(452\) 0 0
\(453\) −2.27193 + 1.05942i −0.106745 + 0.0497759i
\(454\) 0 0
\(455\) −4.21168 + 8.73829i −0.197447 + 0.409657i
\(456\) 0 0
\(457\) −11.3366 31.1469i −0.530302 1.45699i −0.858713 0.512457i \(-0.828736\pi\)
0.328412 0.944535i \(-0.393487\pi\)
\(458\) 0 0
\(459\) −0.206685 0.0180826i −0.00964725 0.000844025i
\(460\) 0 0
\(461\) 6.12188 + 13.1284i 0.285124 + 0.611451i 0.995748 0.0921213i \(-0.0293647\pi\)
−0.710623 + 0.703573i \(0.751587\pi\)
\(462\) 0 0
\(463\) 0.726498 4.12018i 0.0337632 0.191481i −0.963261 0.268566i \(-0.913450\pi\)
0.997025 + 0.0770852i \(0.0245614\pi\)
\(464\) 0 0
\(465\) 29.0830 16.2985i 1.34869 0.755825i
\(466\) 0 0
\(467\) 4.24407 + 2.45032i 0.196392 + 0.113387i 0.594972 0.803747i \(-0.297163\pi\)
−0.398579 + 0.917134i \(0.630497\pi\)
\(468\) 0 0
\(469\) 0.263182 + 1.49258i 0.0121526 + 0.0689208i
\(470\) 0 0
\(471\) −8.47808 4.89482i −0.390649 0.225541i
\(472\) 0 0
\(473\) −8.23618 + 4.75516i −0.378700 + 0.218643i
\(474\) 0 0
\(475\) 18.6674 8.12989i 0.856521 0.373025i
\(476\) 0 0
\(477\) 0.312822 + 0.145871i 0.0143231 + 0.00667899i
\(478\) 0 0
\(479\) −6.28596 4.40148i −0.287213 0.201109i 0.421087 0.907020i \(-0.361649\pi\)
−0.708300 + 0.705912i \(0.750538\pi\)
\(480\) 0 0
\(481\) 11.5482 + 12.2381i 0.526552 + 0.558007i
\(482\) 0 0
\(483\) −10.6542 + 1.87863i −0.484785 + 0.0854807i
\(484\) 0 0
\(485\) 0.375102 + 2.29895i 0.0170325 + 0.104390i
\(486\) 0 0
\(487\) 18.0724i 0.818939i −0.912324 0.409469i \(-0.865714\pi\)
0.912324 0.409469i \(-0.134286\pi\)
\(488\) 0 0
\(489\) −1.31606 0.352636i −0.0595142 0.0159468i
\(490\) 0 0
\(491\) 5.09853 8.83092i 0.230094 0.398534i −0.727742 0.685851i \(-0.759430\pi\)
0.957835 + 0.287317i \(0.0927635\pi\)
\(492\) 0 0
\(493\) −0.145065 0.101576i −0.00653340 0.00457474i
\(494\) 0 0
\(495\) −0.108023 + 0.125442i −0.00485528 + 0.00563819i
\(496\) 0 0
\(497\) −1.99601 0.174628i −0.0895331 0.00783313i
\(498\) 0 0
\(499\) −4.99005 + 3.49407i −0.223385 + 0.156416i −0.679912 0.733294i \(-0.737982\pi\)
0.456527 + 0.889710i \(0.349093\pi\)
\(500\) 0 0
\(501\) −10.8548 + 5.06166i −0.484955 + 0.226138i
\(502\) 0 0
\(503\) 30.7488 25.8013i 1.37102 1.15042i 0.398617 0.917117i \(-0.369490\pi\)
0.972404 0.233305i \(-0.0749542\pi\)
\(504\) 0 0
\(505\) −3.46794 21.2546i −0.154322 0.945816i
\(506\) 0 0
\(507\) 2.40967 8.99300i 0.107017 0.399393i
\(508\) 0 0
\(509\) 14.3850 + 5.23570i 0.637602 + 0.232068i 0.640537 0.767928i \(-0.278712\pi\)
−0.00293469 + 0.999996i \(0.500934\pi\)
\(510\) 0 0
\(511\) 7.79090 9.28484i 0.344649 0.410737i
\(512\) 0 0
\(513\) −13.5303 + 16.1248i −0.597379 + 0.711928i
\(514\) 0 0
\(515\) −3.73798 1.41494i −0.164715 0.0623495i
\(516\) 0 0
\(517\) 11.9095 11.9095i 0.523777 0.523777i
\(518\) 0 0
\(519\) 36.2538i 1.59137i
\(520\) 0 0
\(521\) −21.8352 3.85013i −0.956617 0.168677i −0.326517 0.945191i \(-0.605875\pi\)
−0.630100 + 0.776514i \(0.716986\pi\)
\(522\) 0 0
\(523\) −14.3297 12.0240i −0.626593 0.525774i 0.273275 0.961936i \(-0.411893\pi\)
−0.899868 + 0.436162i \(0.856337\pi\)
\(524\) 0 0
\(525\) 11.9928 6.52071i 0.523410 0.284587i
\(526\) 0 0
\(527\) −0.145271 0.311535i −0.00632812 0.0135707i
\(528\) 0 0
\(529\) 3.64893 + 6.32013i 0.158649 + 0.274788i
\(530\) 0 0
\(531\) −0.367827 0.171520i −0.0159623 0.00744335i
\(532\) 0 0
\(533\) 10.3524 + 12.3375i 0.448411 + 0.534395i
\(534\) 0 0
\(535\) 1.53683 + 6.04383i 0.0664429 + 0.261298i
\(536\) 0 0
\(537\) −22.0336 3.88512i −0.950821 0.167655i
\(538\) 0 0
\(539\) 8.34190 6.99969i 0.359311 0.301498i
\(540\) 0 0
\(541\) −5.89330 + 1.57911i −0.253373 + 0.0678910i −0.383270 0.923636i \(-0.625202\pi\)
0.129897 + 0.991528i \(0.458535\pi\)
\(542\) 0 0
\(543\) −15.0291 + 21.4638i −0.644961 + 0.921100i
\(544\) 0 0
\(545\) 1.87498 + 25.1310i 0.0803155 + 1.07649i
\(546\) 0 0
\(547\) −4.89040 8.47042i −0.209098 0.362169i 0.742332 0.670032i \(-0.233720\pi\)
−0.951431 + 0.307863i \(0.900386\pi\)
\(548\) 0 0
\(549\) −0.0486270 0.0486270i −0.00207535 0.00207535i
\(550\) 0 0
\(551\) −16.8834 + 6.14505i −0.719257 + 0.261788i
\(552\) 0 0
\(553\) −2.78419 15.7899i −0.118396 0.671456i
\(554\) 0 0
\(555\) −3.13402 23.4710i −0.133032 0.996289i
\(556\) 0 0
\(557\) −1.74396 9.89048i −0.0738939 0.419073i −0.999205 0.0398645i \(-0.987307\pi\)
0.925311 0.379209i \(-0.123804\pi\)
\(558\) 0 0
\(559\) 10.3082 3.75187i 0.435990 0.158687i
\(560\) 0 0
\(561\) 0.118498 + 0.118498i 0.00500300 + 0.00500300i
\(562\) 0 0
\(563\) 11.8422 + 20.5113i 0.499089 + 0.864447i 0.999999 0.00105195i \(-0.000334845\pi\)
−0.500911 + 0.865499i \(0.667002\pi\)
\(564\) 0 0
\(565\) 20.4851 + 17.6406i 0.861815 + 0.742146i
\(566\) 0 0
\(567\) −8.17791 + 11.6793i −0.343440 + 0.490483i
\(568\) 0 0
\(569\) 32.3542 8.66928i 1.35636 0.363435i 0.493881 0.869530i \(-0.335578\pi\)
0.862478 + 0.506094i \(0.168911\pi\)
\(570\) 0 0
\(571\) −1.85227 + 1.55424i −0.0775151 + 0.0650429i −0.680722 0.732542i \(-0.738334\pi\)
0.603207 + 0.797585i \(0.293889\pi\)
\(572\) 0 0
\(573\) −26.1069 4.60334i −1.09063 0.192307i
\(574\) 0 0
\(575\) 14.8468 + 13.1197i 0.619152 + 0.547131i
\(576\) 0 0
\(577\) −25.0785 29.8873i −1.04403 1.24423i −0.969004 0.247045i \(-0.920541\pi\)
−0.0750259 0.997182i \(-0.523904\pi\)
\(578\) 0 0
\(579\) 8.40364 + 3.91868i 0.349243 + 0.162855i
\(580\) 0 0
\(581\) 6.82370 + 11.8190i 0.283095 + 0.490335i
\(582\) 0 0
\(583\) 11.3325 + 24.3026i 0.469343 + 1.00651i
\(584\) 0 0
\(585\) 0.147833 0.120857i 0.00611213 0.00499681i
\(586\) 0 0
\(587\) −4.60693 3.86567i −0.190148 0.159553i 0.542744 0.839898i \(-0.317385\pi\)
−0.732892 + 0.680345i \(0.761830\pi\)
\(588\) 0 0
\(589\) −34.3446 6.05588i −1.41515 0.249528i
\(590\) 0 0
\(591\) 19.2840i 0.793240i
\(592\) 0 0
\(593\) 17.3366 17.3366i 0.711927 0.711927i −0.255011 0.966938i \(-0.582079\pi\)
0.966938 + 0.255011i \(0.0820790\pi\)
\(594\) 0 0
\(595\) −0.0578461 0.128313i −0.00237146 0.00526031i
\(596\) 0 0
\(597\) −22.0142 + 26.2355i −0.900980 + 1.07375i
\(598\) 0 0
\(599\) −6.11123 + 7.28308i −0.249698 + 0.297578i −0.876305 0.481757i \(-0.839999\pi\)
0.626607 + 0.779336i \(0.284443\pi\)
\(600\) 0 0
\(601\) 45.6107 + 16.6009i 1.86050 + 0.677167i 0.978615 + 0.205702i \(0.0659479\pi\)
0.881885 + 0.471464i \(0.156274\pi\)
\(602\) 0 0
\(603\) 0.00772164 0.0288175i 0.000314449 0.00117354i
\(604\) 0 0
\(605\) 11.5828 1.88988i 0.470908 0.0768344i
\(606\) 0 0
\(607\) −9.83742 + 8.25458i −0.399289 + 0.335043i −0.820219 0.572050i \(-0.806148\pi\)
0.420930 + 0.907093i \(0.361704\pi\)
\(608\) 0 0
\(609\) −10.9172 + 5.09080i −0.442389 + 0.206290i
\(610\) 0 0
\(611\) −15.9138 + 11.1429i −0.643802 + 0.450795i
\(612\) 0 0
\(613\) −1.99094 0.174185i −0.0804134 0.00703526i 0.0468780 0.998901i \(-0.485073\pi\)
−0.127291 + 0.991865i \(0.540628\pi\)
\(614\) 0 0
\(615\) −1.68629 22.6018i −0.0679977 0.911393i
\(616\) 0 0
\(617\) −13.3945 9.37896i −0.539244 0.377583i 0.271994 0.962299i \(-0.412317\pi\)
−0.811238 + 0.584716i \(0.801206\pi\)
\(618\) 0 0
\(619\) −20.6243 + 35.7223i −0.828959 + 1.43580i 0.0698962 + 0.997554i \(0.477733\pi\)
−0.898855 + 0.438245i \(0.855600\pi\)
\(620\) 0 0
\(621\) −19.7850 5.30138i −0.793945 0.212737i
\(622\) 0 0
\(623\) 0 0.000219529i 0 8.79524e-6i
\(624\) 0 0
\(625\) −23.0241 9.74120i −0.920964 0.389648i
\(626\) 0 0
\(627\) 16.7438 2.95239i 0.668683 0.117907i
\(628\) 0 0
\(629\) −0.243734 + 0.0142189i −0.00971830 + 0.000566943i
\(630\) 0 0
\(631\) 20.6786 + 14.4793i 0.823201 + 0.576412i 0.907511 0.420028i \(-0.137980\pi\)
−0.0843099 + 0.996440i \(0.526869\pi\)
\(632\) 0 0
\(633\) 6.11527 + 2.85160i 0.243060 + 0.113341i
\(634\) 0 0
\(635\) 8.13788 + 11.9445i 0.322942 + 0.474004i
\(636\) 0 0
\(637\) −10.8779 + 6.28033i −0.430996 + 0.248836i
\(638\) 0 0
\(639\) 0.0341567 + 0.0197204i 0.00135122 + 0.000780127i
\(640\) 0 0
\(641\) 2.26143 + 12.8252i 0.0893210 + 0.506565i 0.996340 + 0.0854755i \(0.0272409\pi\)
−0.907019 + 0.421089i \(0.861648\pi\)
\(642\) 0 0
\(643\) −11.3122 6.53112i −0.446111 0.257562i 0.260076 0.965588i \(-0.416253\pi\)
−0.706186 + 0.708026i \(0.749586\pi\)
\(644\) 0 0
\(645\) −14.8590 4.18595i −0.585072 0.164822i
\(646\) 0 0
\(647\) −7.72845 + 43.8302i −0.303837 + 1.72314i 0.325092 + 0.945682i \(0.394605\pi\)
−0.628929 + 0.777462i \(0.716507\pi\)
\(648\) 0 0
\(649\) −13.3251 28.5758i −0.523057 1.12170i
\(650\) 0 0
\(651\) −23.2924 2.03782i −0.912903 0.0798687i
\(652\) 0 0
\(653\) 7.09874 + 19.5036i 0.277795 + 0.763236i 0.997612 + 0.0690713i \(0.0220036\pi\)
−0.719817 + 0.694164i \(0.755774\pi\)
\(654\) 0 0
\(655\) 3.92598 + 1.89225i 0.153401 + 0.0739362i
\(656\) 0 0
\(657\) −0.216234 + 0.100832i −0.00843609 + 0.00393381i
\(658\) 0 0
\(659\) 26.9546 + 22.6176i 1.05000 + 0.881057i 0.993094 0.117322i \(-0.0374309\pi\)
0.0569094 + 0.998379i \(0.481875\pi\)
\(660\) 0 0
\(661\) 50.6942 4.43517i 1.97178 0.172508i 0.973383 0.229183i \(-0.0736055\pi\)
0.998393 + 0.0566751i \(0.0180499\pi\)
\(662\) 0 0
\(663\) −0.110871 0.158341i −0.00430589 0.00614945i
\(664\) 0 0
\(665\) −14.0300 2.65940i −0.544058 0.103127i
\(666\) 0 0
\(667\) −12.3626 12.3626i −0.478682 0.478682i
\(668\) 0 0
\(669\) −8.38987 + 47.5813i −0.324371 + 1.83960i
\(670\) 0 0
\(671\) −0.465633 5.32221i −0.0179756 0.205462i
\(672\) 0 0
\(673\) 23.0690 2.01828i 0.889244 0.0777988i 0.366629 0.930367i \(-0.380512\pi\)
0.522615 + 0.852569i \(0.324956\pi\)
\(674\) 0 0
\(675\) 25.7962 1.59299i 0.992898 0.0613144i
\(676\) 0 0
\(677\) −30.1852 8.08809i −1.16011 0.310850i −0.373100 0.927791i \(-0.621705\pi\)
−0.787010 + 0.616941i \(0.788372\pi\)
\(678\) 0 0
\(679\) 0.690409 1.48059i 0.0264955 0.0568197i
\(680\) 0 0
\(681\) 0.277268 3.16918i 0.0106249 0.121443i
\(682\) 0 0
\(683\) 0.760676 + 0.276864i 0.0291065 + 0.0105939i 0.356532 0.934283i \(-0.383959\pi\)
−0.327426 + 0.944877i \(0.606181\pi\)
\(684\) 0 0
\(685\) 37.4540 16.8851i 1.43104 0.645145i
\(686\) 0 0
\(687\) 1.63654 18.7058i 0.0624380 0.713670i
\(688\) 0 0
\(689\) −8.00524 29.8759i −0.304975 1.13818i
\(690\) 0 0
\(691\) −35.4237 + 6.24616i −1.34758 + 0.237615i −0.800434 0.599420i \(-0.795398\pi\)
−0.547148 + 0.837036i \(0.684287\pi\)
\(692\) 0 0
\(693\) 0.112145 0.0300491i 0.00426003 0.00114147i
\(694\) 0 0
\(695\) 15.7637 + 45.0976i 0.597950 + 1.71065i
\(696\) 0 0
\(697\) −0.233686 −0.00885148
\(698\) 0 0
\(699\) 7.31527 + 20.0985i 0.276689 + 0.760197i
\(700\) 0 0
\(701\) −7.61353 + 10.8732i −0.287559 + 0.410677i −0.936778 0.349925i \(-0.886207\pi\)
0.649219 + 0.760602i \(0.275096\pi\)
\(702\) 0 0
\(703\) −13.0018 + 21.0835i −0.490371 + 0.795180i
\(704\) 0 0
\(705\) 27.3369 + 0.349819i 1.02957 + 0.0131750i
\(706\) 0 0
\(707\) −6.38307 + 13.6885i −0.240060 + 0.514810i
\(708\) 0 0
\(709\) −18.8743 + 18.8743i −0.708839 + 0.708839i −0.966291 0.257452i \(-0.917117\pi\)
0.257452 + 0.966291i \(0.417117\pi\)
\(710\) 0 0
\(711\) −0.0816869 + 0.304860i −0.00306350 + 0.0114331i
\(712\) 0 0
\(713\) −8.78324 32.7795i −0.328935 1.22760i
\(714\) 0 0
\(715\) 14.8331 + 0.189814i 0.554728 + 0.00709863i
\(716\) 0 0
\(717\) 4.80315 8.31931i 0.179377 0.310690i
\(718\) 0 0
\(719\) −0.701922 0.836519i −0.0261773 0.0311969i 0.752797 0.658253i \(-0.228704\pi\)
−0.778974 + 0.627056i \(0.784260\pi\)
\(720\) 0 0
\(721\) 1.60779 + 2.29616i 0.0598771 + 0.0855133i
\(722\) 0 0
\(723\) −2.57028 + 7.06179i −0.0955898 + 0.262631i
\(724\) 0 0
\(725\) 19.7485 + 9.83174i 0.733441 + 0.365142i
\(726\) 0 0
\(727\) −35.4430 + 12.9002i −1.31451 + 0.478441i −0.901694 0.432375i \(-0.857676\pi\)
−0.412812 + 0.910816i \(0.635453\pi\)
\(728\) 0 0
\(729\) −23.1372 + 13.3582i −0.856932 + 0.494750i
\(730\) 0 0
\(731\) −0.0544388 + 0.149569i −0.00201349 + 0.00553202i
\(732\) 0 0
\(733\) 4.56292 + 52.1544i 0.168535 + 1.92637i 0.338593 + 0.940933i \(0.390049\pi\)
−0.170058 + 0.985434i \(0.554396\pi\)
\(734\) 0 0
\(735\) 17.5878 + 1.76577i 0.648735 + 0.0651315i
\(736\) 0 0
\(737\) 1.89860 1.32941i 0.0699357 0.0489695i
\(738\) 0 0
\(739\) 1.76773 0.0650270 0.0325135 0.999471i \(-0.489649\pi\)
0.0325135 + 0.999471i \(0.489649\pi\)
\(740\) 0 0
\(741\) −19.6112 −0.720435
\(742\) 0 0
\(743\) 25.2479 17.6788i 0.926257 0.648572i −0.00997657 0.999950i \(-0.503176\pi\)
0.936234 + 0.351378i \(0.114287\pi\)
\(744\) 0 0
\(745\) −33.9107 + 27.7228i −1.24239 + 1.01569i
\(746\) 0 0
\(747\) −0.0234139 0.267622i −0.000856670 0.00979179i
\(748\) 0 0
\(749\) 1.49587 4.10986i 0.0546577 0.150171i
\(750\) 0 0
\(751\) −42.6302 + 24.6126i −1.55560 + 0.898125i −0.557928 + 0.829889i \(0.688404\pi\)
−0.997669 + 0.0682357i \(0.978263\pi\)
\(752\) 0 0
\(753\) 10.3432 3.76460i 0.376926 0.137190i
\(754\) 0 0
\(755\) −1.57406 2.80875i −0.0572860 0.102221i
\(756\) 0 0
\(757\) −3.13052 + 8.60103i −0.113781 + 0.312610i −0.983492 0.180951i \(-0.942083\pi\)
0.869712 + 0.493560i \(0.164305\pi\)
\(758\) 0 0
\(759\) 9.48955 + 13.5525i 0.344449 + 0.491924i
\(760\) 0 0
\(761\) −6.80727 8.11259i −0.246764 0.294081i 0.628418 0.777876i \(-0.283703\pi\)
−0.875182 + 0.483794i \(0.839258\pi\)
\(762\) 0 0
\(763\) 8.83706 15.3062i 0.319923 0.554123i
\(764\) 0 0
\(765\) −3.54514e−5 0.00277037i −1.28175e−6 0.000100163i
\(766\) 0 0
\(767\) 9.41283 + 35.1292i 0.339878 + 1.26844i
\(768\) 0 0
\(769\) −6.35322 + 23.7105i −0.229103 + 0.855024i 0.751616 + 0.659601i \(0.229275\pi\)
−0.980719 + 0.195423i \(0.937392\pi\)
\(770\) 0 0
\(771\) 9.29562 9.29562i 0.334774 0.334774i
\(772\) 0 0
\(773\) 20.5187 44.0026i 0.738008 1.58266i −0.0727975 0.997347i \(-0.523193\pi\)
0.810805 0.585316i \(-0.199030\pi\)
\(774\) 0 0
\(775\) 23.6551 + 35.6933i 0.849715 + 1.28214i
\(776\) 0 0
\(777\) −7.45184 + 14.8413i −0.267333 + 0.532429i
\(778\) 0 0
\(779\) −13.5988 + 19.4210i −0.487226 + 0.695831i
\(780\) 0 0
\(781\) 1.04798 + 2.87930i 0.0374996 + 0.103029i
\(782\) 0 0
\(783\) −22.8065 −0.815038
\(784\) 0 0
\(785\) 5.45932 11.3268i 0.194851 0.404272i
\(786\) 0 0
\(787\) −6.01205 + 1.61092i −0.214306 + 0.0574232i −0.364375 0.931252i \(-0.618717\pi\)
0.150068 + 0.988676i \(0.452051\pi\)
\(788\) 0 0
\(789\) −40.9580 + 7.22199i −1.45814 + 0.257110i
\(790\) 0 0
\(791\) −4.90713 18.3137i −0.174478 0.651159i
\(792\) 0 0
\(793\) −0.537087 + 6.13894i −0.0190725 + 0.218000i
\(794\) 0 0
\(795\) −15.4091 + 40.7077i −0.546504 + 1.44375i
\(796\) 0 0
\(797\) −8.24596 3.00128i −0.292087 0.106311i 0.191821 0.981430i \(-0.438561\pi\)
−0.483908 + 0.875119i \(0.660783\pi\)
\(798\) 0 0
\(799\) 0.0245677 0.280810i 0.000869143 0.00993435i
\(800\) 0 0
\(801\) 1.82628e−6 0 3.91647e-6i 6.45285e−8 0 1.38382e-7i
\(802\) 0 0
\(803\) −17.9039 4.79733i −0.631814 0.169294i
\(804\) 0 0
\(805\) −3.42437 13.4669i −0.120693 0.474646i
\(806\) 0 0
\(807\) −13.6738 + 1.19630i −0.481341 + 0.0421119i
\(808\) 0 0
\(809\) 1.58905 + 18.1630i 0.0558681 + 0.638576i 0.971576 + 0.236730i \(0.0760756\pi\)
−0.915707 + 0.401846i \(0.868369\pi\)
\(810\) 0 0
\(811\) −4.63654 + 26.2951i −0.162811 + 0.923346i 0.788482 + 0.615058i \(0.210867\pi\)
−0.951293 + 0.308288i \(0.900244\pi\)
\(812\) 0 0
\(813\) −4.13013 4.13013i −0.144850 0.144850i
\(814\) 0 0
\(815\) 0.325907 1.71936i 0.0114160 0.0602266i
\(816\) 0 0
\(817\) 9.26240 + 13.2281i 0.324050 + 0.462792i
\(818\) 0 0
\(819\) −0.133408 + 0.0116717i −0.00466164 + 0.000407841i
\(820\) 0 0
\(821\) 12.0240 + 10.0894i 0.419642 + 0.352121i 0.828027 0.560688i \(-0.189463\pi\)
−0.408385 + 0.912810i \(0.633908\pi\)
\(822\) 0 0
\(823\) −9.64786 + 4.49887i −0.336303 + 0.156821i −0.583432 0.812162i \(-0.698291\pi\)
0.247129 + 0.968983i \(0.420513\pi\)
\(824\) 0 0
\(825\) −16.7885 12.4076i −0.584501 0.431976i
\(826\) 0 0
\(827\) −3.17620 8.72653i −0.110447 0.303451i 0.872139 0.489258i \(-0.162732\pi\)
−0.982586 + 0.185807i \(0.940510\pi\)
\(828\) 0 0
\(829\) 7.40002 + 0.647418i 0.257013 + 0.0224858i 0.214934 0.976629i \(-0.431046\pi\)
0.0420792 + 0.999114i \(0.486602\pi\)
\(830\) 0 0
\(831\) −7.59233 16.2818i −0.263375 0.564809i
\(832\) 0 0
\(833\) 0.0316478 0.179483i 0.00109653 0.00621873i
\(834\) 0 0
\(835\) −7.52050 13.4196i −0.260258 0.464403i
\(836\) 0 0
\(837\) −38.3374 22.1341i −1.32513 0.765066i
\(838\) 0 0
\(839\) −9.30519 52.7723i −0.321251 1.82190i −0.534809 0.844973i \(-0.679616\pi\)
0.213558 0.976930i \(-0.431495\pi\)
\(840\) 0 0
\(841\) 8.25612 + 4.76667i 0.284694 + 0.164368i
\(842\) 0 0
\(843\) 26.2964 15.1822i 0.905696 0.522904i
\(844\) 0 0
\(845\) 11.7489 + 2.22702i 0.404175 + 0.0766118i
\(846\) 0 0
\(847\) −7.45964 3.47849i −0.256316 0.119522i
\(848\) 0 0
\(849\) 25.0122 + 17.5138i 0.858418 + 0.601070i
\(850\) 0 0
\(851\) −23.9408 2.79600i −0.820680 0.0958455i
\(852\) 0 0
\(853\) 18.9964 3.34958i 0.650424 0.114687i 0.161305 0.986905i \(-0.448430\pi\)
0.489119 + 0.872217i \(0.337319\pi\)
\(854\) 0 0
\(855\) 0.228176 + 0.164161i 0.00780344 + 0.00561419i
\(856\) 0 0
\(857\) 45.5118i 1.55465i −0.629097 0.777327i \(-0.716575\pi\)
0.629097 0.777327i \(-0.283425\pi\)
\(858\) 0 0
\(859\) 47.0225 + 12.5996i 1.60439 + 0.429894i 0.946363 0.323105i \(-0.104727\pi\)
0.658022 + 0.752999i \(0.271393\pi\)
\(860\) 0 0
\(861\) −7.94770 + 13.7658i −0.270857 + 0.469138i
\(862\) 0 0
\(863\) 22.7181 + 15.9074i 0.773335 + 0.541495i 0.892321 0.451401i \(-0.149076\pi\)
−0.118987 + 0.992896i \(0.537965\pi\)
\(864\) 0 0
\(865\) 46.4355 3.46448i 1.57885 0.117796i
\(866\) 0 0
\(867\) −29.4806 2.57921i −1.00121 0.0875947i
\(868\) 0 0
\(869\) −20.0852 + 14.0638i −0.681343 + 0.477082i
\(870\) 0 0
\(871\) −2.42295 + 1.12984i −0.0820987 + 0.0382832i
\(872\) 0 0
\(873\) −0.0246343 + 0.0206706i −0.000833744 + 0.000699595i
\(874\) 0 0
\(875\) 9.49806 + 14.7378i 0.321093 + 0.498229i
\(876\) 0 0
\(877\) 7.69526 28.7191i 0.259851 0.969775i −0.705477 0.708733i \(-0.749267\pi\)
0.965327 0.261042i \(-0.0840663\pi\)
\(878\) 0 0
\(879\) 25.2896 + 9.20467i 0.852998 + 0.310466i
\(880\) 0 0
\(881\) 12.2312 14.5766i 0.412079 0.491097i −0.519584 0.854419i \(-0.673913\pi\)
0.931663 + 0.363322i \(0.118358\pi\)
\(882\) 0 0
\(883\) −21.9253 + 26.1296i −0.737846 + 0.879330i −0.996234 0.0867110i \(-0.972364\pi\)
0.258388 + 0.966041i \(0.416809\pi\)
\(884\) 0 0
\(885\) 18.1185 47.8656i 0.609048 1.60898i
\(886\) 0 0
\(887\) −22.8920 + 22.8920i −0.768638 + 0.768638i −0.977867 0.209229i \(-0.932905\pi\)
0.209229 + 0.977867i \(0.432905\pi\)
\(888\) 0 0
\(889\) 10.1365i 0.339968i
\(890\) 0 0
\(891\) 21.4726 + 3.78621i 0.719361 + 0.126843i
\(892\) 0 0
\(893\) −21.9078 18.3828i −0.733116 0.615157i
\(894\) 0 0
\(895\) 2.87066 28.5929i 0.0959555 0.955754i
\(896\) 0 0
\(897\) −8.06499 17.2954i −0.269282 0.577477i
\(898\) 0 0
\(899\) −18.8927 32.7232i −0.630108 1.09138i
\(900\) 0 0
\(901\) 0.406737 + 0.189665i 0.0135504 + 0.00631865i
\(902\) 0 0
\(903\) 6.95927 + 8.29373i 0.231590 + 0.275998i
\(904\) 0 0
\(905\) −28.9280 17.1988i −0.961598 0.571708i
\(906\) 0 0
\(907\) −19.3243 3.40740i −0.641654 0.113141i −0.156652 0.987654i \(-0.550070\pi\)
−0.485002 + 0.874513i \(0.661181\pi\)
\(908\) 0 0
\(909\) 0.227752 0.191107i 0.00755407 0.00633862i
\(910\) 0 0
\(911\) 40.4885 10.8489i 1.34145 0.359439i 0.484475 0.874805i \(-0.339011\pi\)
0.856970 + 0.515366i \(0.172344\pi\)
\(912\) 0 0
\(913\) 11.9708 17.0961i 0.396177 0.565799i
\(914\) 0 0
\(915\) 5.65888 6.57136i 0.187077 0.217242i
\(916\) 0 0
\(917\) −1.52827 2.64705i −0.0504680 0.0874132i
\(918\) 0 0
\(919\) 32.4218 + 32.4218i 1.06950 + 1.06950i 0.997398 + 0.0720987i \(0.0229696\pi\)
0.0720987 + 0.997398i \(0.477030\pi\)
\(920\) 0 0
\(921\) 33.2859 12.1151i 1.09681 0.399206i
\(922\) 0 0
\(923\) −0.613723 3.48059i −0.0202009 0.114565i
\(924\) 0 0
\(925\) 29.7632 6.25713i 0.978608 0.205733i
\(926\) 0 0
\(927\) −0.00958153 0.0543396i −0.000314699 0.00178475i
\(928\) 0 0
\(929\) 31.1447 11.3357i 1.02182 0.371913i 0.223861 0.974621i \(-0.428134\pi\)
0.797962 + 0.602708i \(0.205911\pi\)
\(930\) 0 0
\(931\) −13.0747 13.0747i −0.428508 0.428508i
\(932\) 0 0
\(933\) 6.49994 + 11.2582i 0.212799 + 0.368578i
\(934\) 0 0
\(935\) −0.140454 + 0.163102i −0.00459333 + 0.00533400i
\(936\) 0 0
\(937\) 24.8487 35.4876i 0.811772 1.15933i −0.172904 0.984939i \(-0.555315\pi\)
0.984676 0.174392i \(-0.0557960\pi\)
\(938\) 0 0
\(939\) 52.6576 14.1096i 1.71842 0.460448i
\(940\) 0 0
\(941\) −29.5022 + 24.7553i −0.961745 + 0.807000i −0.981236 0.192810i \(-0.938240\pi\)
0.0194909 + 0.999810i \(0.493795\pi\)
\(942\) 0 0
\(943\) −22.7201 4.00617i −0.739869 0.130459i
\(944\) 0 0
\(945\) −15.5805 9.26321i −0.506833 0.301332i
\(946\) 0 0
\(947\) 19.1609 + 22.8351i 0.622647 + 0.742042i 0.981523 0.191344i \(-0.0612845\pi\)
−0.358876 + 0.933385i \(0.616840\pi\)
\(948\) 0 0
\(949\) 19.3767 + 9.03551i 0.628995 + 0.293305i
\(950\) 0 0
\(951\) 6.25556 + 10.8349i 0.202850 + 0.351347i
\(952\) 0 0
\(953\) −13.2160 28.3418i −0.428108 0.918080i −0.995512 0.0946400i \(-0.969830\pi\)
0.567404 0.823440i \(-0.307948\pi\)
\(954\) 0 0
\(955\) 3.40134 33.8787i 0.110065 1.09629i
\(956\) 0 0
\(957\) 14.1115 + 11.8410i 0.456161 + 0.382765i
\(958\) 0 0
\(959\) −28.3759 5.00343i −0.916305 0.161569i
\(960\) 0 0
\(961\) 42.3429i 1.36590i
\(962\) 0 0
\(963\) −0.0608770 + 0.0608770i −0.00196174 + 0.00196174i
\(964\) 0 0
\(965\) −4.21615 + 11.1382i −0.135723 + 0.358552i
\(966\) 0 0
\(967\) 9.31200 11.0976i 0.299454 0.356875i −0.595246 0.803544i \(-0.702945\pi\)
0.894699 + 0.446669i \(0.147390\pi\)
\(968\) 0 0
\(969\) 0.182908 0.217981i 0.00587584 0.00700255i
\(970\) 0 0
\(971\) −52.8954 19.2524i −1.69749 0.617838i −0.701959 0.712218i \(-0.747691\pi\)
−0.995536 + 0.0943801i \(0.969913\pi\)
\(972\) 0 0
\(973\) 8.67170 32.3632i 0.278002 1.03752i
\(974\) 0 0
\(975\) 16.5854 + 17.4568i 0.531159 + 0.559066i
\(976\) 0 0
\(977\) −8.43458 + 7.07746i −0.269846 + 0.226428i −0.767662 0.640855i \(-0.778580\pi\)
0.497816 + 0.867283i \(0.334136\pi\)
\(978\) 0 0
\(979\) 0.000304264 0 0.000141880i 9.72431e−6 0 4.53452e-6i
\(980\) 0 0
\(981\) −0.284990 + 0.199552i −0.00909904 + 0.00637122i
\(982\) 0 0
\(983\) 8.73550 + 0.764257i 0.278619 + 0.0243760i 0.225609 0.974218i \(-0.427563\pi\)
0.0530102 + 0.998594i \(0.483118\pi\)
\(984\) 0 0
\(985\) −24.6998 + 1.84282i −0.787002 + 0.0587171i
\(986\) 0 0
\(987\) −15.7062 10.9976i −0.499935 0.350059i
\(988\) 0 0
\(989\) −7.85694 + 13.6086i −0.249836 + 0.432729i
\(990\) 0 0
\(991\) −15.2136 4.07648i −0.483277 0.129494i 0.00895133 0.999960i \(-0.497151\pi\)
−0.492228 + 0.870466i \(0.663817\pi\)
\(992\) 0 0
\(993\) 27.6640i 0.877890i
\(994\) 0 0
\(995\) −35.7072 25.6896i −1.13200 0.814415i
\(996\) 0 0
\(997\) 48.9120 8.62451i 1.54906 0.273141i 0.667282 0.744805i \(-0.267458\pi\)
0.881778 + 0.471664i \(0.156347\pi\)
\(998\) 0 0
\(999\) −24.6620 + 19.5039i −0.780270 + 0.617077i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.cc.a.17.5 228
5.3 odd 4 740.2.ch.a.313.5 yes 228
37.24 odd 36 740.2.ch.a.357.5 yes 228
185.98 even 36 inner 740.2.cc.a.653.5 yes 228
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.cc.a.17.5 228 1.1 even 1 trivial
740.2.cc.a.653.5 yes 228 185.98 even 36 inner
740.2.ch.a.313.5 yes 228 5.3 odd 4
740.2.ch.a.357.5 yes 228 37.24 odd 36