Properties

Label 740.2.ca.a
Level $740$
Weight $2$
Character orbit 740.ca
Analytic conductor $5.909$
Analytic rank $0$
Dimension $12$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [740,2,Mod(19,740)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(740, base_ring=CyclotomicField(36)) chi = DirichletCharacter(H, H._module([18, 18, 35])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("740.19"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 740 = 2^{2} \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 740.ca (of order \(36\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.90892974957\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\Q(\zeta_{36})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{36}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{36}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{36}^{8} + \cdots + \zeta_{36}^{2}) q^{2} - 2 \zeta_{36} q^{4} + ( - \zeta_{36}^{11} - 2 \zeta_{36}^{2}) q^{5} + (2 \zeta_{36}^{9} + \cdots - 2 \zeta_{36}^{3}) q^{8} + 3 \zeta_{36}^{8} q^{9} + \cdots + (7 \zeta_{36}^{10} + 7 \zeta_{36}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{8} + 24 q^{17} - 12 q^{20} + 30 q^{26} + 18 q^{34} + 24 q^{41} + 84 q^{50} + 42 q^{58} - 72 q^{61} + 42 q^{65} + 96 q^{73} - 30 q^{74} - 36 q^{85} - 96 q^{89} - 54 q^{90}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/740\mathbb{Z}\right)^\times\).

\(n\) \(261\) \(297\) \(371\)
\(\chi(n)\) \(\zeta_{36}\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0.984808 0.173648i
0.984808 + 0.173648i
0.642788 0.766044i
−0.642788 0.766044i
0.342020 + 0.939693i
−0.342020 0.939693i
0.642788 + 0.766044i
−0.642788 + 0.766044i
−0.984808 0.173648i
−0.984808 + 0.173648i
0.342020 0.939693i
−0.342020 + 0.939693i
0.123257 + 1.40883i 0 −1.96962 + 0.347296i −1.53737 + 1.62373i 0 0 −0.732051 2.73205i 0.520945 2.95442i −2.47706 1.96575i
39.1 0.123257 1.40883i 0 −1.96962 0.347296i −1.53737 1.62373i 0 0 −0.732051 + 2.73205i 0.520945 + 2.95442i −2.47706 + 1.96575i
59.1 −0.597672 1.28171i 0 −1.28558 + 1.53209i 1.33210 + 1.79597i 0 0 2.73205 + 0.732051i 2.29813 1.92836i 1.50575 2.78078i
79.1 −1.28171 0.597672i 0 1.28558 + 1.53209i −0.637511 2.14326i 0 0 −0.732051 2.73205i 2.29813 + 1.92836i −0.463863 + 3.12807i
239.1 −0.811160 + 1.15846i 0 −0.684040 1.87939i 0.889301 2.05162i 0 0 2.73205 + 0.732051i −2.81908 1.02606i 1.65535 + 2.69441i
279.1 1.15846 + 0.811160i 0 0.684040 + 1.87939i 2.17488 0.519531i 0 0 −0.732051 + 2.73205i −2.81908 1.02606i 2.94092 + 1.16232i
439.1 −0.597672 + 1.28171i 0 −1.28558 1.53209i 1.33210 1.79597i 0 0 2.73205 0.732051i 2.29813 + 1.92836i 1.50575 + 2.78078i
459.1 −1.28171 + 0.597672i 0 1.28558 1.53209i −0.637511 + 2.14326i 0 0 −0.732051 + 2.73205i 2.29813 1.92836i −0.463863 3.12807i
479.1 1.40883 + 0.123257i 0 1.96962 + 0.347296i −2.22141 + 0.255652i 0 0 2.73205 + 0.732051i 0.520945 + 2.95442i −3.16110 + 0.0863678i
499.1 1.40883 0.123257i 0 1.96962 0.347296i −2.22141 0.255652i 0 0 2.73205 0.732051i 0.520945 2.95442i −3.16110 0.0863678i
579.1 −0.811160 1.15846i 0 −0.684040 + 1.87939i 0.889301 + 2.05162i 0 0 2.73205 0.732051i −2.81908 + 1.02606i 1.65535 2.69441i
679.1 1.15846 0.811160i 0 0.684040 1.87939i 2.17488 + 0.519531i 0 0 −0.732051 2.73205i −2.81908 + 1.02606i 2.94092 1.16232i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 19.1
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by \(\Q(\sqrt{-1}) \)
185.ba odd 36 1 inner
740.ca even 36 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 740.2.ca.a 12
4.b odd 2 1 CM 740.2.ca.a 12
5.b even 2 1 740.2.ca.b yes 12
20.d odd 2 1 740.2.ca.b yes 12
37.i odd 36 1 740.2.ca.b yes 12
148.q even 36 1 740.2.ca.b yes 12
185.ba odd 36 1 inner 740.2.ca.a 12
740.ca even 36 1 inner 740.2.ca.a 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
740.2.ca.a 12 1.a even 1 1 trivial
740.2.ca.a 12 4.b odd 2 1 CM
740.2.ca.a 12 185.ba odd 36 1 inner
740.2.ca.a 12 740.ca even 36 1 inner
740.2.ca.b yes 12 5.b even 2 1
740.2.ca.b yes 12 20.d odd 2 1
740.2.ca.b yes 12 37.i odd 36 1
740.2.ca.b yes 12 148.q even 36 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(740, [\chi])\):

\( T_{3} \) Copy content Toggle raw display
\( T_{13}^{12} - 32T_{13}^{9} + 10457T_{13}^{6} + 268862T_{13}^{3} + 1771561 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{12} - 4 T^{9} + \cdots + 64 \) Copy content Toggle raw display
$3$ \( T^{12} \) Copy content Toggle raw display
$5$ \( T^{12} + 4 T^{9} + \cdots + 15625 \) Copy content Toggle raw display
$7$ \( T^{12} \) Copy content Toggle raw display
$11$ \( T^{12} \) Copy content Toggle raw display
$13$ \( T^{12} - 32 T^{9} + \cdots + 1771561 \) Copy content Toggle raw display
$17$ \( T^{12} - 24 T^{11} + \cdots + 23648769 \) Copy content Toggle raw display
$19$ \( T^{12} \) Copy content Toggle raw display
$23$ \( T^{12} \) Copy content Toggle raw display
$29$ \( T^{12} + \cdots + 3758793481 \) Copy content Toggle raw display
$31$ \( T^{12} \) Copy content Toggle raw display
$37$ \( T^{12} + \cdots + 2565726409 \) Copy content Toggle raw display
$41$ \( T^{12} + \cdots + 23673822769 \) Copy content Toggle raw display
$43$ \( T^{12} \) Copy content Toggle raw display
$47$ \( T^{12} \) Copy content Toggle raw display
$53$ \( T^{12} + \cdots + 2565726409 \) Copy content Toggle raw display
$59$ \( T^{12} \) Copy content Toggle raw display
$61$ \( T^{12} + \cdots + 378743007241 \) Copy content Toggle raw display
$67$ \( T^{12} \) Copy content Toggle raw display
$71$ \( T^{12} \) Copy content Toggle raw display
$73$ \( (T^{2} - 16 T + 37)^{6} \) Copy content Toggle raw display
$79$ \( T^{12} \) Copy content Toggle raw display
$83$ \( T^{12} \) Copy content Toggle raw display
$89$ \( T^{12} + \cdots + 997779234321 \) Copy content Toggle raw display
$97$ \( T^{12} + \cdots + 27566292961 \) Copy content Toggle raw display
show more
show less