Properties

Label 738.2.ba.c.593.4
Level $738$
Weight $2$
Character 738.593
Analytic conductor $5.893$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(17,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,0,0,0,-4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(4\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 593.4
Character \(\chi\) \(=\) 738.593
Dual form 738.2.ba.c.341.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.453990 - 0.891007i) q^{2} +(-0.587785 + 0.809017i) q^{4} +(0.411110 + 2.59565i) q^{5} +(-2.04814 + 1.74928i) q^{7} +(0.987688 + 0.156434i) q^{8} +(2.12610 - 1.54470i) q^{10} +(-3.44367 - 2.11028i) q^{11} +(2.15705 - 0.169764i) q^{13} +(2.48846 + 1.03075i) q^{14} +(-0.309017 - 0.951057i) q^{16} +(-7.35167 + 1.76498i) q^{17} +(0.291559 + 0.0229462i) q^{19} +(-2.34157 - 1.19309i) q^{20} +(-0.316883 + 4.02638i) q^{22} +(2.52027 - 7.75659i) q^{23} +(-1.81310 + 0.589111i) q^{25} +(-1.13054 - 1.84488i) q^{26} +(-0.211328 - 2.68518i) q^{28} +(-9.65226 - 2.31730i) q^{29} +(1.82426 + 2.51087i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(4.91020 + 5.74911i) q^{34} +(-5.38252 - 4.59711i) q^{35} +(-9.31688 - 6.76911i) q^{37} +(-0.111920 - 0.270198i) q^{38} +2.62800i q^{40} +(-6.36190 + 0.725419i) q^{41} +(6.30064 - 3.21034i) q^{43} +(3.73139 - 1.54559i) q^{44} +(-8.05535 + 1.27584i) q^{46} +(-2.06577 + 2.41870i) q^{47} +(0.0398687 - 0.251721i) q^{49} +(1.34803 + 1.34803i) q^{50} +(-1.13054 + 1.84488i) q^{52} +(-1.45943 + 6.07895i) q^{53} +(4.06182 - 9.80611i) q^{55} +(-2.29657 + 1.40734i) q^{56} +(2.31730 + 9.65226i) q^{58} +(13.6035 + 4.42003i) q^{59} +(-3.72390 + 7.30856i) q^{61} +(1.40901 - 2.76534i) q^{62} +(0.951057 + 0.309017i) q^{64} +(1.32743 + 5.52916i) q^{65} +(-7.36261 + 4.51182i) q^{67} +(2.89331 - 6.98506i) q^{68} +(-1.65244 + 6.88291i) q^{70} +(1.47588 - 2.40842i) q^{71} +(7.65081 + 7.65081i) q^{73} +(-1.80155 + 11.3745i) q^{74} +(-0.189938 + 0.222389i) q^{76} +(10.7446 - 1.70178i) q^{77} +(-7.24823 + 3.00231i) q^{79} +(2.34157 - 1.19309i) q^{80} +(3.53459 + 5.33916i) q^{82} +8.81543i q^{83} +(-7.60362 - 18.3568i) q^{85} +(-5.72086 - 4.15645i) q^{86} +(-3.07115 - 2.62301i) q^{88} +(-4.75921 - 5.57232i) q^{89} +(-4.12099 + 4.12099i) q^{91} +(4.79384 + 6.59815i) q^{92} +(3.09292 + 0.742544i) q^{94} +(0.0603026 + 0.766218i) q^{95} +(-0.338102 - 0.551732i) q^{97} +(-0.242385 + 0.0787557i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 4 q^{7} - 8 q^{11} + 16 q^{13} + 4 q^{14} + 16 q^{16} - 16 q^{17} + 4 q^{19} - 4 q^{22} + 48 q^{23} + 40 q^{25} - 20 q^{26} + 4 q^{28} + 4 q^{29} + 40 q^{31} + 4 q^{34} - 52 q^{35} + 8 q^{37} + 16 q^{38}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{9}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.453990 0.891007i −0.321020 0.630037i
\(3\) 0 0
\(4\) −0.587785 + 0.809017i −0.293893 + 0.404508i
\(5\) 0.411110 + 2.59565i 0.183854 + 1.16081i 0.891088 + 0.453830i \(0.149943\pi\)
−0.707234 + 0.706979i \(0.750057\pi\)
\(6\) 0 0
\(7\) −2.04814 + 1.74928i −0.774125 + 0.661165i −0.946078 0.323940i \(-0.894992\pi\)
0.171953 + 0.985105i \(0.444992\pi\)
\(8\) 0.987688 + 0.156434i 0.349201 + 0.0553079i
\(9\) 0 0
\(10\) 2.12610 1.54470i 0.672332 0.488478i
\(11\) −3.44367 2.11028i −1.03830 0.636274i −0.104672 0.994507i \(-0.533379\pi\)
−0.933632 + 0.358233i \(0.883379\pi\)
\(12\) 0 0
\(13\) 2.15705 0.169764i 0.598259 0.0470840i 0.224285 0.974523i \(-0.427995\pi\)
0.373973 + 0.927439i \(0.377995\pi\)
\(14\) 2.48846 + 1.03075i 0.665068 + 0.275480i
\(15\) 0 0
\(16\) −0.309017 0.951057i −0.0772542 0.237764i
\(17\) −7.35167 + 1.76498i −1.78304 + 0.428071i −0.984718 0.174156i \(-0.944280\pi\)
−0.798325 + 0.602227i \(0.794280\pi\)
\(18\) 0 0
\(19\) 0.291559 + 0.0229462i 0.0668882 + 0.00526421i 0.111859 0.993724i \(-0.464319\pi\)
−0.0449708 + 0.998988i \(0.514319\pi\)
\(20\) −2.34157 1.19309i −0.523591 0.266783i
\(21\) 0 0
\(22\) −0.316883 + 4.02638i −0.0675596 + 0.858426i
\(23\) 2.52027 7.75659i 0.525512 1.61736i −0.237788 0.971317i \(-0.576422\pi\)
0.763300 0.646044i \(-0.223578\pi\)
\(24\) 0 0
\(25\) −1.81310 + 0.589111i −0.362619 + 0.117822i
\(26\) −1.13054 1.84488i −0.221718 0.361810i
\(27\) 0 0
\(28\) −0.211328 2.68518i −0.0399373 0.507452i
\(29\) −9.65226 2.31730i −1.79238 0.430312i −0.805611 0.592445i \(-0.798163\pi\)
−0.986769 + 0.162133i \(0.948163\pi\)
\(30\) 0 0
\(31\) 1.82426 + 2.51087i 0.327646 + 0.450966i 0.940782 0.339011i \(-0.110092\pi\)
−0.613136 + 0.789977i \(0.710092\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) 0 0
\(34\) 4.91020 + 5.74911i 0.842092 + 0.985963i
\(35\) −5.38252 4.59711i −0.909813 0.777053i
\(36\) 0 0
\(37\) −9.31688 6.76911i −1.53169 1.11283i −0.955293 0.295662i \(-0.904460\pi\)
−0.576393 0.817173i \(-0.695540\pi\)
\(38\) −0.111920 0.270198i −0.0181558 0.0438319i
\(39\) 0 0
\(40\) 2.62800i 0.415524i
\(41\) −6.36190 + 0.725419i −0.993562 + 0.113291i
\(42\) 0 0
\(43\) 6.30064 3.21034i 0.960839 0.489572i 0.0980751 0.995179i \(-0.468731\pi\)
0.862764 + 0.505607i \(0.168731\pi\)
\(44\) 3.73139 1.54559i 0.562528 0.233007i
\(45\) 0 0
\(46\) −8.05535 + 1.27584i −1.18770 + 0.188113i
\(47\) −2.06577 + 2.41870i −0.301323 + 0.352804i −0.890323 0.455329i \(-0.849522\pi\)
0.589000 + 0.808133i \(0.299522\pi\)
\(48\) 0 0
\(49\) 0.0398687 0.251721i 0.00569553 0.0359602i
\(50\) 1.34803 + 1.34803i 0.190640 + 0.190640i
\(51\) 0 0
\(52\) −1.13054 + 1.84488i −0.156778 + 0.255838i
\(53\) −1.45943 + 6.07895i −0.200468 + 0.835008i 0.777942 + 0.628336i \(0.216264\pi\)
−0.978410 + 0.206673i \(0.933736\pi\)
\(54\) 0 0
\(55\) 4.06182 9.80611i 0.547696 1.32226i
\(56\) −2.29657 + 1.40734i −0.306892 + 0.188064i
\(57\) 0 0
\(58\) 2.31730 + 9.65226i 0.304277 + 1.26740i
\(59\) 13.6035 + 4.42003i 1.77102 + 0.575439i 0.998244 0.0592414i \(-0.0188682\pi\)
0.772775 + 0.634680i \(0.218868\pi\)
\(60\) 0 0
\(61\) −3.72390 + 7.30856i −0.476796 + 0.935765i 0.519875 + 0.854242i \(0.325978\pi\)
−0.996671 + 0.0815229i \(0.974022\pi\)
\(62\) 1.40901 2.76534i 0.178944 0.351198i
\(63\) 0 0
\(64\) 0.951057 + 0.309017i 0.118882 + 0.0386271i
\(65\) 1.32743 + 5.52916i 0.164648 + 0.685808i
\(66\) 0 0
\(67\) −7.36261 + 4.51182i −0.899486 + 0.551206i −0.893644 0.448777i \(-0.851860\pi\)
−0.00584265 + 0.999983i \(0.501860\pi\)
\(68\) 2.89331 6.98506i 0.350865 0.847063i
\(69\) 0 0
\(70\) −1.65244 + 6.88291i −0.197504 + 0.822665i
\(71\) 1.47588 2.40842i 0.175155 0.285827i −0.753000 0.658020i \(-0.771394\pi\)
0.928155 + 0.372193i \(0.121394\pi\)
\(72\) 0 0
\(73\) 7.65081 + 7.65081i 0.895460 + 0.895460i 0.995030 0.0995706i \(-0.0317469\pi\)
−0.0995706 + 0.995030i \(0.531747\pi\)
\(74\) −1.80155 + 11.3745i −0.209425 + 1.32226i
\(75\) 0 0
\(76\) −0.189938 + 0.222389i −0.0217874 + 0.0255097i
\(77\) 10.7446 1.70178i 1.22446 0.193935i
\(78\) 0 0
\(79\) −7.24823 + 3.00231i −0.815489 + 0.337787i −0.751142 0.660141i \(-0.770497\pi\)
−0.0643474 + 0.997928i \(0.520497\pi\)
\(80\) 2.34157 1.19309i 0.261795 0.133391i
\(81\) 0 0
\(82\) 3.53459 + 5.33916i 0.390331 + 0.589612i
\(83\) 8.81543i 0.967619i 0.875173 + 0.483810i \(0.160747\pi\)
−0.875173 + 0.483810i \(0.839253\pi\)
\(84\) 0 0
\(85\) −7.60362 18.3568i −0.824728 1.99107i
\(86\) −5.72086 4.15645i −0.616897 0.448202i
\(87\) 0 0
\(88\) −3.07115 2.62301i −0.327386 0.279614i
\(89\) −4.75921 5.57232i −0.504476 0.590665i 0.448473 0.893796i \(-0.351968\pi\)
−0.952949 + 0.303131i \(0.901968\pi\)
\(90\) 0 0
\(91\) −4.12099 + 4.12099i −0.431997 + 0.431997i
\(92\) 4.79384 + 6.59815i 0.499792 + 0.687905i
\(93\) 0 0
\(94\) 3.09292 + 0.742544i 0.319010 + 0.0765876i
\(95\) 0.0603026 + 0.766218i 0.00618692 + 0.0786123i
\(96\) 0 0
\(97\) −0.338102 0.551732i −0.0343291 0.0560199i 0.835015 0.550227i \(-0.185459\pi\)
−0.869344 + 0.494207i \(0.835459\pi\)
\(98\) −0.242385 + 0.0787557i −0.0244846 + 0.00795553i
\(99\) 0 0
\(100\) 0.589111 1.81310i 0.0589111 0.181310i
\(101\) 0.0587329 0.746272i 0.00584414 0.0742569i −0.993304 0.115533i \(-0.963142\pi\)
0.999148 + 0.0412762i \(0.0131424\pi\)
\(102\) 0 0
\(103\) −1.30320 0.664013i −0.128408 0.0654272i 0.388606 0.921404i \(-0.372957\pi\)
−0.517014 + 0.855977i \(0.672957\pi\)
\(104\) 2.15705 + 0.169764i 0.211516 + 0.0166467i
\(105\) 0 0
\(106\) 6.07895 1.45943i 0.590440 0.141752i
\(107\) −0.0855603 0.263328i −0.00827143 0.0254568i 0.946836 0.321718i \(-0.104260\pi\)
−0.955107 + 0.296261i \(0.904260\pi\)
\(108\) 0 0
\(109\) −4.00305 1.65812i −0.383423 0.158819i 0.182642 0.983179i \(-0.441535\pi\)
−0.566065 + 0.824360i \(0.691535\pi\)
\(110\) −10.5813 + 0.832769i −1.00889 + 0.0794014i
\(111\) 0 0
\(112\) 2.29657 + 1.40734i 0.217006 + 0.132981i
\(113\) −4.19219 + 3.04580i −0.394368 + 0.286525i −0.767243 0.641356i \(-0.778372\pi\)
0.372875 + 0.927882i \(0.378372\pi\)
\(114\) 0 0
\(115\) 21.1695 + 3.35292i 1.97407 + 0.312661i
\(116\) 7.54819 6.44677i 0.700832 0.598567i
\(117\) 0 0
\(118\) −2.23756 14.1274i −0.205984 1.30053i
\(119\) 11.9698 16.4751i 1.09727 1.51027i
\(120\) 0 0
\(121\) 2.41165 + 4.73314i 0.219241 + 0.430285i
\(122\) 8.20259 0.742627
\(123\) 0 0
\(124\) −3.10361 −0.278712
\(125\) 3.69094 + 7.24387i 0.330127 + 0.647911i
\(126\) 0 0
\(127\) −0.545165 + 0.750355i −0.0483755 + 0.0665832i −0.832519 0.553996i \(-0.813102\pi\)
0.784144 + 0.620579i \(0.213102\pi\)
\(128\) −0.156434 0.987688i −0.0138270 0.0873001i
\(129\) 0 0
\(130\) 4.32387 3.69294i 0.379229 0.323892i
\(131\) −12.9212 2.04652i −1.12893 0.178805i −0.436095 0.899901i \(-0.643639\pi\)
−0.692836 + 0.721096i \(0.743639\pi\)
\(132\) 0 0
\(133\) −0.637293 + 0.463021i −0.0552603 + 0.0401490i
\(134\) 7.36261 + 4.51182i 0.636033 + 0.389762i
\(135\) 0 0
\(136\) −7.53727 + 0.593196i −0.646315 + 0.0508661i
\(137\) 11.1562 + 4.62106i 0.953140 + 0.394804i 0.804410 0.594074i \(-0.202481\pi\)
0.148730 + 0.988878i \(0.452481\pi\)
\(138\) 0 0
\(139\) −1.89325 5.82684i −0.160584 0.494226i 0.838100 0.545516i \(-0.183666\pi\)
−0.998684 + 0.0512908i \(0.983666\pi\)
\(140\) 6.88291 1.65244i 0.581712 0.139657i
\(141\) 0 0
\(142\) −2.81596 0.221621i −0.236310 0.0185980i
\(143\) −7.78642 3.96738i −0.651133 0.331769i
\(144\) 0 0
\(145\) 2.04676 26.0065i 0.169974 2.15973i
\(146\) 3.34353 10.2903i 0.276712 0.851633i
\(147\) 0 0
\(148\) 10.9526 3.55873i 0.900302 0.292526i
\(149\) 10.3624 + 16.9098i 0.848917 + 1.38531i 0.921677 + 0.387957i \(0.126819\pi\)
−0.0727606 + 0.997349i \(0.523181\pi\)
\(150\) 0 0
\(151\) −0.0644208 0.818544i −0.00524249 0.0666122i 0.993740 0.111721i \(-0.0356364\pi\)
−0.998982 + 0.0451092i \(0.985636\pi\)
\(152\) 0.284380 + 0.0682735i 0.0230662 + 0.00553771i
\(153\) 0 0
\(154\) −6.39423 8.80091i −0.515262 0.709197i
\(155\) −5.76737 + 5.76737i −0.463247 + 0.463247i
\(156\) 0 0
\(157\) −1.15620 1.35373i −0.0922747 0.108040i 0.712347 0.701827i \(-0.247632\pi\)
−0.804622 + 0.593787i \(0.797632\pi\)
\(158\) 5.96571 + 5.09520i 0.474606 + 0.405352i
\(159\) 0 0
\(160\) −2.12610 1.54470i −0.168083 0.122119i
\(161\) 8.40657 + 20.2953i 0.662530 + 1.59949i
\(162\) 0 0
\(163\) 22.2882i 1.74574i −0.487949 0.872872i \(-0.662255\pi\)
0.487949 0.872872i \(-0.337745\pi\)
\(164\) 3.15255 5.57328i 0.246173 0.435200i
\(165\) 0 0
\(166\) 7.85461 4.00212i 0.609636 0.310625i
\(167\) −12.4756 + 5.16757i −0.965392 + 0.399878i −0.808995 0.587816i \(-0.799988\pi\)
−0.156397 + 0.987694i \(0.549988\pi\)
\(168\) 0 0
\(169\) −8.21589 + 1.30127i −0.631992 + 0.100098i
\(170\) −12.9040 + 15.1087i −0.989693 + 1.15878i
\(171\) 0 0
\(172\) −1.10621 + 6.98432i −0.0843475 + 0.532549i
\(173\) −7.68491 7.68491i −0.584273 0.584273i 0.351802 0.936075i \(-0.385569\pi\)
−0.936075 + 0.351802i \(0.885569\pi\)
\(174\) 0 0
\(175\) 2.68296 4.37819i 0.202813 0.330960i
\(176\) −0.942845 + 3.92723i −0.0710697 + 0.296026i
\(177\) 0 0
\(178\) −2.80434 + 6.77027i −0.210194 + 0.507453i
\(179\) −5.31468 + 3.25684i −0.397238 + 0.243428i −0.706743 0.707470i \(-0.749836\pi\)
0.309505 + 0.950898i \(0.399836\pi\)
\(180\) 0 0
\(181\) 3.84904 + 16.0324i 0.286097 + 1.19168i 0.911474 + 0.411357i \(0.134945\pi\)
−0.625377 + 0.780322i \(0.715055\pi\)
\(182\) 5.54271 + 1.80094i 0.410853 + 0.133494i
\(183\) 0 0
\(184\) 3.70264 7.26684i 0.272962 0.535718i
\(185\) 13.7400 26.9662i 1.01018 1.98259i
\(186\) 0 0
\(187\) 29.0413 + 9.43610i 2.12371 + 0.690036i
\(188\) −0.742544 3.09292i −0.0541556 0.225574i
\(189\) 0 0
\(190\) 0.655328 0.401586i 0.0475425 0.0291341i
\(191\) 10.1152 24.4203i 0.731912 1.76699i 0.0957913 0.995401i \(-0.469462\pi\)
0.636120 0.771590i \(-0.280538\pi\)
\(192\) 0 0
\(193\) 3.02930 12.6179i 0.218054 0.908258i −0.750781 0.660551i \(-0.770323\pi\)
0.968835 0.247707i \(-0.0796772\pi\)
\(194\) −0.338102 + 0.551732i −0.0242743 + 0.0396121i
\(195\) 0 0
\(196\) 0.180212 + 0.180212i 0.0128723 + 0.0128723i
\(197\) 2.76967 17.4870i 0.197331 1.24590i −0.667797 0.744344i \(-0.732762\pi\)
0.865127 0.501552i \(-0.167238\pi\)
\(198\) 0 0
\(199\) −4.69318 + 5.49500i −0.332690 + 0.389530i −0.901385 0.433018i \(-0.857449\pi\)
0.568695 + 0.822549i \(0.307449\pi\)
\(200\) −1.88293 + 0.298227i −0.133143 + 0.0210878i
\(201\) 0 0
\(202\) −0.691598 + 0.286469i −0.0486606 + 0.0201559i
\(203\) 23.8228 12.1383i 1.67203 0.851943i
\(204\) 0 0
\(205\) −4.49837 16.2150i −0.314180 1.13251i
\(206\) 1.46261i 0.101905i
\(207\) 0 0
\(208\) −0.828021 1.99902i −0.0574129 0.138607i
\(209\) −0.955609 0.694290i −0.0661008 0.0480251i
\(210\) 0 0
\(211\) 13.9118 + 11.8818i 0.957725 + 0.817974i 0.983355 0.181697i \(-0.0581591\pi\)
−0.0256296 + 0.999672i \(0.508159\pi\)
\(212\) −4.06015 4.75382i −0.278852 0.326494i
\(213\) 0 0
\(214\) −0.195783 + 0.195783i −0.0133835 + 0.0133835i
\(215\) 10.9232 + 15.0344i 0.744954 + 1.02534i
\(216\) 0 0
\(217\) −8.12855 1.95149i −0.551802 0.132476i
\(218\) 0.339953 + 4.31952i 0.0230245 + 0.292554i
\(219\) 0 0
\(220\) 5.54583 + 9.04997i 0.373900 + 0.610149i
\(221\) −15.5583 + 5.05520i −1.04657 + 0.340050i
\(222\) 0 0
\(223\) −1.13493 + 3.49295i −0.0760003 + 0.233905i −0.981838 0.189719i \(-0.939242\pi\)
0.905838 + 0.423624i \(0.139242\pi\)
\(224\) 0.211328 2.68518i 0.0141200 0.179411i
\(225\) 0 0
\(226\) 4.61705 + 2.35250i 0.307121 + 0.156486i
\(227\) 14.3286 + 1.12769i 0.951023 + 0.0748471i 0.544470 0.838780i \(-0.316731\pi\)
0.406553 + 0.913627i \(0.366731\pi\)
\(228\) 0 0
\(229\) 1.70910 0.410319i 0.112941 0.0271147i −0.176581 0.984286i \(-0.556504\pi\)
0.289522 + 0.957171i \(0.406504\pi\)
\(230\) −6.62328 20.3844i −0.436726 1.34410i
\(231\) 0 0
\(232\) −9.17092 3.79872i −0.602100 0.249398i
\(233\) −5.26722 + 0.414539i −0.345067 + 0.0271574i −0.249809 0.968295i \(-0.580368\pi\)
−0.0952584 + 0.995453i \(0.530368\pi\)
\(234\) 0 0
\(235\) −7.12736 4.36765i −0.464938 0.284914i
\(236\) −11.5718 + 8.40740i −0.753259 + 0.547275i
\(237\) 0 0
\(238\) −20.1136 3.18568i −1.30377 0.206497i
\(239\) −19.1656 + 16.3690i −1.23972 + 1.05882i −0.243688 + 0.969854i \(0.578357\pi\)
−0.996034 + 0.0889695i \(0.971643\pi\)
\(240\) 0 0
\(241\) 2.98875 + 18.8702i 0.192522 + 1.21554i 0.874814 + 0.484459i \(0.160984\pi\)
−0.682291 + 0.731080i \(0.739016\pi\)
\(242\) 3.12239 4.29760i 0.200715 0.276260i
\(243\) 0 0
\(244\) −3.72390 7.30856i −0.238398 0.467883i
\(245\) 0.669770 0.0427900
\(246\) 0 0
\(247\) 0.632803 0.0402643
\(248\) 1.40901 + 2.76534i 0.0894722 + 0.175599i
\(249\) 0 0
\(250\) 4.77868 6.57729i 0.302231 0.415985i
\(251\) 1.61404 + 10.1906i 0.101877 + 0.643228i 0.984798 + 0.173705i \(0.0555740\pi\)
−0.882920 + 0.469523i \(0.844426\pi\)
\(252\) 0 0
\(253\) −25.0476 + 21.3926i −1.57473 + 1.34494i
\(254\) 0.916070 + 0.145091i 0.0574794 + 0.00910384i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) 13.9754 + 8.56416i 0.871764 + 0.534217i 0.884945 0.465696i \(-0.154196\pi\)
−0.0131813 + 0.999913i \(0.504196\pi\)
\(258\) 0 0
\(259\) 30.9233 2.43372i 1.92148 0.151224i
\(260\) −5.25343 2.17604i −0.325804 0.134952i
\(261\) 0 0
\(262\) 4.04264 + 12.4420i 0.249755 + 0.768668i
\(263\) −0.123456 + 0.0296391i −0.00761261 + 0.00182763i −0.237250 0.971449i \(-0.576246\pi\)
0.229637 + 0.973276i \(0.426246\pi\)
\(264\) 0 0
\(265\) −16.3788 1.28904i −1.00614 0.0791851i
\(266\) 0.701879 + 0.357625i 0.0430350 + 0.0219274i
\(267\) 0 0
\(268\) 0.677500 8.60846i 0.0413849 0.525845i
\(269\) −3.61629 + 11.1298i −0.220489 + 0.678595i 0.778229 + 0.627980i \(0.216118\pi\)
−0.998718 + 0.0506150i \(0.983882\pi\)
\(270\) 0 0
\(271\) −17.5323 + 5.69659i −1.06501 + 0.346043i −0.788543 0.614979i \(-0.789164\pi\)
−0.276469 + 0.961023i \(0.589164\pi\)
\(272\) 3.95039 + 6.44645i 0.239528 + 0.390873i
\(273\) 0 0
\(274\) −0.947425 12.0382i −0.0572361 0.727253i
\(275\) 7.48689 + 1.79744i 0.451477 + 0.108390i
\(276\) 0 0
\(277\) −9.95977 13.7084i −0.598425 0.823661i 0.397138 0.917759i \(-0.370003\pi\)
−0.995563 + 0.0940980i \(0.970003\pi\)
\(278\) −4.33223 + 4.33223i −0.259830 + 0.259830i
\(279\) 0 0
\(280\) −4.59711 5.38252i −0.274730 0.321667i
\(281\) 9.55436 + 8.16020i 0.569965 + 0.486796i 0.887096 0.461586i \(-0.152719\pi\)
−0.317130 + 0.948382i \(0.602719\pi\)
\(282\) 0 0
\(283\) 5.66033 + 4.11247i 0.336472 + 0.244461i 0.743172 0.669101i \(-0.233321\pi\)
−0.406700 + 0.913562i \(0.633321\pi\)
\(284\) 1.08095 + 2.60965i 0.0641427 + 0.154854i
\(285\) 0 0
\(286\) 8.73890i 0.516742i
\(287\) 11.7611 12.6145i 0.694237 0.744610i
\(288\) 0 0
\(289\) 35.7848 18.2333i 2.10499 1.07255i
\(290\) −24.1012 + 9.98305i −1.41527 + 0.586225i
\(291\) 0 0
\(292\) −10.6867 + 1.69260i −0.625390 + 0.0990521i
\(293\) 0.958456 1.12221i 0.0559936 0.0655601i −0.731702 0.681624i \(-0.761274\pi\)
0.787696 + 0.616064i \(0.211274\pi\)
\(294\) 0 0
\(295\) −5.88032 + 37.1269i −0.342366 + 2.16161i
\(296\) −8.14325 8.14325i −0.473317 0.473317i
\(297\) 0 0
\(298\) 10.3624 16.9098i 0.600275 0.979560i
\(299\) 4.11957 17.1592i 0.238241 0.992344i
\(300\) 0 0
\(301\) −7.28883 + 17.5968i −0.420121 + 1.01426i
\(302\) −0.700082 + 0.429011i −0.0402852 + 0.0246868i
\(303\) 0 0
\(304\) −0.0682735 0.284380i −0.00391576 0.0163103i
\(305\) −20.5014 6.66130i −1.17391 0.381425i
\(306\) 0 0
\(307\) 13.3000 26.1028i 0.759074 1.48977i −0.109382 0.994000i \(-0.534887\pi\)
0.868456 0.495767i \(-0.165113\pi\)
\(308\) −4.93874 + 9.69283i −0.281411 + 0.552300i
\(309\) 0 0
\(310\) 7.75710 + 2.52044i 0.440574 + 0.143151i
\(311\) 5.49882 + 22.9042i 0.311810 + 1.29878i 0.879642 + 0.475636i \(0.157782\pi\)
−0.567833 + 0.823144i \(0.692218\pi\)
\(312\) 0 0
\(313\) −22.4270 + 13.7433i −1.26765 + 0.776816i −0.983315 0.181909i \(-0.941772\pi\)
−0.284333 + 0.958725i \(0.591772\pi\)
\(314\) −0.681283 + 1.64476i −0.0384470 + 0.0928193i
\(315\) 0 0
\(316\) 1.83148 7.62865i 0.103029 0.429145i
\(317\) 8.00287 13.0595i 0.449486 0.733494i −0.544992 0.838441i \(-0.683467\pi\)
0.994478 + 0.104947i \(0.0334673\pi\)
\(318\) 0 0
\(319\) 28.3490 + 28.3490i 1.58724 + 1.58724i
\(320\) −0.411110 + 2.59565i −0.0229818 + 0.145101i
\(321\) 0 0
\(322\) 14.2667 16.7042i 0.795052 0.930886i
\(323\) −2.18395 + 0.345903i −0.121518 + 0.0192466i
\(324\) 0 0
\(325\) −3.81094 + 1.57854i −0.211393 + 0.0875617i
\(326\) −19.8589 + 10.1186i −1.09988 + 0.560418i
\(327\) 0 0
\(328\) −6.39705 0.278733i −0.353218 0.0153905i
\(329\) 8.56745i 0.472339i
\(330\) 0 0
\(331\) −0.441290 1.06537i −0.0242555 0.0585579i 0.911288 0.411770i \(-0.135089\pi\)
−0.935543 + 0.353212i \(0.885089\pi\)
\(332\) −7.13183 5.18158i −0.391410 0.284376i
\(333\) 0 0
\(334\) 10.2681 + 8.76982i 0.561848 + 0.479863i
\(335\) −14.7379 17.2559i −0.805219 0.942791i
\(336\) 0 0
\(337\) 1.11484 1.11484i 0.0607293 0.0607293i −0.676090 0.736819i \(-0.736327\pi\)
0.736819 + 0.676090i \(0.236327\pi\)
\(338\) 4.88938 + 6.72965i 0.265947 + 0.366045i
\(339\) 0 0
\(340\) 19.3202 + 4.63838i 1.04779 + 0.251551i
\(341\) −0.983480 12.4963i −0.0532585 0.676713i
\(342\) 0 0
\(343\) −9.49272 15.4907i −0.512559 0.836420i
\(344\) 6.72528 2.18518i 0.362603 0.117817i
\(345\) 0 0
\(346\) −3.35843 + 10.3362i −0.180550 + 0.555677i
\(347\) −0.477686 + 6.06957i −0.0256435 + 0.325832i 0.970694 + 0.240320i \(0.0772524\pi\)
−0.996337 + 0.0855115i \(0.972748\pi\)
\(348\) 0 0
\(349\) −9.52685 4.85417i −0.509961 0.259838i 0.180024 0.983662i \(-0.442383\pi\)
−0.689984 + 0.723824i \(0.742383\pi\)
\(350\) −5.11904 0.402877i −0.273624 0.0215347i
\(351\) 0 0
\(352\) 3.92723 0.942845i 0.209322 0.0502538i
\(353\) 0.710189 + 2.18574i 0.0377995 + 0.116335i 0.968176 0.250271i \(-0.0805197\pi\)
−0.930376 + 0.366606i \(0.880520\pi\)
\(354\) 0 0
\(355\) 6.85817 + 2.84075i 0.363994 + 0.150771i
\(356\) 7.30550 0.574955i 0.387191 0.0304726i
\(357\) 0 0
\(358\) 5.31468 + 3.25684i 0.280890 + 0.172129i
\(359\) 13.0904 9.51077i 0.690887 0.501959i −0.186064 0.982538i \(-0.559573\pi\)
0.876952 + 0.480579i \(0.159573\pi\)
\(360\) 0 0
\(361\) −18.6816 2.95887i −0.983242 0.155730i
\(362\) 12.5376 10.7081i 0.658959 0.562804i
\(363\) 0 0
\(364\) −0.911693 5.75620i −0.0477857 0.301707i
\(365\) −16.7135 + 23.0041i −0.874824 + 1.20409i
\(366\) 0 0
\(367\) −0.425604 0.835295i −0.0222163 0.0436020i 0.879632 0.475656i \(-0.157789\pi\)
−0.901848 + 0.432054i \(0.857789\pi\)
\(368\) −8.15576 −0.425149
\(369\) 0 0
\(370\) −30.2649 −1.57340
\(371\) −7.64467 15.0035i −0.396891 0.778943i
\(372\) 0 0
\(373\) −7.03781 + 9.68671i −0.364404 + 0.501559i −0.951369 0.308053i \(-0.900323\pi\)
0.586965 + 0.809612i \(0.300323\pi\)
\(374\) −4.77686 30.1599i −0.247006 1.55953i
\(375\) 0 0
\(376\) −2.41870 + 2.06577i −0.124735 + 0.106534i
\(377\) −21.2138 3.35994i −1.09257 0.173046i
\(378\) 0 0
\(379\) −8.90444 + 6.46945i −0.457390 + 0.332313i −0.792507 0.609863i \(-0.791224\pi\)
0.335116 + 0.942177i \(0.391224\pi\)
\(380\) −0.655328 0.401586i −0.0336176 0.0206009i
\(381\) 0 0
\(382\) −26.3509 + 2.07386i −1.34823 + 0.106108i
\(383\) −15.1623 6.28043i −0.774757 0.320915i −0.0399594 0.999201i \(-0.512723\pi\)
−0.734798 + 0.678286i \(0.762723\pi\)
\(384\) 0 0
\(385\) 8.83442 + 27.1896i 0.450244 + 1.38571i
\(386\) −12.6179 + 3.02930i −0.642236 + 0.154187i
\(387\) 0 0
\(388\) 0.645092 + 0.0507699i 0.0327496 + 0.00257745i
\(389\) 12.3580 + 6.29672i 0.626576 + 0.319256i 0.738289 0.674484i \(-0.235634\pi\)
−0.111714 + 0.993740i \(0.535634\pi\)
\(390\) 0 0
\(391\) −4.83796 + 61.4722i −0.244666 + 3.10878i
\(392\) 0.0787557 0.242385i 0.00397776 0.0122423i
\(393\) 0 0
\(394\) −16.8384 + 5.47114i −0.848307 + 0.275632i
\(395\) −10.7728 17.5796i −0.542037 0.884524i
\(396\) 0 0
\(397\) −0.541457 6.87986i −0.0271749 0.345290i −0.995442 0.0953715i \(-0.969596\pi\)
0.968267 0.249919i \(-0.0804039\pi\)
\(398\) 7.02674 + 1.68697i 0.352219 + 0.0845602i
\(399\) 0 0
\(400\) 1.12056 + 1.54231i 0.0560278 + 0.0771156i
\(401\) −12.3904 + 12.3904i −0.618747 + 0.618747i −0.945210 0.326463i \(-0.894143\pi\)
0.326463 + 0.945210i \(0.394143\pi\)
\(402\) 0 0
\(403\) 4.36127 + 5.10639i 0.217250 + 0.254368i
\(404\) 0.569225 + 0.486164i 0.0283200 + 0.0241876i
\(405\) 0 0
\(406\) −21.6307 15.7156i −1.07351 0.779952i
\(407\) 17.7995 + 42.9718i 0.882288 + 2.13003i
\(408\) 0 0
\(409\) 30.2969i 1.49809i 0.662521 + 0.749043i \(0.269486\pi\)
−0.662521 + 0.749043i \(0.730514\pi\)
\(410\) −12.4055 + 11.3695i −0.612663 + 0.561502i
\(411\) 0 0
\(412\) 1.30320 0.664013i 0.0642040 0.0327136i
\(413\) −35.5937 + 14.7434i −1.75145 + 0.725474i
\(414\) 0 0
\(415\) −22.8818 + 3.62412i −1.12322 + 0.177901i
\(416\) −1.40523 + 1.64531i −0.0688968 + 0.0806678i
\(417\) 0 0
\(418\) −0.184780 + 1.16665i −0.00903788 + 0.0570629i
\(419\) 6.24901 + 6.24901i 0.305284 + 0.305284i 0.843077 0.537793i \(-0.180742\pi\)
−0.537793 + 0.843077i \(0.680742\pi\)
\(420\) 0 0
\(421\) −9.50705 + 15.5141i −0.463345 + 0.756111i −0.995917 0.0902740i \(-0.971226\pi\)
0.532572 + 0.846385i \(0.321226\pi\)
\(422\) 4.27092 17.7897i 0.207905 0.865988i
\(423\) 0 0
\(424\) −2.39242 + 5.77581i −0.116186 + 0.280498i
\(425\) 12.2895 7.53103i 0.596130 0.365309i
\(426\) 0 0
\(427\) −5.15763 21.4831i −0.249595 1.03964i
\(428\) 0.263328 + 0.0855603i 0.0127284 + 0.00413572i
\(429\) 0 0
\(430\) 8.43678 16.5581i 0.406858 0.798503i
\(431\) 4.66652 9.15857i 0.224779 0.441153i −0.750883 0.660435i \(-0.770372\pi\)
0.975661 + 0.219283i \(0.0703717\pi\)
\(432\) 0 0
\(433\) −11.5578 3.75534i −0.555430 0.180470i 0.0178336 0.999841i \(-0.494323\pi\)
−0.573264 + 0.819371i \(0.694323\pi\)
\(434\) 1.95149 + 8.12855i 0.0936746 + 0.390183i
\(435\) 0 0
\(436\) 3.69438 2.26392i 0.176929 0.108422i
\(437\) 0.912791 2.20367i 0.0436647 0.105416i
\(438\) 0 0
\(439\) −5.38758 + 22.4409i −0.257135 + 1.07104i 0.683048 + 0.730374i \(0.260654\pi\)
−0.940183 + 0.340671i \(0.889346\pi\)
\(440\) 5.54583 9.04997i 0.264387 0.431440i
\(441\) 0 0
\(442\) 11.5675 + 11.5675i 0.550212 + 0.550212i
\(443\) 6.47659 40.8916i 0.307712 1.94282i −0.0247345 0.999694i \(-0.507874\pi\)
0.332446 0.943122i \(-0.392126\pi\)
\(444\) 0 0
\(445\) 12.5072 14.6441i 0.592900 0.694196i
\(446\) 3.62748 0.574537i 0.171766 0.0272051i
\(447\) 0 0
\(448\) −2.48846 + 1.03075i −0.117568 + 0.0486984i
\(449\) 15.8657 8.08398i 0.748749 0.381507i −0.0375971 0.999293i \(-0.511970\pi\)
0.786346 + 0.617786i \(0.211970\pi\)
\(450\) 0 0
\(451\) 23.4391 + 10.9273i 1.10370 + 0.514546i
\(452\) 5.18183i 0.243733i
\(453\) 0 0
\(454\) −5.50028 13.2788i −0.258141 0.623207i
\(455\) −12.3908 9.00245i −0.580890 0.422041i
\(456\) 0 0
\(457\) −0.706113 0.603077i −0.0330306 0.0282108i 0.632780 0.774332i \(-0.281914\pi\)
−0.665810 + 0.746121i \(0.731914\pi\)
\(458\) −1.14151 1.33654i −0.0533394 0.0624524i
\(459\) 0 0
\(460\) −15.1557 + 15.1557i −0.706637 + 0.706637i
\(461\) 6.20725 + 8.54354i 0.289100 + 0.397912i 0.928722 0.370778i \(-0.120909\pi\)
−0.639621 + 0.768690i \(0.720909\pi\)
\(462\) 0 0
\(463\) 26.0545 + 6.25514i 1.21086 + 0.290701i 0.788103 0.615544i \(-0.211064\pi\)
0.422754 + 0.906245i \(0.361064\pi\)
\(464\) 0.778827 + 9.89593i 0.0361561 + 0.459407i
\(465\) 0 0
\(466\) 2.76063 + 4.50493i 0.127883 + 0.208687i
\(467\) 2.39740 0.778962i 0.110938 0.0360461i −0.253022 0.967461i \(-0.581424\pi\)
0.363960 + 0.931415i \(0.381424\pi\)
\(468\) 0 0
\(469\) 7.18726 22.1201i 0.331877 1.02141i
\(470\) −0.655852 + 8.33340i −0.0302522 + 0.384391i
\(471\) 0 0
\(472\) 12.7445 + 6.49366i 0.586614 + 0.298895i
\(473\) −28.4720 2.24080i −1.30915 0.103032i
\(474\) 0 0
\(475\) −0.542142 + 0.130157i −0.0248752 + 0.00597201i
\(476\) 6.29291 + 19.3676i 0.288435 + 0.887712i
\(477\) 0 0
\(478\) 23.2859 + 9.64534i 1.06507 + 0.441168i
\(479\) −24.3350 + 1.91521i −1.11190 + 0.0875081i −0.621074 0.783752i \(-0.713303\pi\)
−0.490822 + 0.871260i \(0.663303\pi\)
\(480\) 0 0
\(481\) −21.2461 13.0197i −0.968741 0.593645i
\(482\) 15.4566 11.2299i 0.704031 0.511508i
\(483\) 0 0
\(484\) −5.24672 0.830999i −0.238487 0.0377727i
\(485\) 1.29311 1.10442i 0.0587169 0.0501490i
\(486\) 0 0
\(487\) −3.59456 22.6951i −0.162885 1.02841i −0.924721 0.380645i \(-0.875702\pi\)
0.761836 0.647769i \(-0.224298\pi\)
\(488\) −4.82136 + 6.63603i −0.218253 + 0.300399i
\(489\) 0 0
\(490\) −0.304069 0.596769i −0.0137364 0.0269593i
\(491\) −34.3959 −1.55226 −0.776132 0.630571i \(-0.782821\pi\)
−0.776132 + 0.630571i \(0.782821\pi\)
\(492\) 0 0
\(493\) 75.0503 3.38009
\(494\) −0.287287 0.563832i −0.0129256 0.0253680i
\(495\) 0 0
\(496\) 1.82426 2.51087i 0.0819115 0.112742i
\(497\) 1.19018 + 7.51452i 0.0533870 + 0.337072i
\(498\) 0 0
\(499\) −14.7860 + 12.6285i −0.661913 + 0.565327i −0.915665 0.401942i \(-0.868335\pi\)
0.253752 + 0.967269i \(0.418335\pi\)
\(500\) −8.02989 1.27181i −0.359108 0.0568771i
\(501\) 0 0
\(502\) 8.34717 6.06458i 0.372552 0.270675i
\(503\) 32.1033 + 19.6729i 1.43141 + 0.877171i 0.999692 0.0248355i \(-0.00790619\pi\)
0.431722 + 0.902007i \(0.357906\pi\)
\(504\) 0 0
\(505\) 1.96121 0.154350i 0.0872725 0.00686850i
\(506\) 30.4323 + 12.6055i 1.35288 + 0.560382i
\(507\) 0 0
\(508\) −0.286610 0.882095i −0.0127163 0.0391366i
\(509\) 18.2566 4.38301i 0.809208 0.194274i 0.192328 0.981331i \(-0.438396\pi\)
0.616880 + 0.787057i \(0.288396\pi\)
\(510\) 0 0
\(511\) −29.0533 2.28655i −1.28524 0.101151i
\(512\) 0.891007 + 0.453990i 0.0393773 + 0.0200637i
\(513\) 0 0
\(514\) 1.28601 16.3402i 0.0567233 0.720738i
\(515\) 1.18779 3.65563i 0.0523401 0.161086i
\(516\) 0 0
\(517\) 12.2180 3.96985i 0.537345 0.174594i
\(518\) −16.2074 26.4480i −0.712111 1.16206i
\(519\) 0 0
\(520\) 0.446140 + 5.66874i 0.0195645 + 0.248591i
\(521\) 18.7793 + 4.50851i 0.822735 + 0.197521i 0.622893 0.782307i \(-0.285957\pi\)
0.199842 + 0.979828i \(0.435957\pi\)
\(522\) 0 0
\(523\) 0.455406 + 0.626812i 0.0199135 + 0.0274086i 0.818858 0.573997i \(-0.194608\pi\)
−0.798944 + 0.601405i \(0.794608\pi\)
\(524\) 9.25056 9.25056i 0.404113 0.404113i
\(525\) 0 0
\(526\) 0.0824564 + 0.0965440i 0.00359527 + 0.00420952i
\(527\) −17.8430 15.2393i −0.777252 0.663836i
\(528\) 0 0
\(529\) −35.2056 25.5783i −1.53068 1.11210i
\(530\) 6.28728 + 15.1788i 0.273102 + 0.659327i
\(531\) 0 0
\(532\) 0.787738i 0.0341528i
\(533\) −13.5998 + 2.64479i −0.589073 + 0.114558i
\(534\) 0 0
\(535\) 0.648331 0.330341i 0.0280298 0.0142819i
\(536\) −7.97777 + 3.30450i −0.344587 + 0.142733i
\(537\) 0 0
\(538\) 11.5585 1.83068i 0.498321 0.0789263i
\(539\) −0.668497 + 0.782709i −0.0287942 + 0.0337137i
\(540\) 0 0
\(541\) 2.19238 13.8422i 0.0942580 0.595121i −0.894670 0.446727i \(-0.852590\pi\)
0.988928 0.148394i \(-0.0474105\pi\)
\(542\) 13.0352 + 13.0352i 0.559910 + 0.559910i
\(543\) 0 0
\(544\) 3.95039 6.44645i 0.169372 0.276389i
\(545\) 2.65820 11.0722i 0.113865 0.474280i
\(546\) 0 0
\(547\) 8.20502 19.8087i 0.350821 0.846957i −0.645698 0.763593i \(-0.723433\pi\)
0.996519 0.0833644i \(-0.0265666\pi\)
\(548\) −10.2960 + 6.30938i −0.439822 + 0.269523i
\(549\) 0 0
\(550\) −1.79744 7.48689i −0.0766433 0.319242i
\(551\) −2.76103 0.897113i −0.117624 0.0382183i
\(552\) 0 0
\(553\) 9.59351 18.8283i 0.407958 0.800662i
\(554\) −7.69267 + 15.0977i −0.326830 + 0.641441i
\(555\) 0 0
\(556\) 5.82684 + 1.89325i 0.247113 + 0.0802918i
\(557\) 5.82587 + 24.2665i 0.246850 + 1.02820i 0.948775 + 0.315953i \(0.102324\pi\)
−0.701925 + 0.712251i \(0.747676\pi\)
\(558\) 0 0
\(559\) 13.0458 7.99449i 0.551779 0.338131i
\(560\) −2.70882 + 6.53967i −0.114469 + 0.276351i
\(561\) 0 0
\(562\) 2.93320 12.2176i 0.123729 0.515370i
\(563\) 9.58790 15.6460i 0.404082 0.659402i −0.584275 0.811556i \(-0.698621\pi\)
0.988357 + 0.152154i \(0.0486210\pi\)
\(564\) 0 0
\(565\) −9.62929 9.62929i −0.405107 0.405107i
\(566\) 1.09450 6.91041i 0.0460054 0.290466i
\(567\) 0 0
\(568\) 1.83447 2.14789i 0.0769728 0.0901236i
\(569\) −28.1368 + 4.45644i −1.17956 + 0.186824i −0.715262 0.698857i \(-0.753692\pi\)
−0.464296 + 0.885680i \(0.653692\pi\)
\(570\) 0 0
\(571\) −0.515270 + 0.213432i −0.0215634 + 0.00893184i −0.393439 0.919351i \(-0.628715\pi\)
0.371876 + 0.928283i \(0.378715\pi\)
\(572\) 7.78642 3.96738i 0.325566 0.165884i
\(573\) 0 0
\(574\) −16.5790 4.75237i −0.691995 0.198360i
\(575\) 15.5482i 0.648404i
\(576\) 0 0
\(577\) −6.62099 15.9845i −0.275636 0.665443i 0.724070 0.689727i \(-0.242269\pi\)
−0.999705 + 0.0242839i \(0.992269\pi\)
\(578\) −32.4920 23.6068i −1.35149 0.981913i
\(579\) 0 0
\(580\) 19.8367 + 16.9421i 0.823673 + 0.703484i
\(581\) −15.4206 18.0553i −0.639756 0.749058i
\(582\) 0 0
\(583\) 17.8541 17.8541i 0.739441 0.739441i
\(584\) 6.35977 + 8.75347i 0.263169 + 0.362221i
\(585\) 0 0
\(586\) −1.43502 0.344519i −0.0592803 0.0142319i
\(587\) −1.47584 18.7523i −0.0609144 0.773991i −0.949195 0.314689i \(-0.898100\pi\)
0.888280 0.459302i \(-0.151900\pi\)
\(588\) 0 0
\(589\) 0.474263 + 0.773927i 0.0195417 + 0.0318891i
\(590\) 35.7499 11.6159i 1.47180 0.478217i
\(591\) 0 0
\(592\) −3.55873 + 10.9526i −0.146263 + 0.450151i
\(593\) 1.58282 20.1116i 0.0649984 0.825883i −0.874872 0.484353i \(-0.839055\pi\)
0.939871 0.341530i \(-0.110945\pi\)
\(594\) 0 0
\(595\) 47.6844 + 24.2964i 1.95487 + 0.996055i
\(596\) −19.7712 1.55602i −0.809859 0.0637373i
\(597\) 0 0
\(598\) −17.1592 + 4.11957i −0.701693 + 0.168462i
\(599\) 0.986618 + 3.03650i 0.0403121 + 0.124068i 0.969187 0.246325i \(-0.0792230\pi\)
−0.928875 + 0.370393i \(0.879223\pi\)
\(600\) 0 0
\(601\) 16.3212 + 6.76046i 0.665755 + 0.275765i 0.689858 0.723945i \(-0.257673\pi\)
−0.0241028 + 0.999709i \(0.507673\pi\)
\(602\) 18.9879 1.49438i 0.773890 0.0609065i
\(603\) 0 0
\(604\) 0.700082 + 0.429011i 0.0284859 + 0.0174562i
\(605\) −11.2941 + 8.20565i −0.459171 + 0.333607i
\(606\) 0 0
\(607\) −23.2793 3.68709i −0.944880 0.149654i −0.335062 0.942196i \(-0.608757\pi\)
−0.609818 + 0.792542i \(0.708757\pi\)
\(608\) −0.222389 + 0.189938i −0.00901905 + 0.00770300i
\(609\) 0 0
\(610\) 3.37217 + 21.2910i 0.136535 + 0.862049i
\(611\) −4.04536 + 5.56796i −0.163658 + 0.225256i
\(612\) 0 0
\(613\) 5.04719 + 9.90567i 0.203854 + 0.400086i 0.970187 0.242357i \(-0.0779206\pi\)
−0.766333 + 0.642444i \(0.777921\pi\)
\(614\) −29.2959 −1.18229
\(615\) 0 0
\(616\) 10.8785 0.438308
\(617\) 10.5642 + 20.7333i 0.425297 + 0.834693i 0.999868 + 0.0162382i \(0.00516901\pi\)
−0.574571 + 0.818455i \(0.694831\pi\)
\(618\) 0 0
\(619\) 13.1090 18.0430i 0.526895 0.725208i −0.459759 0.888044i \(-0.652064\pi\)
0.986653 + 0.162836i \(0.0520641\pi\)
\(620\) −1.27593 8.05588i −0.0512424 0.323532i
\(621\) 0 0
\(622\) 17.9114 15.2978i 0.718182 0.613386i
\(623\) 19.4951 + 3.08772i 0.781054 + 0.123707i
\(624\) 0 0
\(625\) −24.9967 + 18.1612i −0.999869 + 0.726447i
\(626\) 22.4270 + 13.7433i 0.896363 + 0.549292i
\(627\) 0 0
\(628\) 1.77479 0.139679i 0.0708219 0.00557380i
\(629\) 80.4420 + 33.3202i 3.20743 + 1.32856i
\(630\) 0 0
\(631\) −8.78118 27.0257i −0.349573 1.07588i −0.959090 0.283102i \(-0.908636\pi\)
0.609517 0.792773i \(-0.291364\pi\)
\(632\) −7.62865 + 1.83148i −0.303452 + 0.0728523i
\(633\) 0 0
\(634\) −15.2693 1.20172i −0.606422 0.0477265i
\(635\) −2.17178 1.10658i −0.0861844 0.0439132i
\(636\) 0 0
\(637\) 0.0432658 0.549744i 0.00171425 0.0217816i
\(638\) 12.3890 38.1293i 0.490484 1.50955i
\(639\) 0 0
\(640\) 2.49938 0.812098i 0.0987967 0.0321010i
\(641\) −2.28145 3.72300i −0.0901120 0.147049i 0.804408 0.594077i \(-0.202483\pi\)
−0.894520 + 0.447028i \(0.852483\pi\)
\(642\) 0 0
\(643\) −3.63906 46.2387i −0.143511 1.82348i −0.474966 0.880004i \(-0.657540\pi\)
0.331455 0.943471i \(-0.392460\pi\)
\(644\) −21.3605 5.12819i −0.841720 0.202079i
\(645\) 0 0
\(646\) 1.29969 + 1.78887i 0.0511357 + 0.0703823i
\(647\) −10.4124 + 10.4124i −0.409353 + 0.409353i −0.881513 0.472160i \(-0.843475\pi\)
0.472160 + 0.881513i \(0.343475\pi\)
\(648\) 0 0
\(649\) −37.5182 43.9282i −1.47272 1.72433i
\(650\) 3.13662 + 2.67893i 0.123028 + 0.105076i
\(651\) 0 0
\(652\) 18.0315 + 13.1007i 0.706168 + 0.513061i
\(653\) 5.62230 + 13.5734i 0.220017 + 0.531169i 0.994892 0.100946i \(-0.0321869\pi\)
−0.774874 + 0.632115i \(0.782187\pi\)
\(654\) 0 0
\(655\) 34.3802i 1.34335i
\(656\) 2.65585 + 5.82636i 0.103693 + 0.227481i
\(657\) 0 0
\(658\) −7.63365 + 3.88954i −0.297591 + 0.151630i
\(659\) 34.1544 14.1472i 1.33047 0.551097i 0.399678 0.916656i \(-0.369122\pi\)
0.930788 + 0.365559i \(0.119122\pi\)
\(660\) 0 0
\(661\) 29.2141 4.62706i 1.13630 0.179972i 0.440187 0.897906i \(-0.354912\pi\)
0.696111 + 0.717934i \(0.254912\pi\)
\(662\) −0.748908 + 0.876859i −0.0291071 + 0.0340801i
\(663\) 0 0
\(664\) −1.37904 + 8.70690i −0.0535170 + 0.337893i
\(665\) −1.46384 1.46384i −0.0567651 0.0567651i
\(666\) 0 0
\(667\) −42.3007 + 69.0284i −1.63789 + 2.67279i
\(668\) 3.15233 13.1304i 0.121967 0.508031i
\(669\) 0 0
\(670\) −8.68424 + 20.9656i −0.335502 + 0.809972i
\(671\) 28.2470 17.3098i 1.09046 0.668236i
\(672\) 0 0
\(673\) −4.83722 20.1485i −0.186461 0.776667i −0.984690 0.174313i \(-0.944230\pi\)
0.798229 0.602354i \(-0.205770\pi\)
\(674\) −1.49946 0.487204i −0.0577570 0.0187664i
\(675\) 0 0
\(676\) 3.77643 7.41166i 0.145247 0.285064i
\(677\) −1.59291 + 3.12627i −0.0612206 + 0.120152i −0.919589 0.392881i \(-0.871478\pi\)
0.858369 + 0.513033i \(0.171478\pi\)
\(678\) 0 0
\(679\) 1.65761 + 0.538591i 0.0636134 + 0.0206692i
\(680\) −4.63838 19.3202i −0.177874 0.740897i
\(681\) 0 0
\(682\) −10.6878 + 6.54949i −0.409257 + 0.250793i
\(683\) −3.66948 + 8.85892i −0.140409 + 0.338977i −0.978404 0.206700i \(-0.933728\pi\)
0.837995 + 0.545677i \(0.183728\pi\)
\(684\) 0 0
\(685\) −7.40820 + 30.8574i −0.283053 + 1.17900i
\(686\) −9.49272 + 15.4907i −0.362434 + 0.591438i
\(687\) 0 0
\(688\) −5.00022 5.00022i −0.190632 0.190632i
\(689\) −2.11608 + 13.3604i −0.0806161 + 0.508990i
\(690\) 0 0
\(691\) 11.8470 13.8711i 0.450682 0.527680i −0.487825 0.872941i \(-0.662210\pi\)
0.938507 + 0.345261i \(0.112210\pi\)
\(692\) 10.7343 1.70015i 0.408057 0.0646299i
\(693\) 0 0
\(694\) 5.62489 2.32991i 0.213518 0.0884420i
\(695\) 14.3461 7.30969i 0.544178 0.277272i
\(696\) 0 0
\(697\) 45.4903 16.5617i 1.72307 0.627318i
\(698\) 10.6922i 0.404707i
\(699\) 0 0
\(700\) 1.96503 + 4.74400i 0.0742711 + 0.179306i
\(701\) −27.5009 19.9806i −1.03869 0.754656i −0.0686641 0.997640i \(-0.521874\pi\)
−0.970030 + 0.242984i \(0.921874\pi\)
\(702\) 0 0
\(703\) −2.56109 2.18738i −0.0965935 0.0824986i
\(704\) −2.62301 3.07115i −0.0988583 0.115748i
\(705\) 0 0
\(706\) 1.62509 1.62509i 0.0611609 0.0611609i
\(707\) 1.18514 + 1.63121i 0.0445720 + 0.0613480i
\(708\) 0 0
\(709\) 28.9719 + 6.95554i 1.08806 + 0.261221i 0.737519 0.675326i \(-0.235997\pi\)
0.350543 + 0.936547i \(0.385997\pi\)
\(710\) −0.582420 7.40035i −0.0218578 0.277730i
\(711\) 0 0
\(712\) −3.82892 6.24822i −0.143495 0.234162i
\(713\) 24.0734 7.82193i 0.901557 0.292934i
\(714\) 0 0
\(715\) 7.09684 21.8418i 0.265407 0.816838i
\(716\) 0.489052 6.21399i 0.0182767 0.232228i
\(717\) 0 0
\(718\) −14.4171 7.34588i −0.538041 0.274146i
\(719\) 20.9193 + 1.64638i 0.780158 + 0.0613998i 0.462283 0.886733i \(-0.347031\pi\)
0.317876 + 0.948132i \(0.397031\pi\)
\(720\) 0 0
\(721\) 3.83068 0.919665i 0.142662 0.0342501i
\(722\) 5.84489 + 17.9887i 0.217524 + 0.669471i
\(723\) 0 0
\(724\) −15.2329 6.30967i −0.566126 0.234497i
\(725\) 18.8656 1.48476i 0.700652 0.0551425i
\(726\) 0 0
\(727\) −43.2632 26.5117i −1.60454 0.983266i −0.979195 0.202921i \(-0.934956\pi\)
−0.625349 0.780345i \(-0.715044\pi\)
\(728\) −4.71491 + 3.42558i −0.174746 + 0.126961i
\(729\) 0 0
\(730\) 28.0846 + 4.44817i 1.03946 + 0.164634i
\(731\) −40.6541 + 34.7219i −1.50365 + 1.28423i
\(732\) 0 0
\(733\) 0.119149 + 0.752277i 0.00440087 + 0.0277860i 0.989791 0.142526i \(-0.0455225\pi\)
−0.985390 + 0.170312i \(0.945522\pi\)
\(734\) −0.551033 + 0.758432i −0.0203390 + 0.0279942i
\(735\) 0 0
\(736\) 3.70264 + 7.26684i 0.136481 + 0.267859i
\(737\) 34.8756 1.28466
\(738\) 0 0
\(739\) −43.0010 −1.58182 −0.790909 0.611934i \(-0.790392\pi\)
−0.790909 + 0.611934i \(0.790392\pi\)
\(740\) 13.7400 + 26.9662i 0.505091 + 0.991297i
\(741\) 0 0
\(742\) −9.89761 + 13.6229i −0.363353 + 0.500112i
\(743\) 6.92282 + 43.7090i 0.253974 + 1.60353i 0.703792 + 0.710406i \(0.251489\pi\)
−0.449818 + 0.893120i \(0.648511\pi\)
\(744\) 0 0
\(745\) −39.6319 + 33.8488i −1.45200 + 1.24012i
\(746\) 11.8260 + 1.87306i 0.432981 + 0.0685775i
\(747\) 0 0
\(748\) −24.7040 + 17.9485i −0.903268 + 0.656263i
\(749\) 0.635873 + 0.389664i 0.0232343 + 0.0142380i
\(750\) 0 0
\(751\) −27.7937 + 2.18741i −1.01421 + 0.0798198i −0.574654 0.818397i \(-0.694863\pi\)
−0.439553 + 0.898217i \(0.644863\pi\)
\(752\) 2.93868 + 1.21724i 0.107163 + 0.0443882i
\(753\) 0 0
\(754\) 6.63715 + 20.4270i 0.241711 + 0.743909i
\(755\) 2.09817 0.503726i 0.0763602 0.0183325i
\(756\) 0 0
\(757\) 26.7404 + 2.10451i 0.971895 + 0.0764898i 0.554454 0.832214i \(-0.312927\pi\)
0.417441 + 0.908704i \(0.362927\pi\)
\(758\) 9.80685 + 4.99684i 0.356201 + 0.181493i
\(759\) 0 0
\(760\) −0.0603026 + 0.766218i −0.00218741 + 0.0277936i
\(761\) −5.23034 + 16.0973i −0.189600 + 0.583528i −0.999997 0.00235250i \(-0.999251\pi\)
0.810398 + 0.585880i \(0.199251\pi\)
\(762\) 0 0
\(763\) 11.0993 3.60639i 0.401823 0.130560i
\(764\) 13.8109 + 22.5373i 0.499660 + 0.815370i
\(765\) 0 0
\(766\) 1.28764 + 16.3610i 0.0465242 + 0.591145i
\(767\) 30.0937 + 7.22486i 1.08662 + 0.260875i
\(768\) 0 0
\(769\) 23.2609 + 32.0159i 0.838810 + 1.15452i 0.986219 + 0.165447i \(0.0529066\pi\)
−0.147409 + 0.989076i \(0.547093\pi\)
\(770\) 20.2153 20.2153i 0.728510 0.728510i
\(771\) 0 0
\(772\) 8.42754 + 9.86738i 0.303314 + 0.355135i
\(773\) −41.0554 35.0646i −1.47666 1.26119i −0.893685 0.448696i \(-0.851889\pi\)
−0.582975 0.812490i \(-0.698111\pi\)
\(774\) 0 0
\(775\) −4.78674 3.47777i −0.171945 0.124925i
\(776\) −0.247629 0.597830i −0.00888938 0.0214609i
\(777\) 0 0
\(778\) 13.8697i 0.497253i
\(779\) −1.87151 + 0.0655209i −0.0670539 + 0.00234753i
\(780\) 0 0
\(781\) −10.1649 + 5.17928i −0.363729 + 0.185329i
\(782\) 56.9685 23.5971i 2.03719 0.843831i
\(783\) 0 0
\(784\) −0.251721 + 0.0398687i −0.00899004 + 0.00142388i
\(785\) 3.03849 3.55762i 0.108448 0.126977i
\(786\) 0 0
\(787\) 6.93307 43.7737i 0.247137 1.56036i −0.482108 0.876112i \(-0.660129\pi\)
0.729245 0.684252i \(-0.239871\pi\)
\(788\) 12.5193 + 12.5193i 0.445982 + 0.445982i
\(789\) 0 0
\(790\) −10.7728 + 17.5796i −0.383278 + 0.625453i
\(791\) 3.25824 13.5715i 0.115850 0.482549i
\(792\) 0 0
\(793\) −6.79191 + 16.3971i −0.241188 + 0.582279i
\(794\) −5.88418 + 3.60583i −0.208822 + 0.127966i
\(795\) 0 0
\(796\) −1.68697 7.02674i −0.0597931 0.249056i
\(797\) −51.3119 16.6722i −1.81756 0.590561i −0.999889 0.0148760i \(-0.995265\pi\)
−0.817671 0.575685i \(-0.804735\pi\)
\(798\) 0 0
\(799\) 10.9179 21.4276i 0.386247 0.758052i
\(800\) 0.865489 1.69862i 0.0305997 0.0600552i
\(801\) 0 0
\(802\) 16.6651 + 5.41481i 0.588464 + 0.191203i
\(803\) −10.2015 42.4922i −0.360002 1.49952i
\(804\) 0 0
\(805\) −49.2233 + 30.1641i −1.73489 + 1.06314i
\(806\) 2.56985 6.20418i 0.0905192 0.218533i
\(807\) 0 0
\(808\) 0.174753 0.727897i 0.00614777 0.0256073i
\(809\) −20.0159 + 32.6630i −0.703722 + 1.14837i 0.278461 + 0.960447i \(0.410176\pi\)
−0.982184 + 0.187923i \(0.939824\pi\)
\(810\) 0 0
\(811\) 33.9812 + 33.9812i 1.19324 + 1.19324i 0.976152 + 0.217089i \(0.0696562\pi\)
0.217089 + 0.976152i \(0.430344\pi\)
\(812\) −4.18258 + 26.4078i −0.146780 + 0.926732i
\(813\) 0 0
\(814\) 30.2073 35.3683i 1.05877 1.23966i
\(815\) 57.8522 9.16290i 2.02648 0.320962i
\(816\) 0 0
\(817\) 1.91067 0.791427i 0.0668460 0.0276885i
\(818\) 26.9948 13.7545i 0.943850 0.480915i
\(819\) 0 0
\(820\) 15.7623 + 5.89169i 0.550444 + 0.205747i
\(821\) 7.25584i 0.253231i 0.991952 + 0.126615i \(0.0404114\pi\)
−0.991952 + 0.126615i \(0.959589\pi\)
\(822\) 0 0
\(823\) −11.4364 27.6099i −0.398647 0.962419i −0.987987 0.154534i \(-0.950612\pi\)
0.589340 0.807885i \(-0.299388\pi\)
\(824\) −1.18328 0.859703i −0.0412215 0.0299492i
\(825\) 0 0
\(826\) 29.2956 + 25.0208i 1.01933 + 0.870586i
\(827\) 10.6942 + 12.5212i 0.371872 + 0.435406i 0.914512 0.404559i \(-0.132575\pi\)
−0.542640 + 0.839966i \(0.682575\pi\)
\(828\) 0 0
\(829\) 0.288732 0.288732i 0.0100281 0.0100281i −0.702075 0.712103i \(-0.747743\pi\)
0.712103 + 0.702075i \(0.247743\pi\)
\(830\) 13.6172 + 18.7425i 0.472660 + 0.650561i
\(831\) 0 0
\(832\) 2.10394 + 0.505111i 0.0729410 + 0.0175116i
\(833\) 0.151181 + 1.92094i 0.00523812 + 0.0665566i
\(834\) 0 0
\(835\) −18.5420 30.2579i −0.641674 1.04712i
\(836\) 1.12339 0.365010i 0.0388531 0.0126241i
\(837\) 0 0
\(838\) 2.73092 8.40490i 0.0943380 0.290342i
\(839\) 2.80481 35.6385i 0.0968328 1.23038i −0.736050 0.676928i \(-0.763311\pi\)
0.832882 0.553450i \(-0.186689\pi\)
\(840\) 0 0
\(841\) 61.9571 + 31.5687i 2.13645 + 1.08858i
\(842\) 18.1393 + 1.42759i 0.625121 + 0.0491981i
\(843\) 0 0
\(844\) −17.7897 + 4.27092i −0.612346 + 0.147011i
\(845\) −6.75528 20.7906i −0.232389 0.715219i
\(846\) 0 0
\(847\) −13.2190 5.47548i −0.454210 0.188140i
\(848\) 6.23242 0.490502i 0.214022 0.0168439i
\(849\) 0 0
\(850\) −12.2895 7.53103i −0.421527 0.258312i
\(851\) −75.9863 + 55.2072i −2.60478 + 1.89248i
\(852\) 0 0
\(853\) −22.4784 3.56023i −0.769647 0.121900i −0.240751 0.970587i \(-0.577394\pi\)
−0.528896 + 0.848687i \(0.677394\pi\)
\(854\) −16.8001 + 14.3486i −0.574886 + 0.490999i
\(855\) 0 0
\(856\) −0.0433134 0.273470i −0.00148042 0.00934702i
\(857\) −17.6877 + 24.3450i −0.604200 + 0.831610i −0.996085 0.0884042i \(-0.971823\pi\)
0.391885 + 0.920014i \(0.371823\pi\)
\(858\) 0 0
\(859\) −6.55506 12.8650i −0.223656 0.438949i 0.751725 0.659477i \(-0.229222\pi\)
−0.975381 + 0.220527i \(0.929222\pi\)
\(860\) −18.5836 −0.633696
\(861\) 0 0
\(862\) −10.2789 −0.350101
\(863\) 21.4724 + 42.1419i 0.730928 + 1.43453i 0.894071 + 0.447925i \(0.147837\pi\)
−0.163143 + 0.986602i \(0.552163\pi\)
\(864\) 0 0
\(865\) 16.7880 23.1067i 0.570809 0.785651i
\(866\) 1.90108 + 12.0029i 0.0646012 + 0.407876i
\(867\) 0 0
\(868\) 6.35663 5.42908i 0.215758 0.184275i
\(869\) 31.2962 + 4.95683i 1.06165 + 0.168149i
\(870\) 0 0
\(871\) −15.1156 + 10.9821i −0.512173 + 0.372115i
\(872\) −3.69438 2.26392i −0.125108 0.0766660i
\(873\) 0 0
\(874\) −2.37788 + 0.187144i −0.0804332 + 0.00633023i
\(875\) −20.2311 8.38000i −0.683936 0.283296i
\(876\) 0 0
\(877\) −0.716220 2.20430i −0.0241850 0.0744339i 0.938236 0.345997i \(-0.112459\pi\)
−0.962421 + 0.271563i \(0.912459\pi\)
\(878\) 22.4409 5.38758i 0.757343 0.181822i
\(879\) 0 0
\(880\) −10.5813 0.832769i −0.356697 0.0280726i
\(881\) −43.5494 22.1895i −1.46722 0.747584i −0.475951 0.879472i \(-0.657896\pi\)
−0.991265 + 0.131888i \(0.957896\pi\)
\(882\) 0 0
\(883\) 3.06152 38.9003i 0.103028 1.30910i −0.700422 0.713729i \(-0.747005\pi\)
0.803450 0.595372i \(-0.202995\pi\)
\(884\) 5.05520 15.5583i 0.170025 0.523283i
\(885\) 0 0
\(886\) −39.3749 + 12.7937i −1.32283 + 0.429813i
\(887\) −0.751098 1.22568i −0.0252194 0.0411543i 0.839782 0.542924i \(-0.182683\pi\)
−0.865002 + 0.501769i \(0.832683\pi\)
\(888\) 0 0
\(889\) −0.196005 2.49048i −0.00657379 0.0835279i
\(890\) −18.7261 4.49575i −0.627702 0.150698i
\(891\) 0 0
\(892\) −2.15876 2.97128i −0.0722806 0.0994857i
\(893\) −0.657793 + 0.657793i −0.0220122 + 0.0220122i
\(894\) 0 0
\(895\) −10.6385 12.4561i −0.355607 0.416362i
\(896\) 2.04814 + 1.74928i 0.0684236 + 0.0584393i
\(897\) 0 0
\(898\) −14.4058 10.4664i −0.480726 0.349268i
\(899\) −11.7897 28.4630i −0.393210 0.949293i
\(900\) 0 0
\(901\) 47.2663i 1.57467i
\(902\) −0.904832 25.8453i −0.0301276 0.860554i
\(903\) 0 0
\(904\) −4.61705 + 2.35250i −0.153561 + 0.0782431i
\(905\) −40.0321 + 16.5818i −1.33071 + 0.551199i
\(906\) 0 0
\(907\) 7.43999 1.17838i 0.247041 0.0391274i −0.0316860 0.999498i \(-0.510088\pi\)
0.278727 + 0.960370i \(0.410088\pi\)
\(908\) −9.33446 + 10.9292i −0.309775 + 0.362700i
\(909\) 0 0
\(910\) −2.39593 + 15.1273i −0.0794244 + 0.501466i
\(911\) 20.1654 + 20.1654i 0.668111 + 0.668111i 0.957278 0.289168i \(-0.0933785\pi\)
−0.289168 + 0.957278i \(0.593379\pi\)
\(912\) 0 0
\(913\) 18.6030 30.3574i 0.615671 1.00468i
\(914\) −0.216777 + 0.902942i −0.00717035 + 0.0298667i
\(915\) 0 0
\(916\) −0.672630 + 1.62387i −0.0222243 + 0.0536543i
\(917\) 30.0444 18.4112i 0.992153 0.607992i
\(918\) 0 0
\(919\) 5.58281 + 23.2541i 0.184160 + 0.767081i 0.985612 + 0.169023i \(0.0540611\pi\)
−0.801452 + 0.598059i \(0.795939\pi\)
\(920\) 20.3844 + 6.62328i 0.672052 + 0.218363i
\(921\) 0 0
\(922\) 4.79432 9.40939i 0.157893 0.309882i
\(923\) 2.77470 5.44565i 0.0913302 0.179246i
\(924\) 0 0
\(925\) 20.8802 + 6.78438i 0.686536 + 0.223069i
\(926\) −6.25514 26.0545i −0.205557 0.856205i
\(927\) 0 0
\(928\) 8.46376 5.18660i 0.277837 0.170258i
\(929\) 10.3194 24.9132i 0.338569 0.817377i −0.659285 0.751893i \(-0.729141\pi\)
0.997854 0.0654839i \(-0.0208591\pi\)
\(930\) 0 0
\(931\) 0.0174001 0.0724767i 0.000570266 0.00237533i
\(932\) 2.76063 4.50493i 0.0904273 0.147564i
\(933\) 0 0
\(934\) −1.78246 1.78246i −0.0583238 0.0583238i
\(935\) −12.5536 + 79.2603i −0.410547 + 2.59209i
\(936\) 0 0
\(937\) −14.5044 + 16.9825i −0.473839 + 0.554794i −0.944922 0.327295i \(-0.893863\pi\)
0.471084 + 0.882089i \(0.343863\pi\)
\(938\) −22.9721 + 3.63842i −0.750066 + 0.118799i
\(939\) 0 0
\(940\) 7.72286 3.19891i 0.251892 0.104337i
\(941\) 1.12094 0.571146i 0.0365415 0.0186188i −0.435624 0.900129i \(-0.643472\pi\)
0.472166 + 0.881510i \(0.343472\pi\)
\(942\) 0 0
\(943\) −10.4069 + 51.1749i −0.338896 + 1.66648i
\(944\) 14.3035i 0.465540i
\(945\) 0 0
\(946\) 10.9295 + 26.3861i 0.355348 + 0.857885i
\(947\) −8.68100 6.30712i −0.282095 0.204954i 0.437736 0.899104i \(-0.355780\pi\)
−0.719831 + 0.694150i \(0.755780\pi\)
\(948\) 0 0
\(949\) 17.8020 + 15.2044i 0.577879 + 0.493555i
\(950\) 0.362098 + 0.423962i 0.0117480 + 0.0137552i
\(951\) 0 0
\(952\) 14.3997 14.3997i 0.466698 0.466698i
\(953\) −2.83088 3.89637i −0.0917013 0.126216i 0.760701 0.649102i \(-0.224855\pi\)
−0.852402 + 0.522886i \(0.824855\pi\)
\(954\) 0 0
\(955\) 67.5450 + 16.2161i 2.18570 + 0.524741i
\(956\) −1.97752 25.1268i −0.0639576 0.812659i
\(957\) 0 0
\(958\) 12.7543 + 20.8132i 0.412074 + 0.672443i
\(959\) −30.9330 + 10.0508i −0.998880 + 0.324556i
\(960\) 0 0
\(961\) 6.60295 20.3218i 0.212998 0.655542i
\(962\) −1.95505 + 24.8413i −0.0630333 + 0.800914i
\(963\) 0 0
\(964\) −17.0231 8.67370i −0.548277 0.279361i
\(965\) 33.9971 + 2.67563i 1.09440 + 0.0861315i
\(966\) 0 0
\(967\) −14.7889 + 3.55050i −0.475578 + 0.114176i −0.464147 0.885758i \(-0.653639\pi\)
−0.0114318 + 0.999935i \(0.503639\pi\)
\(968\) 1.64154 + 5.05213i 0.0527610 + 0.162382i
\(969\) 0 0
\(970\) −1.57110 0.650771i −0.0504450 0.0208950i
\(971\) −38.0444 + 2.99416i −1.22090 + 0.0960873i −0.672482 0.740114i \(-0.734772\pi\)
−0.548423 + 0.836201i \(0.684772\pi\)
\(972\) 0 0
\(973\) 14.0704 + 8.62236i 0.451077 + 0.276420i
\(974\) −18.5896 + 13.5061i −0.595650 + 0.432765i
\(975\) 0 0
\(976\) 8.10160 + 1.28317i 0.259326 + 0.0410732i
\(977\) 21.8772 18.6849i 0.699913 0.597782i −0.226626 0.973982i \(-0.572769\pi\)
0.926538 + 0.376200i \(0.122769\pi\)
\(978\) 0 0
\(979\) 4.62997 + 29.2325i 0.147975 + 0.934275i
\(980\) −0.393681 + 0.541855i −0.0125757 + 0.0173089i
\(981\) 0 0
\(982\) 15.6154 + 30.6469i 0.498307 + 0.977983i
\(983\) −43.5889 −1.39027 −0.695135 0.718880i \(-0.744655\pi\)
−0.695135 + 0.718880i \(0.744655\pi\)
\(984\) 0 0
\(985\) 46.5287 1.48253
\(986\) −34.0721 66.8703i −1.08508 2.12958i
\(987\) 0 0
\(988\) −0.371952 + 0.511949i −0.0118334 + 0.0162873i
\(989\) −9.02196 56.9624i −0.286882 1.81130i
\(990\) 0 0
\(991\) 18.6784 15.9529i 0.593340 0.506761i −0.301311 0.953526i \(-0.597424\pi\)
0.894651 + 0.446765i \(0.147424\pi\)
\(992\) −3.06540 0.485512i −0.0973265 0.0154150i
\(993\) 0 0
\(994\) 6.15516 4.47198i 0.195230 0.141843i
\(995\) −16.1925 9.92278i −0.513337 0.314573i
\(996\) 0 0
\(997\) −57.0026 + 4.48620i −1.80529 + 0.142079i −0.935950 0.352134i \(-0.885456\pi\)
−0.869341 + 0.494213i \(0.835456\pi\)
\(998\) 17.9648 + 7.44125i 0.568664 + 0.235548i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.ba.c.593.4 yes 64
3.2 odd 2 738.2.ba.d.593.1 yes 64
41.13 odd 40 738.2.ba.d.341.1 yes 64
123.95 even 40 inner 738.2.ba.c.341.4 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.ba.c.341.4 64 123.95 even 40 inner
738.2.ba.c.593.4 yes 64 1.1 even 1 trivial
738.2.ba.d.341.1 yes 64 41.13 odd 40
738.2.ba.d.593.1 yes 64 3.2 odd 2