Properties

Label 740.2.cc.a.17.12
Level $740$
Weight $2$
Character 740.17
Analytic conductor $5.909$
Analytic rank $0$
Dimension $228$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(17,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([0, 9, 7])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.cc (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(228\)
Relative dimension: \(19\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

Embedding invariants

Embedding label 17.12
Character \(\chi\) \(=\) 740.17
Dual form 740.2.cc.a.653.12

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.485165 - 0.339716i) q^{3} +(-2.23102 + 0.150100i) q^{5} +(-0.237390 - 2.71338i) q^{7} +(-0.906082 + 2.48944i) q^{9} +(1.31542 - 0.759457i) q^{11} +(-6.23147 + 2.26807i) q^{13} +(-1.03142 + 0.830738i) q^{15} +(-2.74794 + 7.54989i) q^{17} +(4.57036 + 6.52714i) q^{19} +(-1.03695 - 1.23579i) q^{21} +(2.69018 - 4.65953i) q^{23} +(4.95494 - 0.669752i) q^{25} +(0.865982 + 3.23189i) q^{27} +(0.649359 - 2.42344i) q^{29} +(-3.79745 + 3.79745i) q^{31} +(0.380195 - 0.815330i) q^{33} +(0.936899 + 6.01797i) q^{35} +(-2.32101 + 5.62254i) q^{37} +(-2.25279 + 3.21732i) q^{39} +(-1.74051 - 4.78200i) q^{41} -4.91223 q^{43} +(1.64783 - 5.69001i) q^{45} +(-12.8506 + 3.44332i) q^{47} +(-0.412398 + 0.0727169i) q^{49} +(1.23162 + 4.59646i) q^{51} +(-0.164199 + 1.87681i) q^{53} +(-2.82073 + 1.89181i) q^{55} +(4.43475 + 1.61412i) q^{57} +(0.177529 - 2.02916i) q^{59} +(-2.17623 + 4.66693i) q^{61} +(6.96988 + 1.86757i) q^{63} +(13.5621 - 5.99546i) q^{65} +(5.57549 - 0.487792i) q^{67} +(-0.277736 - 3.17454i) q^{69} +(1.59542 - 9.04807i) q^{71} +(0.0302762 + 0.0302762i) q^{73} +(2.17644 - 2.00821i) q^{75} +(-2.37296 - 3.38893i) q^{77} +(-5.23171 + 0.457716i) q^{79} +(-4.57016 - 3.83482i) q^{81} +(-4.40599 + 2.05455i) q^{83} +(4.99747 - 17.2565i) q^{85} +(-0.508236 - 1.39637i) q^{87} +(-7.73603 - 0.676815i) q^{89} +(7.63341 + 16.3699i) q^{91} +(-0.552335 + 3.13244i) q^{93} +(-11.1763 - 13.8762i) q^{95} +(-1.56183 - 0.901725i) q^{97} +(0.698746 + 3.96278i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 228 q + 6 q^{3} - 12 q^{25} + 12 q^{27} - 36 q^{31} + 6 q^{33} + 24 q^{35} + 24 q^{37} - 72 q^{39} - 54 q^{41} - 12 q^{45} + 36 q^{49} - 6 q^{53} - 72 q^{57} - 36 q^{61} + 18 q^{65} + 42 q^{67} + 96 q^{69}+ \cdots + 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.485165 0.339716i 0.280110 0.196135i −0.425076 0.905158i \(-0.639752\pi\)
0.705186 + 0.709023i \(0.250864\pi\)
\(4\) 0 0
\(5\) −2.23102 + 0.150100i −0.997744 + 0.0671266i
\(6\) 0 0
\(7\) −0.237390 2.71338i −0.0897248 1.02556i −0.898947 0.438057i \(-0.855667\pi\)
0.809222 0.587502i \(-0.199889\pi\)
\(8\) 0 0
\(9\) −0.906082 + 2.48944i −0.302027 + 0.829814i
\(10\) 0 0
\(11\) 1.31542 0.759457i 0.396613 0.228985i −0.288408 0.957507i \(-0.593126\pi\)
0.685022 + 0.728523i \(0.259793\pi\)
\(12\) 0 0
\(13\) −6.23147 + 2.26807i −1.72830 + 0.629049i −0.998507 0.0546200i \(-0.982605\pi\)
−0.729792 + 0.683669i \(0.760383\pi\)
\(14\) 0 0
\(15\) −1.03142 + 0.830738i −0.266312 + 0.214496i
\(16\) 0 0
\(17\) −2.74794 + 7.54989i −0.666472 + 1.83112i −0.121636 + 0.992575i \(0.538814\pi\)
−0.544836 + 0.838542i \(0.683408\pi\)
\(18\) 0 0
\(19\) 4.57036 + 6.52714i 1.04851 + 1.49743i 0.856575 + 0.516022i \(0.172588\pi\)
0.191936 + 0.981407i \(0.438523\pi\)
\(20\) 0 0
\(21\) −1.03695 1.23579i −0.226281 0.269671i
\(22\) 0 0
\(23\) 2.69018 4.65953i 0.560942 0.971580i −0.436473 0.899717i \(-0.643772\pi\)
0.997415 0.0718623i \(-0.0228942\pi\)
\(24\) 0 0
\(25\) 4.95494 0.669752i 0.990988 0.133950i
\(26\) 0 0
\(27\) 0.865982 + 3.23189i 0.166658 + 0.621977i
\(28\) 0 0
\(29\) 0.649359 2.42344i 0.120583 0.450022i −0.879061 0.476710i \(-0.841829\pi\)
0.999644 + 0.0266878i \(0.00849600\pi\)
\(30\) 0 0
\(31\) −3.79745 + 3.79745i −0.682042 + 0.682042i −0.960460 0.278418i \(-0.910190\pi\)
0.278418 + 0.960460i \(0.410190\pi\)
\(32\) 0 0
\(33\) 0.380195 0.815330i 0.0661834 0.141931i
\(34\) 0 0
\(35\) 0.936899 + 6.01797i 0.158365 + 1.01722i
\(36\) 0 0
\(37\) −2.32101 + 5.62254i −0.381572 + 0.924339i
\(38\) 0 0
\(39\) −2.25279 + 3.21732i −0.360735 + 0.515184i
\(40\) 0 0
\(41\) −1.74051 4.78200i −0.271821 0.746823i −0.998225 0.0595549i \(-0.981032\pi\)
0.726404 0.687268i \(-0.241190\pi\)
\(42\) 0 0
\(43\) −4.91223 −0.749108 −0.374554 0.927205i \(-0.622204\pi\)
−0.374554 + 0.927205i \(0.622204\pi\)
\(44\) 0 0
\(45\) 1.64783 5.69001i 0.245644 0.848216i
\(46\) 0 0
\(47\) −12.8506 + 3.44332i −1.87446 + 0.502259i −0.874609 + 0.484830i \(0.838882\pi\)
−0.999848 + 0.0174296i \(0.994452\pi\)
\(48\) 0 0
\(49\) −0.412398 + 0.0727169i −0.0589140 + 0.0103881i
\(50\) 0 0
\(51\) 1.23162 + 4.59646i 0.172461 + 0.643633i
\(52\) 0 0
\(53\) −0.164199 + 1.87681i −0.0225545 + 0.257799i 0.976543 + 0.215323i \(0.0690804\pi\)
−0.999097 + 0.0424767i \(0.986475\pi\)
\(54\) 0 0
\(55\) −2.82073 + 1.89181i −0.380348 + 0.255092i
\(56\) 0 0
\(57\) 4.43475 + 1.61412i 0.587397 + 0.213795i
\(58\) 0 0
\(59\) 0.177529 2.02916i 0.0231123 0.264174i −0.975843 0.218473i \(-0.929892\pi\)
0.998955 0.0457010i \(-0.0145521\pi\)
\(60\) 0 0
\(61\) −2.17623 + 4.66693i −0.278637 + 0.597539i −0.994965 0.100225i \(-0.968044\pi\)
0.716328 + 0.697764i \(0.245822\pi\)
\(62\) 0 0
\(63\) 6.96988 + 1.86757i 0.878123 + 0.235292i
\(64\) 0 0
\(65\) 13.5621 5.99546i 1.68217 0.743645i
\(66\) 0 0
\(67\) 5.57549 0.487792i 0.681154 0.0595933i 0.258673 0.965965i \(-0.416715\pi\)
0.422481 + 0.906372i \(0.361159\pi\)
\(68\) 0 0
\(69\) −0.277736 3.17454i −0.0334355 0.382170i
\(70\) 0 0
\(71\) 1.59542 9.04807i 0.189341 1.07381i −0.730908 0.682476i \(-0.760903\pi\)
0.920249 0.391332i \(-0.127986\pi\)
\(72\) 0 0
\(73\) 0.0302762 + 0.0302762i 0.00354356 + 0.00354356i 0.708876 0.705333i \(-0.249202\pi\)
−0.705333 + 0.708876i \(0.749202\pi\)
\(74\) 0 0
\(75\) 2.17644 2.00821i 0.251313 0.231889i
\(76\) 0 0
\(77\) −2.37296 3.38893i −0.270424 0.386205i
\(78\) 0 0
\(79\) −5.23171 + 0.457716i −0.588614 + 0.0514970i −0.377572 0.925980i \(-0.623241\pi\)
−0.211041 + 0.977477i \(0.567685\pi\)
\(80\) 0 0
\(81\) −4.57016 3.83482i −0.507796 0.426091i
\(82\) 0 0
\(83\) −4.40599 + 2.05455i −0.483620 + 0.225516i −0.649108 0.760696i \(-0.724858\pi\)
0.165488 + 0.986212i \(0.447080\pi\)
\(84\) 0 0
\(85\) 4.99747 17.2565i 0.542052 1.87173i
\(86\) 0 0
\(87\) −0.508236 1.39637i −0.0544886 0.149706i
\(88\) 0 0
\(89\) −7.73603 0.676815i −0.820018 0.0717422i −0.330577 0.943779i \(-0.607243\pi\)
−0.489440 + 0.872037i \(0.662799\pi\)
\(90\) 0 0
\(91\) 7.63341 + 16.3699i 0.800199 + 1.71603i
\(92\) 0 0
\(93\) −0.552335 + 3.13244i −0.0572744 + 0.324819i
\(94\) 0 0
\(95\) −11.1763 13.8762i −1.14666 1.42367i
\(96\) 0 0
\(97\) −1.56183 0.901725i −0.158580 0.0915563i 0.418610 0.908166i \(-0.362517\pi\)
−0.577190 + 0.816610i \(0.695851\pi\)
\(98\) 0 0
\(99\) 0.698746 + 3.96278i 0.0702266 + 0.398275i
\(100\) 0 0
\(101\) 8.53973 + 4.93042i 0.849735 + 0.490595i 0.860561 0.509347i \(-0.170113\pi\)
−0.0108265 + 0.999941i \(0.503446\pi\)
\(102\) 0 0
\(103\) 7.56078 4.36522i 0.744986 0.430118i −0.0788935 0.996883i \(-0.525139\pi\)
0.823879 + 0.566765i \(0.191805\pi\)
\(104\) 0 0
\(105\) 2.49895 + 2.60143i 0.243873 + 0.253874i
\(106\) 0 0
\(107\) −10.2321 4.77131i −0.989175 0.461260i −0.140446 0.990088i \(-0.544854\pi\)
−0.848729 + 0.528829i \(0.822631\pi\)
\(108\) 0 0
\(109\) 12.4168 + 8.69435i 1.18932 + 0.832768i 0.989138 0.146992i \(-0.0469590\pi\)
0.200178 + 0.979760i \(0.435848\pi\)
\(110\) 0 0
\(111\) 0.783994 + 3.51634i 0.0744134 + 0.333757i
\(112\) 0 0
\(113\) −0.126362 + 0.0222811i −0.0118872 + 0.00209603i −0.179589 0.983742i \(-0.557477\pi\)
0.167701 + 0.985838i \(0.446366\pi\)
\(114\) 0 0
\(115\) −5.30247 + 10.7993i −0.494458 + 1.00704i
\(116\) 0 0
\(117\) 17.5679i 1.62416i
\(118\) 0 0
\(119\) 21.1380 + 5.66391i 1.93772 + 0.519210i
\(120\) 0 0
\(121\) −4.34645 + 7.52828i −0.395132 + 0.684389i
\(122\) 0 0
\(123\) −2.46896 1.72878i −0.222618 0.155879i
\(124\) 0 0
\(125\) −10.9541 + 2.23797i −0.979761 + 0.200170i
\(126\) 0 0
\(127\) 5.23193 + 0.457735i 0.464259 + 0.0406174i 0.316886 0.948464i \(-0.397363\pi\)
0.147373 + 0.989081i \(0.452918\pi\)
\(128\) 0 0
\(129\) −2.38324 + 1.66876i −0.209833 + 0.146926i
\(130\) 0 0
\(131\) −5.93935 + 2.76957i −0.518924 + 0.241978i −0.664391 0.747385i \(-0.731309\pi\)
0.145468 + 0.989363i \(0.453531\pi\)
\(132\) 0 0
\(133\) 16.6256 13.9506i 1.44163 1.20967i
\(134\) 0 0
\(135\) −2.41713 7.08044i −0.208034 0.609387i
\(136\) 0 0
\(137\) 3.04413 11.3609i 0.260078 0.970623i −0.705117 0.709091i \(-0.749106\pi\)
0.965195 0.261532i \(-0.0842278\pi\)
\(138\) 0 0
\(139\) 11.4777 + 4.17754i 0.973527 + 0.354335i 0.779320 0.626626i \(-0.215565\pi\)
0.194206 + 0.980961i \(0.437787\pi\)
\(140\) 0 0
\(141\) −5.06493 + 6.03614i −0.426544 + 0.508335i
\(142\) 0 0
\(143\) −6.47448 + 7.71599i −0.541424 + 0.645243i
\(144\) 0 0
\(145\) −1.08498 + 5.50423i −0.0901025 + 0.457101i
\(146\) 0 0
\(147\) −0.175378 + 0.175378i −0.0144649 + 0.0144649i
\(148\) 0 0
\(149\) 0.830468i 0.0680346i 0.999421 + 0.0340173i \(0.0108301\pi\)
−0.999421 + 0.0340173i \(0.989170\pi\)
\(150\) 0 0
\(151\) −2.48966 0.438994i −0.202606 0.0357249i 0.0714241 0.997446i \(-0.477246\pi\)
−0.274030 + 0.961721i \(0.588357\pi\)
\(152\) 0 0
\(153\) −16.3051 13.6816i −1.31819 1.10610i
\(154\) 0 0
\(155\) 7.90221 9.04220i 0.634720 0.726287i
\(156\) 0 0
\(157\) −6.42658 13.7818i −0.512897 1.09991i −0.976825 0.214038i \(-0.931338\pi\)
0.463929 0.885873i \(-0.346439\pi\)
\(158\) 0 0
\(159\) 0.557918 + 0.966343i 0.0442458 + 0.0766360i
\(160\) 0 0
\(161\) −13.2817 6.19335i −1.04674 0.488104i
\(162\) 0 0
\(163\) 5.64159 + 6.72338i 0.441883 + 0.526616i 0.940311 0.340315i \(-0.110534\pi\)
−0.498428 + 0.866931i \(0.666089\pi\)
\(164\) 0 0
\(165\) −0.725843 + 1.87609i −0.0565068 + 0.146053i
\(166\) 0 0
\(167\) −9.20117 1.62242i −0.712008 0.125546i −0.194099 0.980982i \(-0.562178\pi\)
−0.517909 + 0.855436i \(0.673289\pi\)
\(168\) 0 0
\(169\) 23.7285 19.9106i 1.82527 1.53158i
\(170\) 0 0
\(171\) −20.3901 + 5.46350i −1.55927 + 0.417804i
\(172\) 0 0
\(173\) 10.8902 15.5528i 0.827967 1.18246i −0.152988 0.988228i \(-0.548890\pi\)
0.980956 0.194232i \(-0.0622214\pi\)
\(174\) 0 0
\(175\) −2.99354 13.2856i −0.226290 1.00430i
\(176\) 0 0
\(177\) −0.603209 1.04479i −0.0453399 0.0785311i
\(178\) 0 0
\(179\) −7.98563 7.98563i −0.596874 0.596874i 0.342605 0.939479i \(-0.388691\pi\)
−0.939479 + 0.342605i \(0.888691\pi\)
\(180\) 0 0
\(181\) −9.24448 + 3.36472i −0.687137 + 0.250097i −0.661909 0.749584i \(-0.730253\pi\)
−0.0252281 + 0.999682i \(0.508031\pi\)
\(182\) 0 0
\(183\) 0.529604 + 3.00353i 0.0391494 + 0.222027i
\(184\) 0 0
\(185\) 4.33429 12.8924i 0.318663 0.947868i
\(186\) 0 0
\(187\) 2.11913 + 12.0182i 0.154966 + 0.878857i
\(188\) 0 0
\(189\) 8.56375 3.11695i 0.622921 0.226725i
\(190\) 0 0
\(191\) 10.3257 + 10.3257i 0.747145 + 0.747145i 0.973942 0.226797i \(-0.0728255\pi\)
−0.226797 + 0.973942i \(0.572825\pi\)
\(192\) 0 0
\(193\) −2.76848 4.79514i −0.199279 0.345162i 0.749016 0.662552i \(-0.230527\pi\)
−0.948295 + 0.317391i \(0.897193\pi\)
\(194\) 0 0
\(195\) 4.54312 7.51606i 0.325339 0.538237i
\(196\) 0 0
\(197\) −10.7222 + 15.3129i −0.763925 + 1.09100i 0.229135 + 0.973395i \(0.426410\pi\)
−0.993061 + 0.117604i \(0.962479\pi\)
\(198\) 0 0
\(199\) 18.1894 4.87383i 1.28941 0.345496i 0.451974 0.892031i \(-0.350720\pi\)
0.837436 + 0.546535i \(0.184053\pi\)
\(200\) 0 0
\(201\) 2.53932 2.13074i 0.179110 0.150291i
\(202\) 0 0
\(203\) −6.72986 1.18666i −0.472343 0.0832869i
\(204\) 0 0
\(205\) 4.60089 + 10.4075i 0.321340 + 0.726892i
\(206\) 0 0
\(207\) 9.16210 + 10.9190i 0.636810 + 0.758921i
\(208\) 0 0
\(209\) 10.9690 + 5.11493i 0.758742 + 0.353807i
\(210\) 0 0
\(211\) 8.22186 + 14.2407i 0.566016 + 0.980369i 0.996954 + 0.0779871i \(0.0248493\pi\)
−0.430938 + 0.902381i \(0.641817\pi\)
\(212\) 0 0
\(213\) −2.29973 4.93180i −0.157575 0.337921i
\(214\) 0 0
\(215\) 10.9593 0.737324i 0.747418 0.0502851i
\(216\) 0 0
\(217\) 11.2054 + 9.40243i 0.760671 + 0.638278i
\(218\) 0 0
\(219\) 0.0249743 + 0.00440363i 0.00168760 + 0.000297570i
\(220\) 0 0
\(221\) 53.2794i 3.58396i
\(222\) 0 0
\(223\) 7.78963 7.78963i 0.521632 0.521632i −0.396432 0.918064i \(-0.629752\pi\)
0.918064 + 0.396432i \(0.129752\pi\)
\(224\) 0 0
\(225\) −2.82228 + 12.9419i −0.188152 + 0.862792i
\(226\) 0 0
\(227\) −3.90354 + 4.65206i −0.259087 + 0.308768i −0.879870 0.475215i \(-0.842370\pi\)
0.620783 + 0.783983i \(0.286815\pi\)
\(228\) 0 0
\(229\) −14.1312 + 16.8409i −0.933814 + 1.11288i 0.0595915 + 0.998223i \(0.481020\pi\)
−0.993406 + 0.114653i \(0.963424\pi\)
\(230\) 0 0
\(231\) −2.30255 0.838060i −0.151497 0.0551403i
\(232\) 0 0
\(233\) −0.948448 + 3.53965i −0.0621349 + 0.231890i −0.990009 0.141002i \(-0.954967\pi\)
0.927874 + 0.372893i \(0.121634\pi\)
\(234\) 0 0
\(235\) 28.1532 9.61100i 1.83651 0.626952i
\(236\) 0 0
\(237\) −2.38275 + 1.99937i −0.154776 + 0.129873i
\(238\) 0 0
\(239\) −6.11692 + 2.85237i −0.395671 + 0.184504i −0.610262 0.792200i \(-0.708936\pi\)
0.214591 + 0.976704i \(0.431158\pi\)
\(240\) 0 0
\(241\) 7.24807 5.07515i 0.466889 0.326919i −0.316347 0.948644i \(-0.602456\pi\)
0.783236 + 0.621724i \(0.213568\pi\)
\(242\) 0 0
\(243\) −13.5195 1.18281i −0.867278 0.0758770i
\(244\) 0 0
\(245\) 0.909155 0.224134i 0.0580838 0.0143194i
\(246\) 0 0
\(247\) −43.2841 30.3078i −2.75410 1.92844i
\(248\) 0 0
\(249\) −1.43967 + 2.49358i −0.0912353 + 0.158024i
\(250\) 0 0
\(251\) 11.7525 + 3.14906i 0.741808 + 0.198767i 0.609882 0.792493i \(-0.291217\pi\)
0.131927 + 0.991259i \(0.457884\pi\)
\(252\) 0 0
\(253\) 8.17231i 0.513789i
\(254\) 0 0
\(255\) −3.43770 10.0700i −0.215277 0.630605i
\(256\) 0 0
\(257\) 1.35036 0.238105i 0.0842333 0.0148526i −0.131373 0.991333i \(-0.541938\pi\)
0.215606 + 0.976480i \(0.430827\pi\)
\(258\) 0 0
\(259\) 15.8070 + 4.96304i 0.982201 + 0.308388i
\(260\) 0 0
\(261\) 5.44464 + 3.81238i 0.337015 + 0.235980i
\(262\) 0 0
\(263\) 16.1199 + 7.51684i 0.993997 + 0.463508i 0.850405 0.526129i \(-0.176357\pi\)
0.143592 + 0.989637i \(0.454135\pi\)
\(264\) 0 0
\(265\) 0.0846246 4.21185i 0.00519845 0.258732i
\(266\) 0 0
\(267\) −3.98318 + 2.29969i −0.243766 + 0.140739i
\(268\) 0 0
\(269\) 27.1435 + 15.6713i 1.65497 + 0.955496i 0.974986 + 0.222268i \(0.0713459\pi\)
0.679982 + 0.733229i \(0.261987\pi\)
\(270\) 0 0
\(271\) −1.83696 10.4179i −0.111587 0.632844i −0.988383 0.151981i \(-0.951435\pi\)
0.876796 0.480863i \(-0.159676\pi\)
\(272\) 0 0
\(273\) 9.26459 + 5.34891i 0.560718 + 0.323731i
\(274\) 0 0
\(275\) 6.00917 4.64407i 0.362366 0.280048i
\(276\) 0 0
\(277\) −2.63799 + 14.9608i −0.158501 + 0.898905i 0.797013 + 0.603962i \(0.206412\pi\)
−0.955515 + 0.294944i \(0.904699\pi\)
\(278\) 0 0
\(279\) −6.01272 12.8943i −0.359972 0.771963i
\(280\) 0 0
\(281\) −7.82990 0.685027i −0.467093 0.0408653i −0.148820 0.988864i \(-0.547547\pi\)
−0.318273 + 0.947999i \(0.603103\pi\)
\(282\) 0 0
\(283\) 6.01234 + 16.5188i 0.357396 + 0.981938i 0.979929 + 0.199345i \(0.0638814\pi\)
−0.622533 + 0.782593i \(0.713896\pi\)
\(284\) 0 0
\(285\) −10.1363 2.93548i −0.600424 0.173883i
\(286\) 0 0
\(287\) −12.5622 + 5.85784i −0.741523 + 0.345778i
\(288\) 0 0
\(289\) −36.4269 30.5658i −2.14276 1.79799i
\(290\) 0 0
\(291\) −1.06408 + 0.0930947i −0.0623773 + 0.00545731i
\(292\) 0 0
\(293\) 10.9479 + 15.6352i 0.639582 + 0.913417i 0.999811 0.0194466i \(-0.00619043\pi\)
−0.360229 + 0.932864i \(0.617302\pi\)
\(294\) 0 0
\(295\) −0.0914942 + 4.55376i −0.00532700 + 0.265130i
\(296\) 0 0
\(297\) 3.59361 + 3.59361i 0.208522 + 0.208522i
\(298\) 0 0
\(299\) −6.19565 + 35.1373i −0.358304 + 2.03204i
\(300\) 0 0
\(301\) 1.16611 + 13.3287i 0.0672136 + 0.768255i
\(302\) 0 0
\(303\) 5.81812 0.509020i 0.334242 0.0292424i
\(304\) 0 0
\(305\) 4.15471 10.7387i 0.237898 0.614896i
\(306\) 0 0
\(307\) 9.18968 + 2.46237i 0.524483 + 0.140535i 0.511339 0.859379i \(-0.329150\pi\)
0.0131435 + 0.999914i \(0.495816\pi\)
\(308\) 0 0
\(309\) 2.18529 4.68637i 0.124317 0.266598i
\(310\) 0 0
\(311\) −2.29155 + 26.1925i −0.129942 + 1.48524i 0.599046 + 0.800714i \(0.295547\pi\)
−0.728988 + 0.684526i \(0.760009\pi\)
\(312\) 0 0
\(313\) −2.52839 0.920261i −0.142913 0.0520162i 0.269573 0.962980i \(-0.413117\pi\)
−0.412487 + 0.910964i \(0.635340\pi\)
\(314\) 0 0
\(315\) −15.8303 3.12043i −0.891936 0.175816i
\(316\) 0 0
\(317\) −0.246203 + 2.81411i −0.0138281 + 0.158056i −0.999969 0.00785290i \(-0.997500\pi\)
0.986141 + 0.165909i \(0.0530559\pi\)
\(318\) 0 0
\(319\) −0.986320 3.68100i −0.0552233 0.206096i
\(320\) 0 0
\(321\) −6.58515 + 1.16114i −0.367547 + 0.0648085i
\(322\) 0 0
\(323\) −61.8383 + 16.5695i −3.44077 + 0.921952i
\(324\) 0 0
\(325\) −29.3575 + 15.4117i −1.62846 + 0.854887i
\(326\) 0 0
\(327\) 8.97782 0.496475
\(328\) 0 0
\(329\) 12.3936 + 34.0512i 0.683282 + 1.87730i
\(330\) 0 0
\(331\) 16.8144 24.0135i 0.924205 1.31990i −0.0231554 0.999732i \(-0.507371\pi\)
0.947360 0.320169i \(-0.103740\pi\)
\(332\) 0 0
\(333\) −11.8939 10.8725i −0.651784 0.595809i
\(334\) 0 0
\(335\) −12.3658 + 1.92516i −0.675618 + 0.105182i
\(336\) 0 0
\(337\) −10.3254 + 22.1429i −0.562461 + 1.20620i 0.395277 + 0.918562i \(0.370649\pi\)
−0.957738 + 0.287641i \(0.907129\pi\)
\(338\) 0 0
\(339\) −0.0537373 + 0.0537373i −0.00291861 + 0.00291861i
\(340\) 0 0
\(341\) −2.11123 + 7.87923i −0.114330 + 0.426684i
\(342\) 0 0
\(343\) −4.63948 17.3148i −0.250509 0.934911i
\(344\) 0 0
\(345\) 1.09613 + 7.04079i 0.0590139 + 0.379063i
\(346\) 0 0
\(347\) 17.1354 29.6794i 0.919877 1.59327i 0.120276 0.992740i \(-0.461622\pi\)
0.799600 0.600533i \(-0.205045\pi\)
\(348\) 0 0
\(349\) −4.96003 5.91113i −0.265504 0.316416i 0.616777 0.787138i \(-0.288438\pi\)
−0.882282 + 0.470722i \(0.843993\pi\)
\(350\) 0 0
\(351\) −12.7265 18.1753i −0.679290 0.970126i
\(352\) 0 0
\(353\) 6.35288 17.4544i 0.338130 0.929004i −0.647795 0.761815i \(-0.724309\pi\)
0.985925 0.167189i \(-0.0534690\pi\)
\(354\) 0 0
\(355\) −2.20130 + 20.4259i −0.116833 + 1.08410i
\(356\) 0 0
\(357\) 12.1796 4.43299i 0.644610 0.234619i
\(358\) 0 0
\(359\) −24.6250 + 14.2172i −1.29966 + 0.750356i −0.980344 0.197294i \(-0.936785\pi\)
−0.319311 + 0.947650i \(0.603451\pi\)
\(360\) 0 0
\(361\) −15.2171 + 41.8086i −0.800899 + 2.20045i
\(362\) 0 0
\(363\) 0.448731 + 5.12902i 0.0235523 + 0.269204i
\(364\) 0 0
\(365\) −0.0720913 0.0630024i −0.00377343 0.00329770i
\(366\) 0 0
\(367\) −7.23136 + 5.06345i −0.377474 + 0.264310i −0.746881 0.664958i \(-0.768450\pi\)
0.369407 + 0.929268i \(0.379561\pi\)
\(368\) 0 0
\(369\) 13.4816 0.701822
\(370\) 0 0
\(371\) 5.13147 0.266412
\(372\) 0 0
\(373\) −2.22424 + 1.55743i −0.115167 + 0.0806407i −0.629741 0.776805i \(-0.716839\pi\)
0.514574 + 0.857446i \(0.327950\pi\)
\(374\) 0 0
\(375\) −4.55425 + 4.80706i −0.235181 + 0.248235i
\(376\) 0 0
\(377\) 1.45007 + 16.5744i 0.0746825 + 0.853625i
\(378\) 0 0
\(379\) −10.7917 + 29.6499i −0.554331 + 1.52301i 0.273408 + 0.961898i \(0.411849\pi\)
−0.827739 + 0.561113i \(0.810373\pi\)
\(380\) 0 0
\(381\) 2.69385 1.55530i 0.138010 0.0796802i
\(382\) 0 0
\(383\) 1.32370 0.481786i 0.0676377 0.0246181i −0.307980 0.951393i \(-0.599653\pi\)
0.375617 + 0.926775i \(0.377431\pi\)
\(384\) 0 0
\(385\) 5.80280 + 7.20461i 0.295738 + 0.367181i
\(386\) 0 0
\(387\) 4.45088 12.2287i 0.226251 0.621620i
\(388\) 0 0
\(389\) −17.8733 25.5257i −0.906211 1.29420i −0.955370 0.295412i \(-0.904543\pi\)
0.0491591 0.998791i \(-0.484346\pi\)
\(390\) 0 0
\(391\) 27.7865 + 33.1147i 1.40522 + 1.67468i
\(392\) 0 0
\(393\) −1.94070 + 3.36139i −0.0978954 + 0.169560i
\(394\) 0 0
\(395\) 11.6034 1.80645i 0.583829 0.0908925i
\(396\) 0 0
\(397\) 5.02027 + 18.7359i 0.251960 + 0.940328i 0.969756 + 0.244075i \(0.0784842\pi\)
−0.717796 + 0.696253i \(0.754849\pi\)
\(398\) 0 0
\(399\) 3.32694 12.4163i 0.166556 0.621594i
\(400\) 0 0
\(401\) −12.2769 + 12.2769i −0.613081 + 0.613081i −0.943748 0.330666i \(-0.892726\pi\)
0.330666 + 0.943748i \(0.392726\pi\)
\(402\) 0 0
\(403\) 15.0508 32.2766i 0.749734 1.60781i
\(404\) 0 0
\(405\) 10.7718 + 7.86960i 0.535253 + 0.391044i
\(406\) 0 0
\(407\) 1.21697 + 9.15869i 0.0603232 + 0.453979i
\(408\) 0 0
\(409\) 7.59468 10.8463i 0.375533 0.536316i −0.586250 0.810130i \(-0.699396\pi\)
0.961783 + 0.273814i \(0.0882853\pi\)
\(410\) 0 0
\(411\) −2.38256 6.54603i −0.117523 0.322892i
\(412\) 0 0
\(413\) −5.54802 −0.273000
\(414\) 0 0
\(415\) 9.52148 5.24508i 0.467391 0.257471i
\(416\) 0 0
\(417\) 6.98776 1.87237i 0.342192 0.0916901i
\(418\) 0 0
\(419\) 8.73085 1.53948i 0.426530 0.0752087i 0.0437373 0.999043i \(-0.486074\pi\)
0.382792 + 0.923834i \(0.374962\pi\)
\(420\) 0 0
\(421\) 4.35148 + 16.2399i 0.212078 + 0.791486i 0.987175 + 0.159643i \(0.0510344\pi\)
−0.775097 + 0.631843i \(0.782299\pi\)
\(422\) 0 0
\(423\) 3.07180 35.1108i 0.149356 1.70715i
\(424\) 0 0
\(425\) −8.55930 + 39.2497i −0.415187 + 1.90389i
\(426\) 0 0
\(427\) 13.1798 + 4.79704i 0.637813 + 0.232145i
\(428\) 0 0
\(429\) −0.519947 + 5.94302i −0.0251033 + 0.286932i
\(430\) 0 0
\(431\) 8.98621 19.2710i 0.432850 0.928251i −0.562023 0.827122i \(-0.689977\pi\)
0.994873 0.101129i \(-0.0322455\pi\)
\(432\) 0 0
\(433\) −5.27337 1.41299i −0.253422 0.0679042i 0.129872 0.991531i \(-0.458543\pi\)
−0.383293 + 0.923627i \(0.625210\pi\)
\(434\) 0 0
\(435\) 1.34348 + 3.03904i 0.0644150 + 0.145711i
\(436\) 0 0
\(437\) 42.7085 3.73651i 2.04303 0.178742i
\(438\) 0 0
\(439\) 1.63865 + 18.7298i 0.0782083 + 0.893925i 0.929401 + 0.369072i \(0.120324\pi\)
−0.851193 + 0.524853i \(0.824120\pi\)
\(440\) 0 0
\(441\) 0.192642 1.09253i 0.00917343 0.0520251i
\(442\) 0 0
\(443\) −13.1619 13.1619i −0.625342 0.625342i 0.321550 0.946892i \(-0.395796\pi\)
−0.946892 + 0.321550i \(0.895796\pi\)
\(444\) 0 0
\(445\) 17.3609 + 0.348815i 0.822984 + 0.0165354i
\(446\) 0 0
\(447\) 0.282123 + 0.402914i 0.0133440 + 0.0190572i
\(448\) 0 0
\(449\) 4.05722 0.354961i 0.191472 0.0167517i 0.00898380 0.999960i \(-0.497140\pi\)
0.182488 + 0.983208i \(0.441585\pi\)
\(450\) 0 0
\(451\) −5.92121 4.96849i −0.278819 0.233957i
\(452\) 0 0
\(453\) −1.35703 + 0.632794i −0.0637588 + 0.0297312i
\(454\) 0 0
\(455\) −19.4874 35.3759i −0.913586 1.65845i
\(456\) 0 0
\(457\) 0.799872 + 2.19763i 0.0374164 + 0.102801i 0.956994 0.290108i \(-0.0936911\pi\)
−0.919578 + 0.392908i \(0.871469\pi\)
\(458\) 0 0
\(459\) −26.7801 2.34295i −1.24999 0.109360i
\(460\) 0 0
\(461\) −4.86824 10.4400i −0.226737 0.486238i 0.759722 0.650248i \(-0.225335\pi\)
−0.986459 + 0.164010i \(0.947557\pi\)
\(462\) 0 0
\(463\) −5.90192 + 33.4714i −0.274285 + 1.55555i 0.466937 + 0.884291i \(0.345357\pi\)
−0.741223 + 0.671259i \(0.765754\pi\)
\(464\) 0 0
\(465\) 0.762093 7.07147i 0.0353412 0.327931i
\(466\) 0 0
\(467\) 2.09501 + 1.20955i 0.0969454 + 0.0559714i 0.547689 0.836682i \(-0.315508\pi\)
−0.450744 + 0.892654i \(0.648841\pi\)
\(468\) 0 0
\(469\) −2.64713 15.0126i −0.122233 0.693217i
\(470\) 0 0
\(471\) −7.79986 4.50325i −0.359399 0.207499i
\(472\) 0 0
\(473\) −6.46163 + 3.73062i −0.297106 + 0.171534i
\(474\) 0 0
\(475\) 27.0174 + 29.2806i 1.23964 + 1.34349i
\(476\) 0 0
\(477\) −4.52343 2.10931i −0.207113 0.0965786i
\(478\) 0 0
\(479\) −10.0862 7.06246i −0.460852 0.322692i 0.319990 0.947421i \(-0.396321\pi\)
−0.780842 + 0.624729i \(0.785209\pi\)
\(480\) 0 0
\(481\) 1.71100 40.3009i 0.0780149 1.83756i
\(482\) 0 0
\(483\) −8.54779 + 1.50721i −0.388938 + 0.0685803i
\(484\) 0 0
\(485\) 3.61984 + 1.77734i 0.164368 + 0.0807048i
\(486\) 0 0
\(487\) 4.22723i 0.191554i 0.995403 + 0.0957770i \(0.0305336\pi\)
−0.995403 + 0.0957770i \(0.969466\pi\)
\(488\) 0 0
\(489\) 5.02114 + 1.34541i 0.227064 + 0.0608416i
\(490\) 0 0
\(491\) −9.18545 + 15.9097i −0.414534 + 0.717993i −0.995379 0.0960203i \(-0.969389\pi\)
0.580846 + 0.814014i \(0.302722\pi\)
\(492\) 0 0
\(493\) 16.5123 + 11.5621i 0.743677 + 0.520729i
\(494\) 0 0
\(495\) −2.15373 8.73619i −0.0968030 0.392662i
\(496\) 0 0
\(497\) −24.9295 2.18105i −1.11824 0.0978335i
\(498\) 0 0
\(499\) −25.0551 + 17.5437i −1.12162 + 0.785366i −0.978888 0.204396i \(-0.934477\pi\)
−0.142730 + 0.989762i \(0.545588\pi\)
\(500\) 0 0
\(501\) −5.01525 + 2.33865i −0.224065 + 0.104483i
\(502\) 0 0
\(503\) 1.99627 1.67507i 0.0890093 0.0746877i −0.597197 0.802094i \(-0.703719\pi\)
0.686207 + 0.727407i \(0.259275\pi\)
\(504\) 0 0
\(505\) −19.7924 9.71807i −0.880750 0.432448i
\(506\) 0 0
\(507\) 4.74830 17.7209i 0.210879 0.787012i
\(508\) 0 0
\(509\) 10.7298 + 3.90534i 0.475592 + 0.173101i 0.568684 0.822556i \(-0.307453\pi\)
−0.0930920 + 0.995658i \(0.529675\pi\)
\(510\) 0 0
\(511\) 0.0749634 0.0893379i 0.00331618 0.00395207i
\(512\) 0 0
\(513\) −17.1372 + 20.4233i −0.756624 + 0.901709i
\(514\) 0 0
\(515\) −16.2131 + 10.8738i −0.714433 + 0.479156i
\(516\) 0 0
\(517\) −14.2889 + 14.2889i −0.628425 + 0.628425i
\(518\) 0 0
\(519\) 11.2453i 0.493613i
\(520\) 0 0
\(521\) −11.6369 2.05189i −0.509820 0.0898951i −0.0871800 0.996193i \(-0.527786\pi\)
−0.422640 + 0.906298i \(0.638897\pi\)
\(522\) 0 0
\(523\) 12.8506 + 10.7829i 0.561918 + 0.471505i 0.878953 0.476909i \(-0.158243\pi\)
−0.317035 + 0.948414i \(0.602687\pi\)
\(524\) 0 0
\(525\) −5.96570 5.42876i −0.260365 0.236931i
\(526\) 0 0
\(527\) −18.2352 39.1055i −0.794337 1.70346i
\(528\) 0 0
\(529\) −2.97416 5.15140i −0.129311 0.223974i
\(530\) 0 0
\(531\) 4.89062 + 2.28054i 0.212235 + 0.0989668i
\(532\) 0 0
\(533\) 21.6918 + 25.8513i 0.939577 + 1.11974i
\(534\) 0 0
\(535\) 23.5442 + 9.10907i 1.01791 + 0.393819i
\(536\) 0 0
\(537\) −6.58720 1.16150i −0.284259 0.0501224i
\(538\) 0 0
\(539\) −0.487250 + 0.408851i −0.0209873 + 0.0176105i
\(540\) 0 0
\(541\) −10.4862 + 2.80977i −0.450837 + 0.120802i −0.477091 0.878854i \(-0.658309\pi\)
0.0262537 + 0.999655i \(0.491642\pi\)
\(542\) 0 0
\(543\) −3.34205 + 4.77294i −0.143421 + 0.204827i
\(544\) 0 0
\(545\) −29.0073 17.5336i −1.24253 0.751055i
\(546\) 0 0
\(547\) 20.0562 + 34.7383i 0.857540 + 1.48530i 0.874268 + 0.485444i \(0.161342\pi\)
−0.0167275 + 0.999860i \(0.505325\pi\)
\(548\) 0 0
\(549\) −9.64621 9.64621i −0.411690 0.411690i
\(550\) 0 0
\(551\) 18.7860 6.83753i 0.800308 0.291288i
\(552\) 0 0
\(553\) 2.48391 + 14.0869i 0.105627 + 0.599038i
\(554\) 0 0
\(555\) −2.27691 7.72737i −0.0966495 0.328009i
\(556\) 0 0
\(557\) −3.45307 19.5833i −0.146311 0.829772i −0.966305 0.257400i \(-0.917134\pi\)
0.819994 0.572372i \(-0.193977\pi\)
\(558\) 0 0
\(559\) 30.6104 11.1413i 1.29468 0.471226i
\(560\) 0 0
\(561\) 5.11090 + 5.11090i 0.215783 + 0.215783i
\(562\) 0 0
\(563\) 8.18042 + 14.1689i 0.344764 + 0.597148i 0.985311 0.170771i \(-0.0546258\pi\)
−0.640547 + 0.767919i \(0.721292\pi\)
\(564\) 0 0
\(565\) 0.278573 0.0686765i 0.0117196 0.00288924i
\(566\) 0 0
\(567\) −9.32040 + 13.3109i −0.391420 + 0.559006i
\(568\) 0 0
\(569\) 10.1761 2.72668i 0.426605 0.114308i −0.0391271 0.999234i \(-0.512458\pi\)
0.465732 + 0.884926i \(0.345791\pi\)
\(570\) 0 0
\(571\) 20.2735 17.0115i 0.848418 0.711907i −0.111023 0.993818i \(-0.535413\pi\)
0.959441 + 0.281911i \(0.0909682\pi\)
\(572\) 0 0
\(573\) 8.51751 + 1.50187i 0.355824 + 0.0627414i
\(574\) 0 0
\(575\) 10.2090 24.8895i 0.425743 1.03796i
\(576\) 0 0
\(577\) −15.1428 18.0465i −0.630404 0.751286i 0.352418 0.935843i \(-0.385359\pi\)
−0.982822 + 0.184557i \(0.940915\pi\)
\(578\) 0 0
\(579\) −2.97215 1.38594i −0.123519 0.0575976i
\(580\) 0 0
\(581\) 6.62069 + 11.4674i 0.274673 + 0.475747i
\(582\) 0 0
\(583\) 1.20936 + 2.59349i 0.0500867 + 0.107411i
\(584\) 0 0
\(585\) 2.63694 + 39.1945i 0.109024 + 1.62049i
\(586\) 0 0
\(587\) −8.61671 7.23028i −0.355650 0.298426i 0.447404 0.894332i \(-0.352349\pi\)
−0.803054 + 0.595906i \(0.796793\pi\)
\(588\) 0 0
\(589\) −42.1422 7.43080i −1.73644 0.306181i
\(590\) 0 0
\(591\) 11.0718i 0.455432i
\(592\) 0 0
\(593\) 26.9937 26.9937i 1.10850 1.10850i 0.115151 0.993348i \(-0.463265\pi\)
0.993348 0.115151i \(-0.0367352\pi\)
\(594\) 0 0
\(595\) −48.0096 9.46352i −1.96820 0.387967i
\(596\) 0 0
\(597\) 7.16913 8.54383i 0.293413 0.349676i
\(598\) 0 0
\(599\) 20.9501 24.9674i 0.855999 1.02014i −0.143536 0.989645i \(-0.545847\pi\)
0.999535 0.0304950i \(-0.00970837\pi\)
\(600\) 0 0
\(601\) 5.43626 + 1.97864i 0.221750 + 0.0807103i 0.450506 0.892773i \(-0.351244\pi\)
−0.228756 + 0.973484i \(0.573466\pi\)
\(602\) 0 0
\(603\) −3.83752 + 14.3218i −0.156276 + 0.583230i
\(604\) 0 0
\(605\) 8.56705 17.4482i 0.348300 0.709369i
\(606\) 0 0
\(607\) 27.2128 22.8343i 1.10453 0.926815i 0.106813 0.994279i \(-0.465935\pi\)
0.997722 + 0.0674646i \(0.0214910\pi\)
\(608\) 0 0
\(609\) −3.66822 + 1.71052i −0.148644 + 0.0693137i
\(610\) 0 0
\(611\) 72.2686 50.6030i 2.92368 2.04718i
\(612\) 0 0
\(613\) 32.9363 + 2.88155i 1.33029 + 0.116385i 0.730025 0.683420i \(-0.239508\pi\)
0.600260 + 0.799805i \(0.295064\pi\)
\(614\) 0 0
\(615\) 5.76779 + 3.48637i 0.232580 + 0.140584i
\(616\) 0 0
\(617\) 16.3425 + 11.4432i 0.657926 + 0.460684i 0.854255 0.519853i \(-0.174013\pi\)
−0.196330 + 0.980538i \(0.562902\pi\)
\(618\) 0 0
\(619\) −12.3677 + 21.4214i −0.497098 + 0.860999i −0.999994 0.00334748i \(-0.998934\pi\)
0.502896 + 0.864347i \(0.332268\pi\)
\(620\) 0 0
\(621\) 17.3887 + 4.65930i 0.697786 + 0.186971i
\(622\) 0 0
\(623\) 21.1514i 0.847414i
\(624\) 0 0
\(625\) 24.1029 6.63717i 0.964115 0.265487i
\(626\) 0 0
\(627\) 7.05940 1.24476i 0.281925 0.0497111i
\(628\) 0 0
\(629\) −36.0715 32.9737i −1.43827 1.31475i
\(630\) 0 0
\(631\) −21.5124 15.0631i −0.856395 0.599654i 0.0607742 0.998152i \(-0.480643\pi\)
−0.917170 + 0.398497i \(0.869532\pi\)
\(632\) 0 0
\(633\) 8.82675 + 4.11598i 0.350832 + 0.163596i
\(634\) 0 0
\(635\) −11.7413 0.235906i −0.465938 0.00936164i
\(636\) 0 0
\(637\) 2.40492 1.38848i 0.0952863 0.0550136i
\(638\) 0 0
\(639\) 21.0790 + 12.1700i 0.833874 + 0.481438i
\(640\) 0 0
\(641\) −4.47953 25.4047i −0.176931 1.00343i −0.935891 0.352288i \(-0.885404\pi\)
0.758961 0.651137i \(-0.225708\pi\)
\(642\) 0 0
\(643\) 29.8850 + 17.2541i 1.17855 + 0.680437i 0.955679 0.294411i \(-0.0951235\pi\)
0.222872 + 0.974848i \(0.428457\pi\)
\(644\) 0 0
\(645\) 5.06659 4.08078i 0.199497 0.160680i
\(646\) 0 0
\(647\) 3.10340 17.6003i 0.122007 0.691938i −0.861033 0.508549i \(-0.830182\pi\)
0.983040 0.183389i \(-0.0587068\pi\)
\(648\) 0 0
\(649\) −1.30754 2.80402i −0.0513253 0.110067i
\(650\) 0 0
\(651\) 8.63062 + 0.755081i 0.338261 + 0.0295940i
\(652\) 0 0
\(653\) 12.0804 + 33.1906i 0.472743 + 1.29885i 0.915540 + 0.402228i \(0.131764\pi\)
−0.442797 + 0.896622i \(0.646014\pi\)
\(654\) 0 0
\(655\) 12.8351 7.07046i 0.501510 0.276266i
\(656\) 0 0
\(657\) −0.102803 + 0.0479380i −0.00401074 + 0.00187024i
\(658\) 0 0
\(659\) −10.2900 8.63437i −0.400843 0.336347i 0.419976 0.907535i \(-0.362038\pi\)
−0.820819 + 0.571188i \(0.806483\pi\)
\(660\) 0 0
\(661\) −40.1961 + 3.51671i −1.56345 + 0.136784i −0.835749 0.549112i \(-0.814966\pi\)
−0.727699 + 0.685896i \(0.759410\pi\)
\(662\) 0 0
\(663\) −18.0999 25.8493i −0.702941 1.00390i
\(664\) 0 0
\(665\) −34.9982 + 33.6196i −1.35717 + 1.30371i
\(666\) 0 0
\(667\) −9.54521 9.54521i −0.369592 0.369592i
\(668\) 0 0
\(669\) 1.13299 6.42552i 0.0438040 0.248425i
\(670\) 0 0
\(671\) 0.681686 + 7.79171i 0.0263162 + 0.300796i
\(672\) 0 0
\(673\) 8.39488 0.734457i 0.323599 0.0283112i 0.0758009 0.997123i \(-0.475849\pi\)
0.247798 + 0.968812i \(0.420293\pi\)
\(674\) 0 0
\(675\) 6.45545 + 15.4338i 0.248471 + 0.594048i
\(676\) 0 0
\(677\) 4.03603 + 1.08145i 0.155117 + 0.0415635i 0.335542 0.942025i \(-0.391081\pi\)
−0.180425 + 0.983589i \(0.557747\pi\)
\(678\) 0 0
\(679\) −2.07595 + 4.45190i −0.0796678 + 0.170848i
\(680\) 0 0
\(681\) −0.313482 + 3.58311i −0.0120126 + 0.137305i
\(682\) 0 0
\(683\) −15.2815 5.56200i −0.584729 0.212824i 0.0326806 0.999466i \(-0.489596\pi\)
−0.617409 + 0.786642i \(0.711818\pi\)
\(684\) 0 0
\(685\) −5.08627 + 25.8033i −0.194336 + 0.985892i
\(686\) 0 0
\(687\) −1.13483 + 12.9712i −0.0432966 + 0.494882i
\(688\) 0 0
\(689\) −3.23353 12.0677i −0.123188 0.459742i
\(690\) 0 0
\(691\) −0.438048 + 0.0772397i −0.0166641 + 0.00293834i −0.181974 0.983303i \(-0.558249\pi\)
0.165310 + 0.986242i \(0.447138\pi\)
\(692\) 0 0
\(693\) 10.5866 2.83668i 0.402153 0.107757i
\(694\) 0 0
\(695\) −26.2341 7.59740i −0.995116 0.288186i
\(696\) 0 0
\(697\) 40.8864 1.54868
\(698\) 0 0
\(699\) 0.742325 + 2.03952i 0.0280773 + 0.0771417i
\(700\) 0 0
\(701\) −19.0487 + 27.2043i −0.719458 + 1.02749i 0.278296 + 0.960495i \(0.410231\pi\)
−0.997753 + 0.0669966i \(0.978658\pi\)
\(702\) 0 0
\(703\) −47.3069 + 10.5474i −1.78422 + 0.397804i
\(704\) 0 0
\(705\) 10.3940 14.2270i 0.391459 0.535821i
\(706\) 0 0
\(707\) 11.3508 24.3419i 0.426892 0.915472i
\(708\) 0 0
\(709\) 8.00887 8.00887i 0.300780 0.300780i −0.540539 0.841319i \(-0.681780\pi\)
0.841319 + 0.540539i \(0.181780\pi\)
\(710\) 0 0
\(711\) 3.60091 13.4388i 0.135045 0.503993i
\(712\) 0 0
\(713\) 7.47851 + 27.9102i 0.280072 + 1.04524i
\(714\) 0 0
\(715\) 13.2866 18.1864i 0.496889 0.680132i
\(716\) 0 0
\(717\) −1.99872 + 3.46189i −0.0746436 + 0.129287i
\(718\) 0 0
\(719\) −26.8017 31.9410i −0.999534 1.19120i −0.981520 0.191360i \(-0.938710\pi\)
−0.0180139 0.999838i \(-0.505734\pi\)
\(720\) 0 0
\(721\) −13.6393 19.4790i −0.507955 0.725435i
\(722\) 0 0
\(723\) 1.79240 4.92457i 0.0666600 0.183147i
\(724\) 0 0
\(725\) 1.59443 12.4429i 0.0592157 0.462118i
\(726\) 0 0
\(727\) −33.0751 + 12.0384i −1.22669 + 0.446478i −0.872462 0.488682i \(-0.837478\pi\)
−0.354226 + 0.935160i \(0.615256\pi\)
\(728\) 0 0
\(729\) 8.53890 4.92994i 0.316256 0.182590i
\(730\) 0 0
\(731\) 13.4985 37.0868i 0.499259 1.37170i
\(732\) 0 0
\(733\) −2.21174 25.2803i −0.0816923 0.933748i −0.920865 0.389882i \(-0.872516\pi\)
0.839172 0.543866i \(-0.183040\pi\)
\(734\) 0 0
\(735\) 0.364948 0.417597i 0.0134613 0.0154033i
\(736\) 0 0
\(737\) 6.96364 4.87599i 0.256509 0.179609i
\(738\) 0 0
\(739\) −12.3808 −0.455436 −0.227718 0.973727i \(-0.573126\pi\)
−0.227718 + 0.973727i \(0.573126\pi\)
\(740\) 0 0
\(741\) −31.2960 −1.14969
\(742\) 0 0
\(743\) 3.79813 2.65948i 0.139340 0.0975668i −0.501828 0.864967i \(-0.667339\pi\)
0.641168 + 0.767400i \(0.278450\pi\)
\(744\) 0 0
\(745\) −0.124653 1.85279i −0.00456693 0.0678811i
\(746\) 0 0
\(747\) −1.12248 12.8300i −0.0410695 0.469427i
\(748\) 0 0
\(749\) −10.5174 + 28.8962i −0.384296 + 1.05584i
\(750\) 0 0
\(751\) 23.2196 13.4059i 0.847297 0.489187i −0.0124412 0.999923i \(-0.503960\pi\)
0.859738 + 0.510736i \(0.170627\pi\)
\(752\) 0 0
\(753\) 6.77167 2.46469i 0.246773 0.0898181i
\(754\) 0 0
\(755\) 5.62039 + 0.605710i 0.204547 + 0.0220440i
\(756\) 0 0
\(757\) 4.10102 11.2675i 0.149054 0.409523i −0.842585 0.538563i \(-0.818967\pi\)
0.991639 + 0.129040i \(0.0411895\pi\)
\(758\) 0 0
\(759\) −2.77627 3.96492i −0.100772 0.143917i
\(760\) 0 0
\(761\) −2.79685 3.33316i −0.101386 0.120827i 0.712966 0.701199i \(-0.247352\pi\)
−0.814351 + 0.580372i \(0.802907\pi\)
\(762\) 0 0
\(763\) 20.6434 35.7554i 0.747342 1.29443i
\(764\) 0 0
\(765\) 38.4308 + 28.0767i 1.38947 + 1.01511i
\(766\) 0 0
\(767\) 3.49602 + 13.0473i 0.126234 + 0.471111i
\(768\) 0 0
\(769\) 5.89200 21.9893i 0.212471 0.792953i −0.774570 0.632488i \(-0.782034\pi\)
0.987042 0.160465i \(-0.0512994\pi\)
\(770\) 0 0
\(771\) 0.574261 0.574261i 0.0206815 0.0206815i
\(772\) 0 0
\(773\) −8.38185 + 17.9749i −0.301474 + 0.646514i −0.997436 0.0715653i \(-0.977201\pi\)
0.695962 + 0.718079i \(0.254978\pi\)
\(774\) 0 0
\(775\) −16.2728 + 21.3595i −0.584536 + 0.767255i
\(776\) 0 0
\(777\) 9.35505 2.96201i 0.335610 0.106262i
\(778\) 0 0
\(779\) 23.2581 33.2160i 0.833307 1.19009i
\(780\) 0 0
\(781\) −4.77297 13.1136i −0.170790 0.469243i
\(782\) 0 0
\(783\) 8.39463 0.299999
\(784\) 0 0
\(785\) 16.4065 + 29.7830i 0.585573 + 1.06300i
\(786\) 0 0
\(787\) −10.6108 + 2.84316i −0.378235 + 0.101348i −0.442928 0.896557i \(-0.646060\pi\)
0.0646922 + 0.997905i \(0.479393\pi\)
\(788\) 0 0
\(789\) 10.3744 1.82929i 0.369339 0.0651244i
\(790\) 0 0
\(791\) 0.0904540 + 0.337579i 0.00321617 + 0.0120029i
\(792\) 0 0
\(793\) 2.97616 34.0177i 0.105687 1.20800i
\(794\) 0 0
\(795\) −1.38978 2.07219i −0.0492903 0.0734931i
\(796\) 0 0
\(797\) 12.3122 + 4.48128i 0.436121 + 0.158735i 0.550744 0.834674i \(-0.314344\pi\)
−0.114624 + 0.993409i \(0.536566\pi\)
\(798\) 0 0
\(799\) 9.31604 106.483i 0.329578 3.76709i
\(800\) 0 0
\(801\) 8.69437 18.6451i 0.307201 0.658794i
\(802\) 0 0
\(803\) 0.0628192 + 0.0168324i 0.00221684 + 0.000594001i
\(804\) 0 0
\(805\) 30.5614 + 11.8239i 1.07715 + 0.416739i
\(806\) 0 0
\(807\) 18.4929 1.61792i 0.650980 0.0569534i
\(808\) 0 0
\(809\) 1.58171 + 18.0790i 0.0556099 + 0.635624i 0.971944 + 0.235211i \(0.0755780\pi\)
−0.916335 + 0.400414i \(0.868866\pi\)
\(810\) 0 0
\(811\) 1.73343 9.83075i 0.0608688 0.345204i −0.939130 0.343562i \(-0.888366\pi\)
0.999999 0.00164179i \(-0.000522598\pi\)
\(812\) 0 0
\(813\) −4.43037 4.43037i −0.155380 0.155380i
\(814\) 0 0
\(815\) −13.5957 14.1532i −0.476236 0.495766i
\(816\) 0 0
\(817\) −22.4506 32.0628i −0.785448 1.12174i
\(818\) 0 0
\(819\) −47.6684 + 4.17045i −1.66567 + 0.145727i
\(820\) 0 0
\(821\) −10.4075 8.73290i −0.363223 0.304780i 0.442851 0.896595i \(-0.353967\pi\)
−0.806074 + 0.591815i \(0.798412\pi\)
\(822\) 0 0
\(823\) −41.0591 + 19.1462i −1.43123 + 0.667394i −0.974946 0.222441i \(-0.928598\pi\)
−0.456284 + 0.889834i \(0.650820\pi\)
\(824\) 0 0
\(825\) 1.33777 4.29455i 0.0465753 0.149517i
\(826\) 0 0
\(827\) 4.77137 + 13.1092i 0.165917 + 0.455853i 0.994590 0.103880i \(-0.0331259\pi\)
−0.828673 + 0.559733i \(0.810904\pi\)
\(828\) 0 0
\(829\) 42.7026 + 3.73600i 1.48312 + 0.129757i 0.799759 0.600321i \(-0.204960\pi\)
0.683365 + 0.730077i \(0.260516\pi\)
\(830\) 0 0
\(831\) 3.80256 + 8.15461i 0.131909 + 0.282880i
\(832\) 0 0
\(833\) 0.584238 3.31338i 0.0202427 0.114802i
\(834\) 0 0
\(835\) 20.7716 + 2.23855i 0.718830 + 0.0774684i
\(836\) 0 0
\(837\) −15.5615 8.98441i −0.537882 0.310547i
\(838\) 0 0
\(839\) 4.08845 + 23.1868i 0.141149 + 0.800496i 0.970379 + 0.241588i \(0.0776683\pi\)
−0.829230 + 0.558908i \(0.811221\pi\)
\(840\) 0 0
\(841\) 19.6633 + 11.3526i 0.678046 + 0.391470i
\(842\) 0 0
\(843\) −4.03151 + 2.32759i −0.138853 + 0.0801665i
\(844\) 0 0
\(845\) −49.9503 + 47.9826i −1.71834 + 1.65065i
\(846\) 0 0
\(847\) 21.4588 + 10.0064i 0.737334 + 0.343825i
\(848\) 0 0
\(849\) 8.52867 + 5.97184i 0.292703 + 0.204953i
\(850\) 0 0
\(851\) 19.9545 + 25.9405i 0.684030 + 0.889228i
\(852\) 0 0
\(853\) −11.7676 + 2.07494i −0.402915 + 0.0710447i −0.371433 0.928460i \(-0.621134\pi\)
−0.0314813 + 0.999504i \(0.510022\pi\)
\(854\) 0 0
\(855\) 44.6706 15.2497i 1.52770 0.521530i
\(856\) 0 0
\(857\) 40.8866i 1.39666i 0.715775 + 0.698331i \(0.246073\pi\)
−0.715775 + 0.698331i \(0.753927\pi\)
\(858\) 0 0
\(859\) −51.4244 13.7791i −1.75458 0.470138i −0.768984 0.639269i \(-0.779237\pi\)
−0.985594 + 0.169131i \(0.945904\pi\)
\(860\) 0 0
\(861\) −4.10473 + 7.10960i −0.139889 + 0.242295i
\(862\) 0 0
\(863\) 9.02798 + 6.32146i 0.307316 + 0.215185i 0.717053 0.697019i \(-0.245491\pi\)
−0.409737 + 0.912204i \(0.634379\pi\)
\(864\) 0 0
\(865\) −21.9619 + 36.3334i −0.746725 + 1.23537i
\(866\) 0 0
\(867\) −28.0568 2.45465i −0.952858 0.0833643i
\(868\) 0 0
\(869\) −6.53427 + 4.57535i −0.221660 + 0.155208i
\(870\) 0 0
\(871\) −33.6372 + 15.6853i −1.13975 + 0.531475i
\(872\) 0 0
\(873\) 3.65994 3.07105i 0.123870 0.103939i
\(874\) 0 0
\(875\) 8.67283 + 29.1912i 0.293195 + 0.986843i
\(876\) 0 0
\(877\) −3.42091 + 12.7670i −0.115516 + 0.431111i −0.999325 0.0367365i \(-0.988304\pi\)
0.883809 + 0.467848i \(0.154970\pi\)
\(878\) 0 0
\(879\) 10.6231 + 3.86647i 0.358307 + 0.130413i
\(880\) 0 0
\(881\) 12.5295 14.9320i 0.422128 0.503073i −0.512506 0.858684i \(-0.671283\pi\)
0.934634 + 0.355611i \(0.115727\pi\)
\(882\) 0 0
\(883\) −5.62166 + 6.69964i −0.189184 + 0.225461i −0.852296 0.523059i \(-0.824791\pi\)
0.663112 + 0.748520i \(0.269235\pi\)
\(884\) 0 0
\(885\) 1.50260 + 2.24041i 0.0505092 + 0.0753104i
\(886\) 0 0
\(887\) −1.61341 + 1.61341i −0.0541730 + 0.0541730i −0.733674 0.679501i \(-0.762196\pi\)
0.679501 + 0.733674i \(0.262196\pi\)
\(888\) 0 0
\(889\) 14.3049i 0.479770i
\(890\) 0 0
\(891\) −8.92405 1.57355i −0.298967 0.0527159i
\(892\) 0 0
\(893\) −81.2069 68.1407i −2.71749 2.28024i
\(894\) 0 0
\(895\) 19.0148 + 16.6175i 0.635594 + 0.555462i
\(896\) 0 0
\(897\) 8.93079 + 19.1521i 0.298190 + 0.639471i
\(898\) 0 0
\(899\) 6.73699 + 11.6688i 0.224691 + 0.389176i
\(900\) 0 0
\(901\) −13.7185 6.39704i −0.457029 0.213116i
\(902\) 0 0
\(903\) 5.09374 + 6.07048i 0.169509 + 0.202013i
\(904\) 0 0
\(905\) 20.1196 8.89436i 0.668799 0.295659i
\(906\) 0 0
\(907\) 42.7120 + 7.53128i 1.41823 + 0.250072i 0.829612 0.558340i \(-0.188562\pi\)
0.588617 + 0.808412i \(0.299673\pi\)
\(908\) 0 0
\(909\) −20.0117 + 16.7918i −0.663745 + 0.556949i
\(910\) 0 0
\(911\) 11.1785 2.99528i 0.370361 0.0992380i −0.0688375 0.997628i \(-0.521929\pi\)
0.439199 + 0.898390i \(0.355262\pi\)
\(912\) 0 0
\(913\) −4.23538 + 6.04874i −0.140170 + 0.200184i
\(914\) 0 0
\(915\) −1.63239 6.62146i −0.0539651 0.218899i
\(916\) 0 0
\(917\) 8.92481 + 15.4582i 0.294723 + 0.510476i
\(918\) 0 0
\(919\) 28.4606 + 28.4606i 0.938828 + 0.938828i 0.998234 0.0594061i \(-0.0189207\pi\)
−0.0594061 + 0.998234i \(0.518921\pi\)
\(920\) 0 0
\(921\) 5.29502 1.92723i 0.174477 0.0635044i
\(922\) 0 0
\(923\) 10.5798 + 60.0013i 0.348240 + 1.97497i
\(924\) 0 0
\(925\) −7.73476 + 29.4138i −0.254317 + 0.967121i
\(926\) 0 0
\(927\) 4.01626 + 22.7774i 0.131911 + 0.748107i
\(928\) 0 0
\(929\) 21.7675 7.92270i 0.714167 0.259935i 0.0407195 0.999171i \(-0.487035\pi\)
0.673447 + 0.739235i \(0.264813\pi\)
\(930\) 0 0
\(931\) −2.35944 2.35944i −0.0773275 0.0773275i
\(932\) 0 0
\(933\) 7.78624 + 13.4862i 0.254910 + 0.441517i
\(934\) 0 0
\(935\) −6.53176 26.4948i −0.213611 0.866473i
\(936\) 0 0
\(937\) 33.1956 47.4082i 1.08445 1.54876i 0.275117 0.961411i \(-0.411283\pi\)
0.809335 0.587348i \(-0.199828\pi\)
\(938\) 0 0
\(939\) −1.53932 + 0.412459i −0.0502337 + 0.0134601i
\(940\) 0 0
\(941\) 9.44916 7.92879i 0.308034 0.258471i −0.475645 0.879637i \(-0.657785\pi\)
0.783679 + 0.621166i \(0.213341\pi\)
\(942\) 0 0
\(943\) −26.9642 4.75451i −0.878074 0.154828i
\(944\) 0 0
\(945\) −18.6381 + 8.23941i −0.606297 + 0.268028i
\(946\) 0 0
\(947\) −2.25944 2.69269i −0.0734219 0.0875008i 0.728083 0.685489i \(-0.240411\pi\)
−0.801505 + 0.597988i \(0.795967\pi\)
\(948\) 0 0
\(949\) −0.257334 0.119997i −0.00835340 0.00389526i
\(950\) 0 0
\(951\) 0.836551 + 1.44895i 0.0271270 + 0.0469854i
\(952\) 0 0
\(953\) 14.2850 + 30.6343i 0.462737 + 0.992342i 0.989793 + 0.142512i \(0.0455180\pi\)
−0.527056 + 0.849830i \(0.676704\pi\)
\(954\) 0 0
\(955\) −24.5869 21.4871i −0.795613 0.695306i
\(956\) 0 0
\(957\) −1.72902 1.45082i −0.0558914 0.0468984i
\(958\) 0 0
\(959\) −31.5489 5.56292i −1.01877 0.179636i
\(960\) 0 0
\(961\) 2.15876i 0.0696376i
\(962\) 0 0
\(963\) 21.1490 21.1490i 0.681518 0.681518i
\(964\) 0 0
\(965\) 6.89628 + 10.2825i 0.221999 + 0.331006i
\(966\) 0 0
\(967\) 19.4553 23.1860i 0.625642 0.745611i −0.356388 0.934338i \(-0.615992\pi\)
0.982030 + 0.188727i \(0.0604362\pi\)
\(968\) 0 0
\(969\) −24.3728 + 29.0464i −0.782968 + 0.933105i
\(970\) 0 0
\(971\) 38.9861 + 14.1898i 1.25113 + 0.455372i 0.880782 0.473523i \(-0.157018\pi\)
0.370343 + 0.928895i \(0.379240\pi\)
\(972\) 0 0
\(973\) 8.61056 32.1350i 0.276042 1.03020i
\(974\) 0 0
\(975\) −9.00764 + 17.4504i −0.288475 + 0.558861i
\(976\) 0 0
\(977\) −0.374886 + 0.314567i −0.0119937 + 0.0100639i −0.648765 0.760989i \(-0.724714\pi\)
0.636771 + 0.771053i \(0.280270\pi\)
\(978\) 0 0
\(979\) −10.6901 + 4.98488i −0.341658 + 0.159318i
\(980\) 0 0
\(981\) −32.8947 + 23.0331i −1.05025 + 0.735392i
\(982\) 0 0
\(983\) −40.6612 3.55740i −1.29689 0.113463i −0.582282 0.812987i \(-0.697840\pi\)
−0.714610 + 0.699523i \(0.753396\pi\)
\(984\) 0 0
\(985\) 21.6230 35.7728i 0.688967 1.13982i
\(986\) 0 0
\(987\) 17.5807 + 12.3101i 0.559599 + 0.391836i
\(988\) 0 0
\(989\) −13.2148 + 22.8887i −0.420206 + 0.727818i
\(990\) 0 0
\(991\) −34.1249 9.14375i −1.08401 0.290461i −0.327775 0.944756i \(-0.606299\pi\)
−0.756239 + 0.654295i \(0.772965\pi\)
\(992\) 0 0
\(993\) 17.3626i 0.550987i
\(994\) 0 0
\(995\) −39.8494 + 13.6038i −1.26331 + 0.431271i
\(996\) 0 0
\(997\) −5.68914 + 1.00315i −0.180177 + 0.0317701i −0.263009 0.964794i \(-0.584715\pi\)
0.0828316 + 0.996564i \(0.473604\pi\)
\(998\) 0 0
\(999\) −20.1814 2.63223i −0.638510 0.0832801i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 740.2.cc.a.17.12 228
5.3 odd 4 740.2.ch.a.313.12 yes 228
37.24 odd 36 740.2.ch.a.357.12 yes 228
185.98 even 36 inner 740.2.cc.a.653.12 yes 228
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
740.2.cc.a.17.12 228 1.1 even 1 trivial
740.2.cc.a.653.12 yes 228 185.98 even 36 inner
740.2.ch.a.313.12 yes 228 5.3 odd 4
740.2.ch.a.357.12 yes 228 37.24 odd 36