Properties

Label 740.2.cc.a.17.3
Level $740$
Weight $2$
Character 740.17
Analytic conductor $5.909$
Analytic rank $0$
Dimension $228$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(17,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.cc (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(228\)
Relative dimension: \(19\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 17.3
Character \(\chi\) \(=\) 740.17
Dual form 740.2.cc.a.653.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-2.37198 + 1.66088i) q^{3} +(2.22911 - 0.176315i) q^{5} +(0.449992 + 5.14343i) q^{7} +(1.84172 - 5.06008i) q^{9} +(3.78226 - 2.18369i) q^{11} +(6.33254 - 2.30486i) q^{13} +(-4.99456 + 4.12049i) q^{15} +(-0.665988 + 1.82979i) q^{17} +(-0.587167 - 0.838562i) q^{19} +(-9.61000 - 11.4527i) q^{21} +(-0.711249 + 1.23192i) q^{23} +(4.93783 - 0.786050i) q^{25} +(1.78731 + 6.67032i) q^{27} +(-0.983941 + 3.67212i) q^{29} +(2.70555 - 2.70555i) q^{31} +(-5.34460 + 11.4615i) q^{33} +(1.90994 + 11.3859i) q^{35} +(4.62565 - 3.95010i) q^{37} +(-11.1926 + 15.9847i) q^{39} +(1.10822 + 3.04481i) q^{41} +1.12664 q^{43} +(3.21322 - 11.6042i) q^{45} +(-6.86330 + 1.83901i) q^{47} +(-19.3588 + 3.41347i) q^{49} +(-1.45934 - 5.44635i) q^{51} +(-0.734425 + 8.39451i) q^{53} +(8.04603 - 5.53454i) q^{55} +(2.78550 + 1.01384i) q^{57} +(-0.537340 + 6.14183i) q^{59} +(-1.34663 + 2.88786i) q^{61} +(26.8549 + 7.19576i) q^{63} +(13.7095 - 6.25430i) q^{65} +(-5.21520 + 0.456271i) q^{67} +(-0.359000 - 4.10339i) q^{69} +(1.89150 - 10.7272i) q^{71} +(-8.08390 - 8.08390i) q^{73} +(-10.4069 + 10.0656i) q^{75} +(12.9336 + 18.4711i) q^{77} +(8.71830 - 0.762752i) q^{79} +(-2.94303 - 2.46950i) q^{81} +(-7.42217 + 3.46102i) q^{83} +(-1.16194 + 4.19621i) q^{85} +(-3.76506 - 10.3444i) q^{87} +(-10.5253 - 0.920846i) q^{89} +(14.7045 + 31.5338i) q^{91} +(-1.92392 + 10.9111i) q^{93} +(-1.45671 - 1.76572i) q^{95} +(-5.56990 - 3.21578i) q^{97} +(-4.08378 - 23.1602i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 228 q + 6 q^{3} - 12 q^{25} + 12 q^{27} - 36 q^{31} + 6 q^{33} + 24 q^{35} + 24 q^{37} - 72 q^{39} - 54 q^{41} - 12 q^{45} + 36 q^{49} - 6 q^{53} - 72 q^{57} - 36 q^{61} + 18 q^{65} + 42 q^{67} + 96 q^{69}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.37198 + 1.66088i −1.36946 + 0.958910i −0.369910 + 0.929068i \(0.620612\pi\)
−0.999555 + 0.0298420i \(0.990500\pi\)
\(4\) 0 0
\(5\) 2.22911 0.176315i 0.996886 0.0788505i
\(6\) 0 0
\(7\) 0.449992 + 5.14343i 0.170081 + 1.94403i 0.303183 + 0.952932i \(0.401951\pi\)
−0.133102 + 0.991102i \(0.542494\pi\)
\(8\) 0 0
\(9\) 1.84172 5.06008i 0.613906 1.68669i
\(10\) 0 0
\(11\) 3.78226 2.18369i 1.14039 0.658406i 0.193865 0.981028i \(-0.437898\pi\)
0.946528 + 0.322622i \(0.104564\pi\)
\(12\) 0 0
\(13\) 6.33254 2.30486i 1.75633 0.639253i 0.756442 0.654061i \(-0.226936\pi\)
0.999890 + 0.0148087i \(0.00471394\pi\)
\(14\) 0 0
\(15\) −4.99456 + 4.12049i −1.28959 + 1.06391i
\(16\) 0 0
\(17\) −0.665988 + 1.82979i −0.161526 + 0.443788i −0.993881 0.110454i \(-0.964770\pi\)
0.832356 + 0.554242i \(0.186992\pi\)
\(18\) 0 0
\(19\) −0.587167 0.838562i −0.134705 0.192379i 0.746132 0.665798i \(-0.231909\pi\)
−0.880838 + 0.473419i \(0.843020\pi\)
\(20\) 0 0
\(21\) −9.61000 11.4527i −2.09707 2.49919i
\(22\) 0 0
\(23\) −0.711249 + 1.23192i −0.148306 + 0.256873i −0.930601 0.366034i \(-0.880715\pi\)
0.782296 + 0.622907i \(0.214049\pi\)
\(24\) 0 0
\(25\) 4.93783 0.786050i 0.987565 0.157210i
\(26\) 0 0
\(27\) 1.78731 + 6.67032i 0.343968 + 1.28370i
\(28\) 0 0
\(29\) −0.983941 + 3.67212i −0.182713 + 0.681895i 0.812395 + 0.583107i \(0.198163\pi\)
−0.995109 + 0.0987879i \(0.968503\pi\)
\(30\) 0 0
\(31\) 2.70555 2.70555i 0.485931 0.485931i −0.421089 0.907020i \(-0.638352\pi\)
0.907020 + 0.421089i \(0.138352\pi\)
\(32\) 0 0
\(33\) −5.34460 + 11.4615i −0.930376 + 1.99520i
\(34\) 0 0
\(35\) 1.90994 + 11.3859i 0.322840 + 1.92457i
\(36\) 0 0
\(37\) 4.62565 3.95010i 0.760453 0.649393i
\(38\) 0 0
\(39\) −11.1926 + 15.9847i −1.79225 + 2.55960i
\(40\) 0 0
\(41\) 1.10822 + 3.04481i 0.173075 + 0.475520i 0.995654 0.0931313i \(-0.0296876\pi\)
−0.822579 + 0.568651i \(0.807465\pi\)
\(42\) 0 0
\(43\) 1.12664 0.171811 0.0859054 0.996303i \(-0.472622\pi\)
0.0859054 + 0.996303i \(0.472622\pi\)
\(44\) 0 0
\(45\) 3.21322 11.6042i 0.478998 1.72985i
\(46\) 0 0
\(47\) −6.86330 + 1.83901i −1.00111 + 0.268248i −0.721912 0.691984i \(-0.756737\pi\)
−0.279202 + 0.960232i \(0.590070\pi\)
\(48\) 0 0
\(49\) −19.3588 + 3.41347i −2.76554 + 0.487639i
\(50\) 0 0
\(51\) −1.45934 5.44635i −0.204349 0.762641i
\(52\) 0 0
\(53\) −0.734425 + 8.39451i −0.100881 + 1.15308i 0.761968 + 0.647614i \(0.224233\pi\)
−0.862849 + 0.505461i \(0.831322\pi\)
\(54\) 0 0
\(55\) 8.04603 5.53454i 1.08493 0.746277i
\(56\) 0 0
\(57\) 2.78550 + 1.01384i 0.368949 + 0.134286i
\(58\) 0 0
\(59\) −0.537340 + 6.14183i −0.0699557 + 0.799598i 0.877472 + 0.479628i \(0.159228\pi\)
−0.947428 + 0.319970i \(0.896327\pi\)
\(60\) 0 0
\(61\) −1.34663 + 2.88786i −0.172418 + 0.369752i −0.973460 0.228856i \(-0.926501\pi\)
0.801042 + 0.598608i \(0.204279\pi\)
\(62\) 0 0
\(63\) 26.8549 + 7.19576i 3.38340 + 0.906580i
\(64\) 0 0
\(65\) 13.7095 6.25430i 1.70046 0.775750i
\(66\) 0 0
\(67\) −5.21520 + 0.456271i −0.637138 + 0.0557424i −0.401148 0.916013i \(-0.631389\pi\)
−0.235990 + 0.971755i \(0.575833\pi\)
\(68\) 0 0
\(69\) −0.359000 4.10339i −0.0432185 0.493990i
\(70\) 0 0
\(71\) 1.89150 10.7272i 0.224480 1.27309i −0.639198 0.769042i \(-0.720733\pi\)
0.863677 0.504045i \(-0.168155\pi\)
\(72\) 0 0
\(73\) −8.08390 8.08390i −0.946149 0.946149i 0.0524735 0.998622i \(-0.483289\pi\)
−0.998622 + 0.0524735i \(0.983289\pi\)
\(74\) 0 0
\(75\) −10.4069 + 10.0656i −1.20169 + 1.16228i
\(76\) 0 0
\(77\) 12.9336 + 18.4711i 1.47392 + 2.10498i
\(78\) 0 0
\(79\) 8.71830 0.762752i 0.980885 0.0858163i 0.414581 0.910013i \(-0.363928\pi\)
0.566304 + 0.824196i \(0.308373\pi\)
\(80\) 0 0
\(81\) −2.94303 2.46950i −0.327003 0.274388i
\(82\) 0 0
\(83\) −7.42217 + 3.46102i −0.814690 + 0.379896i −0.784871 0.619659i \(-0.787271\pi\)
−0.0298187 + 0.999555i \(0.509493\pi\)
\(84\) 0 0
\(85\) −1.16194 + 4.19621i −0.126030 + 0.455143i
\(86\) 0 0
\(87\) −3.76506 10.3444i −0.403656 1.10904i
\(88\) 0 0
\(89\) −10.5253 0.920846i −1.11568 0.0976095i −0.485631 0.874164i \(-0.661410\pi\)
−0.630050 + 0.776554i \(0.716966\pi\)
\(90\) 0 0
\(91\) 14.7045 + 31.5338i 1.54145 + 3.30565i
\(92\) 0 0
\(93\) −1.92392 + 10.9111i −0.199502 + 1.13143i
\(94\) 0 0
\(95\) −1.45671 1.76572i −0.149455 0.181159i
\(96\) 0 0
\(97\) −5.56990 3.21578i −0.565538 0.326513i 0.189827 0.981817i \(-0.439207\pi\)
−0.755365 + 0.655304i \(0.772541\pi\)
\(98\) 0 0
\(99\) −4.08378 23.1602i −0.410435 2.32769i
\(100\) 0 0
\(101\) −10.0063 5.77712i −0.995660 0.574845i −0.0886990 0.996058i \(-0.528271\pi\)
−0.906961 + 0.421214i \(0.861604\pi\)
\(102\) 0 0
\(103\) 12.6734 7.31699i 1.24875 0.720964i 0.277887 0.960614i \(-0.410366\pi\)
0.970859 + 0.239650i \(0.0770326\pi\)
\(104\) 0 0
\(105\) −23.4410 23.8350i −2.28761 2.32606i
\(106\) 0 0
\(107\) −12.6329 5.89083i −1.22127 0.569488i −0.298342 0.954459i \(-0.596434\pi\)
−0.922929 + 0.384971i \(0.874211\pi\)
\(108\) 0 0
\(109\) 0.348060 + 0.243714i 0.0333381 + 0.0233436i 0.590127 0.807311i \(-0.299078\pi\)
−0.556789 + 0.830654i \(0.687967\pi\)
\(110\) 0 0
\(111\) −4.41132 + 17.0522i −0.418704 + 1.61853i
\(112\) 0 0
\(113\) 5.54393 0.977544i 0.521529 0.0919596i 0.0933144 0.995637i \(-0.470254\pi\)
0.428215 + 0.903677i \(0.359143\pi\)
\(114\) 0 0
\(115\) −1.36824 + 2.87148i −0.127589 + 0.267767i
\(116\) 0 0
\(117\) 36.2881i 3.35483i
\(118\) 0 0
\(119\) −9.71107 2.60207i −0.890212 0.238532i
\(120\) 0 0
\(121\) 4.03697 6.99224i 0.366998 0.635658i
\(122\) 0 0
\(123\) −7.68575 5.38162i −0.693001 0.485244i
\(124\) 0 0
\(125\) 10.8683 2.62280i 0.972094 0.234591i
\(126\) 0 0
\(127\) 13.1653 + 1.15182i 1.16823 + 0.102207i 0.654718 0.755873i \(-0.272787\pi\)
0.513516 + 0.858080i \(0.328343\pi\)
\(128\) 0 0
\(129\) −2.67237 + 1.87121i −0.235289 + 0.164751i
\(130\) 0 0
\(131\) 18.3745 8.56818i 1.60539 0.748606i 0.606471 0.795105i \(-0.292584\pi\)
0.998918 + 0.0464998i \(0.0148067\pi\)
\(132\) 0 0
\(133\) 4.04887 3.39740i 0.351081 0.294592i
\(134\) 0 0
\(135\) 5.16018 + 14.5537i 0.444117 + 1.25259i
\(136\) 0 0
\(137\) 0.219604 0.819574i 0.0187620 0.0700209i −0.955910 0.293659i \(-0.905127\pi\)
0.974672 + 0.223639i \(0.0717935\pi\)
\(138\) 0 0
\(139\) −9.76785 3.55521i −0.828498 0.301549i −0.107256 0.994231i \(-0.534206\pi\)
−0.721242 + 0.692683i \(0.756429\pi\)
\(140\) 0 0
\(141\) 13.2252 15.7612i 1.11377 1.32733i
\(142\) 0 0
\(143\) 18.9182 22.5459i 1.58202 1.88538i
\(144\) 0 0
\(145\) −1.54586 + 8.35902i −0.128377 + 0.694179i
\(146\) 0 0
\(147\) 40.2493 40.2493i 3.31970 3.31970i
\(148\) 0 0
\(149\) 9.13261i 0.748173i 0.927394 + 0.374086i \(0.122044\pi\)
−0.927394 + 0.374086i \(0.877956\pi\)
\(150\) 0 0
\(151\) −8.97699 1.58289i −0.730537 0.128813i −0.204006 0.978970i \(-0.565396\pi\)
−0.526531 + 0.850156i \(0.676507\pi\)
\(152\) 0 0
\(153\) 8.03230 + 6.73990i 0.649373 + 0.544889i
\(154\) 0 0
\(155\) 5.55393 6.50799i 0.446102 0.522734i
\(156\) 0 0
\(157\) 2.09367 + 4.48988i 0.167093 + 0.358332i 0.971968 0.235112i \(-0.0755457\pi\)
−0.804875 + 0.593444i \(0.797768\pi\)
\(158\) 0 0
\(159\) −12.2002 21.1314i −0.967542 1.67583i
\(160\) 0 0
\(161\) −6.65635 3.10391i −0.524594 0.244622i
\(162\) 0 0
\(163\) −3.31328 3.94862i −0.259516 0.309279i 0.620516 0.784194i \(-0.286923\pi\)
−0.880032 + 0.474915i \(0.842479\pi\)
\(164\) 0 0
\(165\) −9.89284 + 26.4913i −0.770157 + 2.06235i
\(166\) 0 0
\(167\) −12.3021 2.16919i −0.951965 0.167857i −0.323964 0.946069i \(-0.605016\pi\)
−0.628001 + 0.778212i \(0.716127\pi\)
\(168\) 0 0
\(169\) 24.8302 20.8350i 1.91001 1.60269i
\(170\) 0 0
\(171\) −5.32459 + 1.42672i −0.407181 + 0.109104i
\(172\) 0 0
\(173\) −6.31682 + 9.02135i −0.480259 + 0.685880i −0.984039 0.177951i \(-0.943053\pi\)
0.503781 + 0.863832i \(0.331942\pi\)
\(174\) 0 0
\(175\) 6.26498 + 25.0437i 0.473588 + 1.89312i
\(176\) 0 0
\(177\) −8.92627 15.4608i −0.670940 1.16210i
\(178\) 0 0
\(179\) 1.47777 + 1.47777i 0.110454 + 0.110454i 0.760174 0.649720i \(-0.225114\pi\)
−0.649720 + 0.760174i \(0.725114\pi\)
\(180\) 0 0
\(181\) 14.6490 5.33180i 1.08885 0.396309i 0.265656 0.964068i \(-0.414412\pi\)
0.823195 + 0.567759i \(0.192189\pi\)
\(182\) 0 0
\(183\) −1.60220 9.08653i −0.118438 0.671696i
\(184\) 0 0
\(185\) 9.61461 9.62077i 0.706880 0.707333i
\(186\) 0 0
\(187\) 1.47674 + 8.37503i 0.107990 + 0.612443i
\(188\) 0 0
\(189\) −33.5041 + 12.1945i −2.43706 + 0.887019i
\(190\) 0 0
\(191\) −14.8395 14.8395i −1.07375 1.07375i −0.997055 0.0766940i \(-0.975564\pi\)
−0.0766940 0.997055i \(-0.524436\pi\)
\(192\) 0 0
\(193\) 6.60672 + 11.4432i 0.475562 + 0.823698i 0.999608 0.0279922i \(-0.00891137\pi\)
−0.524046 + 0.851690i \(0.675578\pi\)
\(194\) 0 0
\(195\) −22.1311 + 37.6050i −1.58484 + 2.69295i
\(196\) 0 0
\(197\) 1.76551 2.52141i 0.125787 0.179643i −0.751319 0.659939i \(-0.770582\pi\)
0.877106 + 0.480296i \(0.159471\pi\)
\(198\) 0 0
\(199\) 1.20297 0.322336i 0.0852766 0.0228498i −0.215928 0.976409i \(-0.569278\pi\)
0.301205 + 0.953559i \(0.402611\pi\)
\(200\) 0 0
\(201\) 11.6126 9.74409i 0.819086 0.687295i
\(202\) 0 0
\(203\) −19.3301 3.40841i −1.35670 0.239223i
\(204\) 0 0
\(205\) 3.00719 + 6.59182i 0.210031 + 0.460392i
\(206\) 0 0
\(207\) 4.92369 + 5.86782i 0.342220 + 0.407842i
\(208\) 0 0
\(209\) −4.05197 1.88947i −0.280281 0.130697i
\(210\) 0 0
\(211\) −3.08530 5.34390i −0.212401 0.367889i 0.740064 0.672536i \(-0.234795\pi\)
−0.952465 + 0.304647i \(0.901462\pi\)
\(212\) 0 0
\(213\) 13.3300 + 28.5863i 0.913359 + 1.95870i
\(214\) 0 0
\(215\) 2.51140 0.198643i 0.171276 0.0135474i
\(216\) 0 0
\(217\) 15.1333 + 12.6983i 1.02731 + 0.862019i
\(218\) 0 0
\(219\) 32.6013 + 5.74848i 2.20299 + 0.388446i
\(220\) 0 0
\(221\) 13.1222i 0.882695i
\(222\) 0 0
\(223\) −12.9231 + 12.9231i −0.865395 + 0.865395i −0.991958 0.126564i \(-0.959605\pi\)
0.126564 + 0.991958i \(0.459605\pi\)
\(224\) 0 0
\(225\) 5.11661 26.4335i 0.341107 1.76223i
\(226\) 0 0
\(227\) −14.6394 + 17.4466i −0.971652 + 1.15797i 0.0157715 + 0.999876i \(0.494980\pi\)
−0.987424 + 0.158095i \(0.949465\pi\)
\(228\) 0 0
\(229\) 3.36919 4.01525i 0.222643 0.265335i −0.643148 0.765742i \(-0.722372\pi\)
0.865790 + 0.500407i \(0.166816\pi\)
\(230\) 0 0
\(231\) −61.3567 22.3320i −4.03697 1.46934i
\(232\) 0 0
\(233\) 4.68733 17.4933i 0.307077 1.14603i −0.624066 0.781372i \(-0.714520\pi\)
0.931143 0.364655i \(-0.118813\pi\)
\(234\) 0 0
\(235\) −14.9748 + 5.30946i −0.976846 + 0.346351i
\(236\) 0 0
\(237\) −19.4128 + 16.2893i −1.26100 + 1.05810i
\(238\) 0 0
\(239\) 1.50544 0.702000i 0.0973791 0.0454086i −0.373318 0.927703i \(-0.621780\pi\)
0.470698 + 0.882295i \(0.344002\pi\)
\(240\) 0 0
\(241\) −10.6809 + 7.47886i −0.688019 + 0.481756i −0.864555 0.502538i \(-0.832400\pi\)
0.176536 + 0.984294i \(0.443511\pi\)
\(242\) 0 0
\(243\) −9.55570 0.836015i −0.612998 0.0536304i
\(244\) 0 0
\(245\) −42.5509 + 11.0222i −2.71847 + 0.704184i
\(246\) 0 0
\(247\) −5.65103 3.95689i −0.359566 0.251771i
\(248\) 0 0
\(249\) 11.8569 20.5368i 0.751403 1.30147i
\(250\) 0 0
\(251\) 15.1264 + 4.05312i 0.954773 + 0.255831i 0.702386 0.711796i \(-0.252118\pi\)
0.252386 + 0.967627i \(0.418785\pi\)
\(252\) 0 0
\(253\) 6.21258i 0.390581i
\(254\) 0 0
\(255\) −4.21330 11.8832i −0.263847 0.744153i
\(256\) 0 0
\(257\) 5.86476 1.03412i 0.365834 0.0645064i 0.0122903 0.999924i \(-0.496088\pi\)
0.353543 + 0.935418i \(0.384977\pi\)
\(258\) 0 0
\(259\) 22.3986 + 22.0142i 1.39178 + 1.36790i
\(260\) 0 0
\(261\) 16.7691 + 11.7418i 1.03798 + 0.726801i
\(262\) 0 0
\(263\) 5.15491 + 2.40377i 0.317865 + 0.148223i 0.575002 0.818152i \(-0.305001\pi\)
−0.257137 + 0.966375i \(0.582779\pi\)
\(264\) 0 0
\(265\) −0.157031 + 18.8417i −0.00964634 + 1.15744i
\(266\) 0 0
\(267\) 26.4953 15.2971i 1.62149 0.936165i
\(268\) 0 0
\(269\) 9.33416 + 5.38908i 0.569114 + 0.328578i 0.756795 0.653652i \(-0.226764\pi\)
−0.187682 + 0.982230i \(0.560097\pi\)
\(270\) 0 0
\(271\) 0.0676794 + 0.383829i 0.00411123 + 0.0233159i 0.986794 0.161978i \(-0.0517874\pi\)
−0.982683 + 0.185294i \(0.940676\pi\)
\(272\) 0 0
\(273\) −87.2527 50.3754i −5.28077 3.04886i
\(274\) 0 0
\(275\) 16.9596 13.7557i 1.02270 0.829500i
\(276\) 0 0
\(277\) −1.66995 + 9.47076i −0.100338 + 0.569043i 0.892643 + 0.450765i \(0.148849\pi\)
−0.992980 + 0.118278i \(0.962263\pi\)
\(278\) 0 0
\(279\) −8.70743 18.6732i −0.521300 1.11793i
\(280\) 0 0
\(281\) −22.5264 1.97080i −1.34381 0.117568i −0.607558 0.794275i \(-0.707851\pi\)
−0.736252 + 0.676707i \(0.763406\pi\)
\(282\) 0 0
\(283\) 7.16490 + 19.6854i 0.425909 + 1.17018i 0.948274 + 0.317453i \(0.102828\pi\)
−0.522365 + 0.852722i \(0.674950\pi\)
\(284\) 0 0
\(285\) 6.38793 + 1.76883i 0.378389 + 0.104776i
\(286\) 0 0
\(287\) −15.1621 + 7.07020i −0.894991 + 0.417341i
\(288\) 0 0
\(289\) 10.1182 + 8.49016i 0.595187 + 0.499421i
\(290\) 0 0
\(291\) 18.5527 1.62315i 1.08758 0.0951510i
\(292\) 0 0
\(293\) 14.9832 + 21.3982i 0.875327 + 1.25010i 0.967121 + 0.254318i \(0.0818511\pi\)
−0.0917935 + 0.995778i \(0.529260\pi\)
\(294\) 0 0
\(295\) −0.114891 + 13.7855i −0.00668923 + 0.802624i
\(296\) 0 0
\(297\) 21.3260 + 21.3260i 1.23746 + 1.23746i
\(298\) 0 0
\(299\) −1.66462 + 9.44051i −0.0962672 + 0.545959i
\(300\) 0 0
\(301\) 0.506978 + 5.79479i 0.0292218 + 0.334006i
\(302\) 0 0
\(303\) 33.3298 2.91598i 1.91475 0.167519i
\(304\) 0 0
\(305\) −2.49261 + 6.67477i −0.142726 + 0.382196i
\(306\) 0 0
\(307\) 12.7502 + 3.41641i 0.727692 + 0.194985i 0.603601 0.797286i \(-0.293732\pi\)
0.124091 + 0.992271i \(0.460399\pi\)
\(308\) 0 0
\(309\) −17.9084 + 38.4047i −1.01877 + 2.18477i
\(310\) 0 0
\(311\) −0.276186 + 3.15682i −0.0156611 + 0.179007i 0.984335 + 0.176307i \(0.0564150\pi\)
−0.999996 + 0.00270013i \(0.999141\pi\)
\(312\) 0 0
\(313\) −3.23747 1.17834i −0.182993 0.0666038i 0.248899 0.968530i \(-0.419931\pi\)
−0.431891 + 0.901926i \(0.642154\pi\)
\(314\) 0 0
\(315\) 61.1312 + 11.3052i 3.44435 + 0.636974i
\(316\) 0 0
\(317\) 1.99919 22.8508i 0.112286 1.28343i −0.705832 0.708379i \(-0.749427\pi\)
0.818118 0.575051i \(-0.195018\pi\)
\(318\) 0 0
\(319\) 4.29724 + 16.0375i 0.240599 + 0.897928i
\(320\) 0 0
\(321\) 39.7490 7.00883i 2.21857 0.391195i
\(322\) 0 0
\(323\) 1.92544 0.515919i 0.107134 0.0287065i
\(324\) 0 0
\(325\) 29.4573 16.3587i 1.63400 0.907417i
\(326\) 0 0
\(327\) −1.23037 −0.0680397
\(328\) 0 0
\(329\) −12.5473 34.4734i −0.691754 1.90058i
\(330\) 0 0
\(331\) 11.1462 15.9185i 0.612653 0.874959i −0.386221 0.922406i \(-0.626220\pi\)
0.998874 + 0.0474477i \(0.0151087\pi\)
\(332\) 0 0
\(333\) −11.4687 30.6812i −0.628480 1.68132i
\(334\) 0 0
\(335\) −11.5448 + 1.93660i −0.630759 + 0.105807i
\(336\) 0 0
\(337\) −2.48273 + 5.32423i −0.135243 + 0.290029i −0.962252 0.272159i \(-0.912262\pi\)
0.827009 + 0.562188i \(0.190040\pi\)
\(338\) 0 0
\(339\) −11.5265 + 11.5265i −0.626035 + 0.626035i
\(340\) 0 0
\(341\) 4.32501 16.1412i 0.234212 0.874092i
\(342\) 0 0
\(343\) −16.9141 63.1243i −0.913276 3.40839i
\(344\) 0 0
\(345\) −1.52374 9.08359i −0.0820353 0.489044i
\(346\) 0 0
\(347\) −10.2526 + 17.7579i −0.550386 + 0.953296i 0.447861 + 0.894103i \(0.352186\pi\)
−0.998247 + 0.0591929i \(0.981147\pi\)
\(348\) 0 0
\(349\) −9.25517 11.0299i −0.495418 0.590416i 0.459169 0.888349i \(-0.348147\pi\)
−0.954587 + 0.297933i \(0.903703\pi\)
\(350\) 0 0
\(351\) 26.6924 + 38.1206i 1.42473 + 2.03473i
\(352\) 0 0
\(353\) −1.12365 + 3.08721i −0.0598059 + 0.164315i −0.965997 0.258553i \(-0.916754\pi\)
0.906191 + 0.422868i \(0.138977\pi\)
\(354\) 0 0
\(355\) 2.32498 24.2456i 0.123397 1.28682i
\(356\) 0 0
\(357\) 27.3562 9.95685i 1.44784 0.526972i
\(358\) 0 0
\(359\) 7.39719 4.27077i 0.390409 0.225403i −0.291928 0.956440i \(-0.594297\pi\)
0.682337 + 0.731038i \(0.260964\pi\)
\(360\) 0 0
\(361\) 6.13996 16.8694i 0.323156 0.887864i
\(362\) 0 0
\(363\) 2.03765 + 23.2904i 0.106949 + 1.22243i
\(364\) 0 0
\(365\) −19.4452 16.5946i −1.01781 0.868599i
\(366\) 0 0
\(367\) −10.1160 + 7.08326i −0.528048 + 0.369743i −0.806990 0.590564i \(-0.798905\pi\)
0.278942 + 0.960308i \(0.410016\pi\)
\(368\) 0 0
\(369\) 17.4480 0.908308
\(370\) 0 0
\(371\) −43.5071 −2.25878
\(372\) 0 0
\(373\) 15.5941 10.9191i 0.807430 0.565368i −0.0953638 0.995442i \(-0.530401\pi\)
0.902794 + 0.430074i \(0.141513\pi\)
\(374\) 0 0
\(375\) −21.4234 + 24.2723i −1.10630 + 1.25341i
\(376\) 0 0
\(377\) 2.23286 + 25.5217i 0.114998 + 1.31443i
\(378\) 0 0
\(379\) 1.84761 5.07628i 0.0949056 0.260751i −0.883152 0.469088i \(-0.844583\pi\)
0.978057 + 0.208337i \(0.0668050\pi\)
\(380\) 0 0
\(381\) −33.1410 + 19.1339i −1.69786 + 0.980262i
\(382\) 0 0
\(383\) 6.95404 2.53106i 0.355335 0.129331i −0.158184 0.987410i \(-0.550564\pi\)
0.513519 + 0.858078i \(0.328342\pi\)
\(384\) 0 0
\(385\) 32.0872 + 38.8937i 1.63531 + 1.98221i
\(386\) 0 0
\(387\) 2.07495 5.70088i 0.105476 0.289792i
\(388\) 0 0
\(389\) −13.8608 19.7953i −0.702771 1.00366i −0.998824 0.0484894i \(-0.984559\pi\)
0.296053 0.955172i \(-0.404330\pi\)
\(390\) 0 0
\(391\) −1.78046 2.12188i −0.0900420 0.107308i
\(392\) 0 0
\(393\) −29.3533 + 50.8415i −1.48068 + 2.56461i
\(394\) 0 0
\(395\) 19.2995 3.23742i 0.971064 0.162892i
\(396\) 0 0
\(397\) −10.0062 37.3437i −0.502197 1.87423i −0.485261 0.874369i \(-0.661275\pi\)
−0.0169365 0.999857i \(-0.505391\pi\)
\(398\) 0 0
\(399\) −3.96116 + 14.7833i −0.198306 + 0.740089i
\(400\) 0 0
\(401\) 7.71890 7.71890i 0.385464 0.385464i −0.487602 0.873066i \(-0.662128\pi\)
0.873066 + 0.487602i \(0.162128\pi\)
\(402\) 0 0
\(403\) 10.8971 23.3689i 0.542824 1.16409i
\(404\) 0 0
\(405\) −6.99573 4.98587i −0.347621 0.247750i
\(406\) 0 0
\(407\) 8.86962 25.0413i 0.439651 1.24125i
\(408\) 0 0
\(409\) −0.429560 + 0.613476i −0.0212404 + 0.0303344i −0.829632 0.558311i \(-0.811450\pi\)
0.808391 + 0.588645i \(0.200339\pi\)
\(410\) 0 0
\(411\) 0.840316 + 2.30875i 0.0414498 + 0.113882i
\(412\) 0 0
\(413\) −31.8319 −1.56634
\(414\) 0 0
\(415\) −15.9346 + 9.02361i −0.782198 + 0.442952i
\(416\) 0 0
\(417\) 29.0739 7.79034i 1.42376 0.381495i
\(418\) 0 0
\(419\) 6.42635 1.13314i 0.313948 0.0553574i −0.0144543 0.999896i \(-0.504601\pi\)
0.328402 + 0.944538i \(0.393490\pi\)
\(420\) 0 0
\(421\) 3.11390 + 11.6212i 0.151762 + 0.566384i 0.999361 + 0.0357462i \(0.0113808\pi\)
−0.847599 + 0.530638i \(0.821953\pi\)
\(422\) 0 0
\(423\) −3.33470 + 38.1158i −0.162139 + 1.85325i
\(424\) 0 0
\(425\) −1.85023 + 9.55866i −0.0897492 + 0.463663i
\(426\) 0 0
\(427\) −15.4595 5.62678i −0.748136 0.272299i
\(428\) 0 0
\(429\) −7.42772 + 84.8993i −0.358614 + 4.09897i
\(430\) 0 0
\(431\) −2.30774 + 4.94896i −0.111160 + 0.238383i −0.954016 0.299756i \(-0.903095\pi\)
0.842856 + 0.538139i \(0.180872\pi\)
\(432\) 0 0
\(433\) −4.52974 1.21374i −0.217685 0.0583286i 0.148328 0.988938i \(-0.452611\pi\)
−0.366013 + 0.930610i \(0.619278\pi\)
\(434\) 0 0
\(435\) −10.2166 22.3949i −0.489848 1.07376i
\(436\) 0 0
\(437\) 1.45066 0.126917i 0.0693946 0.00607124i
\(438\) 0 0
\(439\) −0.0665522 0.760695i −0.00317636 0.0363060i 0.994441 0.105294i \(-0.0335784\pi\)
−0.997617 + 0.0689883i \(0.978023\pi\)
\(440\) 0 0
\(441\) −18.3809 + 104.243i −0.875283 + 4.96397i
\(442\) 0 0
\(443\) −20.9545 20.9545i −0.995579 0.995579i 0.00441176 0.999990i \(-0.498596\pi\)
−0.999990 + 0.00441176i \(0.998596\pi\)
\(444\) 0 0
\(445\) −23.6244 0.196891i −1.11990 0.00933351i
\(446\) 0 0
\(447\) −15.1682 21.6624i −0.717430 1.02460i
\(448\) 0 0
\(449\) −2.74368 + 0.240041i −0.129482 + 0.0113282i −0.151713 0.988425i \(-0.548479\pi\)
0.0222303 + 0.999753i \(0.492923\pi\)
\(450\) 0 0
\(451\) 10.8405 + 9.09625i 0.510459 + 0.428326i
\(452\) 0 0
\(453\) 23.9222 11.1551i 1.12397 0.524114i
\(454\) 0 0
\(455\) 38.3377 + 67.6997i 1.79730 + 3.17381i
\(456\) 0 0
\(457\) −10.7344 29.4925i −0.502133 1.37960i −0.889187 0.457543i \(-0.848729\pi\)
0.387054 0.922057i \(-0.373493\pi\)
\(458\) 0 0
\(459\) −13.3956 1.17196i −0.625253 0.0547025i
\(460\) 0 0
\(461\) 14.0487 + 30.1274i 0.654311 + 1.40317i 0.900888 + 0.434051i \(0.142916\pi\)
−0.246577 + 0.969123i \(0.579306\pi\)
\(462\) 0 0
\(463\) 1.29847 7.36397i 0.0603448 0.342233i −0.939655 0.342123i \(-0.888854\pi\)
1.00000 0.000109481i \(-3.48489e-5\pi\)
\(464\) 0 0
\(465\) −2.36483 + 24.6612i −0.109667 + 1.14364i
\(466\) 0 0
\(467\) −30.2415 17.4600i −1.39941 0.807950i −0.405080 0.914281i \(-0.632756\pi\)
−0.994331 + 0.106331i \(0.966090\pi\)
\(468\) 0 0
\(469\) −4.69360 26.6187i −0.216730 1.22914i
\(470\) 0 0
\(471\) −12.4233 7.17259i −0.572435 0.330496i
\(472\) 0 0
\(473\) 4.26124 2.46023i 0.195932 0.113121i
\(474\) 0 0
\(475\) −3.55848 3.67913i −0.163274 0.168810i
\(476\) 0 0
\(477\) 41.1243 + 19.1766i 1.88295 + 0.878035i
\(478\) 0 0
\(479\) −12.8203 8.97685i −0.585773 0.410163i 0.242773 0.970083i \(-0.421943\pi\)
−0.828547 + 0.559920i \(0.810832\pi\)
\(480\) 0 0
\(481\) 20.1877 35.6757i 0.920481 1.62667i
\(482\) 0 0
\(483\) 20.9440 3.69298i 0.952983 0.168037i
\(484\) 0 0
\(485\) −12.9829 6.18627i −0.589523 0.280904i
\(486\) 0 0
\(487\) 14.5972i 0.661462i 0.943725 + 0.330731i \(0.107295\pi\)
−0.943725 + 0.330731i \(0.892705\pi\)
\(488\) 0 0
\(489\) 14.4172 + 3.86308i 0.651969 + 0.174695i
\(490\) 0 0
\(491\) 3.65464 6.33003i 0.164932 0.285670i −0.771699 0.635988i \(-0.780593\pi\)
0.936631 + 0.350317i \(0.113926\pi\)
\(492\) 0 0
\(493\) −6.06389 4.24598i −0.273104 0.191230i
\(494\) 0 0
\(495\) −13.1867 50.9066i −0.592697 2.28808i
\(496\) 0 0
\(497\) 56.0259 + 4.90163i 2.51311 + 0.219868i
\(498\) 0 0
\(499\) 22.5900 15.8177i 1.01127 0.708098i 0.0543698 0.998521i \(-0.482685\pi\)
0.956898 + 0.290423i \(0.0937961\pi\)
\(500\) 0 0
\(501\) 32.7831 15.2870i 1.46464 0.682974i
\(502\) 0 0
\(503\) 1.71384 1.43809i 0.0764165 0.0641211i −0.603779 0.797152i \(-0.706339\pi\)
0.680196 + 0.733030i \(0.261895\pi\)
\(504\) 0 0
\(505\) −23.3236 11.1136i −1.03789 0.494547i
\(506\) 0 0
\(507\) −24.2923 + 90.6602i −1.07886 + 4.02636i
\(508\) 0 0
\(509\) 10.0246 + 3.64864i 0.444331 + 0.161723i 0.554489 0.832191i \(-0.312914\pi\)
−0.110159 + 0.993914i \(0.535136\pi\)
\(510\) 0 0
\(511\) 37.9413 45.2167i 1.67842 2.00027i
\(512\) 0 0
\(513\) 4.54403 5.41537i 0.200624 0.239094i
\(514\) 0 0
\(515\) 26.9602 18.5448i 1.18801 0.817184i
\(516\) 0 0
\(517\) −21.9429 + 21.9429i −0.965048 + 0.965048i
\(518\) 0 0
\(519\) 31.8900i 1.39981i
\(520\) 0 0
\(521\) −24.2375 4.27372i −1.06186 0.187235i −0.384680 0.923050i \(-0.625688\pi\)
−0.677183 + 0.735815i \(0.736799\pi\)
\(522\) 0 0
\(523\) 26.5353 + 22.2658i 1.16031 + 0.973615i 0.999910 0.0134366i \(-0.00427713\pi\)
0.160400 + 0.987052i \(0.448722\pi\)
\(524\) 0 0
\(525\) −56.4549 48.9977i −2.46390 2.13844i
\(526\) 0 0
\(527\) 3.14871 + 6.75244i 0.137160 + 0.294141i
\(528\) 0 0
\(529\) 10.4883 + 18.1662i 0.456011 + 0.789834i
\(530\) 0 0
\(531\) 30.0885 + 14.0305i 1.30573 + 0.608872i
\(532\) 0 0
\(533\) 14.0357 + 16.7271i 0.607955 + 0.724532i
\(534\) 0 0
\(535\) −29.1988 10.9039i −1.26237 0.471417i
\(536\) 0 0
\(537\) −5.95966 1.05085i −0.257178 0.0453475i
\(538\) 0 0
\(539\) −65.7658 + 55.1841i −2.83273 + 2.37695i
\(540\) 0 0
\(541\) 22.1577 5.93713i 0.952633 0.255257i 0.251154 0.967947i \(-0.419190\pi\)
0.701479 + 0.712690i \(0.252523\pi\)
\(542\) 0 0
\(543\) −25.8917 + 36.9771i −1.11112 + 1.58684i
\(544\) 0 0
\(545\) 0.818833 + 0.481897i 0.0350750 + 0.0206422i
\(546\) 0 0
\(547\) 0.861438 + 1.49205i 0.0368324 + 0.0637956i 0.883854 0.467763i \(-0.154940\pi\)
−0.847022 + 0.531559i \(0.821607\pi\)
\(548\) 0 0
\(549\) 12.1327 + 12.1327i 0.517810 + 0.517810i
\(550\) 0 0
\(551\) 3.65704 1.33105i 0.155795 0.0567047i
\(552\) 0 0
\(553\) 7.84633 + 44.4987i 0.333660 + 1.89228i
\(554\) 0 0
\(555\) −6.82674 + 38.7890i −0.289779 + 1.64650i
\(556\) 0 0
\(557\) −8.10783 45.9818i −0.343540 1.94831i −0.316227 0.948683i \(-0.602416\pi\)
−0.0273122 0.999627i \(-0.508695\pi\)
\(558\) 0 0
\(559\) 7.13449 2.59674i 0.301757 0.109830i
\(560\) 0 0
\(561\) −17.4127 17.4127i −0.735166 0.735166i
\(562\) 0 0
\(563\) 2.67024 + 4.62499i 0.112537 + 0.194920i 0.916793 0.399364i \(-0.130769\pi\)
−0.804255 + 0.594284i \(0.797436\pi\)
\(564\) 0 0
\(565\) 12.1857 3.15653i 0.512654 0.132796i
\(566\) 0 0
\(567\) 11.3773 16.2485i 0.477803 0.682374i
\(568\) 0 0
\(569\) 18.3105 4.90627i 0.767614 0.205682i 0.146297 0.989241i \(-0.453264\pi\)
0.621317 + 0.783559i \(0.286598\pi\)
\(570\) 0 0
\(571\) −7.89137 + 6.62164i −0.330243 + 0.277107i −0.792799 0.609483i \(-0.791377\pi\)
0.462556 + 0.886590i \(0.346933\pi\)
\(572\) 0 0
\(573\) 59.8457 + 10.5524i 2.50009 + 0.440833i
\(574\) 0 0
\(575\) −2.54367 + 6.64208i −0.106078 + 0.276994i
\(576\) 0 0
\(577\) −3.84967 4.58785i −0.160264 0.190995i 0.679937 0.733271i \(-0.262007\pi\)
−0.840200 + 0.542276i \(0.817563\pi\)
\(578\) 0 0
\(579\) −34.6768 16.1700i −1.44112 0.672004i
\(580\) 0 0
\(581\) −21.1414 36.6180i −0.877094 1.51917i
\(582\) 0 0
\(583\) 15.5532 + 33.3539i 0.644148 + 1.38138i
\(584\) 0 0
\(585\) −6.39814 80.8900i −0.264530 3.34439i
\(586\) 0 0
\(587\) −7.92000 6.64567i −0.326893 0.274296i 0.464539 0.885553i \(-0.346220\pi\)
−0.791433 + 0.611256i \(0.790664\pi\)
\(588\) 0 0
\(589\) −3.85738 0.680160i −0.158941 0.0280255i
\(590\) 0 0
\(591\) 8.91303i 0.366633i
\(592\) 0 0
\(593\) −17.0508 + 17.0508i −0.700194 + 0.700194i −0.964452 0.264258i \(-0.914873\pi\)
0.264258 + 0.964452i \(0.414873\pi\)
\(594\) 0 0
\(595\) −22.1058 4.08809i −0.906249 0.167595i
\(596\) 0 0
\(597\) −2.31807 + 2.76257i −0.0948724 + 0.113064i
\(598\) 0 0
\(599\) 8.77283 10.4551i 0.358448 0.427182i −0.556441 0.830887i \(-0.687833\pi\)
0.914889 + 0.403705i \(0.132278\pi\)
\(600\) 0 0
\(601\) −26.8804 9.78367i −1.09648 0.399084i −0.270459 0.962731i \(-0.587176\pi\)
−0.826016 + 0.563647i \(0.809398\pi\)
\(602\) 0 0
\(603\) −7.29616 + 27.2297i −0.297123 + 1.10888i
\(604\) 0 0
\(605\) 7.76600 16.2982i 0.315733 0.662617i
\(606\) 0 0
\(607\) −21.0154 + 17.6340i −0.852987 + 0.715741i −0.960445 0.278468i \(-0.910173\pi\)
0.107458 + 0.994210i \(0.465729\pi\)
\(608\) 0 0
\(609\) 51.5115 24.0202i 2.08735 0.973348i
\(610\) 0 0
\(611\) −39.2235 + 27.4646i −1.58681 + 1.11110i
\(612\) 0 0
\(613\) 24.6836 + 2.15954i 0.996962 + 0.0872228i 0.573940 0.818897i \(-0.305414\pi\)
0.423021 + 0.906120i \(0.360970\pi\)
\(614\) 0 0
\(615\) −18.0812 10.6411i −0.729105 0.429090i
\(616\) 0 0
\(617\) 7.69288 + 5.38661i 0.309704 + 0.216857i 0.718086 0.695954i \(-0.245018\pi\)
−0.408383 + 0.912811i \(0.633907\pi\)
\(618\) 0 0
\(619\) 12.8199 22.2047i 0.515276 0.892484i −0.484567 0.874754i \(-0.661023\pi\)
0.999843 0.0177298i \(-0.00564387\pi\)
\(620\) 0 0
\(621\) −9.48852 2.54244i −0.380761 0.102025i
\(622\) 0 0
\(623\) 54.5506i 2.18553i
\(624\) 0 0
\(625\) 23.7643 7.76276i 0.950570 0.310510i
\(626\) 0 0
\(627\) 12.7494 2.24806i 0.509162 0.0897789i
\(628\) 0 0
\(629\) 4.14722 + 11.0947i 0.165360 + 0.442374i
\(630\) 0 0
\(631\) −39.7965 27.8658i −1.58427 1.10932i −0.938226 0.346023i \(-0.887532\pi\)
−0.646048 0.763297i \(-0.723579\pi\)
\(632\) 0 0
\(633\) 16.1939 + 7.55132i 0.643648 + 0.300138i
\(634\) 0 0
\(635\) 29.5500 + 0.246276i 1.17266 + 0.00977315i
\(636\) 0 0
\(637\) −114.723 + 66.2351i −4.54547 + 2.62433i
\(638\) 0 0
\(639\) −50.7970 29.3277i −2.00950 1.16018i
\(640\) 0 0
\(641\) −0.0599138 0.339788i −0.00236645 0.0134208i 0.983602 0.180355i \(-0.0577245\pi\)
−0.985968 + 0.166934i \(0.946613\pi\)
\(642\) 0 0
\(643\) −23.0821 13.3265i −0.910271 0.525545i −0.0297524 0.999557i \(-0.509472\pi\)
−0.880518 + 0.474012i \(0.842805\pi\)
\(644\) 0 0
\(645\) −5.62707 + 4.64231i −0.221566 + 0.182791i
\(646\) 0 0
\(647\) 4.46400 25.3166i 0.175498 0.995299i −0.762069 0.647495i \(-0.775816\pi\)
0.937567 0.347804i \(-0.113072\pi\)
\(648\) 0 0
\(649\) 11.3795 + 24.4033i 0.446683 + 0.957915i
\(650\) 0 0
\(651\) −56.9863 4.98566i −2.23347 0.195403i
\(652\) 0 0
\(653\) −13.1004 35.9929i −0.512656 1.40851i −0.878458 0.477819i \(-0.841427\pi\)
0.365802 0.930693i \(-0.380795\pi\)
\(654\) 0 0
\(655\) 39.4481 22.3391i 1.54136 0.872860i
\(656\) 0 0
\(657\) −55.7934 + 26.0169i −2.17671 + 1.01502i
\(658\) 0 0
\(659\) −6.78289 5.69152i −0.264224 0.221710i 0.501045 0.865421i \(-0.332949\pi\)
−0.765268 + 0.643711i \(0.777394\pi\)
\(660\) 0 0
\(661\) 35.4091 3.09790i 1.37726 0.120494i 0.625649 0.780105i \(-0.284834\pi\)
0.751607 + 0.659611i \(0.229279\pi\)
\(662\) 0 0
\(663\) −21.7944 31.1256i −0.846425 1.20882i
\(664\) 0 0
\(665\) 8.42634 8.28705i 0.326759 0.321358i
\(666\) 0 0
\(667\) −3.82392 3.82392i −0.148063 0.148063i
\(668\) 0 0
\(669\) 9.18965 52.1171i 0.355292 2.01496i
\(670\) 0 0
\(671\) 1.21287 + 13.8632i 0.0468225 + 0.535184i
\(672\) 0 0
\(673\) −1.52740 + 0.133630i −0.0588771 + 0.00515108i −0.116556 0.993184i \(-0.537186\pi\)
0.0576791 + 0.998335i \(0.481630\pi\)
\(674\) 0 0
\(675\) 14.0686 + 31.5320i 0.541502 + 1.21367i
\(676\) 0 0
\(677\) −8.42503 2.25748i −0.323800 0.0867620i 0.0932576 0.995642i \(-0.470272\pi\)
−0.417058 + 0.908880i \(0.636939\pi\)
\(678\) 0 0
\(679\) 14.0338 30.0955i 0.538566 1.15496i
\(680\) 0 0
\(681\) 5.74777 65.6973i 0.220255 2.51753i
\(682\) 0 0
\(683\) 48.6219 + 17.6969i 1.86046 + 0.677153i 0.978643 + 0.205569i \(0.0659046\pi\)
0.881821 + 0.471584i \(0.156318\pi\)
\(684\) 0 0
\(685\) 0.345018 1.86564i 0.0131824 0.0712823i
\(686\) 0 0
\(687\) −1.32282 + 15.1199i −0.0504688 + 0.576861i
\(688\) 0 0
\(689\) 14.6974 + 54.8514i 0.559926 + 2.08967i
\(690\) 0 0
\(691\) −12.8230 + 2.26104i −0.487810 + 0.0860140i −0.412143 0.911119i \(-0.635220\pi\)
−0.0756666 + 0.997133i \(0.524108\pi\)
\(692\) 0 0
\(693\) 117.285 31.4266i 4.45531 1.19380i
\(694\) 0 0
\(695\) −22.4004 6.20271i −0.849696 0.235282i
\(696\) 0 0
\(697\) −6.30942 −0.238986
\(698\) 0 0
\(699\) 17.9361 + 49.2790i 0.678405 + 1.86390i
\(700\) 0 0
\(701\) −25.6541 + 36.6378i −0.968941 + 1.38379i −0.0459607 + 0.998943i \(0.514635\pi\)
−0.922980 + 0.384848i \(0.874254\pi\)
\(702\) 0 0
\(703\) −6.02844 1.55953i −0.227367 0.0588186i
\(704\) 0 0
\(705\) 26.7015 37.4652i 1.00564 1.41102i
\(706\) 0 0
\(707\) 25.2115 54.0662i 0.948175 2.03337i
\(708\) 0 0
\(709\) −27.5998 + 27.5998i −1.03653 + 1.03653i −0.0372247 + 0.999307i \(0.511852\pi\)
−0.999307 + 0.0372247i \(0.988148\pi\)
\(710\) 0 0
\(711\) 12.1971 45.5200i 0.457425 1.70714i
\(712\) 0 0
\(713\) 1.40870 + 5.25734i 0.0527562 + 0.196889i
\(714\) 0 0
\(715\) 38.1955 53.5927i 1.42843 2.00425i
\(716\) 0 0
\(717\) −2.40495 + 4.16550i −0.0898145 + 0.155563i
\(718\) 0 0
\(719\) −0.297999 0.355141i −0.0111135 0.0132445i 0.760459 0.649386i \(-0.224974\pi\)
−0.771573 + 0.636141i \(0.780530\pi\)
\(720\) 0 0
\(721\) 43.3374 + 61.8922i 1.61397 + 2.30498i
\(722\) 0 0
\(723\) 12.9135 35.4795i 0.480257 1.31950i
\(724\) 0 0
\(725\) −1.97206 + 18.9057i −0.0732405 + 0.702140i
\(726\) 0 0
\(727\) −8.81459 + 3.20825i −0.326915 + 0.118987i −0.500264 0.865873i \(-0.666764\pi\)
0.173348 + 0.984861i \(0.444541\pi\)
\(728\) 0 0
\(729\) 34.0359 19.6506i 1.26059 0.727801i
\(730\) 0 0
\(731\) −0.750327 + 2.06151i −0.0277519 + 0.0762476i
\(732\) 0 0
\(733\) −2.96696 33.9125i −0.109587 1.25259i −0.829494 0.558515i \(-0.811371\pi\)
0.719907 0.694070i \(-0.244184\pi\)
\(734\) 0 0
\(735\) 82.6233 96.8164i 3.04761 3.57113i
\(736\) 0 0
\(737\) −18.7289 + 13.1141i −0.689887 + 0.483064i
\(738\) 0 0
\(739\) −12.5174 −0.460460 −0.230230 0.973136i \(-0.573948\pi\)
−0.230230 + 0.973136i \(0.573948\pi\)
\(740\) 0 0
\(741\) 19.9761 0.733839
\(742\) 0 0
\(743\) 24.3964 17.0825i 0.895017 0.626698i −0.0329105 0.999458i \(-0.510478\pi\)
0.927928 + 0.372761i \(0.121589\pi\)
\(744\) 0 0
\(745\) 1.61022 + 20.3576i 0.0589938 + 0.745843i
\(746\) 0 0
\(747\) 3.84347 + 43.9310i 0.140625 + 1.60735i
\(748\) 0 0
\(749\) 24.6144 67.6274i 0.899389 2.47105i
\(750\) 0 0
\(751\) 19.1433 11.0524i 0.698549 0.403308i −0.108257 0.994123i \(-0.534527\pi\)
0.806807 + 0.590815i \(0.201194\pi\)
\(752\) 0 0
\(753\) −42.6114 + 15.5093i −1.55285 + 0.565190i
\(754\) 0 0
\(755\) −20.2897 1.94564i −0.738420 0.0708091i
\(756\) 0 0
\(757\) 7.18179 19.7318i 0.261027 0.717165i −0.738072 0.674722i \(-0.764264\pi\)
0.999099 0.0424432i \(-0.0135141\pi\)
\(758\) 0 0
\(759\) −10.3183 14.7361i −0.374532 0.534887i
\(760\) 0 0
\(761\) 25.6949 + 30.6220i 0.931439 + 1.11005i 0.993710 + 0.111987i \(0.0357213\pi\)
−0.0622707 + 0.998059i \(0.519834\pi\)
\(762\) 0 0
\(763\) −1.09690 + 1.89989i −0.0397106 + 0.0687807i
\(764\) 0 0
\(765\) 19.0932 + 13.6077i 0.690316 + 0.491989i
\(766\) 0 0
\(767\) 10.7533 + 40.1319i 0.388279 + 1.44908i
\(768\) 0 0
\(769\) −6.20014 + 23.1392i −0.223583 + 0.834422i 0.759385 + 0.650642i \(0.225500\pi\)
−0.982967 + 0.183780i \(0.941167\pi\)
\(770\) 0 0
\(771\) −12.1936 + 12.1936i −0.439141 + 0.439141i
\(772\) 0 0
\(773\) −23.3342 + 50.0404i −0.839274 + 1.79983i −0.312180 + 0.950023i \(0.601059\pi\)
−0.527095 + 0.849807i \(0.676719\pi\)
\(774\) 0 0
\(775\) 11.2328 15.4862i 0.403495 0.556282i
\(776\) 0 0
\(777\) −89.6921 15.0160i −3.21769 0.538695i
\(778\) 0 0
\(779\) 1.90255 2.71713i 0.0681660 0.0973512i
\(780\) 0 0
\(781\) −16.2708 44.7036i −0.582214 1.59962i
\(782\) 0 0
\(783\) −26.2528 −0.938199
\(784\) 0 0
\(785\) 5.45864 + 9.63928i 0.194827 + 0.344041i
\(786\) 0 0
\(787\) 37.8525 10.1426i 1.34930 0.361543i 0.489422 0.872047i \(-0.337208\pi\)
0.859875 + 0.510504i \(0.170541\pi\)
\(788\) 0 0
\(789\) −16.2197 + 2.85997i −0.577437 + 0.101818i
\(790\) 0 0
\(791\) 7.52266 + 28.0749i 0.267475 + 0.998230i
\(792\) 0 0
\(793\) −1.87149 + 21.3913i −0.0664587 + 0.759626i
\(794\) 0 0
\(795\) −30.9214 44.9531i −1.09667 1.59432i
\(796\) 0 0
\(797\) −6.22261 2.26485i −0.220416 0.0802249i 0.229452 0.973320i \(-0.426307\pi\)
−0.449868 + 0.893095i \(0.648529\pi\)
\(798\) 0 0
\(799\) 1.20587 13.7831i 0.0426605 0.487612i
\(800\) 0 0
\(801\) −24.0442 + 51.5630i −0.849561 + 1.82189i
\(802\) 0 0
\(803\) −48.2281 12.9227i −1.70193 0.456031i
\(804\) 0 0
\(805\) −15.3850 5.74532i −0.542249 0.202496i
\(806\) 0 0
\(807\) −31.0911 + 2.72012i −1.09446 + 0.0957527i
\(808\) 0 0
\(809\) 0.109239 + 1.24861i 0.00384063 + 0.0438987i 0.997873 0.0651853i \(-0.0207638\pi\)
−0.994033 + 0.109084i \(0.965208\pi\)
\(810\) 0 0
\(811\) −1.65611 + 9.39227i −0.0581539 + 0.329807i −0.999980 0.00629291i \(-0.997997\pi\)
0.941826 + 0.336100i \(0.109108\pi\)
\(812\) 0 0
\(813\) −0.798028 0.798028i −0.0279881 0.0279881i
\(814\) 0 0
\(815\) −8.08186 8.21770i −0.283095 0.287853i
\(816\) 0 0
\(817\) −0.661526 0.944756i −0.0231439 0.0330528i
\(818\) 0 0
\(819\) 186.645 16.3293i 6.52191 0.570593i
\(820\) 0 0
\(821\) 18.7612 + 15.7425i 0.654770 + 0.549417i 0.908514 0.417854i \(-0.137218\pi\)
−0.253744 + 0.967271i \(0.581662\pi\)
\(822\) 0 0
\(823\) −26.9006 + 12.5440i −0.937697 + 0.437255i −0.830523 0.556985i \(-0.811958\pi\)
−0.107174 + 0.994240i \(0.534180\pi\)
\(824\) 0 0
\(825\) −17.3814 + 60.7962i −0.605142 + 2.11665i
\(826\) 0 0
\(827\) 8.84460 + 24.3003i 0.307557 + 0.845005i 0.993132 + 0.117003i \(0.0373287\pi\)
−0.685575 + 0.728002i \(0.740449\pi\)
\(828\) 0 0
\(829\) 30.3917 + 2.65893i 1.05555 + 0.0923485i 0.601693 0.798727i \(-0.294493\pi\)
0.453855 + 0.891076i \(0.350048\pi\)
\(830\) 0 0
\(831\) −11.7687 25.2381i −0.408252 0.875499i
\(832\) 0 0
\(833\) 6.64677 37.6957i 0.230297 1.30608i
\(834\) 0 0
\(835\) −27.8051 2.66631i −0.962237 0.0922716i
\(836\) 0 0
\(837\) 22.8825 + 13.2112i 0.790936 + 0.456647i
\(838\) 0 0
\(839\) −7.98295 45.2735i −0.275602 1.56302i −0.737043 0.675845i \(-0.763779\pi\)
0.461441 0.887171i \(-0.347332\pi\)
\(840\) 0 0
\(841\) 12.5984 + 7.27371i 0.434429 + 0.250818i
\(842\) 0 0
\(843\) 56.7054 32.7389i 1.95304 1.12759i
\(844\) 0 0
\(845\) 51.6756 50.8213i 1.77769 1.74831i
\(846\) 0 0
\(847\) 37.7807 + 17.6174i 1.29816 + 0.605342i
\(848\) 0 0
\(849\) −49.6901 34.7934i −1.70536 1.19411i
\(850\) 0 0
\(851\) 1.57622 + 8.50794i 0.0540320 + 0.291648i
\(852\) 0 0
\(853\) −35.0978 + 6.18869i −1.20173 + 0.211897i −0.738444 0.674315i \(-0.764439\pi\)
−0.463281 + 0.886211i \(0.653328\pi\)
\(854\) 0 0
\(855\) −11.6175 + 4.11911i −0.397311 + 0.140871i
\(856\) 0 0
\(857\) 37.1902i 1.27039i −0.772350 0.635197i \(-0.780919\pi\)
0.772350 0.635197i \(-0.219081\pi\)
\(858\) 0 0
\(859\) 44.4090 + 11.8993i 1.51521 + 0.406000i 0.918163 0.396203i \(-0.129672\pi\)
0.597051 + 0.802203i \(0.296339\pi\)
\(860\) 0 0
\(861\) 24.2215 41.9528i 0.825466 1.42975i
\(862\) 0 0
\(863\) −43.5642 30.5040i −1.48294 1.03837i −0.985271 0.171003i \(-0.945299\pi\)
−0.497672 0.867365i \(-0.665812\pi\)
\(864\) 0 0
\(865\) −12.4903 + 21.2233i −0.424681 + 0.721613i
\(866\) 0 0
\(867\) −38.1013 3.33343i −1.29399 0.113209i
\(868\) 0 0
\(869\) 31.3092 21.9230i 1.06209 0.743685i
\(870\) 0 0
\(871\) −31.9739 + 14.9097i −1.08339 + 0.505194i
\(872\) 0 0
\(873\) −26.5303 + 22.2616i −0.897915 + 0.753440i
\(874\) 0 0
\(875\) 18.3809 + 54.7204i 0.621387 + 1.84989i
\(876\) 0 0
\(877\) −7.35570 + 27.4518i −0.248384 + 0.926983i 0.723268 + 0.690568i \(0.242639\pi\)
−0.971652 + 0.236415i \(0.924027\pi\)
\(878\) 0 0
\(879\) −71.0797 25.8709i −2.39746 0.872604i
\(880\) 0 0
\(881\) −7.61409 + 9.07412i −0.256525 + 0.305715i −0.878901 0.477003i \(-0.841723\pi\)
0.622376 + 0.782718i \(0.286167\pi\)
\(882\) 0 0
\(883\) −28.4702 + 33.9295i −0.958099 + 1.14182i 0.0317211 + 0.999497i \(0.489901\pi\)
−0.989820 + 0.142322i \(0.954543\pi\)
\(884\) 0 0
\(885\) −22.6236 32.8898i −0.760483 1.10558i
\(886\) 0 0
\(887\) 7.55475 7.55475i 0.253664 0.253664i −0.568807 0.822471i \(-0.692595\pi\)
0.822471 + 0.568807i \(0.192595\pi\)
\(888\) 0 0
\(889\) 68.2333i 2.28847i
\(890\) 0 0
\(891\) −16.5239 2.91361i −0.553571 0.0976096i
\(892\) 0 0
\(893\) 5.57203 + 4.67549i 0.186461 + 0.156459i
\(894\) 0 0
\(895\) 3.55467 + 3.03356i 0.118820 + 0.101401i
\(896\) 0 0
\(897\) −11.7311 25.1574i −0.391690 0.839983i
\(898\) 0 0
\(899\) 7.27299 + 12.5972i 0.242568 + 0.420140i
\(900\) 0 0
\(901\) −14.8710 6.93448i −0.495426 0.231021i
\(902\) 0 0
\(903\) −10.8270 12.9031i −0.360300 0.429389i
\(904\) 0 0
\(905\) 31.7141 14.4680i 1.05421 0.480932i
\(906\) 0 0
\(907\) 40.6151 + 7.16154i 1.34860 + 0.237795i 0.800860 0.598852i \(-0.204376\pi\)
0.547742 + 0.836647i \(0.315487\pi\)
\(908\) 0 0
\(909\) −47.6614 + 39.9927i −1.58083 + 1.32647i
\(910\) 0 0
\(911\) 3.06802 0.822074i 0.101648 0.0272365i −0.207637 0.978206i \(-0.566577\pi\)
0.309285 + 0.950970i \(0.399910\pi\)
\(912\) 0 0
\(913\) −20.5148 + 29.2982i −0.678940 + 0.969627i
\(914\) 0 0
\(915\) −5.17357 19.9723i −0.171033 0.660266i
\(916\) 0 0
\(917\) 52.3383 + 90.6525i 1.72836 + 2.99361i
\(918\) 0 0
\(919\) 34.8838 + 34.8838i 1.15071 + 1.15071i 0.986411 + 0.164299i \(0.0525361\pi\)
0.164299 + 0.986411i \(0.447464\pi\)
\(920\) 0 0
\(921\) −35.9175 + 13.0729i −1.18352 + 0.430767i
\(922\) 0 0
\(923\) −12.7467 72.2903i −0.419564 2.37946i
\(924\) 0 0
\(925\) 19.7357 23.1409i 0.648906 0.760869i
\(926\) 0 0
\(927\) −13.6837 77.6042i −0.449432 2.54886i
\(928\) 0 0
\(929\) 4.78619 1.74203i 0.157030 0.0571541i −0.262309 0.964984i \(-0.584484\pi\)
0.419339 + 0.907830i \(0.362262\pi\)
\(930\) 0 0
\(931\) 14.2292 + 14.2292i 0.466344 + 0.466344i
\(932\) 0 0
\(933\) −4.58799 7.94663i −0.150204 0.260161i
\(934\) 0 0
\(935\) 4.76846 + 18.4084i 0.155945 + 0.602021i
\(936\) 0 0
\(937\) −14.1193 + 20.1644i −0.461257 + 0.658743i −0.980645 0.195795i \(-0.937271\pi\)
0.519388 + 0.854539i \(0.326160\pi\)
\(938\) 0 0
\(939\) 9.63630 2.58204i 0.314469 0.0842617i
\(940\) 0 0
\(941\) −30.2787 + 25.4069i −0.987058 + 0.828240i −0.985139 0.171758i \(-0.945055\pi\)
−0.00191913 + 0.999998i \(0.500611\pi\)
\(942\) 0 0
\(943\) −4.53918 0.800381i −0.147816 0.0260640i
\(944\) 0 0
\(945\) −72.5341 + 33.0901i −2.35953 + 1.07642i
\(946\) 0 0
\(947\) 2.60506 + 3.10459i 0.0846531 + 0.100886i 0.806708 0.590950i \(-0.201247\pi\)
−0.722055 + 0.691835i \(0.756802\pi\)
\(948\) 0 0
\(949\) −69.8239 32.5594i −2.26658 1.05692i
\(950\) 0 0
\(951\) 33.2104 + 57.5222i 1.07692 + 1.86528i
\(952\) 0 0
\(953\) −21.6701 46.4718i −0.701965 1.50537i −0.855820 0.517274i \(-0.826947\pi\)
0.153855 0.988093i \(-0.450831\pi\)
\(954\) 0 0
\(955\) −35.6953 30.4624i −1.15507 0.985740i
\(956\) 0 0
\(957\) −36.8293 30.9035i −1.19052 0.998968i
\(958\) 0 0
\(959\) 4.31424 + 0.760717i 0.139314 + 0.0245648i
\(960\) 0 0
\(961\) 16.3600i 0.527742i
\(962\) 0 0
\(963\) −53.0743 + 53.0743i −1.71030 + 1.71030i
\(964\) 0 0
\(965\) 16.7447 + 24.3432i 0.539030 + 0.783635i
\(966\) 0 0
\(967\) 4.32001 5.14839i 0.138922 0.165561i −0.692098 0.721804i \(-0.743313\pi\)
0.831020 + 0.556243i \(0.187758\pi\)
\(968\) 0 0
\(969\) −3.71022 + 4.42167i −0.119189 + 0.142044i
\(970\) 0 0
\(971\) 27.1382 + 9.87748i 0.870905 + 0.316984i 0.738534 0.674217i \(-0.235519\pi\)
0.132372 + 0.991200i \(0.457741\pi\)
\(972\) 0 0
\(973\) 13.8905 51.8401i 0.445309 1.66192i
\(974\) 0 0
\(975\) −42.7023 + 87.7275i −1.36757 + 2.80953i
\(976\) 0 0
\(977\) −2.27478 + 1.90877i −0.0727766 + 0.0610669i −0.678450 0.734646i \(-0.737348\pi\)
0.605674 + 0.795713i \(0.292904\pi\)
\(978\) 0 0
\(979\) −41.8203 + 19.5011i −1.33658 + 0.623259i
\(980\) 0 0
\(981\) 1.87424 1.31236i 0.0598399 0.0419004i
\(982\) 0 0
\(983\) 10.4389 + 0.913283i 0.332948 + 0.0291292i 0.252404 0.967622i \(-0.418779\pi\)
0.0805440 + 0.996751i \(0.474334\pi\)
\(984\) 0 0
\(985\) 3.49094 5.93177i 0.111231 0.189002i
\(986\) 0 0
\(987\) 87.0180 + 60.9307i 2.76981 + 1.93945i
\(988\) 0 0
\(989\) −0.801320 + 1.38793i −0.0254805 + 0.0441335i
\(990\) 0 0
\(991\) −43.4130 11.6325i −1.37906 0.369518i −0.508280 0.861192i \(-0.669718\pi\)
−0.870779 + 0.491674i \(0.836385\pi\)
\(992\) 0 0
\(993\) 56.2709i 1.78570i
\(994\) 0 0
\(995\) 2.62472 0.930623i 0.0832093 0.0295027i
\(996\) 0 0
\(997\) −52.5902 + 9.27307i −1.66555 + 0.293681i −0.925465 0.378834i \(-0.876325\pi\)
−0.740083 + 0.672515i \(0.765214\pi\)
\(998\) 0 0
\(999\) 34.6159 + 23.7946i 1.09520 + 0.752827i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.cc.a.17.3 228
5.3 odd 4 740.2.ch.a.313.3 yes 228
37.24 odd 36 740.2.ch.a.357.3 yes 228
185.98 even 36 inner 740.2.cc.a.653.3 yes 228
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.cc.a.17.3 228 1.1 even 1 trivial
740.2.cc.a.653.3 yes 228 185.98 even 36 inner
740.2.ch.a.313.3 yes 228 5.3 odd 4
740.2.ch.a.357.3 yes 228 37.24 odd 36