Properties

Label 738.2.u.f.595.4
Level $738$
Weight $2$
Character 738.595
Analytic conductor $5.893$
Analytic rank $0$
Dimension $32$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(289,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.289"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([0, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.u (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [32,0,0,8,0,0,4,0,0,-4,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 246)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 595.4
Character \(\chi\) \(=\) 738.595
Dual form 738.2.u.f.289.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.951057 + 0.309017i) q^{2} +(0.809017 + 0.587785i) q^{4} +(1.36852 - 1.88361i) q^{5} +(0.450716 - 0.884580i) q^{7} +(0.587785 + 0.809017i) q^{8} +(1.88361 - 1.36852i) q^{10} +(4.25890 + 0.674543i) q^{11} +(-4.47477 + 2.28001i) q^{13} +(0.702007 - 0.702007i) q^{14} +(0.309017 + 0.951057i) q^{16} +(0.916094 - 5.78399i) q^{17} +(2.19158 + 1.11666i) q^{19} +(2.21431 - 0.719473i) q^{20} +(3.84201 + 1.95760i) q^{22} +(1.44482 - 4.44671i) q^{23} +(-0.130038 - 0.400217i) q^{25} +(-4.96033 + 0.785638i) q^{26} +(0.884580 - 0.450716i) q^{28} +(0.443776 + 2.80189i) q^{29} +(0.852603 - 0.619452i) q^{31} +1.00000i q^{32} +(2.65861 - 5.21781i) q^{34} +(-1.04939 - 2.05954i) q^{35} +(-6.22236 - 4.52081i) q^{37} +(1.73925 + 1.73925i) q^{38} +2.32826 q^{40} +(6.23226 + 1.46935i) q^{41} +(-3.34734 - 1.08762i) q^{43} +(3.04904 + 3.04904i) q^{44} +(2.74822 - 3.78260i) q^{46} +(-0.455717 - 0.894395i) q^{47} +(3.53516 + 4.86573i) q^{49} -0.420813i q^{50} +(-4.96033 - 0.785638i) q^{52} +(1.03993 + 6.56584i) q^{53} +(7.09896 - 7.09896i) q^{55} +(0.980565 - 0.155306i) q^{56} +(-0.443776 + 2.80189i) q^{58} +(-3.12046 + 9.60379i) q^{59} +(9.07026 - 2.94711i) q^{61} +(1.00229 - 0.325665i) q^{62} +(-0.309017 + 0.951057i) q^{64} +(-1.82917 + 11.5489i) q^{65} +(-8.47486 + 1.34229i) q^{67} +(4.14088 - 4.14088i) q^{68} +(-0.361594 - 2.28301i) q^{70} +(-13.7194 - 2.17295i) q^{71} +13.5640i q^{73} +(-4.52081 - 6.22236i) q^{74} +(1.11666 + 2.19158i) q^{76} +(2.51624 - 3.46331i) q^{77} +(-1.80575 - 1.80575i) q^{79} +(2.21431 + 0.719473i) q^{80} +(5.47317 + 3.32331i) q^{82} -11.3789 q^{83} +(-9.64106 - 9.64106i) q^{85} +(-2.84742 - 2.06877i) q^{86} +(1.95760 + 3.84201i) q^{88} +(0.955171 - 1.87463i) q^{89} +4.98594i q^{91} +(3.78260 - 2.74822i) q^{92} +(-0.157029 - 0.991444i) q^{94} +(5.10257 - 2.59989i) q^{95} +(-8.01558 + 1.26954i) q^{97} +(1.85854 + 5.72001i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q + 8 q^{4} + 4 q^{7} - 4 q^{10} + 4 q^{11} - 12 q^{13} - 4 q^{14} - 8 q^{16} + 4 q^{17} - 4 q^{19} - 4 q^{22} - 40 q^{23} + 12 q^{25} - 8 q^{26} - 4 q^{28} - 16 q^{29} - 4 q^{31} - 16 q^{34} + 8 q^{35}+ \cdots + 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{20}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.951057 + 0.309017i 0.672499 + 0.218508i
\(3\) 0 0
\(4\) 0.809017 + 0.587785i 0.404508 + 0.293893i
\(5\) 1.36852 1.88361i 0.612020 0.842374i −0.384721 0.923033i \(-0.625702\pi\)
0.996742 + 0.0806590i \(0.0257025\pi\)
\(6\) 0 0
\(7\) 0.450716 0.884580i 0.170355 0.334340i −0.790007 0.613098i \(-0.789923\pi\)
0.960361 + 0.278759i \(0.0899229\pi\)
\(8\) 0.587785 + 0.809017i 0.207813 + 0.286031i
\(9\) 0 0
\(10\) 1.88361 1.36852i 0.595648 0.432764i
\(11\) 4.25890 + 0.674543i 1.28411 + 0.203382i 0.760926 0.648839i \(-0.224745\pi\)
0.523181 + 0.852222i \(0.324745\pi\)
\(12\) 0 0
\(13\) −4.47477 + 2.28001i −1.24108 + 0.632361i −0.946327 0.323212i \(-0.895237\pi\)
−0.294753 + 0.955574i \(0.595237\pi\)
\(14\) 0.702007 0.702007i 0.187619 0.187619i
\(15\) 0 0
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) 0.916094 5.78399i 0.222186 1.40282i −0.584284 0.811549i \(-0.698625\pi\)
0.806470 0.591275i \(-0.201375\pi\)
\(18\) 0 0
\(19\) 2.19158 + 1.11666i 0.502782 + 0.256180i 0.686937 0.726717i \(-0.258955\pi\)
−0.184155 + 0.982897i \(0.558955\pi\)
\(20\) 2.21431 0.719473i 0.495135 0.160879i
\(21\) 0 0
\(22\) 3.84201 + 1.95760i 0.819119 + 0.417362i
\(23\) 1.44482 4.44671i 0.301267 0.927203i −0.679777 0.733418i \(-0.737924\pi\)
0.981044 0.193785i \(-0.0620764\pi\)
\(24\) 0 0
\(25\) −0.130038 0.400217i −0.0260076 0.0800433i
\(26\) −4.96033 + 0.785638i −0.972800 + 0.154076i
\(27\) 0 0
\(28\) 0.884580 0.450716i 0.167170 0.0851773i
\(29\) 0.443776 + 2.80189i 0.0824070 + 0.520298i 0.994016 + 0.109238i \(0.0348411\pi\)
−0.911609 + 0.411059i \(0.865159\pi\)
\(30\) 0 0
\(31\) 0.852603 0.619452i 0.153132 0.111257i −0.508581 0.861014i \(-0.669830\pi\)
0.661713 + 0.749757i \(0.269830\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 2.65861 5.21781i 0.455948 0.894848i
\(35\) −1.04939 2.05954i −0.177379 0.348125i
\(36\) 0 0
\(37\) −6.22236 4.52081i −1.02295 0.743216i −0.0560636 0.998427i \(-0.517855\pi\)
−0.966885 + 0.255211i \(0.917855\pi\)
\(38\) 1.73925 + 1.73925i 0.282143 + 0.282143i
\(39\) 0 0
\(40\) 2.32826 0.368131
\(41\) 6.23226 + 1.46935i 0.973315 + 0.229474i
\(42\) 0 0
\(43\) −3.34734 1.08762i −0.510464 0.165860i 0.0424490 0.999099i \(-0.486484\pi\)
−0.552913 + 0.833239i \(0.686484\pi\)
\(44\) 3.04904 + 3.04904i 0.459659 + 0.459659i
\(45\) 0 0
\(46\) 2.74822 3.78260i 0.405203 0.557714i
\(47\) −0.455717 0.894395i −0.0664731 0.130461i 0.855379 0.518003i \(-0.173324\pi\)
−0.921852 + 0.387542i \(0.873324\pi\)
\(48\) 0 0
\(49\) 3.53516 + 4.86573i 0.505023 + 0.695104i
\(50\) 0.420813i 0.0595119i
\(51\) 0 0
\(52\) −4.96033 0.785638i −0.687873 0.108948i
\(53\) 1.03993 + 6.56584i 0.142845 + 0.901887i 0.950159 + 0.311765i \(0.100920\pi\)
−0.807314 + 0.590122i \(0.799080\pi\)
\(54\) 0 0
\(55\) 7.09896 7.09896i 0.957223 0.957223i
\(56\) 0.980565 0.155306i 0.131033 0.0207537i
\(57\) 0 0
\(58\) −0.443776 + 2.80189i −0.0582706 + 0.367906i
\(59\) −3.12046 + 9.60379i −0.406249 + 1.25031i 0.513598 + 0.858031i \(0.328312\pi\)
−0.919848 + 0.392276i \(0.871688\pi\)
\(60\) 0 0
\(61\) 9.07026 2.94711i 1.16133 0.377338i 0.335928 0.941888i \(-0.390950\pi\)
0.825399 + 0.564549i \(0.190950\pi\)
\(62\) 1.00229 0.325665i 0.127292 0.0413595i
\(63\) 0 0
\(64\) −0.309017 + 0.951057i −0.0386271 + 0.118882i
\(65\) −1.82917 + 11.5489i −0.226881 + 1.43247i
\(66\) 0 0
\(67\) −8.47486 + 1.34229i −1.03537 + 0.163986i −0.650909 0.759156i \(-0.725612\pi\)
−0.384459 + 0.923142i \(0.625612\pi\)
\(68\) 4.14088 4.14088i 0.502156 0.502156i
\(69\) 0 0
\(70\) −0.361594 2.28301i −0.0432187 0.272872i
\(71\) −13.7194 2.17295i −1.62820 0.257881i −0.725521 0.688200i \(-0.758401\pi\)
−0.902677 + 0.430319i \(0.858401\pi\)
\(72\) 0 0
\(73\) 13.5640i 1.58755i 0.608210 + 0.793776i \(0.291888\pi\)
−0.608210 + 0.793776i \(0.708112\pi\)
\(74\) −4.52081 6.22236i −0.525533 0.723334i
\(75\) 0 0
\(76\) 1.11666 + 2.19158i 0.128090 + 0.251391i
\(77\) 2.51624 3.46331i 0.286752 0.394681i
\(78\) 0 0
\(79\) −1.80575 1.80575i −0.203163 0.203163i 0.598191 0.801354i \(-0.295886\pi\)
−0.801354 + 0.598191i \(0.795886\pi\)
\(80\) 2.21431 + 0.719473i 0.247567 + 0.0804395i
\(81\) 0 0
\(82\) 5.47317 + 3.32331i 0.604411 + 0.366998i
\(83\) −11.3789 −1.24900 −0.624501 0.781024i \(-0.714698\pi\)
−0.624501 + 0.781024i \(0.714698\pi\)
\(84\) 0 0
\(85\) −9.64106 9.64106i −1.04572 1.04572i
\(86\) −2.84742 2.06877i −0.307045 0.223081i
\(87\) 0 0
\(88\) 1.95760 + 3.84201i 0.208681 + 0.409559i
\(89\) 0.955171 1.87463i 0.101248 0.198710i −0.834826 0.550514i \(-0.814432\pi\)
0.936074 + 0.351804i \(0.114432\pi\)
\(90\) 0 0
\(91\) 4.98594i 0.522668i
\(92\) 3.78260 2.74822i 0.394363 0.286522i
\(93\) 0 0
\(94\) −0.157029 0.991444i −0.0161963 0.102260i
\(95\) 5.10257 2.59989i 0.523513 0.266743i
\(96\) 0 0
\(97\) −8.01558 + 1.26954i −0.813859 + 0.128903i −0.549470 0.835513i \(-0.685170\pi\)
−0.264389 + 0.964416i \(0.585170\pi\)
\(98\) 1.85854 + 5.72001i 0.187741 + 0.577808i
\(99\) 0 0
\(100\) 0.130038 0.400217i 0.0130038 0.0400217i
\(101\) 8.17612 + 4.16594i 0.813554 + 0.414527i 0.810695 0.585469i \(-0.199090\pi\)
0.00285973 + 0.999996i \(0.499090\pi\)
\(102\) 0 0
\(103\) 9.57271 3.11036i 0.943227 0.306473i 0.203266 0.979123i \(-0.434844\pi\)
0.739960 + 0.672651i \(0.234844\pi\)
\(104\) −4.47477 2.28001i −0.438788 0.223574i
\(105\) 0 0
\(106\) −1.03993 + 6.56584i −0.101007 + 0.637731i
\(107\) −3.25632 10.0219i −0.314800 0.968856i −0.975837 0.218502i \(-0.929883\pi\)
0.661036 0.750354i \(-0.270117\pi\)
\(108\) 0 0
\(109\) −8.82994 + 8.82994i −0.845755 + 0.845755i −0.989600 0.143845i \(-0.954053\pi\)
0.143845 + 0.989600i \(0.454053\pi\)
\(110\) 8.94521 4.55781i 0.852892 0.434570i
\(111\) 0 0
\(112\) 0.980565 + 0.155306i 0.0926547 + 0.0146751i
\(113\) 2.19349 1.59366i 0.206346 0.149919i −0.479813 0.877371i \(-0.659295\pi\)
0.686159 + 0.727452i \(0.259295\pi\)
\(114\) 0 0
\(115\) −6.39858 8.80689i −0.596670 0.821246i
\(116\) −1.28789 + 2.52762i −0.119577 + 0.234684i
\(117\) 0 0
\(118\) −5.93547 + 8.16947i −0.546404 + 0.752061i
\(119\) −4.70351 3.41730i −0.431170 0.313263i
\(120\) 0 0
\(121\) 7.22159 + 2.34644i 0.656508 + 0.213313i
\(122\) 9.53703 0.863443
\(123\) 0 0
\(124\) 1.05388 0.0946408
\(125\) 10.1397 + 3.29460i 0.906926 + 0.294678i
\(126\) 0 0
\(127\) −15.4232 11.2056i −1.36858 0.994334i −0.997846 0.0655963i \(-0.979105\pi\)
−0.370737 0.928738i \(-0.620895\pi\)
\(128\) −0.587785 + 0.809017i −0.0519534 + 0.0715077i
\(129\) 0 0
\(130\) −5.30847 + 10.4185i −0.465583 + 0.913759i
\(131\) −9.92289 13.6577i −0.866967 1.19328i −0.979863 0.199671i \(-0.936013\pi\)
0.112896 0.993607i \(-0.463987\pi\)
\(132\) 0 0
\(133\) 1.97556 1.43533i 0.171303 0.124459i
\(134\) −8.47486 1.34229i −0.732116 0.115956i
\(135\) 0 0
\(136\) 5.21781 2.65861i 0.447424 0.227974i
\(137\) 0.678124 0.678124i 0.0579361 0.0579361i −0.677545 0.735481i \(-0.736956\pi\)
0.735481 + 0.677545i \(0.236956\pi\)
\(138\) 0 0
\(139\) 3.32957 + 10.2474i 0.282411 + 0.869171i 0.987163 + 0.159717i \(0.0510582\pi\)
−0.704752 + 0.709454i \(0.748942\pi\)
\(140\) 0.361594 2.28301i 0.0305603 0.192950i
\(141\) 0 0
\(142\) −12.3765 6.30613i −1.03861 0.529199i
\(143\) −20.5956 + 6.69191i −1.72229 + 0.559606i
\(144\) 0 0
\(145\) 5.88497 + 2.99854i 0.488720 + 0.249015i
\(146\) −4.19152 + 12.9002i −0.346893 + 1.06763i
\(147\) 0 0
\(148\) −2.37673 7.31482i −0.195366 0.601274i
\(149\) −22.5985 + 3.57925i −1.85134 + 0.293223i −0.980230 0.197864i \(-0.936600\pi\)
−0.871110 + 0.491087i \(0.836600\pi\)
\(150\) 0 0
\(151\) −13.5715 + 6.91504i −1.10444 + 0.562738i −0.908502 0.417879i \(-0.862773\pi\)
−0.195933 + 0.980617i \(0.562773\pi\)
\(152\) 0.384776 + 2.42938i 0.0312095 + 0.197049i
\(153\) 0 0
\(154\) 3.46331 2.51624i 0.279082 0.202765i
\(155\) 2.45370i 0.197086i
\(156\) 0 0
\(157\) −0.857457 + 1.68285i −0.0684325 + 0.134306i −0.922689 0.385546i \(-0.874013\pi\)
0.854256 + 0.519852i \(0.174013\pi\)
\(158\) −1.15936 2.27538i −0.0922339 0.181019i
\(159\) 0 0
\(160\) 1.88361 + 1.36852i 0.148912 + 0.108191i
\(161\) −3.28227 3.28227i −0.258679 0.258679i
\(162\) 0 0
\(163\) −0.0414919 −0.00324990 −0.00162495 0.999999i \(-0.500517\pi\)
−0.00162495 + 0.999999i \(0.500517\pi\)
\(164\) 4.17834 + 4.85196i 0.326273 + 0.378874i
\(165\) 0 0
\(166\) −10.8220 3.51629i −0.839952 0.272917i
\(167\) 9.78990 + 9.78990i 0.757565 + 0.757565i 0.975879 0.218314i \(-0.0700556\pi\)
−0.218314 + 0.975879i \(0.570056\pi\)
\(168\) 0 0
\(169\) 7.18395 9.88786i 0.552611 0.760604i
\(170\) −6.18994 12.1484i −0.474747 0.931744i
\(171\) 0 0
\(172\) −2.06877 2.84742i −0.157742 0.217113i
\(173\) 10.3524i 0.787077i −0.919308 0.393539i \(-0.871251\pi\)
0.919308 0.393539i \(-0.128749\pi\)
\(174\) 0 0
\(175\) −0.412634 0.0653548i −0.0311922 0.00494036i
\(176\) 0.674543 + 4.25890i 0.0508456 + 0.321027i
\(177\) 0 0
\(178\) 1.48771 1.48771i 0.111509 0.111509i
\(179\) 19.9976 3.16732i 1.49469 0.236736i 0.645069 0.764124i \(-0.276828\pi\)
0.849625 + 0.527388i \(0.176828\pi\)
\(180\) 0 0
\(181\) −1.62559 + 10.2636i −0.120829 + 0.762886i 0.850645 + 0.525741i \(0.176212\pi\)
−0.971474 + 0.237146i \(0.923788\pi\)
\(182\) −1.54074 + 4.74191i −0.114207 + 0.351493i
\(183\) 0 0
\(184\) 4.44671 1.44482i 0.327816 0.106514i
\(185\) −17.0308 + 5.53365i −1.25213 + 0.406842i
\(186\) 0 0
\(187\) 7.80311 24.0155i 0.570620 1.75619i
\(188\) 0.157029 0.991444i 0.0114525 0.0723085i
\(189\) 0 0
\(190\) 5.65624 0.895861i 0.410347 0.0649926i
\(191\) −6.75572 + 6.75572i −0.488827 + 0.488827i −0.907936 0.419109i \(-0.862342\pi\)
0.419109 + 0.907936i \(0.362342\pi\)
\(192\) 0 0
\(193\) 2.84547 + 17.9656i 0.204821 + 1.29319i 0.849031 + 0.528342i \(0.177186\pi\)
−0.644210 + 0.764849i \(0.722814\pi\)
\(194\) −8.01558 1.26954i −0.575485 0.0911479i
\(195\) 0 0
\(196\) 6.01437i 0.429598i
\(197\) −6.31935 8.69785i −0.450235 0.619696i 0.522213 0.852815i \(-0.325107\pi\)
−0.972448 + 0.233119i \(0.925107\pi\)
\(198\) 0 0
\(199\) −3.26081 6.39969i −0.231152 0.453662i 0.746073 0.665864i \(-0.231937\pi\)
−0.977226 + 0.212201i \(0.931937\pi\)
\(200\) 0.247347 0.340444i 0.0174901 0.0240731i
\(201\) 0 0
\(202\) 6.48861 + 6.48861i 0.456537 + 0.456537i
\(203\) 2.67851 + 0.870301i 0.187995 + 0.0610832i
\(204\) 0 0
\(205\) 11.2966 9.72827i 0.788991 0.679452i
\(206\) 10.0653 0.701285
\(207\) 0 0
\(208\) −3.55120 3.55120i −0.246232 0.246232i
\(209\) 8.58047 + 6.23408i 0.593523 + 0.431220i
\(210\) 0 0
\(211\) 9.63714 + 18.9139i 0.663448 + 1.30209i 0.940027 + 0.341099i \(0.110799\pi\)
−0.276579 + 0.960991i \(0.589201\pi\)
\(212\) −3.01798 + 5.92313i −0.207276 + 0.406802i
\(213\) 0 0
\(214\) 10.5377i 0.720341i
\(215\) −6.62954 + 4.81664i −0.452131 + 0.328492i
\(216\) 0 0
\(217\) −0.163673 1.03339i −0.0111109 0.0701513i
\(218\) −11.1264 + 5.66917i −0.753573 + 0.383965i
\(219\) 0 0
\(220\) 9.91584 1.57051i 0.668526 0.105884i
\(221\) 9.08825 + 27.9708i 0.611342 + 1.88152i
\(222\) 0 0
\(223\) 2.54840 7.84318i 0.170654 0.525218i −0.828755 0.559612i \(-0.810950\pi\)
0.999408 + 0.0343941i \(0.0109502\pi\)
\(224\) 0.884580 + 0.450716i 0.0591035 + 0.0301147i
\(225\) 0 0
\(226\) 2.57860 0.837838i 0.171526 0.0557322i
\(227\) 13.7591 + 7.01060i 0.913222 + 0.465310i 0.846456 0.532459i \(-0.178732\pi\)
0.0667662 + 0.997769i \(0.478732\pi\)
\(228\) 0 0
\(229\) −1.78572 + 11.2746i −0.118004 + 0.745045i 0.855741 + 0.517404i \(0.173101\pi\)
−0.973745 + 0.227641i \(0.926899\pi\)
\(230\) −3.36393 10.3531i −0.221811 0.682664i
\(231\) 0 0
\(232\) −2.00593 + 2.00593i −0.131696 + 0.131696i
\(233\) 2.09832 1.06915i 0.137466 0.0700423i −0.383905 0.923373i \(-0.625421\pi\)
0.521371 + 0.853330i \(0.325421\pi\)
\(234\) 0 0
\(235\) −2.30834 0.365606i −0.150580 0.0238495i
\(236\) −8.16947 + 5.93547i −0.531787 + 0.386366i
\(237\) 0 0
\(238\) −3.41730 4.70351i −0.221511 0.304883i
\(239\) −1.59102 + 3.12254i −0.102914 + 0.201981i −0.936722 0.350075i \(-0.886156\pi\)
0.833808 + 0.552055i \(0.186156\pi\)
\(240\) 0 0
\(241\) 13.5141 18.6006i 0.870519 1.19817i −0.108438 0.994103i \(-0.534585\pi\)
0.978958 0.204064i \(-0.0654150\pi\)
\(242\) 6.14305 + 4.46319i 0.394890 + 0.286905i
\(243\) 0 0
\(244\) 9.07026 + 2.94711i 0.580664 + 0.188669i
\(245\) 14.0030 0.894622
\(246\) 0 0
\(247\) −12.3528 −0.785991
\(248\) 1.00229 + 0.325665i 0.0636458 + 0.0206798i
\(249\) 0 0
\(250\) 8.62538 + 6.26671i 0.545517 + 0.396341i
\(251\) 1.76548 2.42998i 0.111436 0.153379i −0.749656 0.661828i \(-0.769781\pi\)
0.861092 + 0.508449i \(0.169781\pi\)
\(252\) 0 0
\(253\) 9.15286 17.9635i 0.575435 1.12936i
\(254\) −11.2056 15.4232i −0.703100 0.967735i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −17.1367 2.71419i −1.06896 0.169306i −0.402928 0.915232i \(-0.632008\pi\)
−0.666030 + 0.745925i \(0.732008\pi\)
\(258\) 0 0
\(259\) −6.80353 + 3.46657i −0.422751 + 0.215402i
\(260\) −8.26813 + 8.26813i −0.512768 + 0.512768i
\(261\) 0 0
\(262\) −5.21677 16.0556i −0.322293 0.991917i
\(263\) 0.433028 2.73403i 0.0267016 0.168587i −0.970734 0.240157i \(-0.922801\pi\)
0.997436 + 0.0715700i \(0.0228009\pi\)
\(264\) 0 0
\(265\) 13.7906 + 7.02666i 0.847150 + 0.431645i
\(266\) 2.32241 0.754596i 0.142396 0.0462673i
\(267\) 0 0
\(268\) −7.64528 3.89546i −0.467010 0.237953i
\(269\) 9.26317 28.5091i 0.564785 1.73823i −0.103803 0.994598i \(-0.533101\pi\)
0.668589 0.743633i \(-0.266899\pi\)
\(270\) 0 0
\(271\) −3.66697 11.2858i −0.222753 0.685562i −0.998512 0.0545333i \(-0.982633\pi\)
0.775759 0.631029i \(-0.217367\pi\)
\(272\) 5.78399 0.916094i 0.350706 0.0555464i
\(273\) 0 0
\(274\) 0.854486 0.435382i 0.0516214 0.0263024i
\(275\) −0.283856 1.79220i −0.0171172 0.108074i
\(276\) 0 0
\(277\) −22.8922 + 16.6321i −1.37546 + 0.999329i −0.378170 + 0.925736i \(0.623447\pi\)
−0.997288 + 0.0735928i \(0.976553\pi\)
\(278\) 10.7747i 0.646225i
\(279\) 0 0
\(280\) 1.04939 2.05954i 0.0627128 0.123081i
\(281\) −4.40260 8.64059i −0.262637 0.515455i 0.721599 0.692311i \(-0.243407\pi\)
−0.984237 + 0.176856i \(0.943407\pi\)
\(282\) 0 0
\(283\) 11.7063 + 8.50511i 0.695866 + 0.505577i 0.878583 0.477589i \(-0.158489\pi\)
−0.182717 + 0.983166i \(0.558489\pi\)
\(284\) −9.82204 9.82204i −0.582831 0.582831i
\(285\) 0 0
\(286\) −21.6555 −1.28052
\(287\) 4.10874 4.85067i 0.242531 0.286326i
\(288\) 0 0
\(289\) −16.4474 5.34408i −0.967493 0.314357i
\(290\) 4.67034 + 4.67034i 0.274252 + 0.274252i
\(291\) 0 0
\(292\) −7.97275 + 10.9735i −0.466570 + 0.642178i
\(293\) 1.00370 + 1.96987i 0.0586367 + 0.115081i 0.918465 0.395502i \(-0.129429\pi\)
−0.859828 + 0.510583i \(0.829429\pi\)
\(294\) 0 0
\(295\) 13.8193 + 19.0207i 0.804593 + 1.10743i
\(296\) 7.69125i 0.447045i
\(297\) 0 0
\(298\) −22.5985 3.57925i −1.30909 0.207340i
\(299\) 3.67329 + 23.1922i 0.212432 + 1.34124i
\(300\) 0 0
\(301\) −2.47078 + 2.47078i −0.142414 + 0.142414i
\(302\) −15.0442 + 2.38276i −0.865694 + 0.137112i
\(303\) 0 0
\(304\) −0.384776 + 2.42938i −0.0220684 + 0.139335i
\(305\) 6.86164 21.1180i 0.392896 1.20921i
\(306\) 0 0
\(307\) 9.75421 3.16933i 0.556702 0.180883i −0.0171347 0.999853i \(-0.505454\pi\)
0.573837 + 0.818970i \(0.305454\pi\)
\(308\) 4.07137 1.32287i 0.231988 0.0753773i
\(309\) 0 0
\(310\) 0.758235 2.33361i 0.0430649 0.132540i
\(311\) 2.10285 13.2769i 0.119242 0.752862i −0.853521 0.521059i \(-0.825537\pi\)
0.972763 0.231804i \(-0.0744627\pi\)
\(312\) 0 0
\(313\) 31.7580 5.02997i 1.79507 0.284311i 0.832238 0.554418i \(-0.187059\pi\)
0.962830 + 0.270107i \(0.0870592\pi\)
\(314\) −1.33552 + 1.33552i −0.0753678 + 0.0753678i
\(315\) 0 0
\(316\) −0.399489 2.52227i −0.0224730 0.141889i
\(317\) 33.7377 + 5.34352i 1.89490 + 0.300122i 0.991646 0.128989i \(-0.0411734\pi\)
0.903251 + 0.429112i \(0.141173\pi\)
\(318\) 0 0
\(319\) 12.2323i 0.684878i
\(320\) 1.36852 + 1.88361i 0.0765025 + 0.105297i
\(321\) 0 0
\(322\) −2.10735 4.13590i −0.117438 0.230485i
\(323\) 8.46647 11.6531i 0.471087 0.648396i
\(324\) 0 0
\(325\) 1.49439 + 1.49439i 0.0828938 + 0.0828938i
\(326\) −0.0394612 0.0128217i −0.00218555 0.000710129i
\(327\) 0 0
\(328\) 2.47450 + 5.90566i 0.136631 + 0.326086i
\(329\) −0.996563 −0.0549423
\(330\) 0 0
\(331\) −18.9893 18.9893i −1.04374 1.04374i −0.998998 0.0447463i \(-0.985752\pi\)
−0.0447463 0.998998i \(-0.514248\pi\)
\(332\) −9.20576 6.68838i −0.505232 0.367072i
\(333\) 0 0
\(334\) 6.28550 + 12.3360i 0.343927 + 0.674995i
\(335\) −9.06967 + 17.8002i −0.495529 + 0.972530i
\(336\) 0 0
\(337\) 26.6494i 1.45169i 0.687859 + 0.725844i \(0.258551\pi\)
−0.687859 + 0.725844i \(0.741449\pi\)
\(338\) 9.88786 7.18395i 0.537828 0.390755i
\(339\) 0 0
\(340\) −2.13291 13.4667i −0.115673 0.730332i
\(341\) 4.04900 2.06307i 0.219266 0.111721i
\(342\) 0 0
\(343\) 12.7614 2.02121i 0.689053 0.109135i
\(344\) −1.08762 3.34734i −0.0586403 0.180476i
\(345\) 0 0
\(346\) 3.19906 9.84570i 0.171983 0.529308i
\(347\) 26.8294 + 13.6702i 1.44028 + 0.733857i 0.987478 0.157756i \(-0.0504261\pi\)
0.452797 + 0.891613i \(0.350426\pi\)
\(348\) 0 0
\(349\) 11.9046 3.86803i 0.637238 0.207051i 0.0274592 0.999623i \(-0.491258\pi\)
0.609779 + 0.792572i \(0.291258\pi\)
\(350\) −0.372242 0.189667i −0.0198972 0.0101381i
\(351\) 0 0
\(352\) −0.674543 + 4.25890i −0.0359533 + 0.227000i
\(353\) −4.72931 14.5553i −0.251716 0.774702i −0.994459 0.105125i \(-0.966476\pi\)
0.742743 0.669576i \(-0.233524\pi\)
\(354\) 0 0
\(355\) −22.8683 + 22.8683i −1.21372 + 1.21372i
\(356\) 1.87463 0.955171i 0.0993551 0.0506239i
\(357\) 0 0
\(358\) 19.9976 + 3.16732i 1.05691 + 0.167398i
\(359\) 12.8914 9.36611i 0.680379 0.494325i −0.193104 0.981178i \(-0.561855\pi\)
0.873484 + 0.486854i \(0.161855\pi\)
\(360\) 0 0
\(361\) −7.61185 10.4768i −0.400624 0.551411i
\(362\) −4.71765 + 9.25892i −0.247954 + 0.486638i
\(363\) 0 0
\(364\) −2.93066 + 4.03371i −0.153608 + 0.211424i
\(365\) 25.5493 + 18.5627i 1.33731 + 0.971614i
\(366\) 0 0
\(367\) −20.2592 6.58260i −1.05752 0.343609i −0.271904 0.962324i \(-0.587653\pi\)
−0.785615 + 0.618715i \(0.787653\pi\)
\(368\) 4.67555 0.243730
\(369\) 0 0
\(370\) −17.9073 −0.930955
\(371\) 6.27672 + 2.03943i 0.325871 + 0.105882i
\(372\) 0 0
\(373\) 28.0860 + 20.4057i 1.45424 + 1.05657i 0.984818 + 0.173591i \(0.0555370\pi\)
0.469420 + 0.882975i \(0.344463\pi\)
\(374\) 14.8424 20.4288i 0.767482 1.05635i
\(375\) 0 0
\(376\) 0.455717 0.894395i 0.0235018 0.0461249i
\(377\) −8.37413 11.5260i −0.431290 0.593620i
\(378\) 0 0
\(379\) 9.84247 7.15098i 0.505574 0.367321i −0.305568 0.952170i \(-0.598846\pi\)
0.811142 + 0.584849i \(0.198846\pi\)
\(380\) 5.65624 + 0.895861i 0.290159 + 0.0459567i
\(381\) 0 0
\(382\) −8.51271 + 4.33744i −0.435548 + 0.221923i
\(383\) −10.2831 + 10.2831i −0.525444 + 0.525444i −0.919210 0.393767i \(-0.871172\pi\)
0.393767 + 0.919210i \(0.371172\pi\)
\(384\) 0 0
\(385\) −3.07998 9.47921i −0.156970 0.483105i
\(386\) −2.84547 + 17.9656i −0.144831 + 0.914424i
\(387\) 0 0
\(388\) −7.23096 3.68436i −0.367096 0.187045i
\(389\) −25.9162 + 8.42068i −1.31400 + 0.426945i −0.880431 0.474174i \(-0.842747\pi\)
−0.433571 + 0.901119i \(0.642747\pi\)
\(390\) 0 0
\(391\) −24.3961 12.4305i −1.23377 0.628635i
\(392\) −1.85854 + 5.72001i −0.0938706 + 0.288904i
\(393\) 0 0
\(394\) −3.32228 10.2249i −0.167374 0.515125i
\(395\) −5.87252 + 0.930116i −0.295479 + 0.0467992i
\(396\) 0 0
\(397\) 18.1916 9.26906i 0.913008 0.465201i 0.0666266 0.997778i \(-0.478776\pi\)
0.846381 + 0.532577i \(0.178776\pi\)
\(398\) −1.12360 7.09412i −0.0563209 0.355596i
\(399\) 0 0
\(400\) 0.340444 0.247347i 0.0170222 0.0123674i
\(401\) 17.8463i 0.891203i 0.895231 + 0.445602i \(0.147010\pi\)
−0.895231 + 0.445602i \(0.852990\pi\)
\(402\) 0 0
\(403\) −2.40285 + 4.71585i −0.119694 + 0.234913i
\(404\) 4.16594 + 8.17612i 0.207263 + 0.406777i
\(405\) 0 0
\(406\) 2.27848 + 1.65541i 0.113079 + 0.0821567i
\(407\) −23.4509 23.4509i −1.16242 1.16242i
\(408\) 0 0
\(409\) 32.3127 1.59776 0.798881 0.601490i \(-0.205426\pi\)
0.798881 + 0.601490i \(0.205426\pi\)
\(410\) 13.7499 5.76129i 0.679061 0.284530i
\(411\) 0 0
\(412\) 9.57271 + 3.11036i 0.471613 + 0.153236i
\(413\) 7.08888 + 7.08888i 0.348821 + 0.348821i
\(414\) 0 0
\(415\) −15.5723 + 21.4334i −0.764415 + 1.05213i
\(416\) −2.28001 4.47477i −0.111787 0.219394i
\(417\) 0 0
\(418\) 6.23408 + 8.58047i 0.304919 + 0.419684i
\(419\) 24.6623i 1.20483i −0.798182 0.602416i \(-0.794205\pi\)
0.798182 0.602416i \(-0.205795\pi\)
\(420\) 0 0
\(421\) −18.4368 2.92010i −0.898554 0.142317i −0.309963 0.950748i \(-0.600317\pi\)
−0.588590 + 0.808432i \(0.700317\pi\)
\(422\) 3.32073 + 20.9663i 0.161651 + 1.02062i
\(423\) 0 0
\(424\) −4.70062 + 4.70062i −0.228282 + 0.228282i
\(425\) −2.43398 + 0.385504i −0.118065 + 0.0186997i
\(426\) 0 0
\(427\) 1.48116 9.35168i 0.0716784 0.452560i
\(428\) 3.25632 10.0219i 0.157400 0.484428i
\(429\) 0 0
\(430\) −7.79349 + 2.53226i −0.375835 + 0.122116i
\(431\) 9.99971 3.24910i 0.481669 0.156504i −0.0581106 0.998310i \(-0.518508\pi\)
0.539779 + 0.841806i \(0.318508\pi\)
\(432\) 0 0
\(433\) −8.08586 + 24.8857i −0.388582 + 1.19593i 0.545267 + 0.838262i \(0.316428\pi\)
−0.933849 + 0.357669i \(0.883572\pi\)
\(434\) 0.163673 1.03339i 0.00785657 0.0496045i
\(435\) 0 0
\(436\) −12.3337 + 1.95346i −0.590676 + 0.0935539i
\(437\) 8.13193 8.13193i 0.389003 0.389003i
\(438\) 0 0
\(439\) −4.21100 26.5872i −0.200980 1.26894i −0.857442 0.514580i \(-0.827948\pi\)
0.656462 0.754359i \(-0.272052\pi\)
\(440\) 9.91584 + 1.57051i 0.472719 + 0.0748714i
\(441\) 0 0
\(442\) 29.4102i 1.39890i
\(443\) 6.68819 + 9.20551i 0.317766 + 0.437367i 0.937783 0.347221i \(-0.112875\pi\)
−0.620018 + 0.784588i \(0.712875\pi\)
\(444\) 0 0
\(445\) −2.22389 4.36463i −0.105422 0.206903i
\(446\) 4.84735 6.67180i 0.229529 0.315919i
\(447\) 0 0
\(448\) 0.702007 + 0.702007i 0.0331667 + 0.0331667i
\(449\) 1.61770 + 0.525624i 0.0763442 + 0.0248057i 0.346940 0.937887i \(-0.387221\pi\)
−0.270596 + 0.962693i \(0.587221\pi\)
\(450\) 0 0
\(451\) 25.5514 + 10.4617i 1.20317 + 0.492624i
\(452\) 2.71130 0.127529
\(453\) 0 0
\(454\) 10.9193 + 10.9193i 0.512467 + 0.512467i
\(455\) 9.39153 + 6.82335i 0.440282 + 0.319883i
\(456\) 0 0
\(457\) 0.344881 + 0.676866i 0.0161328 + 0.0316625i 0.898932 0.438088i \(-0.144344\pi\)
−0.882799 + 0.469750i \(0.844344\pi\)
\(458\) −5.18235 + 10.1709i −0.242156 + 0.475257i
\(459\) 0 0
\(460\) 10.8859i 0.507558i
\(461\) 1.11433 0.809608i 0.0518995 0.0377072i −0.561533 0.827454i \(-0.689788\pi\)
0.613433 + 0.789747i \(0.289788\pi\)
\(462\) 0 0
\(463\) −0.805040 5.08282i −0.0374134 0.236219i 0.961894 0.273421i \(-0.0881553\pi\)
−0.999308 + 0.0372026i \(0.988155\pi\)
\(464\) −2.52762 + 1.28789i −0.117342 + 0.0597886i
\(465\) 0 0
\(466\) 2.32601 0.368404i 0.107750 0.0170660i
\(467\) −7.70328 23.7083i −0.356465 1.09709i −0.955155 0.296107i \(-0.904312\pi\)
0.598689 0.800981i \(-0.295688\pi\)
\(468\) 0 0
\(469\) −2.63240 + 8.10168i −0.121553 + 0.374101i
\(470\) −2.08239 1.06103i −0.0960534 0.0489416i
\(471\) 0 0
\(472\) −9.60379 + 3.12046i −0.442050 + 0.143631i
\(473\) −13.5223 6.88997i −0.621758 0.316801i
\(474\) 0 0
\(475\) 0.161919 1.02231i 0.00742934 0.0469070i
\(476\) −1.79658 5.52930i −0.0823461 0.253435i
\(477\) 0 0
\(478\) −2.47806 + 2.47806i −0.113344 + 0.113344i
\(479\) 22.4926 11.4606i 1.02771 0.523646i 0.142971 0.989727i \(-0.454334\pi\)
0.884742 + 0.466081i \(0.154334\pi\)
\(480\) 0 0
\(481\) 38.1511 + 6.04255i 1.73954 + 0.275516i
\(482\) 18.6006 13.5141i 0.847232 0.615550i
\(483\) 0 0
\(484\) 4.46319 + 6.14305i 0.202872 + 0.279230i
\(485\) −8.57816 + 16.8356i −0.389514 + 0.764465i
\(486\) 0 0
\(487\) 18.3828 25.3018i 0.833005 1.14653i −0.154351 0.988016i \(-0.549329\pi\)
0.987356 0.158517i \(-0.0506713\pi\)
\(488\) 7.71562 + 5.60573i 0.349270 + 0.253759i
\(489\) 0 0
\(490\) 13.3177 + 4.32718i 0.601632 + 0.195482i
\(491\) −11.8927 −0.536710 −0.268355 0.963320i \(-0.586480\pi\)
−0.268355 + 0.963320i \(0.586480\pi\)
\(492\) 0 0
\(493\) 16.6126 0.748196
\(494\) −11.7482 3.81723i −0.528578 0.171745i
\(495\) 0 0
\(496\) 0.852603 + 0.619452i 0.0382830 + 0.0278142i
\(497\) −8.10572 + 11.1566i −0.363591 + 0.500440i
\(498\) 0 0
\(499\) 17.6777 34.6945i 0.791364 1.55314i −0.0411623 0.999152i \(-0.513106\pi\)
0.832526 0.553986i \(-0.186894\pi\)
\(500\) 6.26671 + 8.62538i 0.280256 + 0.385739i
\(501\) 0 0
\(502\) 2.42998 1.76548i 0.108455 0.0787973i
\(503\) 7.68202 + 1.21671i 0.342524 + 0.0542505i 0.325327 0.945602i \(-0.394526\pi\)
0.0171974 + 0.999852i \(0.494526\pi\)
\(504\) 0 0
\(505\) 19.0362 9.69941i 0.847098 0.431618i
\(506\) 14.2559 14.2559i 0.633753 0.633753i
\(507\) 0 0
\(508\) −5.89112 18.1310i −0.261376 0.804433i
\(509\) −3.38057 + 21.3441i −0.149841 + 0.946059i 0.792127 + 0.610356i \(0.208974\pi\)
−0.941968 + 0.335703i \(0.891026\pi\)
\(510\) 0 0
\(511\) 11.9985 + 6.11354i 0.530782 + 0.270447i
\(512\) −0.951057 + 0.309017i −0.0420312 + 0.0136568i
\(513\) 0 0
\(514\) −15.4592 7.87688i −0.681878 0.347434i
\(515\) 7.24174 22.2878i 0.319109 0.982117i
\(516\) 0 0
\(517\) −1.33754 4.11654i −0.0588251 0.181045i
\(518\) −7.54177 + 1.19450i −0.331366 + 0.0524833i
\(519\) 0 0
\(520\) −10.4185 + 5.30847i −0.456880 + 0.232792i
\(521\) 3.25864 + 20.5743i 0.142764 + 0.901375i 0.950250 + 0.311488i \(0.100827\pi\)
−0.807486 + 0.589886i \(0.799173\pi\)
\(522\) 0 0
\(523\) 5.26281 3.82365i 0.230126 0.167197i −0.466747 0.884391i \(-0.654574\pi\)
0.696873 + 0.717194i \(0.254574\pi\)
\(524\) 16.8818i 0.737486i
\(525\) 0 0
\(526\) 1.25670 2.46640i 0.0547945 0.107540i
\(527\) −2.80184 5.49893i −0.122050 0.239537i
\(528\) 0 0
\(529\) 0.921668 + 0.669631i 0.0400725 + 0.0291144i
\(530\) 10.9443 + 10.9443i 0.475389 + 0.475389i
\(531\) 0 0
\(532\) 2.44192 0.105871
\(533\) −31.2381 + 7.63460i −1.35307 + 0.330691i
\(534\) 0 0
\(535\) −23.3337 7.58157i −1.00880 0.327780i
\(536\) −6.06733 6.06733i −0.262069 0.262069i
\(537\) 0 0
\(538\) 17.6196 24.2513i 0.759635 1.04555i
\(539\) 11.7737 + 23.1073i 0.507131 + 0.995301i
\(540\) 0 0
\(541\) −4.79036 6.59337i −0.205954 0.283471i 0.693528 0.720430i \(-0.256055\pi\)
−0.899481 + 0.436959i \(0.856055\pi\)
\(542\) 11.8666i 0.509713i
\(543\) 0 0
\(544\) 5.78399 + 0.916094i 0.247987 + 0.0392772i
\(545\) 4.54818 + 28.7161i 0.194823 + 1.23006i
\(546\) 0 0
\(547\) −12.7377 + 12.7377i −0.544627 + 0.544627i −0.924882 0.380255i \(-0.875836\pi\)
0.380255 + 0.924882i \(0.375836\pi\)
\(548\) 0.947205 0.150023i 0.0404626 0.00640865i
\(549\) 0 0
\(550\) 0.283856 1.79220i 0.0121037 0.0764196i
\(551\) −2.15620 + 6.63610i −0.0918572 + 0.282708i
\(552\) 0 0
\(553\) −2.41121 + 0.783450i −0.102535 + 0.0333157i
\(554\) −26.9114 + 8.74404i −1.14336 + 0.371499i
\(555\) 0 0
\(556\) −3.32957 + 10.2474i −0.141205 + 0.434585i
\(557\) 1.96184 12.3866i 0.0831260 0.524837i −0.910626 0.413230i \(-0.864400\pi\)
0.993752 0.111606i \(-0.0355996\pi\)
\(558\) 0 0
\(559\) 17.4584 2.76513i 0.738410 0.116953i
\(560\) 1.63446 1.63446i 0.0690684 0.0690684i
\(561\) 0 0
\(562\) −1.51703 9.57817i −0.0639922 0.404031i
\(563\) 3.43915 + 0.544707i 0.144943 + 0.0229567i 0.228484 0.973548i \(-0.426623\pi\)
−0.0835414 + 0.996504i \(0.526623\pi\)
\(564\) 0 0
\(565\) 6.31263i 0.265574i
\(566\) 8.50511 + 11.7063i 0.357497 + 0.492052i
\(567\) 0 0
\(568\) −6.30613 12.3765i −0.264600 0.519306i
\(569\) 24.2202 33.3362i 1.01536 1.39753i 0.0999592 0.994992i \(-0.468129\pi\)
0.915404 0.402536i \(-0.131871\pi\)
\(570\) 0 0
\(571\) 0.620108 + 0.620108i 0.0259507 + 0.0259507i 0.719963 0.694012i \(-0.244159\pi\)
−0.694012 + 0.719963i \(0.744159\pi\)
\(572\) −20.5956 6.69191i −0.861145 0.279803i
\(573\) 0 0
\(574\) 5.40658 3.34359i 0.225666 0.139559i
\(575\) −1.96753 −0.0820517
\(576\) 0 0
\(577\) −26.1016 26.1016i −1.08662 1.08662i −0.995874 0.0907510i \(-0.971073\pi\)
−0.0907510 0.995874i \(-0.528927\pi\)
\(578\) −13.9910 10.1650i −0.581948 0.422810i
\(579\) 0 0
\(580\) 2.99854 + 5.88497i 0.124508 + 0.244360i
\(581\) −5.12868 + 10.0656i −0.212773 + 0.417591i
\(582\) 0 0
\(583\) 28.6647i 1.18717i
\(584\) −10.9735 + 7.97275i −0.454089 + 0.329915i
\(585\) 0 0
\(586\) 0.345851 + 2.18362i 0.0142870 + 0.0902044i
\(587\) −32.6183 + 16.6199i −1.34630 + 0.685975i −0.970585 0.240759i \(-0.922604\pi\)
−0.375718 + 0.926734i \(0.622604\pi\)
\(588\) 0 0
\(589\) 2.56027 0.405506i 0.105494 0.0167086i
\(590\) 7.26526 + 22.3602i 0.299106 + 0.920553i
\(591\) 0 0
\(592\) 2.37673 7.31482i 0.0976829 0.300637i
\(593\) 8.19770 + 4.17694i 0.336639 + 0.171526i 0.614136 0.789200i \(-0.289505\pi\)
−0.277497 + 0.960727i \(0.589505\pi\)
\(594\) 0 0
\(595\) −12.8737 + 4.18291i −0.527769 + 0.171483i
\(596\) −20.3864 10.3874i −0.835059 0.425484i
\(597\) 0 0
\(598\) −3.67329 + 23.1922i −0.150212 + 0.948401i
\(599\) 2.75987 + 8.49400i 0.112765 + 0.347055i 0.991474 0.130302i \(-0.0415947\pi\)
−0.878709 + 0.477357i \(0.841595\pi\)
\(600\) 0 0
\(601\) −12.1900 + 12.1900i −0.497241 + 0.497241i −0.910578 0.413337i \(-0.864363\pi\)
0.413337 + 0.910578i \(0.364363\pi\)
\(602\) −3.11337 + 1.58634i −0.126891 + 0.0646544i
\(603\) 0 0
\(604\) −15.0442 2.38276i −0.612138 0.0969531i
\(605\) 14.3027 10.3915i 0.581485 0.422474i
\(606\) 0 0
\(607\) −25.3541 34.8969i −1.02909 1.41642i −0.905629 0.424072i \(-0.860600\pi\)
−0.123462 0.992349i \(-0.539400\pi\)
\(608\) −1.11666 + 2.19158i −0.0452867 + 0.0888802i
\(609\) 0 0
\(610\) 13.0516 17.9640i 0.528444 0.727341i
\(611\) 4.07846 + 2.96318i 0.164997 + 0.119877i
\(612\) 0 0
\(613\) 9.22259 + 2.99660i 0.372497 + 0.121032i 0.489282 0.872126i \(-0.337259\pi\)
−0.116785 + 0.993157i \(0.537259\pi\)
\(614\) 10.2562 0.413906
\(615\) 0 0
\(616\) 4.28089 0.172482
\(617\) −11.2369 3.65109i −0.452381 0.146988i 0.0739597 0.997261i \(-0.476436\pi\)
−0.526341 + 0.850274i \(0.676436\pi\)
\(618\) 0 0
\(619\) −23.3929 16.9959i −0.940240 0.683124i 0.00823843 0.999966i \(-0.497378\pi\)
−0.948478 + 0.316842i \(0.897378\pi\)
\(620\) 1.44225 1.98508i 0.0579221 0.0797229i
\(621\) 0 0
\(622\) 6.10271 11.9772i 0.244696 0.480244i
\(623\) −1.22775 1.68985i −0.0491887 0.0677024i
\(624\) 0 0
\(625\) 21.7844 15.8273i 0.871375 0.633091i
\(626\) 31.7580 + 5.02997i 1.26931 + 0.201038i
\(627\) 0 0
\(628\) −1.68285 + 0.857457i −0.0671532 + 0.0342163i
\(629\) −31.8486 + 31.8486i −1.26989 + 1.26989i
\(630\) 0 0
\(631\) 0.151484 + 0.466219i 0.00603047 + 0.0185599i 0.954026 0.299722i \(-0.0968940\pi\)
−0.947996 + 0.318282i \(0.896894\pi\)
\(632\) 0.399489 2.52227i 0.0158908 0.100331i
\(633\) 0 0
\(634\) 30.4352 + 15.5075i 1.20874 + 0.615882i
\(635\) −42.2138 + 13.7161i −1.67520 + 0.544306i
\(636\) 0 0
\(637\) −26.9130 13.7128i −1.06633 0.543322i
\(638\) −3.77999 + 11.6336i −0.149651 + 0.460579i
\(639\) 0 0
\(640\) 0.719473 + 2.21431i 0.0284397 + 0.0875283i
\(641\) −28.0664 + 4.44528i −1.10855 + 0.175578i −0.683757 0.729710i \(-0.739655\pi\)
−0.424798 + 0.905288i \(0.639655\pi\)
\(642\) 0 0
\(643\) −18.4171 + 9.38396i −0.726298 + 0.370067i −0.777721 0.628610i \(-0.783624\pi\)
0.0514230 + 0.998677i \(0.483624\pi\)
\(644\) −0.726142 4.58468i −0.0286140 0.180662i
\(645\) 0 0
\(646\) 11.6531 8.46647i 0.458485 0.333109i
\(647\) 36.2825i 1.42641i −0.700955 0.713206i \(-0.747242\pi\)
0.700955 0.713206i \(-0.252758\pi\)
\(648\) 0 0
\(649\) −19.7679 + 38.7967i −0.775958 + 1.52290i
\(650\) 0.959457 + 1.88304i 0.0376330 + 0.0738590i
\(651\) 0 0
\(652\) −0.0335677 0.0243884i −0.00131461 0.000955122i
\(653\) −14.6608 14.6608i −0.573723 0.573723i 0.359444 0.933167i \(-0.382966\pi\)
−0.933167 + 0.359444i \(0.882966\pi\)
\(654\) 0 0
\(655\) −39.3054 −1.53579
\(656\) 0.528438 + 6.38128i 0.0206320 + 0.249147i
\(657\) 0 0
\(658\) −0.947788 0.307955i −0.0369486 0.0120053i
\(659\) −33.0322 33.0322i −1.28675 1.28675i −0.936748 0.350005i \(-0.886180\pi\)
−0.350005 0.936748i \(-0.613820\pi\)
\(660\) 0 0
\(661\) −11.0162 + 15.1624i −0.428479 + 0.589751i −0.967603 0.252476i \(-0.918755\pi\)
0.539124 + 0.842226i \(0.318755\pi\)
\(662\) −12.1919 23.9279i −0.473850 0.929983i
\(663\) 0 0
\(664\) −6.68838 9.20576i −0.259559 0.357253i
\(665\) 5.68544i 0.220472i
\(666\) 0 0
\(667\) 13.1004 + 2.07489i 0.507248 + 0.0803402i
\(668\) 2.16584 + 13.6745i 0.0837987 + 0.529084i
\(669\) 0 0
\(670\) −14.1263 + 14.1263i −0.545748 + 0.545748i
\(671\) 40.6173 6.43314i 1.56801 0.248349i
\(672\) 0 0
\(673\) 1.86340 11.7650i 0.0718287 0.453509i −0.925392 0.379010i \(-0.876264\pi\)
0.997221 0.0744983i \(-0.0237355\pi\)
\(674\) −8.23513 + 25.3451i −0.317205 + 0.976258i
\(675\) 0 0
\(676\) 11.6239 3.77682i 0.447072 0.145262i
\(677\) 18.5183 6.01695i 0.711715 0.231250i 0.0692875 0.997597i \(-0.477927\pi\)
0.642427 + 0.766347i \(0.277927\pi\)
\(678\) 0 0
\(679\) −2.48974 + 7.66263i −0.0955474 + 0.294065i
\(680\) 2.13291 13.4667i 0.0817933 0.516423i
\(681\) 0 0
\(682\) 4.48835 0.710885i 0.171868 0.0272212i
\(683\) −6.05998 + 6.05998i −0.231879 + 0.231879i −0.813476 0.581598i \(-0.802428\pi\)
0.581598 + 0.813476i \(0.302428\pi\)
\(684\) 0 0
\(685\) −0.349292 2.20534i −0.0133458 0.0842619i
\(686\) 12.7614 + 2.02121i 0.487234 + 0.0771703i
\(687\) 0 0
\(688\) 3.51960i 0.134184i
\(689\) −19.6236 27.0096i −0.747601 1.02898i
\(690\) 0 0
\(691\) 19.7427 + 38.7473i 0.751049 + 1.47402i 0.876236 + 0.481883i \(0.160047\pi\)
−0.125187 + 0.992133i \(0.539953\pi\)
\(692\) 6.08498 8.37525i 0.231316 0.318379i
\(693\) 0 0
\(694\) 21.2919 + 21.2919i 0.808229 + 0.808229i
\(695\) 23.8586 + 7.75212i 0.905008 + 0.294055i
\(696\) 0 0
\(697\) 14.2080 34.7013i 0.538168 1.31440i
\(698\) 12.5172 0.473784
\(699\) 0 0
\(700\) −0.295413 0.295413i −0.0111656 0.0111656i
\(701\) 18.2574 + 13.2648i 0.689571 + 0.501003i 0.876519 0.481367i \(-0.159860\pi\)
−0.186948 + 0.982370i \(0.559860\pi\)
\(702\) 0 0
\(703\) −8.58855 16.8560i −0.323923 0.635735i
\(704\) −1.95760 + 3.84201i −0.0737799 + 0.144801i
\(705\) 0 0
\(706\) 15.3044i 0.575988i
\(707\) 7.37022 5.35478i 0.277186 0.201387i
\(708\) 0 0
\(709\) 6.23855 + 39.3886i 0.234294 + 1.47927i 0.771721 + 0.635961i \(0.219396\pi\)
−0.537427 + 0.843310i \(0.680604\pi\)
\(710\) −28.8157 + 14.6823i −1.08143 + 0.551019i
\(711\) 0 0
\(712\) 2.07804 0.329129i 0.0778779 0.0123346i
\(713\) −1.52266 4.68628i −0.0570242 0.175503i
\(714\) 0 0
\(715\) −15.5805 + 47.9519i −0.582679 + 1.79330i
\(716\) 18.0401 + 9.19191i 0.674192 + 0.343518i
\(717\) 0 0
\(718\) 15.1547 4.92406i 0.565568 0.183764i
\(719\) 10.6628 + 5.43295i 0.397654 + 0.202615i 0.641370 0.767232i \(-0.278366\pi\)
−0.243716 + 0.969847i \(0.578366\pi\)
\(720\) 0 0
\(721\) 1.56321 9.86972i 0.0582170 0.367567i
\(722\) −4.00179 12.3162i −0.148931 0.458363i
\(723\) 0 0
\(724\) −7.34792 + 7.34792i −0.273083 + 0.273083i
\(725\) 1.06365 0.541959i 0.0395031 0.0201278i
\(726\) 0 0
\(727\) 41.7216 + 6.60805i 1.54737 + 0.245079i 0.870925 0.491416i \(-0.163521\pi\)
0.676443 + 0.736495i \(0.263521\pi\)
\(728\) −4.03371 + 2.93066i −0.149499 + 0.108617i
\(729\) 0 0
\(730\) 18.5627 + 25.5493i 0.687035 + 0.945622i
\(731\) −9.35724 + 18.3646i −0.346090 + 0.679240i
\(732\) 0 0
\(733\) −8.99317 + 12.3780i −0.332170 + 0.457193i −0.942134 0.335236i \(-0.891184\pi\)
0.609964 + 0.792429i \(0.291184\pi\)
\(734\) −17.2335 12.5208i −0.636099 0.462153i
\(735\) 0 0
\(736\) 4.44671 + 1.44482i 0.163908 + 0.0532569i
\(737\) −36.9990 −1.36288
\(738\) 0 0
\(739\) −40.6144 −1.49402 −0.747012 0.664810i \(-0.768512\pi\)
−0.747012 + 0.664810i \(0.768512\pi\)
\(740\) −17.0308 5.53365i −0.626066 0.203421i
\(741\) 0 0
\(742\) 5.33930 + 3.87923i 0.196012 + 0.142411i
\(743\) 17.1056 23.5438i 0.627542 0.863738i −0.370332 0.928899i \(-0.620756\pi\)
0.997875 + 0.0651612i \(0.0207562\pi\)
\(744\) 0 0
\(745\) −24.1846 + 47.4649i −0.886054 + 1.73898i
\(746\) 20.4057 + 28.0860i 0.747105 + 1.02830i
\(747\) 0 0
\(748\) 20.4288 14.8424i 0.746951 0.542692i
\(749\) −10.3329 1.63657i −0.377555 0.0597988i
\(750\) 0 0
\(751\) −12.5463 + 6.39264i −0.457820 + 0.233271i −0.667662 0.744464i \(-0.732705\pi\)
0.209842 + 0.977735i \(0.432705\pi\)
\(752\) 0.709796 0.709796i 0.0258836 0.0258836i
\(753\) 0 0
\(754\) −4.40254 13.5496i −0.160331 0.493449i
\(755\) −5.54769 + 35.0268i −0.201901 + 1.27475i
\(756\) 0 0
\(757\) −21.7550 11.0847i −0.790698 0.402881i 0.0115038 0.999934i \(-0.496338\pi\)
−0.802202 + 0.597053i \(0.796338\pi\)
\(758\) 11.5705 3.75949i 0.420260 0.136551i
\(759\) 0 0
\(760\) 5.10257 + 2.59989i 0.185090 + 0.0943079i
\(761\) −1.66740 + 5.13173i −0.0604433 + 0.186025i −0.976719 0.214523i \(-0.931180\pi\)
0.916276 + 0.400548i \(0.131180\pi\)
\(762\) 0 0
\(763\) 3.83100 + 11.7906i 0.138691 + 0.426848i
\(764\) −9.43641 + 1.49458i −0.341397 + 0.0540720i
\(765\) 0 0
\(766\) −12.9575 + 6.60218i −0.468174 + 0.238547i
\(767\) −7.93339 50.0895i −0.286458 1.80863i
\(768\) 0 0
\(769\) −20.3755 + 14.8037i −0.734760 + 0.533835i −0.891066 0.453874i \(-0.850042\pi\)
0.156306 + 0.987709i \(0.450042\pi\)
\(770\) 9.96704i 0.359187i
\(771\) 0 0
\(772\) −8.25787 + 16.2070i −0.297207 + 0.583302i
\(773\) −10.8086 21.2130i −0.388757 0.762979i 0.610829 0.791763i \(-0.290836\pi\)
−0.999586 + 0.0287842i \(0.990836\pi\)
\(774\) 0 0
\(775\) −0.358786 0.260673i −0.0128880 0.00936366i
\(776\) −5.73852 5.73852i −0.206001 0.206001i
\(777\) 0 0
\(778\) −27.2499 −0.976956
\(779\) 12.0177 + 10.1795i 0.430579 + 0.364720i
\(780\) 0 0
\(781\) −56.9640 18.5087i −2.03833 0.662294i
\(782\) −19.3609 19.3609i −0.692344 0.692344i
\(783\) 0 0
\(784\) −3.53516 + 4.86573i −0.126256 + 0.173776i
\(785\) 1.99639 + 3.91813i 0.0712541 + 0.139844i
\(786\) 0 0
\(787\) 23.6487 + 32.5496i 0.842984 + 1.16027i 0.985365 + 0.170456i \(0.0545242\pi\)
−0.142381 + 0.989812i \(0.545476\pi\)
\(788\) 10.7511i 0.382993i
\(789\) 0 0
\(790\) −5.87252 0.930116i −0.208935 0.0330920i
\(791\) −0.421082 2.65861i −0.0149720 0.0945292i
\(792\) 0 0
\(793\) −33.8679 + 33.8679i −1.20269 + 1.20269i
\(794\) 20.1655 3.19390i 0.715647 0.113347i
\(795\) 0 0
\(796\) 1.12360 7.09412i 0.0398249 0.251444i
\(797\) −5.29684 + 16.3020i −0.187624 + 0.577446i −0.999984 0.00570996i \(-0.998182\pi\)
0.812360 + 0.583156i \(0.198182\pi\)
\(798\) 0 0
\(799\) −5.59065 + 1.81651i −0.197783 + 0.0642636i
\(800\) 0.400217 0.130038i 0.0141498 0.00459755i
\(801\) 0 0
\(802\) −5.51482 + 16.9729i −0.194735 + 0.599333i
\(803\) −9.14954 + 57.7679i −0.322880 + 2.03859i
\(804\) 0 0
\(805\) −10.6743 + 1.69065i −0.376221 + 0.0595876i
\(806\) −3.74252 + 3.74252i −0.131825 + 0.131825i
\(807\) 0 0
\(808\) 1.43549 + 9.06330i 0.0505002 + 0.318846i
\(809\) 5.34383 + 0.846380i 0.187879 + 0.0297571i 0.249665 0.968332i \(-0.419680\pi\)
−0.0617857 + 0.998089i \(0.519680\pi\)
\(810\) 0 0
\(811\) 52.4209i 1.84075i 0.391041 + 0.920373i \(0.372115\pi\)
−0.391041 + 0.920373i \(0.627885\pi\)
\(812\) 1.65541 + 2.27848i 0.0580936 + 0.0799589i
\(813\) 0 0
\(814\) −15.0564 29.5499i −0.527727 1.03572i
\(815\) −0.0567825 + 0.0781544i −0.00198900 + 0.00273763i
\(816\) 0 0
\(817\) −6.12145 6.12145i −0.214162 0.214162i
\(818\) 30.7312 + 9.98518i 1.07449 + 0.349124i
\(819\) 0 0
\(820\) 14.8573 1.23034i 0.518840 0.0429654i
\(821\) 47.0851 1.64328 0.821641 0.570006i \(-0.193059\pi\)
0.821641 + 0.570006i \(0.193059\pi\)
\(822\) 0 0
\(823\) −24.0442 24.0442i −0.838128 0.838128i 0.150484 0.988612i \(-0.451917\pi\)
−0.988612 + 0.150484i \(0.951917\pi\)
\(824\) 8.14303 + 5.91626i 0.283676 + 0.206103i
\(825\) 0 0
\(826\) 4.55134 + 8.93251i 0.158361 + 0.310802i
\(827\) −13.6854 + 26.8592i −0.475889 + 0.933984i 0.520878 + 0.853631i \(0.325605\pi\)
−0.996766 + 0.0803531i \(0.974395\pi\)
\(828\) 0 0
\(829\) 55.6284i 1.93205i −0.258442 0.966027i \(-0.583209\pi\)
0.258442 0.966027i \(-0.416791\pi\)
\(830\) −21.4334 + 15.5723i −0.743966 + 0.540523i
\(831\) 0 0
\(832\) −0.785638 4.96033i −0.0272371 0.171968i
\(833\) 31.3819 15.9899i 1.08732 0.554016i
\(834\) 0 0
\(835\) 31.8380 5.04264i 1.10180 0.174508i
\(836\) 3.27745 + 10.0869i 0.113353 + 0.348864i
\(837\) 0 0
\(838\) 7.62107 23.4553i 0.263266 0.810248i
\(839\) −39.8212 20.2899i −1.37478 0.700486i −0.398536 0.917153i \(-0.630482\pi\)
−0.976246 + 0.216667i \(0.930482\pi\)
\(840\) 0 0
\(841\) 19.9270 6.47467i 0.687138 0.223265i
\(842\) −16.6321 8.47446i −0.573179 0.292049i
\(843\) 0 0
\(844\) −3.32073 + 20.9663i −0.114304 + 0.721689i
\(845\) −8.79344 27.0634i −0.302504 0.931011i
\(846\) 0 0
\(847\) 5.33050 5.33050i 0.183158 0.183158i
\(848\) −5.92313 + 3.01798i −0.203401 + 0.103638i
\(849\) 0 0
\(850\) −2.43398 0.385504i −0.0834847 0.0132227i
\(851\) −29.0929 + 21.1372i −0.997293 + 0.724576i
\(852\) 0 0
\(853\) −11.9830 16.4932i −0.410289 0.564715i 0.553000 0.833182i \(-0.313483\pi\)
−0.963289 + 0.268467i \(0.913483\pi\)
\(854\) 4.29850 8.43627i 0.147091 0.288683i
\(855\) 0 0
\(856\) 6.19389 8.52516i 0.211703 0.291384i
\(857\) −24.9965 18.1610i −0.853864 0.620369i 0.0723445 0.997380i \(-0.476952\pi\)
−0.926209 + 0.377011i \(0.876952\pi\)
\(858\) 0 0
\(859\) −23.3962 7.60188i −0.798267 0.259373i −0.118647 0.992937i \(-0.537856\pi\)
−0.679621 + 0.733564i \(0.737856\pi\)
\(860\) −8.19456 −0.279432
\(861\) 0 0
\(862\) 10.5143 0.358119
\(863\) −7.01793 2.28026i −0.238893 0.0776211i 0.187124 0.982336i \(-0.440084\pi\)
−0.426017 + 0.904715i \(0.640084\pi\)
\(864\) 0 0
\(865\) −19.4998 14.1674i −0.663013 0.481707i
\(866\) −15.3802 + 21.1691i −0.522641 + 0.719354i
\(867\) 0 0
\(868\) 0.474999 0.932237i 0.0161225 0.0316422i
\(869\) −6.47245 8.90856i −0.219563 0.302202i
\(870\) 0 0
\(871\) 34.8626 25.3292i 1.18128 0.858247i
\(872\) −12.3337 1.95346i −0.417671 0.0661526i
\(873\) 0 0
\(874\) 10.2468 5.22102i 0.346604 0.176604i
\(875\) 7.48449 7.48449i 0.253022 0.253022i
\(876\) 0 0
\(877\) −8.46788 26.0615i −0.285940 0.880033i −0.986115 0.166062i \(-0.946895\pi\)
0.700175 0.713971i \(-0.253105\pi\)
\(878\) 4.21100 26.5872i 0.142114 0.897275i
\(879\) 0 0
\(880\) 8.94521 + 4.55781i 0.301543 + 0.153644i
\(881\) 13.7302 4.46121i 0.462582 0.150302i −0.0684486 0.997655i \(-0.521805\pi\)
0.531031 + 0.847353i \(0.321805\pi\)
\(882\) 0 0
\(883\) 23.7953 + 12.1243i 0.800775 + 0.408015i 0.805959 0.591971i \(-0.201650\pi\)
−0.00518410 + 0.999987i \(0.501650\pi\)
\(884\) −9.08825 + 27.9708i −0.305671 + 0.940759i
\(885\) 0 0
\(886\) 3.51619 + 10.8217i 0.118129 + 0.363563i
\(887\) −14.7387 + 2.33439i −0.494879 + 0.0783811i −0.398885 0.917001i \(-0.630603\pi\)
−0.0959934 + 0.995382i \(0.530603\pi\)
\(888\) 0 0
\(889\) −16.8637 + 8.59248i −0.565590 + 0.288183i
\(890\) −0.766300 4.83823i −0.0256864 0.162178i
\(891\) 0 0
\(892\) 6.67180 4.84735i 0.223389 0.162301i
\(893\) 2.46902i 0.0826225i
\(894\) 0 0
\(895\) 21.4012 42.0022i 0.715363 1.40398i
\(896\) 0.450716 + 0.884580i 0.0150574 + 0.0295518i
\(897\) 0 0
\(898\) 1.37610 + 0.999797i 0.0459211 + 0.0333636i
\(899\) 2.11400 + 2.11400i 0.0705059 + 0.0705059i
\(900\) 0 0
\(901\) 38.9294 1.29693
\(902\) 21.0680 + 17.8455i 0.701487 + 0.594191i
\(903\) 0 0
\(904\) 2.57860 + 0.837838i 0.0857630 + 0.0278661i
\(905\) 17.1079 + 17.1079i 0.568686 + 0.568686i
\(906\) 0 0
\(907\) 22.8226 31.4126i 0.757812 1.04304i −0.239581 0.970876i \(-0.577010\pi\)
0.997393 0.0721623i \(-0.0229900\pi\)
\(908\) 7.01060 + 13.7591i 0.232655 + 0.456611i
\(909\) 0 0
\(910\) 6.82335 + 9.39153i 0.226192 + 0.311326i
\(911\) 50.4026i 1.66991i 0.550317 + 0.834956i \(0.314507\pi\)
−0.550317 + 0.834956i \(0.685493\pi\)
\(912\) 0 0
\(913\) −48.4618 7.67559i −1.60385 0.254025i
\(914\) 0.118838 + 0.750312i 0.00393080 + 0.0248181i
\(915\) 0 0
\(916\) −8.07171 + 8.07171i −0.266697 + 0.266697i
\(917\) −16.5537 + 2.62185i −0.546652 + 0.0865812i
\(918\) 0 0
\(919\) −0.431257 + 2.72285i −0.0142258 + 0.0898185i −0.993780 0.111363i \(-0.964478\pi\)
0.979554 + 0.201182i \(0.0644782\pi\)
\(920\) 3.36393 10.3531i 0.110906 0.341332i
\(921\) 0 0
\(922\) 1.30997 0.425636i 0.0431417 0.0140176i
\(923\) 66.3457 21.5570i 2.18380 0.709559i
\(924\) 0 0
\(925\) −1.00016 + 3.07817i −0.0328850 + 0.101210i
\(926\) 0.805040 5.08282i 0.0264552 0.167032i
\(927\) 0 0
\(928\) −2.80189 + 0.443776i −0.0919765 + 0.0145676i
\(929\) 18.2088 18.2088i 0.597411 0.597411i −0.342212 0.939623i \(-0.611176\pi\)
0.939623 + 0.342212i \(0.111176\pi\)
\(930\) 0 0
\(931\) 2.31419 + 14.6112i 0.0758445 + 0.478863i
\(932\) 2.32601 + 0.368404i 0.0761909 + 0.0120675i
\(933\) 0 0
\(934\) 24.9284i 0.815681i
\(935\) −34.5570 47.5636i −1.13013 1.55550i
\(936\) 0 0
\(937\) 15.3353 + 30.0972i 0.500982 + 0.983233i 0.993597 + 0.112985i \(0.0360413\pi\)
−0.492614 + 0.870248i \(0.663959\pi\)
\(938\) −5.00711 + 6.89170i −0.163488 + 0.225022i
\(939\) 0 0
\(940\) −1.65259 1.65259i −0.0539016 0.0539016i
\(941\) −1.68682 0.548082i −0.0549889 0.0178670i 0.281393 0.959592i \(-0.409203\pi\)
−0.336382 + 0.941726i \(0.609203\pi\)
\(942\) 0 0
\(943\) 15.5383 25.5901i 0.505996 0.833328i
\(944\) −10.0980 −0.328663
\(945\) 0 0
\(946\) −10.7314 10.7314i −0.348907 0.348907i
\(947\) −29.8170 21.6633i −0.968921 0.703962i −0.0137156 0.999906i \(-0.504366\pi\)
−0.955205 + 0.295944i \(0.904366\pi\)
\(948\) 0 0
\(949\) −30.9262 60.6961i −1.00391 1.97028i
\(950\) 0.469906 0.922243i 0.0152458 0.0299215i
\(951\) 0 0
\(952\) 5.81385i 0.188428i
\(953\) 0.429810 0.312276i 0.0139229 0.0101156i −0.580802 0.814045i \(-0.697261\pi\)
0.594725 + 0.803929i \(0.297261\pi\)
\(954\) 0 0
\(955\) 3.47978 + 21.9704i 0.112603 + 0.710947i
\(956\) −3.12254 + 1.59102i −0.100990 + 0.0514571i
\(957\) 0 0
\(958\) 24.9332 3.94904i 0.805556 0.127588i
\(959\) −0.294214 0.905497i −0.00950066 0.0292400i
\(960\) 0 0
\(961\) −9.23632 + 28.4265i −0.297946 + 0.916983i
\(962\) 34.4166 + 17.5361i 1.10964 + 0.565388i
\(963\) 0 0
\(964\) 21.8663 7.10478i 0.704265 0.228830i
\(965\) 37.7341 + 19.2265i 1.21470 + 0.618923i
\(966\) 0 0
\(967\) 7.83852 49.4904i 0.252070 1.59151i −0.459034 0.888418i \(-0.651805\pi\)
0.711104 0.703087i \(-0.248195\pi\)
\(968\) 2.34644 + 7.22159i 0.0754174 + 0.232111i
\(969\) 0 0
\(970\) −13.3608 + 13.3608i −0.428989 + 0.428989i
\(971\) 33.3263 16.9806i 1.06949 0.544933i 0.171607 0.985165i \(-0.445104\pi\)
0.897884 + 0.440233i \(0.145104\pi\)
\(972\) 0 0
\(973\) 10.5653 + 1.67338i 0.338708 + 0.0536461i
\(974\) 25.3018 18.3828i 0.810721 0.589024i
\(975\) 0 0
\(976\) 5.60573 + 7.71562i 0.179435 + 0.246971i
\(977\) −17.7787 + 34.8926i −0.568789 + 1.11631i 0.410123 + 0.912030i \(0.365486\pi\)
−0.978912 + 0.204282i \(0.934514\pi\)
\(978\) 0 0
\(979\) 5.33249 7.33955i 0.170427 0.234573i
\(980\) 11.3287 + 8.23078i 0.361882 + 0.262923i
\(981\) 0 0
\(982\) −11.3106 3.67505i −0.360937 0.117275i
\(983\) −58.7461 −1.87371 −0.936854 0.349721i \(-0.886276\pi\)
−0.936854 + 0.349721i \(0.886276\pi\)
\(984\) 0 0
\(985\) −25.0315 −0.797569
\(986\) 15.7996 + 5.13359i 0.503161 + 0.163487i
\(987\) 0 0
\(988\) −9.99364 7.26081i −0.317940 0.230997i
\(989\) −9.67263 + 13.3132i −0.307572 + 0.423336i
\(990\) 0 0
\(991\) 1.59055 3.12163i 0.0505254 0.0991618i −0.864363 0.502868i \(-0.832278\pi\)
0.914889 + 0.403706i \(0.132278\pi\)
\(992\) 0.619452 + 0.852603i 0.0196676 + 0.0270702i
\(993\) 0 0
\(994\) −11.1566 + 8.10572i −0.353865 + 0.257098i
\(995\) −16.5170 2.61603i −0.523623 0.0829338i
\(996\) 0 0
\(997\) 39.2812 20.0148i 1.24405 0.633875i 0.296974 0.954886i \(-0.404023\pi\)
0.947075 + 0.321011i \(0.104023\pi\)
\(998\) 27.5337 27.5337i 0.871564 0.871564i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.u.f.595.4 32
3.2 odd 2 246.2.n.b.103.1 yes 32
41.2 even 20 inner 738.2.u.f.289.4 32
123.2 odd 20 246.2.n.b.43.1 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
246.2.n.b.43.1 32 123.2 odd 20
246.2.n.b.103.1 yes 32 3.2 odd 2
738.2.u.f.289.4 32 41.2 even 20 inner
738.2.u.f.595.4 32 1.1 even 1 trivial