Properties

Label 740.2.cc.a.17.19
Level $740$
Weight $2$
Character 740.17
Analytic conductor $5.909$
Analytic rank $0$
Dimension $228$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(17,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.cc (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(228\)
Relative dimension: \(19\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 17.19
Character \(\chi\) \(=\) 740.17
Dual form 740.2.cc.a.653.19

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.52279 - 1.76647i) q^{3} +(2.17830 + 0.504970i) q^{5} +(-0.140686 - 1.60805i) q^{7} +(2.21796 - 6.09379i) q^{9} +(-1.80657 + 1.04302i) q^{11} +(-1.69802 + 0.618029i) q^{13} +(6.38741 - 2.57398i) q^{15} +(0.325312 - 0.893787i) q^{17} +(-0.202887 - 0.289753i) q^{19} +(-3.19550 - 3.80824i) q^{21} +(-0.668708 + 1.15824i) q^{23} +(4.49001 + 2.19996i) q^{25} +(-2.77779 - 10.3669i) q^{27} +(0.409932 - 1.52989i) q^{29} +(-2.13006 + 2.13006i) q^{31} +(-2.71512 + 5.82259i) q^{33} +(0.505559 - 3.57386i) q^{35} +(-0.390265 + 6.07023i) q^{37} +(-3.19201 + 4.55867i) q^{39} +(2.41886 + 6.64576i) q^{41} +7.94783 q^{43} +(7.90857 - 12.1541i) q^{45} +(-11.5088 + 3.08377i) q^{47} +(4.32763 - 0.763078i) q^{49} +(-0.758159 - 2.82949i) q^{51} +(-0.888838 + 10.1595i) q^{53} +(-4.46196 + 1.35976i) q^{55} +(-1.02368 - 0.372590i) q^{57} +(-0.173318 + 1.98104i) q^{59} +(6.43041 - 13.7901i) q^{61} +(-10.1111 - 2.70927i) q^{63} +(-4.01089 + 0.488805i) q^{65} +(-8.77728 + 0.767912i) q^{67} +(0.358987 + 4.10324i) q^{69} +(0.779820 - 4.42258i) q^{71} +(-0.726701 - 0.726701i) q^{73} +(15.2135 - 2.38147i) q^{75} +(1.93139 + 2.75831i) q^{77} +(-6.95588 + 0.608561i) q^{79} +(-10.4174 - 8.74128i) q^{81} +(4.84469 - 2.25912i) q^{83} +(1.15996 - 1.78267i) q^{85} +(-1.66833 - 4.58371i) q^{87} +(1.35807 + 0.118816i) q^{89} +(1.23271 + 2.64355i) q^{91} +(-1.61099 + 9.13638i) q^{93} +(-0.295633 - 0.733622i) q^{95} +(-11.8848 - 6.86169i) q^{97} +(2.34907 + 13.3223i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 228 q + 6 q^{3} - 12 q^{25} + 12 q^{27} - 36 q^{31} + 6 q^{33} + 24 q^{35} + 24 q^{37} - 72 q^{39} - 54 q^{41} - 12 q^{45} + 36 q^{49} - 6 q^{53} - 72 q^{57} - 36 q^{61} + 18 q^{65} + 42 q^{67} + 96 q^{69}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.52279 1.76647i 1.45653 1.01987i 0.465674 0.884956i \(-0.345812\pi\)
0.990857 0.134918i \(-0.0430771\pi\)
\(4\) 0 0
\(5\) 2.17830 + 0.504970i 0.974167 + 0.225829i
\(6\) 0 0
\(7\) −0.140686 1.60805i −0.0531743 0.607785i −0.975298 0.220891i \(-0.929103\pi\)
0.922124 0.386894i \(-0.126452\pi\)
\(8\) 0 0
\(9\) 2.21796 6.09379i 0.739320 2.03126i
\(10\) 0 0
\(11\) −1.80657 + 1.04302i −0.544702 + 0.314484i −0.746982 0.664844i \(-0.768498\pi\)
0.202281 + 0.979328i \(0.435165\pi\)
\(12\) 0 0
\(13\) −1.69802 + 0.618029i −0.470946 + 0.171410i −0.566581 0.824006i \(-0.691734\pi\)
0.0956346 + 0.995417i \(0.469512\pi\)
\(14\) 0 0
\(15\) 6.38741 2.57398i 1.64922 0.664600i
\(16\) 0 0
\(17\) 0.325312 0.893787i 0.0788997 0.216775i −0.893971 0.448125i \(-0.852092\pi\)
0.972871 + 0.231350i \(0.0743142\pi\)
\(18\) 0 0
\(19\) −0.202887 0.289753i −0.0465455 0.0664739i 0.795205 0.606341i \(-0.207363\pi\)
−0.841750 + 0.539867i \(0.818474\pi\)
\(20\) 0 0
\(21\) −3.19550 3.80824i −0.697314 0.831027i
\(22\) 0 0
\(23\) −0.668708 + 1.15824i −0.139435 + 0.241509i −0.927283 0.374361i \(-0.877862\pi\)
0.787848 + 0.615870i \(0.211195\pi\)
\(24\) 0 0
\(25\) 4.49001 + 2.19996i 0.898002 + 0.439991i
\(26\) 0 0
\(27\) −2.77779 10.3669i −0.534586 1.99510i
\(28\) 0 0
\(29\) 0.409932 1.52989i 0.0761224 0.284093i −0.917363 0.398052i \(-0.869687\pi\)
0.993485 + 0.113959i \(0.0363532\pi\)
\(30\) 0 0
\(31\) −2.13006 + 2.13006i −0.382570 + 0.382570i −0.872027 0.489457i \(-0.837195\pi\)
0.489457 + 0.872027i \(0.337195\pi\)
\(32\) 0 0
\(33\) −2.71512 + 5.82259i −0.472641 + 1.01358i
\(34\) 0 0
\(35\) 0.505559 3.57386i 0.0854551 0.604092i
\(36\) 0 0
\(37\) −0.390265 + 6.07023i −0.0641591 + 0.997940i
\(38\) 0 0
\(39\) −3.19201 + 4.55867i −0.511131 + 0.729971i
\(40\) 0 0
\(41\) 2.41886 + 6.64576i 0.377762 + 1.03789i 0.972282 + 0.233812i \(0.0751199\pi\)
−0.594520 + 0.804081i \(0.702658\pi\)
\(42\) 0 0
\(43\) 7.94783 1.21203 0.606016 0.795452i \(-0.292767\pi\)
0.606016 + 0.795452i \(0.292767\pi\)
\(44\) 0 0
\(45\) 7.90857 12.1541i 1.17894 1.81183i
\(46\) 0 0
\(47\) −11.5088 + 3.08377i −1.67873 + 0.449814i −0.967443 0.253088i \(-0.918554\pi\)
−0.711287 + 0.702902i \(0.751887\pi\)
\(48\) 0 0
\(49\) 4.32763 0.763078i 0.618233 0.109011i
\(50\) 0 0
\(51\) −0.758159 2.82949i −0.106163 0.396208i
\(52\) 0 0
\(53\) −0.888838 + 10.1595i −0.122091 + 1.39551i 0.649969 + 0.759961i \(0.274782\pi\)
−0.772060 + 0.635550i \(0.780774\pi\)
\(54\) 0 0
\(55\) −4.46196 + 1.35976i −0.601650 + 0.183350i
\(56\) 0 0
\(57\) −1.02368 0.372590i −0.135590 0.0493507i
\(58\) 0 0
\(59\) −0.173318 + 1.98104i −0.0225641 + 0.257909i 0.976531 + 0.215377i \(0.0690980\pi\)
−0.999095 + 0.0425321i \(0.986458\pi\)
\(60\) 0 0
\(61\) 6.43041 13.7901i 0.823330 1.76564i 0.206662 0.978412i \(-0.433740\pi\)
0.616668 0.787224i \(-0.288482\pi\)
\(62\) 0 0
\(63\) −10.1111 2.70927i −1.27388 0.341336i
\(64\) 0 0
\(65\) −4.01089 + 0.488805i −0.497490 + 0.0606288i
\(66\) 0 0
\(67\) −8.77728 + 0.767912i −1.07231 + 0.0938154i −0.609613 0.792699i \(-0.708675\pi\)
−0.462701 + 0.886514i \(0.653120\pi\)
\(68\) 0 0
\(69\) 0.358987 + 4.10324i 0.0432169 + 0.493972i
\(70\) 0 0
\(71\) 0.779820 4.42258i 0.0925477 0.524864i −0.902924 0.429801i \(-0.858584\pi\)
0.995471 0.0950628i \(-0.0303052\pi\)
\(72\) 0 0
\(73\) −0.726701 0.726701i −0.0850539 0.0850539i 0.663300 0.748354i \(-0.269155\pi\)
−0.748354 + 0.663300i \(0.769155\pi\)
\(74\) 0 0
\(75\) 15.2135 2.38147i 1.75670 0.274988i
\(76\) 0 0
\(77\) 1.93139 + 2.75831i 0.220103 + 0.314339i
\(78\) 0 0
\(79\) −6.95588 + 0.608561i −0.782598 + 0.0684684i −0.471450 0.881893i \(-0.656269\pi\)
−0.311148 + 0.950361i \(0.600714\pi\)
\(80\) 0 0
\(81\) −10.4174 8.74128i −1.15749 0.971253i
\(82\) 0 0
\(83\) 4.84469 2.25912i 0.531774 0.247970i −0.138135 0.990413i \(-0.544111\pi\)
0.669909 + 0.742443i \(0.266333\pi\)
\(84\) 0 0
\(85\) 1.15996 1.78267i 0.125816 0.193357i
\(86\) 0 0
\(87\) −1.66833 4.58371i −0.178864 0.491425i
\(88\) 0 0
\(89\) 1.35807 + 0.118816i 0.143955 + 0.0125944i 0.158905 0.987294i \(-0.449203\pi\)
−0.0149504 + 0.999888i \(0.504759\pi\)
\(90\) 0 0
\(91\) 1.23271 + 2.64355i 0.129223 + 0.277120i
\(92\) 0 0
\(93\) −1.61099 + 9.13638i −0.167052 + 0.947398i
\(94\) 0 0
\(95\) −0.295633 0.733622i −0.0303313 0.0752680i
\(96\) 0 0
\(97\) −11.8848 6.86169i −1.20672 0.696699i −0.244678 0.969604i \(-0.578682\pi\)
−0.962041 + 0.272905i \(0.912016\pi\)
\(98\) 0 0
\(99\) 2.34907 + 13.3223i 0.236091 + 1.33894i
\(100\) 0 0
\(101\) −0.451565 0.260711i −0.0449323 0.0259417i 0.477366 0.878705i \(-0.341592\pi\)
−0.522298 + 0.852763i \(0.674925\pi\)
\(102\) 0 0
\(103\) −3.16449 + 1.82702i −0.311806 + 0.180021i −0.647735 0.761866i \(-0.724283\pi\)
0.335928 + 0.941888i \(0.390950\pi\)
\(104\) 0 0
\(105\) −5.03771 9.90914i −0.491630 0.967033i
\(106\) 0 0
\(107\) −14.6680 6.83982i −1.41801 0.661231i −0.445759 0.895153i \(-0.647066\pi\)
−0.972255 + 0.233923i \(0.924844\pi\)
\(108\) 0 0
\(109\) 6.38617 + 4.47164i 0.611684 + 0.428306i 0.837940 0.545762i \(-0.183760\pi\)
−0.226256 + 0.974068i \(0.572649\pi\)
\(110\) 0 0
\(111\) 9.73835 + 16.0033i 0.924323 + 1.51896i
\(112\) 0 0
\(113\) 16.2180 2.85968i 1.52566 0.269016i 0.653008 0.757351i \(-0.273507\pi\)
0.872656 + 0.488335i \(0.162395\pi\)
\(114\) 0 0
\(115\) −2.04152 + 2.18531i −0.190373 + 0.203781i
\(116\) 0 0
\(117\) 11.7182i 1.08334i
\(118\) 0 0
\(119\) −1.48302 0.397374i −0.135948 0.0364272i
\(120\) 0 0
\(121\) −3.32420 + 5.75768i −0.302200 + 0.523426i
\(122\) 0 0
\(123\) 17.8418 + 12.4930i 1.60874 + 1.12645i
\(124\) 0 0
\(125\) 8.66969 + 7.05949i 0.775441 + 0.631420i
\(126\) 0 0
\(127\) 15.6140 + 1.36605i 1.38552 + 0.121217i 0.755392 0.655273i \(-0.227446\pi\)
0.630129 + 0.776490i \(0.283002\pi\)
\(128\) 0 0
\(129\) 20.0507 14.0396i 1.76536 1.23612i
\(130\) 0 0
\(131\) 17.3562 8.09333i 1.51642 0.707117i 0.526687 0.850059i \(-0.323434\pi\)
0.989731 + 0.142942i \(0.0456561\pi\)
\(132\) 0 0
\(133\) −0.437393 + 0.367017i −0.0379268 + 0.0318244i
\(134\) 0 0
\(135\) −0.815920 23.9849i −0.0702232 2.06429i
\(136\) 0 0
\(137\) −1.76924 + 6.60290i −0.151156 + 0.564124i 0.848247 + 0.529600i \(0.177658\pi\)
−0.999404 + 0.0345235i \(0.989009\pi\)
\(138\) 0 0
\(139\) −10.6929 3.89190i −0.906960 0.330107i −0.153922 0.988083i \(-0.549190\pi\)
−0.753039 + 0.657976i \(0.771413\pi\)
\(140\) 0 0
\(141\) −23.5868 + 28.1097i −1.98637 + 2.36726i
\(142\) 0 0
\(143\) 2.42298 2.88759i 0.202620 0.241473i
\(144\) 0 0
\(145\) 1.66550 3.12555i 0.138312 0.259563i
\(146\) 0 0
\(147\) 9.56972 9.56972i 0.789297 0.789297i
\(148\) 0 0
\(149\) 1.43000i 0.117151i −0.998283 0.0585753i \(-0.981344\pi\)
0.998283 0.0585753i \(-0.0186558\pi\)
\(150\) 0 0
\(151\) 2.37268 + 0.418367i 0.193086 + 0.0340462i 0.269355 0.963041i \(-0.413190\pi\)
−0.0762690 + 0.997087i \(0.524301\pi\)
\(152\) 0 0
\(153\) −4.72502 3.96477i −0.381995 0.320532i
\(154\) 0 0
\(155\) −5.71553 + 3.56430i −0.459083 + 0.286291i
\(156\) 0 0
\(157\) 5.66155 + 12.1412i 0.451841 + 0.968976i 0.991861 + 0.127324i \(0.0406388\pi\)
−0.540020 + 0.841652i \(0.681583\pi\)
\(158\) 0 0
\(159\) 15.7041 + 27.2003i 1.24542 + 2.15712i
\(160\) 0 0
\(161\) 1.95658 + 0.912367i 0.154200 + 0.0719046i
\(162\) 0 0
\(163\) −12.9203 15.3978i −1.01199 1.20605i −0.978423 0.206611i \(-0.933757\pi\)
−0.0335703 0.999436i \(-0.510688\pi\)
\(164\) 0 0
\(165\) −8.85458 + 11.3123i −0.689328 + 0.880662i
\(166\) 0 0
\(167\) −14.7756 2.60534i −1.14337 0.201607i −0.430292 0.902690i \(-0.641589\pi\)
−0.713080 + 0.701082i \(0.752700\pi\)
\(168\) 0 0
\(169\) −7.45726 + 6.25739i −0.573635 + 0.481337i
\(170\) 0 0
\(171\) −2.21569 + 0.593692i −0.169438 + 0.0454008i
\(172\) 0 0
\(173\) −10.5543 + 15.0731i −0.802428 + 1.14599i 0.184182 + 0.982892i \(0.441036\pi\)
−0.986611 + 0.163094i \(0.947853\pi\)
\(174\) 0 0
\(175\) 2.90595 7.52966i 0.219669 0.569188i
\(176\) 0 0
\(177\) 3.06221 + 5.30390i 0.230170 + 0.398665i
\(178\) 0 0
\(179\) 11.7490 + 11.7490i 0.878164 + 0.878164i 0.993345 0.115180i \(-0.0367446\pi\)
−0.115180 + 0.993345i \(0.536745\pi\)
\(180\) 0 0
\(181\) −21.6604 + 7.88375i −1.61001 + 0.585995i −0.981442 0.191762i \(-0.938580\pi\)
−0.628566 + 0.777756i \(0.716358\pi\)
\(182\) 0 0
\(183\) −8.13723 46.1485i −0.601521 3.41140i
\(184\) 0 0
\(185\) −3.91540 + 13.0257i −0.287866 + 0.957671i
\(186\) 0 0
\(187\) 0.344543 + 1.95400i 0.0251954 + 0.142890i
\(188\) 0 0
\(189\) −16.2796 + 5.92530i −1.18417 + 0.431002i
\(190\) 0 0
\(191\) 13.2978 + 13.2978i 0.962197 + 0.962197i 0.999311 0.0371142i \(-0.0118165\pi\)
−0.0371142 + 0.999311i \(0.511817\pi\)
\(192\) 0 0
\(193\) −9.88768 17.1260i −0.711731 1.23275i −0.964207 0.265151i \(-0.914578\pi\)
0.252476 0.967603i \(-0.418755\pi\)
\(194\) 0 0
\(195\) −9.25516 + 8.31829i −0.662776 + 0.595685i
\(196\) 0 0
\(197\) −10.7882 + 15.4071i −0.768624 + 1.09771i 0.223774 + 0.974641i \(0.428162\pi\)
−0.992398 + 0.123068i \(0.960727\pi\)
\(198\) 0 0
\(199\) −6.12678 + 1.64167i −0.434316 + 0.116375i −0.469351 0.883011i \(-0.655512\pi\)
0.0350355 + 0.999386i \(0.488846\pi\)
\(200\) 0 0
\(201\) −20.7867 + 17.4421i −1.46618 + 1.23027i
\(202\) 0 0
\(203\) −2.51780 0.443957i −0.176715 0.0311596i
\(204\) 0 0
\(205\) 1.91310 + 15.6979i 0.133617 + 1.09639i
\(206\) 0 0
\(207\) 5.57488 + 6.64389i 0.387481 + 0.461782i
\(208\) 0 0
\(209\) 0.668750 + 0.311843i 0.0462584 + 0.0215706i
\(210\) 0 0
\(211\) −10.1656 17.6073i −0.699826 1.21213i −0.968527 0.248910i \(-0.919928\pi\)
0.268701 0.963224i \(-0.413406\pi\)
\(212\) 0 0
\(213\) −5.84505 12.5348i −0.400496 0.858867i
\(214\) 0 0
\(215\) 17.3128 + 4.01341i 1.18072 + 0.273712i
\(216\) 0 0
\(217\) 3.72491 + 3.12557i 0.252863 + 0.212177i
\(218\) 0 0
\(219\) −3.11701 0.549613i −0.210628 0.0371394i
\(220\) 0 0
\(221\) 1.71872i 0.115614i
\(222\) 0 0
\(223\) 15.4682 15.4682i 1.03583 1.03583i 0.0364922 0.999334i \(-0.488382\pi\)
0.999334 0.0364922i \(-0.0116184\pi\)
\(224\) 0 0
\(225\) 23.3647 22.4818i 1.55765 1.49879i
\(226\) 0 0
\(227\) 14.5897 17.3873i 0.968352 1.15404i −0.0196826 0.999806i \(-0.506266\pi\)
0.988035 0.154231i \(-0.0492900\pi\)
\(228\) 0 0
\(229\) −5.72103 + 6.81806i −0.378056 + 0.450550i −0.921200 0.389090i \(-0.872789\pi\)
0.543144 + 0.839640i \(0.317234\pi\)
\(230\) 0 0
\(231\) 9.74498 + 3.54688i 0.641173 + 0.233368i
\(232\) 0 0
\(233\) 3.00810 11.2264i 0.197067 0.735465i −0.794655 0.607062i \(-0.792348\pi\)
0.991722 0.128403i \(-0.0409852\pi\)
\(234\) 0 0
\(235\) −26.6269 + 0.905795i −1.73694 + 0.0590876i
\(236\) 0 0
\(237\) −16.4732 + 13.8226i −1.07005 + 0.897877i
\(238\) 0 0
\(239\) −22.7231 + 10.5960i −1.46984 + 0.685396i −0.982232 0.187669i \(-0.939907\pi\)
−0.487604 + 0.873065i \(0.662129\pi\)
\(240\) 0 0
\(241\) 0.874999 0.612681i 0.0563636 0.0394662i −0.545055 0.838400i \(-0.683491\pi\)
0.601419 + 0.798934i \(0.294602\pi\)
\(242\) 0 0
\(243\) −9.64706 0.844008i −0.618859 0.0541432i
\(244\) 0 0
\(245\) 9.81222 + 0.523108i 0.626880 + 0.0334201i
\(246\) 0 0
\(247\) 0.523583 + 0.366616i 0.0333148 + 0.0233272i
\(248\) 0 0
\(249\) 8.23145 14.2573i 0.521647 0.903519i
\(250\) 0 0
\(251\) 10.4688 + 2.80511i 0.660786 + 0.177057i 0.573601 0.819135i \(-0.305546\pi\)
0.0871855 + 0.996192i \(0.472213\pi\)
\(252\) 0 0
\(253\) 2.78992i 0.175400i
\(254\) 0 0
\(255\) −0.222694 6.54633i −0.0139456 0.409947i
\(256\) 0 0
\(257\) −5.44027 + 0.959266i −0.339354 + 0.0598373i −0.340729 0.940162i \(-0.610674\pi\)
0.00137414 + 0.999999i \(0.499563\pi\)
\(258\) 0 0
\(259\) 9.81613 0.226432i 0.609944 0.0140698i
\(260\) 0 0
\(261\) −8.41360 5.89127i −0.520789 0.364660i
\(262\) 0 0
\(263\) −5.66701 2.64257i −0.349443 0.162948i 0.239969 0.970781i \(-0.422863\pi\)
−0.589412 + 0.807833i \(0.700640\pi\)
\(264\) 0 0
\(265\) −7.06639 + 21.6816i −0.434085 + 1.33189i
\(266\) 0 0
\(267\) 3.63600 2.09925i 0.222520 0.128472i
\(268\) 0 0
\(269\) 21.8197 + 12.5976i 1.33037 + 0.768090i 0.985356 0.170508i \(-0.0545409\pi\)
0.345014 + 0.938598i \(0.387874\pi\)
\(270\) 0 0
\(271\) 2.67072 + 15.1464i 0.162235 + 0.920079i 0.951870 + 0.306502i \(0.0991587\pi\)
−0.789635 + 0.613577i \(0.789730\pi\)
\(272\) 0 0
\(273\) 7.77962 + 4.49157i 0.470844 + 0.271842i
\(274\) 0 0
\(275\) −10.4061 + 0.708814i −0.627513 + 0.0427431i
\(276\) 0 0
\(277\) 3.26427 18.5126i 0.196131 1.11232i −0.714667 0.699465i \(-0.753422\pi\)
0.910799 0.412851i \(-0.135467\pi\)
\(278\) 0 0
\(279\) 8.25576 + 17.7045i 0.494259 + 1.05994i
\(280\) 0 0
\(281\) 10.8626 + 0.950353i 0.648007 + 0.0566933i 0.406421 0.913686i \(-0.366777\pi\)
0.241586 + 0.970379i \(0.422332\pi\)
\(282\) 0 0
\(283\) −2.74403 7.53915i −0.163115 0.448156i 0.831027 0.556232i \(-0.187753\pi\)
−0.994143 + 0.108076i \(0.965531\pi\)
\(284\) 0 0
\(285\) −2.04174 1.32854i −0.120942 0.0786960i
\(286\) 0 0
\(287\) 10.3464 4.82460i 0.610728 0.284787i
\(288\) 0 0
\(289\) 12.3297 + 10.3459i 0.725278 + 0.608581i
\(290\) 0 0
\(291\) −42.1038 + 3.68361i −2.46817 + 0.215937i
\(292\) 0 0
\(293\) 6.03350 + 8.61673i 0.352481 + 0.503395i 0.955765 0.294131i \(-0.0950304\pi\)
−0.603284 + 0.797526i \(0.706141\pi\)
\(294\) 0 0
\(295\) −1.37790 + 4.22778i −0.0802247 + 0.246151i
\(296\) 0 0
\(297\) 15.8312 + 15.8312i 0.918618 + 0.918618i
\(298\) 0 0
\(299\) 0.419657 2.37999i 0.0242694 0.137638i
\(300\) 0 0
\(301\) −1.11815 12.7805i −0.0644490 0.736655i
\(302\) 0 0
\(303\) −1.59974 + 0.139959i −0.0919026 + 0.00804044i
\(304\) 0 0
\(305\) 20.9709 26.7918i 1.20079 1.53409i
\(306\) 0 0
\(307\) −23.1873 6.21301i −1.32337 0.354595i −0.473128 0.880993i \(-0.656875\pi\)
−0.850238 + 0.526398i \(0.823542\pi\)
\(308\) 0 0
\(309\) −4.75595 + 10.1992i −0.270556 + 0.580210i
\(310\) 0 0
\(311\) 0.388965 4.44589i 0.0220562 0.252103i −0.977160 0.212507i \(-0.931837\pi\)
0.999216 0.0395964i \(-0.0126072\pi\)
\(312\) 0 0
\(313\) −16.9677 6.17574i −0.959071 0.349073i −0.185402 0.982663i \(-0.559359\pi\)
−0.773669 + 0.633590i \(0.781581\pi\)
\(314\) 0 0
\(315\) −20.6570 11.0074i −1.16389 0.620199i
\(316\) 0 0
\(317\) 2.15861 24.6730i 0.121239 1.38577i −0.655140 0.755507i \(-0.727391\pi\)
0.776380 0.630265i \(-0.217054\pi\)
\(318\) 0 0
\(319\) 0.855138 + 3.19142i 0.0478785 + 0.178685i
\(320\) 0 0
\(321\) −49.0867 + 8.65531i −2.73975 + 0.483092i
\(322\) 0 0
\(323\) −0.324979 + 0.0870778i −0.0180823 + 0.00484514i
\(324\) 0 0
\(325\) −8.98377 0.960614i −0.498330 0.0532853i
\(326\) 0 0
\(327\) 24.0100 1.32775
\(328\) 0 0
\(329\) 6.57798 + 18.0728i 0.362656 + 0.996388i
\(330\) 0 0
\(331\) 11.5581 16.5067i 0.635292 0.907291i −0.364421 0.931234i \(-0.618733\pi\)
0.999713 + 0.0239431i \(0.00762204\pi\)
\(332\) 0 0
\(333\) 36.1251 + 15.8417i 1.97965 + 0.868121i
\(334\) 0 0
\(335\) −19.5073 2.75952i −1.06580 0.150768i
\(336\) 0 0
\(337\) 12.8433 27.5425i 0.699619 1.50034i −0.158758 0.987318i \(-0.550749\pi\)
0.858377 0.513020i \(-0.171473\pi\)
\(338\) 0 0
\(339\) 35.8631 35.8631i 1.94782 1.94782i
\(340\) 0 0
\(341\) 1.62640 6.06981i 0.0880745 0.328699i
\(342\) 0 0
\(343\) −4.76038 17.7660i −0.257037 0.959274i
\(344\) 0 0
\(345\) −1.29003 + 9.11937i −0.0694529 + 0.490971i
\(346\) 0 0
\(347\) −14.3704 + 24.8902i −0.771441 + 1.33618i 0.165332 + 0.986238i \(0.447130\pi\)
−0.936773 + 0.349937i \(0.886203\pi\)
\(348\) 0 0
\(349\) −3.66171 4.36386i −0.196007 0.233592i 0.659085 0.752069i \(-0.270944\pi\)
−0.855092 + 0.518477i \(0.826499\pi\)
\(350\) 0 0
\(351\) 11.1238 + 15.8864i 0.593743 + 0.847953i
\(352\) 0 0
\(353\) −0.191171 + 0.525238i −0.0101750 + 0.0279556i −0.944676 0.328004i \(-0.893624\pi\)
0.934501 + 0.355960i \(0.115846\pi\)
\(354\) 0 0
\(355\) 3.93196 9.23994i 0.208687 0.490405i
\(356\) 0 0
\(357\) −4.44329 + 1.61723i −0.235164 + 0.0855926i
\(358\) 0 0
\(359\) 9.27102 5.35263i 0.489306 0.282501i −0.234981 0.972000i \(-0.575503\pi\)
0.724286 + 0.689499i \(0.242169\pi\)
\(360\) 0 0
\(361\) 6.45559 17.7366i 0.339768 0.933504i
\(362\) 0 0
\(363\) 1.78455 + 20.3975i 0.0936647 + 1.07059i
\(364\) 0 0
\(365\) −1.21601 1.94994i −0.0636490 0.102064i
\(366\) 0 0
\(367\) −11.6783 + 8.17723i −0.609602 + 0.426848i −0.837192 0.546909i \(-0.815804\pi\)
0.227590 + 0.973757i \(0.426915\pi\)
\(368\) 0 0
\(369\) 45.8628 2.38752
\(370\) 0 0
\(371\) 16.4620 0.854663
\(372\) 0 0
\(373\) 4.41872 3.09402i 0.228792 0.160202i −0.453560 0.891226i \(-0.649846\pi\)
0.682352 + 0.731024i \(0.260957\pi\)
\(374\) 0 0
\(375\) 34.3422 + 2.49480i 1.77342 + 0.128831i
\(376\) 0 0
\(377\) 0.249442 + 2.85113i 0.0128469 + 0.146841i
\(378\) 0 0
\(379\) 2.87793 7.90705i 0.147829 0.406158i −0.843572 0.537017i \(-0.819551\pi\)
0.991401 + 0.130859i \(0.0417735\pi\)
\(380\) 0 0
\(381\) 41.8040 24.1355i 2.14168 1.23650i
\(382\) 0 0
\(383\) 16.3521 5.95167i 0.835553 0.304116i 0.111417 0.993774i \(-0.464461\pi\)
0.724136 + 0.689657i \(0.242239\pi\)
\(384\) 0 0
\(385\) 2.81429 + 6.98374i 0.143430 + 0.355924i
\(386\) 0 0
\(387\) 17.6280 48.4324i 0.896079 2.46196i
\(388\) 0 0
\(389\) 6.08489 + 8.69012i 0.308516 + 0.440607i 0.943230 0.332141i \(-0.107771\pi\)
−0.634714 + 0.772747i \(0.718882\pi\)
\(390\) 0 0
\(391\) 0.817678 + 0.974470i 0.0413517 + 0.0492811i
\(392\) 0 0
\(393\) 29.4893 51.0770i 1.48754 2.57649i
\(394\) 0 0
\(395\) −15.4593 2.18688i −0.777843 0.110034i
\(396\) 0 0
\(397\) −2.39797 8.94933i −0.120350 0.449154i 0.879281 0.476303i \(-0.158024\pi\)
−0.999631 + 0.0271495i \(0.991357\pi\)
\(398\) 0 0
\(399\) −0.455125 + 1.69855i −0.0227847 + 0.0850337i
\(400\) 0 0
\(401\) −10.6994 + 10.6994i −0.534302 + 0.534302i −0.921850 0.387548i \(-0.873322\pi\)
0.387548 + 0.921850i \(0.373322\pi\)
\(402\) 0 0
\(403\) 2.30045 4.93333i 0.114593 0.245746i
\(404\) 0 0
\(405\) −18.2783 24.3017i −0.908255 1.20756i
\(406\) 0 0
\(407\) −5.62636 11.3734i −0.278888 0.563756i
\(408\) 0 0
\(409\) 4.49990 6.42652i 0.222506 0.317771i −0.692343 0.721569i \(-0.743421\pi\)
0.914848 + 0.403798i \(0.132310\pi\)
\(410\) 0 0
\(411\) 7.20043 + 19.7830i 0.355171 + 0.975824i
\(412\) 0 0
\(413\) 3.20999 0.157953
\(414\) 0 0
\(415\) 11.6940 2.47462i 0.574036 0.121474i
\(416\) 0 0
\(417\) −33.8508 + 9.07031i −1.65768 + 0.444175i
\(418\) 0 0
\(419\) 19.7379 3.48032i 0.964259 0.170025i 0.330715 0.943731i \(-0.392710\pi\)
0.633545 + 0.773706i \(0.281599\pi\)
\(420\) 0 0
\(421\) −6.96440 25.9915i −0.339424 1.26675i −0.898993 0.437963i \(-0.855700\pi\)
0.559569 0.828784i \(-0.310967\pi\)
\(422\) 0 0
\(423\) −6.73417 + 76.9719i −0.327426 + 3.74250i
\(424\) 0 0
\(425\) 3.42694 3.29744i 0.166231 0.159949i
\(426\) 0 0
\(427\) −23.0797 8.40034i −1.11691 0.406521i
\(428\) 0 0
\(429\) 1.01180 11.5649i 0.0488501 0.558359i
\(430\) 0 0
\(431\) −1.74486 + 3.74187i −0.0840470 + 0.180239i −0.943840 0.330404i \(-0.892815\pi\)
0.859793 + 0.510643i \(0.170593\pi\)
\(432\) 0 0
\(433\) −28.8648 7.73429i −1.38715 0.371686i −0.513438 0.858127i \(-0.671628\pi\)
−0.873714 + 0.486440i \(0.838295\pi\)
\(434\) 0 0
\(435\) −1.31950 10.8272i −0.0632653 0.519123i
\(436\) 0 0
\(437\) 0.471275 0.0412312i 0.0225441 0.00197236i
\(438\) 0 0
\(439\) −3.50330 40.0429i −0.167203 1.91114i −0.365179 0.930937i \(-0.618992\pi\)
0.197975 0.980207i \(-0.436563\pi\)
\(440\) 0 0
\(441\) 4.94847 28.0641i 0.235641 1.33639i
\(442\) 0 0
\(443\) 9.22004 + 9.22004i 0.438057 + 0.438057i 0.891358 0.453300i \(-0.149754\pi\)
−0.453300 + 0.891358i \(0.649754\pi\)
\(444\) 0 0
\(445\) 2.89829 + 0.944601i 0.137392 + 0.0447784i
\(446\) 0 0
\(447\) −2.52607 3.60760i −0.119479 0.170633i
\(448\) 0 0
\(449\) 4.14354 0.362513i 0.195546 0.0171080i 0.0110378 0.999939i \(-0.496486\pi\)
0.184508 + 0.982831i \(0.440931\pi\)
\(450\) 0 0
\(451\) −11.3015 9.48310i −0.532168 0.446542i
\(452\) 0 0
\(453\) 6.72479 3.13582i 0.315958 0.147334i
\(454\) 0 0
\(455\) 1.35030 + 6.38094i 0.0633030 + 0.299143i
\(456\) 0 0
\(457\) 2.92086 + 8.02499i 0.136632 + 0.375393i 0.989072 0.147431i \(-0.0471006\pi\)
−0.852440 + 0.522824i \(0.824878\pi\)
\(458\) 0 0
\(459\) −10.1694 0.889708i −0.474668 0.0415280i
\(460\) 0 0
\(461\) −2.68291 5.75353i −0.124956 0.267969i 0.833871 0.551959i \(-0.186119\pi\)
−0.958827 + 0.283990i \(0.908342\pi\)
\(462\) 0 0
\(463\) −2.52336 + 14.3107i −0.117271 + 0.665074i 0.868330 + 0.495986i \(0.165193\pi\)
−0.985601 + 0.169088i \(0.945918\pi\)
\(464\) 0 0
\(465\) −8.12282 + 19.0883i −0.376687 + 0.885199i
\(466\) 0 0
\(467\) 11.7582 + 6.78863i 0.544107 + 0.314140i 0.746742 0.665114i \(-0.231617\pi\)
−0.202635 + 0.979254i \(0.564950\pi\)
\(468\) 0 0
\(469\) 2.46968 + 14.0062i 0.114039 + 0.646748i
\(470\) 0 0
\(471\) 35.7300 + 20.6288i 1.64635 + 0.950523i
\(472\) 0 0
\(473\) −14.3583 + 8.28978i −0.660196 + 0.381164i
\(474\) 0 0
\(475\) −0.273522 1.74734i −0.0125501 0.0801733i
\(476\) 0 0
\(477\) 59.9383 + 27.9497i 2.74439 + 1.27973i
\(478\) 0 0
\(479\) −10.6583 7.46303i −0.486991 0.340995i 0.304155 0.952623i \(-0.401626\pi\)
−0.791145 + 0.611628i \(0.790515\pi\)
\(480\) 0 0
\(481\) −3.08890 10.5486i −0.140842 0.480974i
\(482\) 0 0
\(483\) 6.54770 1.15454i 0.297931 0.0525332i
\(484\) 0 0
\(485\) −22.4238 20.9483i −1.01821 0.951214i
\(486\) 0 0
\(487\) 22.7681i 1.03172i −0.856672 0.515862i \(-0.827472\pi\)
0.856672 0.515862i \(-0.172528\pi\)
\(488\) 0 0
\(489\) −59.7948 16.0220i −2.70402 0.724539i
\(490\) 0 0
\(491\) 15.8890 27.5206i 0.717061 1.24199i −0.245098 0.969498i \(-0.578820\pi\)
0.962159 0.272488i \(-0.0878465\pi\)
\(492\) 0 0
\(493\) −1.23404 0.864082i −0.0555782 0.0389163i
\(494\) 0 0
\(495\) −1.61035 + 30.2061i −0.0723796 + 1.35766i
\(496\) 0 0
\(497\) −7.22143 0.631794i −0.323926 0.0283398i
\(498\) 0 0
\(499\) −10.4524 + 7.31881i −0.467911 + 0.327635i −0.783641 0.621214i \(-0.786640\pi\)
0.315729 + 0.948849i \(0.397751\pi\)
\(500\) 0 0
\(501\) −41.8780 + 19.5280i −1.87097 + 0.872448i
\(502\) 0 0
\(503\) −12.9832 + 10.8942i −0.578894 + 0.485750i −0.884584 0.466381i \(-0.845557\pi\)
0.305690 + 0.952131i \(0.401113\pi\)
\(504\) 0 0
\(505\) −0.851993 0.795934i −0.0379132 0.0354186i
\(506\) 0 0
\(507\) −7.75957 + 28.9591i −0.344614 + 1.28612i
\(508\) 0 0
\(509\) −38.3473 13.9573i −1.69972 0.618646i −0.703923 0.710277i \(-0.748570\pi\)
−0.995793 + 0.0916305i \(0.970792\pi\)
\(510\) 0 0
\(511\) −1.06633 + 1.27081i −0.0471718 + 0.0562172i
\(512\) 0 0
\(513\) −2.44025 + 2.90818i −0.107740 + 0.128399i
\(514\) 0 0
\(515\) −7.81581 + 2.38183i −0.344406 + 0.104956i
\(516\) 0 0
\(517\) 17.5750 17.5750i 0.772948 0.772948i
\(518\) 0 0
\(519\) 56.6701i 2.48754i
\(520\) 0 0
\(521\) −13.6202 2.40160i −0.596710 0.105216i −0.132867 0.991134i \(-0.542418\pi\)
−0.463842 + 0.885918i \(0.653530\pi\)
\(522\) 0 0
\(523\) −5.27861 4.42928i −0.230818 0.193679i 0.520042 0.854141i \(-0.325916\pi\)
−0.750860 + 0.660462i \(0.770361\pi\)
\(524\) 0 0
\(525\) −5.96984 24.1290i −0.260545 1.05308i
\(526\) 0 0
\(527\) 1.21089 + 2.59675i 0.0527470 + 0.113116i
\(528\) 0 0
\(529\) 10.6057 + 18.3695i 0.461116 + 0.798676i
\(530\) 0 0
\(531\) 11.6876 + 5.45003i 0.507200 + 0.236511i
\(532\) 0 0
\(533\) −8.21454 9.78971i −0.355811 0.424039i
\(534\) 0 0
\(535\) −28.4976 22.3061i −1.23206 0.964378i
\(536\) 0 0
\(537\) 50.3947 + 8.88594i 2.17469 + 0.383457i
\(538\) 0 0
\(539\) −7.02226 + 5.89238i −0.302470 + 0.253803i
\(540\) 0 0
\(541\) 12.3211 3.30143i 0.529725 0.141939i 0.0159639 0.999873i \(-0.494918\pi\)
0.513761 + 0.857933i \(0.328252\pi\)
\(542\) 0 0
\(543\) −40.7182 + 58.1516i −1.74739 + 2.49552i
\(544\) 0 0
\(545\) 11.6530 + 12.9654i 0.499158 + 0.555377i
\(546\) 0 0
\(547\) −1.42213 2.46320i −0.0608058 0.105319i 0.834020 0.551734i \(-0.186034\pi\)
−0.894826 + 0.446415i \(0.852700\pi\)
\(548\) 0 0
\(549\) −69.7714 69.7714i −2.97777 2.97777i
\(550\) 0 0
\(551\) −0.526459 + 0.191615i −0.0224279 + 0.00816309i
\(552\) 0 0
\(553\) 1.95719 + 11.0998i 0.0832282 + 0.472010i
\(554\) 0 0
\(555\) 13.1319 + 39.7776i 0.557418 + 1.68846i
\(556\) 0 0
\(557\) −5.39443 30.5933i −0.228569 1.29628i −0.855743 0.517401i \(-0.826899\pi\)
0.627174 0.778879i \(-0.284212\pi\)
\(558\) 0 0
\(559\) −13.4956 + 4.91199i −0.570802 + 0.207755i
\(560\) 0 0
\(561\) 4.32089 + 4.32089i 0.182428 + 0.182428i
\(562\) 0 0
\(563\) −7.33529 12.7051i −0.309146 0.535456i 0.669030 0.743235i \(-0.266710\pi\)
−0.978176 + 0.207779i \(0.933376\pi\)
\(564\) 0 0
\(565\) 36.7719 + 1.96038i 1.54700 + 0.0824737i
\(566\) 0 0
\(567\) −12.5908 + 17.9815i −0.528764 + 0.755153i
\(568\) 0 0
\(569\) 31.5806 8.46199i 1.32393 0.354745i 0.473479 0.880805i \(-0.342998\pi\)
0.850447 + 0.526060i \(0.176331\pi\)
\(570\) 0 0
\(571\) −21.0828 + 17.6906i −0.882288 + 0.740328i −0.966648 0.256108i \(-0.917560\pi\)
0.0843600 + 0.996435i \(0.473115\pi\)
\(572\) 0 0
\(573\) 57.0378 + 10.0573i 2.38279 + 0.420150i
\(574\) 0 0
\(575\) −5.55057 + 3.72937i −0.231475 + 0.155525i
\(576\) 0 0
\(577\) 22.5523 + 26.8768i 0.938865 + 1.11890i 0.992732 + 0.120347i \(0.0384009\pi\)
−0.0538670 + 0.998548i \(0.517155\pi\)
\(578\) 0 0
\(579\) −55.1971 25.7388i −2.29391 1.06967i
\(580\) 0 0
\(581\) −4.31435 7.47267i −0.178989 0.310019i
\(582\) 0 0
\(583\) −8.99082 19.2809i −0.372362 0.798533i
\(584\) 0 0
\(585\) −5.91732 + 25.5257i −0.244651 + 1.05536i
\(586\) 0 0
\(587\) −6.93499 5.81915i −0.286238 0.240182i 0.488351 0.872647i \(-0.337599\pi\)
−0.774589 + 0.632465i \(0.782043\pi\)
\(588\) 0 0
\(589\) 1.04935 + 0.185029i 0.0432378 + 0.00762400i
\(590\) 0 0
\(591\) 57.9258i 2.38275i
\(592\) 0 0
\(593\) −1.55756 + 1.55756i −0.0639612 + 0.0639612i −0.738364 0.674403i \(-0.764401\pi\)
0.674403 + 0.738364i \(0.264401\pi\)
\(594\) 0 0
\(595\) −3.02980 1.61448i −0.124210 0.0661872i
\(596\) 0 0
\(597\) −12.5566 + 14.9644i −0.513907 + 0.612451i
\(598\) 0 0
\(599\) −7.19881 + 8.57920i −0.294135 + 0.350537i −0.892792 0.450469i \(-0.851257\pi\)
0.598657 + 0.801006i \(0.295701\pi\)
\(600\) 0 0
\(601\) 42.8196 + 15.5851i 1.74665 + 0.635728i 0.999579 0.0290197i \(-0.00923854\pi\)
0.747068 + 0.664747i \(0.231461\pi\)
\(602\) 0 0
\(603\) −14.7881 + 55.1901i −0.602220 + 2.24751i
\(604\) 0 0
\(605\) −10.1486 + 10.8634i −0.412598 + 0.441658i
\(606\) 0 0
\(607\) −28.8679 + 24.2230i −1.17171 + 0.983182i −0.999998 0.00196467i \(-0.999375\pi\)
−0.171713 + 0.985147i \(0.554930\pi\)
\(608\) 0 0
\(609\) −7.13612 + 3.32763i −0.289170 + 0.134842i
\(610\) 0 0
\(611\) 17.6363 12.3491i 0.713489 0.499590i
\(612\) 0 0
\(613\) 15.0486 + 1.31658i 0.607808 + 0.0531763i 0.386905 0.922120i \(-0.373544\pi\)
0.220903 + 0.975296i \(0.429100\pi\)
\(614\) 0 0
\(615\) 32.5563 + 36.2231i 1.31280 + 1.46065i
\(616\) 0 0
\(617\) −17.7928 12.4586i −0.716311 0.501566i 0.157691 0.987488i \(-0.449595\pi\)
−0.874002 + 0.485922i \(0.838484\pi\)
\(618\) 0 0
\(619\) 1.46187 2.53203i 0.0587575 0.101771i −0.835150 0.550022i \(-0.814619\pi\)
0.893908 + 0.448251i \(0.147953\pi\)
\(620\) 0 0
\(621\) 13.8648 + 3.71506i 0.556376 + 0.149080i
\(622\) 0 0
\(623\) 2.20056i 0.0881634i
\(624\) 0 0
\(625\) 15.3204 + 19.7556i 0.612816 + 0.790226i
\(626\) 0 0
\(627\) 2.23797 0.394615i 0.0893761 0.0157594i
\(628\) 0 0
\(629\) 5.29853 + 2.32353i 0.211266 + 0.0926452i
\(630\) 0 0
\(631\) −13.9908 9.79649i −0.556966 0.389992i 0.260930 0.965358i \(-0.415971\pi\)
−0.817896 + 0.575366i \(0.804860\pi\)
\(632\) 0 0
\(633\) −56.7483 26.4622i −2.25554 1.05178i
\(634\) 0 0
\(635\) 33.3223 + 10.8603i 1.32235 + 0.430978i
\(636\) 0 0
\(637\) −6.87680 + 3.97032i −0.272469 + 0.157310i
\(638\) 0 0
\(639\) −25.2207 14.5612i −0.997715 0.576031i
\(640\) 0 0
\(641\) −5.35783 30.3857i −0.211621 1.20016i −0.886674 0.462395i \(-0.846990\pi\)
0.675052 0.737770i \(-0.264121\pi\)
\(642\) 0 0
\(643\) 15.1327 + 8.73687i 0.596776 + 0.344549i 0.767772 0.640723i \(-0.221365\pi\)
−0.170996 + 0.985272i \(0.554699\pi\)
\(644\) 0 0
\(645\) 50.7660 20.4576i 1.99891 0.805516i
\(646\) 0 0
\(647\) −1.33702 + 7.58262i −0.0525637 + 0.298104i −0.999745 0.0225960i \(-0.992807\pi\)
0.947181 + 0.320700i \(0.103918\pi\)
\(648\) 0 0
\(649\) −1.75316 3.75966i −0.0688175 0.147580i
\(650\) 0 0
\(651\) 14.9184 + 1.30519i 0.584697 + 0.0511544i
\(652\) 0 0
\(653\) 10.5728 + 29.0485i 0.413746 + 1.13676i 0.955183 + 0.296016i \(0.0956580\pi\)
−0.541438 + 0.840741i \(0.682120\pi\)
\(654\) 0 0
\(655\) 41.8940 8.86537i 1.63693 0.346399i
\(656\) 0 0
\(657\) −6.04016 + 2.81657i −0.235649 + 0.109885i
\(658\) 0 0
\(659\) −13.6018 11.4133i −0.529851 0.444598i 0.338199 0.941075i \(-0.390182\pi\)
−0.868050 + 0.496477i \(0.834627\pi\)
\(660\) 0 0
\(661\) −23.5508 + 2.06043i −0.916021 + 0.0801414i −0.535408 0.844593i \(-0.679842\pi\)
−0.380612 + 0.924735i \(0.624287\pi\)
\(662\) 0 0
\(663\) 3.03608 + 4.33597i 0.117911 + 0.168395i
\(664\) 0 0
\(665\) −1.13811 + 0.578603i −0.0441339 + 0.0224373i
\(666\) 0 0
\(667\) 1.49785 + 1.49785i 0.0579968 + 0.0579968i
\(668\) 0 0
\(669\) 11.6988 66.3471i 0.452301 2.56513i
\(670\) 0 0
\(671\) 2.76637 + 31.6198i 0.106795 + 1.22067i
\(672\) 0 0
\(673\) −2.05379 + 0.179683i −0.0791678 + 0.00692629i −0.126671 0.991945i \(-0.540429\pi\)
0.0475030 + 0.998871i \(0.484874\pi\)
\(674\) 0 0
\(675\) 10.3343 52.6583i 0.397768 2.02682i
\(676\) 0 0
\(677\) −16.7579 4.49026i −0.644058 0.172575i −0.0780172 0.996952i \(-0.524859\pi\)
−0.566041 + 0.824377i \(0.691526\pi\)
\(678\) 0 0
\(679\) −9.36191 + 20.0767i −0.359277 + 0.770472i
\(680\) 0 0
\(681\) 6.09243 69.6368i 0.233463 2.66849i
\(682\) 0 0
\(683\) 6.22686 + 2.26639i 0.238264 + 0.0867210i 0.458392 0.888750i \(-0.348425\pi\)
−0.220128 + 0.975471i \(0.570648\pi\)
\(684\) 0 0
\(685\) −7.18821 + 13.4897i −0.274647 + 0.515415i
\(686\) 0 0
\(687\) −2.38901 + 27.3065i −0.0911465 + 1.04181i
\(688\) 0 0
\(689\) −4.76958 17.8003i −0.181707 0.678138i
\(690\) 0 0
\(691\) 1.70897 0.301337i 0.0650122 0.0114634i −0.141047 0.990003i \(-0.545047\pi\)
0.206060 + 0.978539i \(0.433936\pi\)
\(692\) 0 0
\(693\) 21.0923 5.65168i 0.801232 0.214689i
\(694\) 0 0
\(695\) −21.3271 13.8773i −0.808983 0.526397i
\(696\) 0 0
\(697\) 6.72677 0.254795
\(698\) 0 0
\(699\) −12.2423 33.6355i −0.463047 1.27221i
\(700\) 0 0
\(701\) 26.8972 38.4132i 1.01589 1.45085i 0.127458 0.991844i \(-0.459318\pi\)
0.888435 0.459002i \(-0.151793\pi\)
\(702\) 0 0
\(703\) 1.83805 1.11849i 0.0693232 0.0421847i
\(704\) 0 0
\(705\) −65.5738 + 49.3208i −2.46965 + 1.85753i
\(706\) 0 0
\(707\) −0.355707 + 0.762816i −0.0133777 + 0.0286886i
\(708\) 0 0
\(709\) 12.9812 12.9812i 0.487518 0.487518i −0.420004 0.907522i \(-0.637971\pi\)
0.907522 + 0.420004i \(0.137971\pi\)
\(710\) 0 0
\(711\) −11.7194 + 43.7375i −0.439512 + 1.64028i
\(712\) 0 0
\(713\) −1.04272 3.89150i −0.0390503 0.145738i
\(714\) 0 0
\(715\) 6.73613 5.06652i 0.251917 0.189477i
\(716\) 0 0
\(717\) −38.6081 + 66.8712i −1.44185 + 2.49735i
\(718\) 0 0
\(719\) 24.2454 + 28.8946i 0.904201 + 1.07759i 0.996643 + 0.0818671i \(0.0260883\pi\)
−0.0924419 + 0.995718i \(0.529467\pi\)
\(720\) 0 0
\(721\) 3.38313 + 4.83161i 0.125994 + 0.179939i
\(722\) 0 0
\(723\) 1.12515 3.09132i 0.0418448 0.114968i
\(724\) 0 0
\(725\) 5.20628 5.96738i 0.193356 0.221623i
\(726\) 0 0
\(727\) −5.28634 + 1.92407i −0.196059 + 0.0713598i −0.438184 0.898885i \(-0.644378\pi\)
0.242124 + 0.970245i \(0.422156\pi\)
\(728\) 0 0
\(729\) 9.50289 5.48650i 0.351959 0.203204i
\(730\) 0 0
\(731\) 2.58552 7.10366i 0.0956290 0.262738i
\(732\) 0 0
\(733\) −0.434567 4.96712i −0.0160511 0.183465i −0.999988 0.00494697i \(-0.998425\pi\)
0.983937 0.178518i \(-0.0571302\pi\)
\(734\) 0 0
\(735\) 25.6782 16.0133i 0.947154 0.590661i
\(736\) 0 0
\(737\) 15.0558 10.5422i 0.554588 0.388327i
\(738\) 0 0
\(739\) −32.9859 −1.21341 −0.606703 0.794929i \(-0.707508\pi\)
−0.606703 + 0.794929i \(0.707508\pi\)
\(740\) 0 0
\(741\) 1.96851 0.0723148
\(742\) 0 0
\(743\) −32.7804 + 22.9531i −1.20260 + 0.842066i −0.990811 0.135250i \(-0.956816\pi\)
−0.211784 + 0.977316i \(0.567927\pi\)
\(744\) 0 0
\(745\) 0.722109 3.11498i 0.0264560 0.114124i
\(746\) 0 0
\(747\) −3.02126 34.5332i −0.110542 1.26350i
\(748\) 0 0
\(749\) −8.93518 + 24.5492i −0.326484 + 0.897008i
\(750\) 0 0
\(751\) 37.1442 21.4452i 1.35541 0.782547i 0.366410 0.930454i \(-0.380587\pi\)
0.989001 + 0.147907i \(0.0472536\pi\)
\(752\) 0 0
\(753\) 31.3658 11.4162i 1.14303 0.416030i
\(754\) 0 0
\(755\) 4.95714 + 2.10946i 0.180409 + 0.0767711i
\(756\) 0 0
\(757\) −0.0514548 + 0.141371i −0.00187016 + 0.00513821i −0.940624 0.339450i \(-0.889759\pi\)
0.938754 + 0.344588i \(0.111981\pi\)
\(758\) 0 0
\(759\) −4.92831 7.03836i −0.178886 0.255476i
\(760\) 0 0
\(761\) 31.6586 + 37.7292i 1.14762 + 1.36768i 0.919042 + 0.394159i \(0.128964\pi\)
0.228581 + 0.973525i \(0.426592\pi\)
\(762\) 0 0
\(763\) 6.29217 10.8984i 0.227792 0.394547i
\(764\) 0 0
\(765\) −8.29045 11.0225i −0.299742 0.398518i
\(766\) 0 0
\(767\) −0.930041 3.47096i −0.0335818 0.125329i
\(768\) 0 0
\(769\) 0.927474 3.46138i 0.0334456 0.124821i −0.947185 0.320689i \(-0.896086\pi\)
0.980630 + 0.195868i \(0.0627524\pi\)
\(770\) 0 0
\(771\) −12.0301 + 12.0301i −0.433254 + 0.433254i
\(772\) 0 0
\(773\) −3.90102 + 8.36577i −0.140310 + 0.300896i −0.963888 0.266307i \(-0.914197\pi\)
0.823578 + 0.567203i \(0.191974\pi\)
\(774\) 0 0
\(775\) −14.2500 + 4.87795i −0.511876 + 0.175221i
\(776\) 0 0
\(777\) 24.3640 17.9112i 0.874054 0.642560i
\(778\) 0 0
\(779\) 1.43487 2.04921i 0.0514096 0.0734205i
\(780\) 0 0
\(781\) 3.20406 + 8.80308i 0.114650 + 0.314999i
\(782\) 0 0
\(783\) −16.9988 −0.607489
\(784\) 0 0
\(785\) 6.20161 + 29.3062i 0.221345 + 1.04598i
\(786\) 0 0
\(787\) −3.32403 + 0.890671i −0.118489 + 0.0317490i −0.317576 0.948233i \(-0.602869\pi\)
0.199087 + 0.979982i \(0.436202\pi\)
\(788\) 0 0
\(789\) −18.9647 + 3.34399i −0.675161 + 0.119049i
\(790\) 0 0
\(791\) −6.88015 25.6771i −0.244630 0.912972i
\(792\) 0 0
\(793\) −2.39631 + 27.3900i −0.0850956 + 0.972647i
\(794\) 0 0
\(795\) 20.4729 + 67.1805i 0.726100 + 2.38265i
\(796\) 0 0
\(797\) −37.6585 13.7066i −1.33393 0.485511i −0.426035 0.904707i \(-0.640090\pi\)
−0.907896 + 0.419195i \(0.862312\pi\)
\(798\) 0 0
\(799\) −0.987711 + 11.2896i −0.0349427 + 0.399397i
\(800\) 0 0
\(801\) 3.73618 8.01226i 0.132011 0.283099i
\(802\) 0 0
\(803\) 2.07080 + 0.554870i 0.0730771 + 0.0195809i
\(804\) 0 0
\(805\) 3.80130 + 2.97543i 0.133978 + 0.104870i
\(806\) 0 0
\(807\) 77.2998 6.76285i 2.72108 0.238064i
\(808\) 0 0
\(809\) −0.363464 4.15441i −0.0127787 0.146061i 0.987125 0.159952i \(-0.0511339\pi\)
−0.999904 + 0.0138906i \(0.995578\pi\)
\(810\) 0 0
\(811\) 0.660558 3.74621i 0.0231953 0.131547i −0.971011 0.239034i \(-0.923169\pi\)
0.994207 + 0.107487i \(0.0342803\pi\)
\(812\) 0 0
\(813\) 33.4934 + 33.4934i 1.17466 + 1.17466i
\(814\) 0 0
\(815\) −20.3688 40.0654i −0.713490 1.40343i
\(816\) 0 0
\(817\) −1.61251 2.30291i −0.0564146 0.0805685i
\(818\) 0 0
\(819\) 18.8434 1.64858i 0.658440 0.0576060i
\(820\) 0 0
\(821\) 21.7574 + 18.2566i 0.759337 + 0.637160i 0.937954 0.346759i \(-0.112718\pi\)
−0.178617 + 0.983919i \(0.557162\pi\)
\(822\) 0 0
\(823\) 11.2695 5.25505i 0.392830 0.183179i −0.216159 0.976358i \(-0.569353\pi\)
0.608989 + 0.793179i \(0.291575\pi\)
\(824\) 0 0
\(825\) −25.0003 + 20.1703i −0.870400 + 0.702241i
\(826\) 0 0
\(827\) −16.2098 44.5360i −0.563669 1.54867i −0.814215 0.580564i \(-0.802832\pi\)
0.250546 0.968105i \(-0.419390\pi\)
\(828\) 0 0
\(829\) −18.3107 1.60198i −0.635956 0.0556389i −0.235381 0.971903i \(-0.575634\pi\)
−0.400575 + 0.916264i \(0.631189\pi\)
\(830\) 0 0
\(831\) −24.4670 52.4696i −0.848751 1.82015i
\(832\) 0 0
\(833\) 0.725800 4.11622i 0.0251475 0.142618i
\(834\) 0 0
\(835\) −30.8702 13.1365i −1.06831 0.454606i
\(836\) 0 0
\(837\) 27.9989 + 16.1652i 0.967783 + 0.558750i
\(838\) 0 0
\(839\) −0.313988 1.78072i −0.0108401 0.0614772i 0.978908 0.204302i \(-0.0654925\pi\)
−0.989748 + 0.142825i \(0.954381\pi\)
\(840\) 0 0
\(841\) 22.9422 + 13.2457i 0.791111 + 0.456748i
\(842\) 0 0
\(843\) 29.0827 16.7909i 1.00166 0.578310i
\(844\) 0 0
\(845\) −19.4040 + 9.86479i −0.667517 + 0.339359i
\(846\) 0 0
\(847\) 9.72630 + 4.53545i 0.334200 + 0.155840i
\(848\) 0 0
\(849\) −20.2403 14.1724i −0.694645 0.486396i
\(850\) 0 0
\(851\) −6.76979 4.51123i −0.232065 0.154643i
\(852\) 0 0
\(853\) 31.1626 5.49481i 1.06699 0.188139i 0.387532 0.921856i \(-0.373328\pi\)
0.679455 + 0.733718i \(0.262216\pi\)
\(854\) 0 0
\(855\) −5.12624 + 0.174385i −0.175314 + 0.00596384i
\(856\) 0 0
\(857\) 55.8312i 1.90716i 0.301143 + 0.953579i \(0.402632\pi\)
−0.301143 + 0.953579i \(0.597368\pi\)
\(858\) 0 0
\(859\) −9.07967 2.43289i −0.309794 0.0830092i 0.100572 0.994930i \(-0.467933\pi\)
−0.410367 + 0.911921i \(0.634599\pi\)
\(860\) 0 0
\(861\) 17.5792 30.4481i 0.599098 1.03767i
\(862\) 0 0
\(863\) 21.6858 + 15.1846i 0.738195 + 0.516889i 0.881148 0.472840i \(-0.156771\pi\)
−0.142954 + 0.989729i \(0.545660\pi\)
\(864\) 0 0
\(865\) −30.6019 + 27.5042i −1.04050 + 0.935170i
\(866\) 0 0
\(867\) 49.3810 + 4.32028i 1.67707 + 0.146724i
\(868\) 0 0
\(869\) 11.9315 8.35456i 0.404750 0.283409i
\(870\) 0 0
\(871\) 14.4294 6.72854i 0.488922 0.227988i
\(872\) 0 0
\(873\) −68.1737 + 57.2046i −2.30733 + 1.93608i
\(874\) 0 0
\(875\) 10.1323 14.9345i 0.342534 0.504877i
\(876\) 0 0
\(877\) −0.705650 + 2.63352i −0.0238281 + 0.0889277i −0.976816 0.214081i \(-0.931324\pi\)
0.952988 + 0.303009i \(0.0979911\pi\)
\(878\) 0 0
\(879\) 30.4425 + 11.0802i 1.02680 + 0.373724i
\(880\) 0 0
\(881\) 6.38997 7.61528i 0.215284 0.256565i −0.647585 0.761993i \(-0.724221\pi\)
0.862869 + 0.505428i \(0.168665\pi\)
\(882\) 0 0
\(883\) −1.19206 + 1.42064i −0.0401159 + 0.0478083i −0.785729 0.618570i \(-0.787712\pi\)
0.745613 + 0.666379i \(0.232157\pi\)
\(884\) 0 0
\(885\) 3.99211 + 13.0998i 0.134193 + 0.440346i
\(886\) 0 0
\(887\) −22.8201 + 22.8201i −0.766225 + 0.766225i −0.977440 0.211215i \(-0.932258\pi\)
0.211215 + 0.977440i \(0.432258\pi\)
\(888\) 0 0
\(889\) 25.3003i 0.848545i
\(890\) 0 0
\(891\) 27.9372 + 4.92609i 0.935932 + 0.165030i
\(892\) 0 0
\(893\) 3.22852 + 2.70905i 0.108038 + 0.0906549i
\(894\) 0 0
\(895\) 19.6601 + 31.5259i 0.657163 + 1.05379i
\(896\) 0 0
\(897\) −3.14549 6.74552i −0.105025 0.225226i
\(898\) 0 0
\(899\) 2.38557 + 4.13193i 0.0795632 + 0.137808i
\(900\) 0 0
\(901\) 8.79125 + 4.09943i 0.292879 + 0.136572i
\(902\) 0 0
\(903\) −25.3972 30.2672i −0.845167 1.00723i
\(904\) 0 0
\(905\) −51.1641 + 6.23534i −1.70075 + 0.207270i
\(906\) 0 0
\(907\) −27.6389 4.87349i −0.917736 0.161822i −0.305222 0.952281i \(-0.598731\pi\)
−0.612514 + 0.790460i \(0.709842\pi\)
\(908\) 0 0
\(909\) −2.59027 + 2.17349i −0.0859138 + 0.0720903i
\(910\) 0 0
\(911\) 18.1126 4.85325i 0.600096 0.160795i 0.0540329 0.998539i \(-0.482792\pi\)
0.546063 + 0.837744i \(0.316126\pi\)
\(912\) 0 0
\(913\) −6.39597 + 9.13439i −0.211676 + 0.302304i
\(914\) 0 0
\(915\) 5.57826 104.635i 0.184412 3.45911i
\(916\) 0 0
\(917\) −15.4562 26.7710i −0.510410 0.884056i
\(918\) 0 0
\(919\) 29.4650 + 29.4650i 0.971962 + 0.971962i 0.999618 0.0276554i \(-0.00880410\pi\)
−0.0276554 + 0.999618i \(0.508804\pi\)
\(920\) 0 0
\(921\) −69.4716 + 25.2856i −2.28917 + 0.833189i
\(922\) 0 0
\(923\) 1.40913 + 7.99159i 0.0463822 + 0.263046i
\(924\) 0 0
\(925\) −15.1065 + 26.3968i −0.496700 + 0.867923i
\(926\) 0 0
\(927\) 4.11476 + 23.3360i 0.135147 + 0.766454i
\(928\) 0 0
\(929\) −5.87042 + 2.13666i −0.192602 + 0.0701015i −0.436521 0.899694i \(-0.643789\pi\)
0.243918 + 0.969796i \(0.421567\pi\)
\(930\) 0 0
\(931\) −1.09912 1.09912i −0.0360223 0.0360223i
\(932\) 0 0
\(933\) −6.87227 11.9031i −0.224988 0.389691i
\(934\) 0 0
\(935\) −0.236192 + 4.43038i −0.00772431 + 0.144889i
\(936\) 0 0
\(937\) −0.164153 + 0.234434i −0.00536264 + 0.00765864i −0.821824 0.569741i \(-0.807044\pi\)
0.816462 + 0.577399i \(0.195932\pi\)
\(938\) 0 0
\(939\) −53.7151 + 14.3929i −1.75293 + 0.469696i
\(940\) 0 0
\(941\) 9.44490 7.92521i 0.307895 0.258354i −0.475726 0.879593i \(-0.657815\pi\)
0.783621 + 0.621239i \(0.213370\pi\)
\(942\) 0 0
\(943\) −9.31486 1.64246i −0.303334 0.0534859i
\(944\) 0 0
\(945\) −38.4540 + 4.68637i −1.25091 + 0.152448i
\(946\) 0 0
\(947\) 24.7848 + 29.5374i 0.805399 + 0.959837i 0.999778 0.0210898i \(-0.00671359\pi\)
−0.194379 + 0.980927i \(0.562269\pi\)
\(948\) 0 0
\(949\) 1.68308 + 0.784831i 0.0546350 + 0.0254767i
\(950\) 0 0
\(951\) −38.1385 66.0578i −1.23672 2.14207i
\(952\) 0 0
\(953\) −7.06417 15.1492i −0.228831 0.490730i 0.758046 0.652201i \(-0.226154\pi\)
−0.986877 + 0.161471i \(0.948376\pi\)
\(954\) 0 0
\(955\) 22.2517 + 35.6817i 0.720048 + 1.15463i
\(956\) 0 0
\(957\) 7.79489 + 6.54069i 0.251973 + 0.211430i
\(958\) 0 0
\(959\) 10.8667 + 1.91609i 0.350904 + 0.0618738i
\(960\) 0 0
\(961\) 21.9257i 0.707280i
\(962\) 0 0
\(963\) −74.2136 + 74.2136i −2.39150 + 2.39150i
\(964\) 0 0
\(965\) −12.8903 42.2985i −0.414952 1.36164i
\(966\) 0 0
\(967\) 10.9972 13.1059i 0.353645 0.421457i −0.559668 0.828717i \(-0.689071\pi\)
0.913312 + 0.407260i \(0.133516\pi\)
\(968\) 0 0
\(969\) −0.666032 + 0.793746i −0.0213960 + 0.0254988i
\(970\) 0 0
\(971\) −8.78252 3.19658i −0.281844 0.102583i 0.197230 0.980357i \(-0.436805\pi\)
−0.479075 + 0.877774i \(0.659028\pi\)
\(972\) 0 0
\(973\) −4.75402 + 17.7422i −0.152407 + 0.568790i
\(974\) 0 0
\(975\) −24.3610 + 13.4462i −0.780177 + 0.430622i
\(976\) 0 0
\(977\) −23.7990 + 19.9697i −0.761398 + 0.638889i −0.938490 0.345306i \(-0.887775\pi\)
0.177093 + 0.984194i \(0.443331\pi\)
\(978\) 0 0
\(979\) −2.57738 + 1.20185i −0.0823733 + 0.0384113i
\(980\) 0 0
\(981\) 41.4135 28.9981i 1.32223 0.925837i
\(982\) 0 0
\(983\) −4.44667 0.389033i −0.141827 0.0124082i 0.0160213 0.999872i \(-0.494900\pi\)
−0.157848 + 0.987463i \(0.550456\pi\)
\(984\) 0 0
\(985\) −31.2800 + 28.1136i −0.996663 + 0.895774i
\(986\) 0 0
\(987\) 48.5200 + 33.9741i 1.54441 + 1.08141i
\(988\) 0 0
\(989\) −5.31477 + 9.20546i −0.169000 + 0.292717i
\(990\) 0 0
\(991\) −48.9903 13.1269i −1.55623 0.416990i −0.624760 0.780817i \(-0.714803\pi\)
−0.931467 + 0.363827i \(0.881470\pi\)
\(992\) 0 0
\(993\) 62.0600i 1.96942i
\(994\) 0 0
\(995\) −14.1750 + 0.482206i −0.449377 + 0.0152870i
\(996\) 0 0
\(997\) −25.7618 + 4.54250i −0.815885 + 0.143862i −0.565992 0.824411i \(-0.691507\pi\)
−0.249893 + 0.968273i \(0.580395\pi\)
\(998\) 0 0
\(999\) 64.0133 12.8160i 2.02529 0.405481i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.cc.a.17.19 228
5.3 odd 4 740.2.ch.a.313.19 yes 228
37.24 odd 36 740.2.ch.a.357.19 yes 228
185.98 even 36 inner 740.2.cc.a.653.19 yes 228
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.cc.a.17.19 228 1.1 even 1 trivial
740.2.cc.a.653.19 yes 228 185.98 even 36 inner
740.2.ch.a.313.19 yes 228 5.3 odd 4
740.2.ch.a.357.19 yes 228 37.24 odd 36