Properties

Label 738.2.ba.c.503.3
Level $738$
Weight $2$
Character 738.503
Analytic conductor $5.893$
Analytic rank $0$
Dimension $64$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [738,2,Mod(17,738)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("738.17"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(738, base_ring=CyclotomicField(40)) chi = DirichletCharacter(H, H._module([20, 33])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 738 = 2 \cdot 3^{2} \cdot 41 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 738.ba (of order \(40\), degree \(16\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [64,0,0,0,0,0,-4,0,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.89295966917\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(4\) over \(\Q(\zeta_{40})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{40}]$

Embedding invariants

Embedding label 503.3
Character \(\chi\) \(=\) 738.503
Dual form 738.2.ba.c.179.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.156434 + 0.987688i) q^{2} +(-0.951057 + 0.309017i) q^{4} +(1.02120 + 0.520325i) q^{5} +(3.94156 - 0.946286i) q^{7} +(-0.453990 - 0.891007i) q^{8} +(-0.354169 + 1.09002i) q^{10} +(2.35154 - 2.75330i) q^{11} +(0.539975 + 0.881159i) q^{13} +(1.55123 + 3.74500i) q^{14} +(0.809017 - 0.587785i) q^{16} +(-5.82843 + 0.458708i) q^{17} +(3.81951 - 6.23288i) q^{19} +(-1.13200 - 0.179292i) q^{20} +(3.08727 + 1.89188i) q^{22} +(-0.891840 - 0.647960i) q^{23} +(-2.16682 - 2.98238i) q^{25} +(-0.785839 + 0.671170i) q^{26} +(-3.45623 + 2.11798i) q^{28} +(5.68137 + 0.447134i) q^{29} +(9.29778 + 3.02103i) q^{31} +(0.707107 + 0.707107i) q^{32} +(-1.36483 - 5.68492i) q^{34} +(4.51748 + 1.08455i) q^{35} +(1.87754 + 5.77846i) q^{37} +(6.75364 + 2.79745i) q^{38} -1.14611i q^{40} +(-3.92735 + 5.05727i) q^{41} +(-9.67201 + 1.53190i) q^{43} +(-1.38563 + 3.34521i) q^{44} +(0.500468 - 0.982224i) q^{46} +(-2.69563 + 11.2281i) q^{47} +(8.40342 - 4.28175i) q^{49} +(2.60669 - 2.60669i) q^{50} +(-0.785839 - 0.671170i) q^{52} +(-0.156540 + 1.98903i) q^{53} +(3.83400 - 1.58809i) q^{55} +(-2.63258 - 3.08235i) q^{56} +(0.447134 + 5.68137i) q^{58} +(-6.07134 + 8.35649i) q^{59} +(1.15060 - 7.26462i) q^{61} +(-1.52934 + 9.65590i) q^{62} +(-0.587785 + 0.809017i) q^{64} +(0.0929308 + 1.18080i) q^{65} +(0.223375 + 0.261539i) q^{67} +(5.40142 - 2.23734i) q^{68} +(-0.364509 + 4.63153i) q^{70} +(2.82019 + 2.40867i) q^{71} +(7.82673 - 7.82673i) q^{73} +(-5.41361 + 2.75837i) q^{74} +(-1.70651 + 7.10811i) q^{76} +(6.66334 - 13.0775i) q^{77} +(-2.76569 + 6.67696i) q^{79} +(1.13200 - 0.179292i) q^{80} +(-5.60938 - 3.08786i) q^{82} -12.8601i q^{83} +(-6.19065 - 2.56425i) q^{85} +(-3.02607 - 9.31329i) q^{86} +(-3.52079 - 0.845267i) q^{88} +(-2.08562 - 8.68724i) q^{89} +(2.96217 + 2.96217i) q^{91} +(1.04842 + 0.340653i) q^{92} +(-11.5116 - 0.905980i) q^{94} +(7.14359 - 4.37760i) q^{95} +(-11.4307 + 9.76274i) q^{97} +(5.54362 + 7.63014i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 64 q - 4 q^{7} - 8 q^{11} + 16 q^{13} + 4 q^{14} + 16 q^{16} - 16 q^{17} + 4 q^{19} - 4 q^{22} + 48 q^{23} + 40 q^{25} - 20 q^{26} + 4 q^{28} + 4 q^{29} + 40 q^{31} + 4 q^{34} - 52 q^{35} + 8 q^{37} + 16 q^{38}+ \cdots + 64 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/738\mathbb{Z}\right)^\times\).

\(n\) \(83\) \(703\)
\(\chi(n)\) \(-1\) \(e\left(\frac{3}{40}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.156434 + 0.987688i 0.110616 + 0.698401i
\(3\) 0 0
\(4\) −0.951057 + 0.309017i −0.475528 + 0.154508i
\(5\) 1.02120 + 0.520325i 0.456693 + 0.232697i 0.667175 0.744901i \(-0.267503\pi\)
−0.210482 + 0.977598i \(0.567503\pi\)
\(6\) 0 0
\(7\) 3.94156 0.946286i 1.48977 0.357662i 0.594832 0.803850i \(-0.297219\pi\)
0.894939 + 0.446188i \(0.147219\pi\)
\(8\) −0.453990 0.891007i −0.160510 0.315018i
\(9\) 0 0
\(10\) −0.354169 + 1.09002i −0.111998 + 0.344695i
\(11\) 2.35154 2.75330i 0.709017 0.830152i −0.282617 0.959233i \(-0.591203\pi\)
0.991634 + 0.129081i \(0.0412026\pi\)
\(12\) 0 0
\(13\) 0.539975 + 0.881159i 0.149762 + 0.244389i 0.918720 0.394910i \(-0.129224\pi\)
−0.768958 + 0.639300i \(0.779224\pi\)
\(14\) 1.55123 + 3.74500i 0.414584 + 1.00089i
\(15\) 0 0
\(16\) 0.809017 0.587785i 0.202254 0.146946i
\(17\) −5.82843 + 0.458708i −1.41360 + 0.111253i −0.762132 0.647421i \(-0.775847\pi\)
−0.651470 + 0.758674i \(0.725847\pi\)
\(18\) 0 0
\(19\) 3.81951 6.23288i 0.876256 1.42992i −0.0264443 0.999650i \(-0.508418\pi\)
0.902700 0.430270i \(-0.141582\pi\)
\(20\) −1.13200 0.179292i −0.253124 0.0400909i
\(21\) 0 0
\(22\) 3.08727 + 1.89188i 0.658208 + 0.403350i
\(23\) −0.891840 0.647960i −0.185962 0.135109i 0.490910 0.871211i \(-0.336665\pi\)
−0.676871 + 0.736102i \(0.736665\pi\)
\(24\) 0 0
\(25\) −2.16682 2.98238i −0.433365 0.596475i
\(26\) −0.785839 + 0.671170i −0.154116 + 0.131627i
\(27\) 0 0
\(28\) −3.45623 + 2.11798i −0.653166 + 0.400261i
\(29\) 5.68137 + 0.447134i 1.05500 + 0.0830307i 0.594078 0.804408i \(-0.297517\pi\)
0.460927 + 0.887438i \(0.347517\pi\)
\(30\) 0 0
\(31\) 9.29778 + 3.02103i 1.66993 + 0.542593i 0.982917 0.184051i \(-0.0589210\pi\)
0.687014 + 0.726644i \(0.258921\pi\)
\(32\) 0.707107 + 0.707107i 0.125000 + 0.125000i
\(33\) 0 0
\(34\) −1.36483 5.68492i −0.234066 0.974955i
\(35\) 4.51748 + 1.08455i 0.763594 + 0.183323i
\(36\) 0 0
\(37\) 1.87754 + 5.77846i 0.308665 + 0.949973i 0.978284 + 0.207268i \(0.0664574\pi\)
−0.669619 + 0.742705i \(0.733543\pi\)
\(38\) 6.75364 + 2.79745i 1.09559 + 0.453806i
\(39\) 0 0
\(40\) 1.14611i 0.181217i
\(41\) −3.92735 + 5.05727i −0.613348 + 0.789812i
\(42\) 0 0
\(43\) −9.67201 + 1.53190i −1.47497 + 0.233612i −0.841542 0.540191i \(-0.818352\pi\)
−0.633426 + 0.773803i \(0.718352\pi\)
\(44\) −1.38563 + 3.34521i −0.208892 + 0.504310i
\(45\) 0 0
\(46\) 0.500468 0.982224i 0.0737900 0.144821i
\(47\) −2.69563 + 11.2281i −0.393198 + 1.63779i 0.327724 + 0.944773i \(0.393718\pi\)
−0.720923 + 0.693016i \(0.756282\pi\)
\(48\) 0 0
\(49\) 8.40342 4.28175i 1.20049 0.611679i
\(50\) 2.60669 2.60669i 0.368642 0.368642i
\(51\) 0 0
\(52\) −0.785839 0.671170i −0.108976 0.0930746i
\(53\) −0.156540 + 1.98903i −0.0215024 + 0.273214i 0.976762 + 0.214326i \(0.0687555\pi\)
−0.998265 + 0.0588879i \(0.981245\pi\)
\(54\) 0 0
\(55\) 3.83400 1.58809i 0.516976 0.214139i
\(56\) −2.63258 3.08235i −0.351793 0.411897i
\(57\) 0 0
\(58\) 0.447134 + 5.68137i 0.0587115 + 0.746001i
\(59\) −6.07134 + 8.35649i −0.790422 + 1.08792i 0.203634 + 0.979047i \(0.434725\pi\)
−0.994055 + 0.108875i \(0.965275\pi\)
\(60\) 0 0
\(61\) 1.15060 7.26462i 0.147320 0.930140i −0.797683 0.603077i \(-0.793941\pi\)
0.945003 0.327063i \(-0.106059\pi\)
\(62\) −1.52934 + 9.65590i −0.194227 + 1.22630i
\(63\) 0 0
\(64\) −0.587785 + 0.809017i −0.0734732 + 0.101127i
\(65\) 0.0929308 + 1.18080i 0.0115266 + 0.146460i
\(66\) 0 0
\(67\) 0.223375 + 0.261539i 0.0272897 + 0.0319521i 0.773883 0.633329i \(-0.218312\pi\)
−0.746593 + 0.665281i \(0.768312\pi\)
\(68\) 5.40142 2.23734i 0.655018 0.271318i
\(69\) 0 0
\(70\) −0.364509 + 4.63153i −0.0435672 + 0.553573i
\(71\) 2.82019 + 2.40867i 0.334694 + 0.285856i 0.800873 0.598835i \(-0.204369\pi\)
−0.466178 + 0.884691i \(0.654369\pi\)
\(72\) 0 0
\(73\) 7.82673 7.82673i 0.916050 0.916050i −0.0806894 0.996739i \(-0.525712\pi\)
0.996739 + 0.0806894i \(0.0257122\pi\)
\(74\) −5.41361 + 2.75837i −0.629319 + 0.320654i
\(75\) 0 0
\(76\) −1.70651 + 7.10811i −0.195750 + 0.815356i
\(77\) 6.66334 13.0775i 0.759359 1.49033i
\(78\) 0 0
\(79\) −2.76569 + 6.67696i −0.311164 + 0.751217i 0.688498 + 0.725238i \(0.258270\pi\)
−0.999662 + 0.0259788i \(0.991730\pi\)
\(80\) 1.13200 0.179292i 0.126562 0.0200454i
\(81\) 0 0
\(82\) −5.60938 3.08786i −0.619452 0.340997i
\(83\) 12.8601i 1.41158i −0.708420 0.705791i \(-0.750592\pi\)
0.708420 0.705791i \(-0.249408\pi\)
\(84\) 0 0
\(85\) −6.19065 2.56425i −0.671470 0.278132i
\(86\) −3.02607 9.31329i −0.326310 1.00428i
\(87\) 0 0
\(88\) −3.52079 0.845267i −0.375317 0.0901057i
\(89\) −2.08562 8.68724i −0.221075 0.920845i −0.966992 0.254806i \(-0.917988\pi\)
0.745917 0.666039i \(-0.232012\pi\)
\(90\) 0 0
\(91\) 2.96217 + 2.96217i 0.310520 + 0.310520i
\(92\) 1.04842 + 0.340653i 0.109305 + 0.0355155i
\(93\) 0 0
\(94\) −11.5116 0.905980i −1.18733 0.0934447i
\(95\) 7.14359 4.37760i 0.732917 0.449132i
\(96\) 0 0
\(97\) −11.4307 + 9.76274i −1.16061 + 0.991256i −0.160620 + 0.987016i \(0.551349\pi\)
−0.999991 + 0.00423954i \(0.998651\pi\)
\(98\) 5.54362 + 7.63014i 0.559991 + 0.770761i
\(99\) 0 0
\(100\) 2.98238 + 2.16682i 0.298238 + 0.216682i
\(101\) −0.105344 0.0645549i −0.0104821 0.00642345i 0.517248 0.855836i \(-0.326957\pi\)
−0.527730 + 0.849412i \(0.676957\pi\)
\(102\) 0 0
\(103\) −8.62748 1.36646i −0.850090 0.134641i −0.283837 0.958872i \(-0.591608\pi\)
−0.566253 + 0.824231i \(0.691608\pi\)
\(104\) 0.539975 0.881159i 0.0529489 0.0864047i
\(105\) 0 0
\(106\) −1.98903 + 0.156540i −0.193191 + 0.0152045i
\(107\) −0.924438 + 0.671644i −0.0893688 + 0.0649303i −0.631572 0.775317i \(-0.717590\pi\)
0.542204 + 0.840247i \(0.317590\pi\)
\(108\) 0 0
\(109\) 4.19756 + 10.1338i 0.402053 + 0.970642i 0.987167 + 0.159691i \(0.0510498\pi\)
−0.585114 + 0.810951i \(0.698950\pi\)
\(110\) 2.16831 + 3.53836i 0.206740 + 0.337370i
\(111\) 0 0
\(112\) 2.63258 3.08235i 0.248755 0.291255i
\(113\) 1.41503 4.35501i 0.133115 0.409685i −0.862177 0.506607i \(-0.830900\pi\)
0.995292 + 0.0969215i \(0.0308996\pi\)
\(114\) 0 0
\(115\) −0.573594 1.12574i −0.0534879 0.104976i
\(116\) −5.54148 + 1.33039i −0.514513 + 0.123524i
\(117\) 0 0
\(118\) −9.20337 4.68935i −0.847239 0.431690i
\(119\) −22.5391 + 7.32339i −2.06615 + 0.671334i
\(120\) 0 0
\(121\) −0.330144 2.08445i −0.0300131 0.189495i
\(122\) 7.35518 0.665907
\(123\) 0 0
\(124\) −9.77627 −0.877935
\(125\) −1.55740 9.83306i −0.139298 0.879496i
\(126\) 0 0
\(127\) −3.16855 + 1.02952i −0.281163 + 0.0913556i −0.446204 0.894931i \(-0.647224\pi\)
0.165041 + 0.986287i \(0.447224\pi\)
\(128\) −0.891007 0.453990i −0.0787546 0.0401275i
\(129\) 0 0
\(130\) −1.15172 + 0.276504i −0.101013 + 0.0242510i
\(131\) −6.73569 13.2195i −0.588500 1.15500i −0.972769 0.231776i \(-0.925546\pi\)
0.384269 0.923221i \(-0.374454\pi\)
\(132\) 0 0
\(133\) 9.15677 28.1816i 0.793992 2.44366i
\(134\) −0.223375 + 0.261539i −0.0192967 + 0.0225935i
\(135\) 0 0
\(136\) 3.05476 + 4.98492i 0.261944 + 0.427454i
\(137\) −4.94219 11.9315i −0.422239 1.01938i −0.981685 0.190509i \(-0.938986\pi\)
0.559446 0.828867i \(-0.311014\pi\)
\(138\) 0 0
\(139\) −11.1387 + 8.09271i −0.944769 + 0.686415i −0.949564 0.313574i \(-0.898474\pi\)
0.00479478 + 0.999989i \(0.498474\pi\)
\(140\) −4.63153 + 0.364509i −0.391435 + 0.0308066i
\(141\) 0 0
\(142\) −1.93784 + 3.16226i −0.162620 + 0.265371i
\(143\) 3.69587 + 0.585368i 0.309064 + 0.0489510i
\(144\) 0 0
\(145\) 5.56914 + 3.41277i 0.462492 + 0.283415i
\(146\) 8.95474 + 6.50600i 0.741100 + 0.538441i
\(147\) 0 0
\(148\) −3.57129 4.91545i −0.293558 0.404048i
\(149\) −2.35925 + 2.01499i −0.193277 + 0.165074i −0.740820 0.671703i \(-0.765563\pi\)
0.547544 + 0.836777i \(0.315563\pi\)
\(150\) 0 0
\(151\) 5.54239 3.39638i 0.451033 0.276394i −0.278375 0.960473i \(-0.589796\pi\)
0.729408 + 0.684079i \(0.239796\pi\)
\(152\) −7.28756 0.573543i −0.591099 0.0465205i
\(153\) 0 0
\(154\) 13.9589 + 4.53553i 1.12484 + 0.365483i
\(155\) 7.92294 + 7.92294i 0.636385 + 0.636385i
\(156\) 0 0
\(157\) −0.192522 0.801912i −0.0153649 0.0639995i 0.964161 0.265319i \(-0.0854772\pi\)
−0.979526 + 0.201319i \(0.935477\pi\)
\(158\) −7.02740 1.68713i −0.559070 0.134221i
\(159\) 0 0
\(160\) 0.354169 + 1.09002i 0.0279995 + 0.0861736i
\(161\) −4.12840 1.71004i −0.325364 0.134770i
\(162\) 0 0
\(163\) 17.2108i 1.34805i 0.738707 + 0.674027i \(0.235437\pi\)
−0.738707 + 0.674027i \(0.764563\pi\)
\(164\) 2.17235 6.02336i 0.169632 0.470346i
\(165\) 0 0
\(166\) 12.7018 2.01177i 0.985850 0.156143i
\(167\) 4.86438 11.7437i 0.376417 0.908752i −0.616214 0.787579i \(-0.711334\pi\)
0.992631 0.121173i \(-0.0386656\pi\)
\(168\) 0 0
\(169\) 5.41701 10.6315i 0.416693 0.817806i
\(170\) 1.56425 6.51557i 0.119972 0.499721i
\(171\) 0 0
\(172\) 8.72525 4.44574i 0.665294 0.338984i
\(173\) −7.84430 + 7.84430i −0.596391 + 0.596391i −0.939350 0.342959i \(-0.888571\pi\)
0.342959 + 0.939350i \(0.388571\pi\)
\(174\) 0 0
\(175\) −11.3629 9.70479i −0.858951 0.733613i
\(176\) 0.284087 3.60967i 0.0214139 0.272089i
\(177\) 0 0
\(178\) 8.25402 3.41893i 0.618665 0.256259i
\(179\) 10.8319 + 12.6826i 0.809617 + 0.947939i 0.999426 0.0338817i \(-0.0107869\pi\)
−0.189809 + 0.981821i \(0.560787\pi\)
\(180\) 0 0
\(181\) 0.789838 + 10.0358i 0.0587082 + 0.745959i 0.953871 + 0.300218i \(0.0970595\pi\)
−0.895162 + 0.445740i \(0.852940\pi\)
\(182\) −2.46232 + 3.38909i −0.182519 + 0.251216i
\(183\) 0 0
\(184\) −0.172450 + 1.08880i −0.0127131 + 0.0802676i
\(185\) −1.08935 + 6.87787i −0.0800904 + 0.505671i
\(186\) 0 0
\(187\) −12.4428 + 17.1261i −0.909911 + 1.25239i
\(188\) −0.905980 11.5116i −0.0660754 0.839567i
\(189\) 0 0
\(190\) 5.44121 + 6.37084i 0.394747 + 0.462189i
\(191\) 18.2427 7.55639i 1.32000 0.546761i 0.392213 0.919874i \(-0.371710\pi\)
0.927786 + 0.373113i \(0.121710\pi\)
\(192\) 0 0
\(193\) 1.33274 16.9341i 0.0959327 1.21894i −0.740951 0.671559i \(-0.765625\pi\)
0.836883 0.547381i \(-0.184375\pi\)
\(194\) −11.4307 9.76274i −0.820676 0.700924i
\(195\) 0 0
\(196\) −6.66899 + 6.66899i −0.476356 + 0.476356i
\(197\) −14.6298 + 7.45426i −1.04233 + 0.531094i −0.889394 0.457142i \(-0.848873\pi\)
−0.152937 + 0.988236i \(0.548873\pi\)
\(198\) 0 0
\(199\) −4.15650 + 17.3131i −0.294646 + 1.22729i 0.606960 + 0.794733i \(0.292389\pi\)
−0.901606 + 0.432558i \(0.857611\pi\)
\(200\) −1.67360 + 3.28463i −0.118341 + 0.232258i
\(201\) 0 0
\(202\) 0.0472807 0.114146i 0.00332666 0.00803126i
\(203\) 22.8166 3.61380i 1.60141 0.253639i
\(204\) 0 0
\(205\) −6.64201 + 3.12096i −0.463898 + 0.217977i
\(206\) 8.73502i 0.608598i
\(207\) 0 0
\(208\) 0.954781 + 0.395483i 0.0662021 + 0.0274218i
\(209\) −8.17925 25.1732i −0.565771 1.74126i
\(210\) 0 0
\(211\) −17.3634 4.16858i −1.19535 0.286977i −0.413532 0.910490i \(-0.635705\pi\)
−0.781813 + 0.623512i \(0.785705\pi\)
\(212\) −0.465765 1.94005i −0.0319889 0.133243i
\(213\) 0 0
\(214\) −0.807989 0.807989i −0.0552330 0.0552330i
\(215\) −10.6741 3.46823i −0.727968 0.236531i
\(216\) 0 0
\(217\) 39.5066 + 3.10923i 2.68188 + 0.211068i
\(218\) −9.35239 + 5.73115i −0.633424 + 0.388163i
\(219\) 0 0
\(220\) −3.15560 + 2.69514i −0.212751 + 0.181706i
\(221\) −3.55140 4.88808i −0.238893 0.328808i
\(222\) 0 0
\(223\) −20.4316 14.8444i −1.36820 0.994058i −0.997875 0.0651564i \(-0.979245\pi\)
−0.370328 0.928901i \(-0.620755\pi\)
\(224\) 3.45623 + 2.11798i 0.230929 + 0.141514i
\(225\) 0 0
\(226\) 4.52276 + 0.716334i 0.300849 + 0.0476498i
\(227\) −0.150402 + 0.245434i −0.00998254 + 0.0162900i −0.857593 0.514330i \(-0.828041\pi\)
0.847610 + 0.530620i \(0.178041\pi\)
\(228\) 0 0
\(229\) −3.80872 + 0.299753i −0.251687 + 0.0198082i −0.203675 0.979039i \(-0.565289\pi\)
−0.0480121 + 0.998847i \(0.515289\pi\)
\(230\) 1.02215 0.742636i 0.0673987 0.0489680i
\(231\) 0 0
\(232\) −2.18089 5.26514i −0.143182 0.345673i
\(233\) −11.3962 18.5969i −0.746589 1.21832i −0.969883 0.243572i \(-0.921681\pi\)
0.223293 0.974751i \(-0.428319\pi\)
\(234\) 0 0
\(235\) −8.59504 + 10.0635i −0.560679 + 0.656470i
\(236\) 3.19189 9.82364i 0.207775 0.639465i
\(237\) 0 0
\(238\) −10.7591 21.1159i −0.697410 1.36874i
\(239\) 4.77537 1.14647i 0.308893 0.0741587i −0.0760352 0.997105i \(-0.524226\pi\)
0.384928 + 0.922946i \(0.374226\pi\)
\(240\) 0 0
\(241\) −6.53500 3.32975i −0.420956 0.214488i 0.230664 0.973034i \(-0.425910\pi\)
−0.651620 + 0.758546i \(0.725910\pi\)
\(242\) 2.00714 0.652160i 0.129024 0.0419224i
\(243\) 0 0
\(244\) 1.15060 + 7.26462i 0.0736598 + 0.465070i
\(245\) 10.8094 0.690590
\(246\) 0 0
\(247\) 7.55459 0.480687
\(248\) −1.52934 9.65590i −0.0971135 0.613151i
\(249\) 0 0
\(250\) 9.46837 3.07646i 0.598832 0.194572i
\(251\) 14.5763 + 7.42699i 0.920047 + 0.468787i 0.848825 0.528673i \(-0.177310\pi\)
0.0712212 + 0.997461i \(0.477310\pi\)
\(252\) 0 0
\(253\) −3.88123 + 0.931801i −0.244011 + 0.0585818i
\(254\) −1.51252 2.96849i −0.0949040 0.186260i
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) −7.73991 + 9.06228i −0.482803 + 0.565289i −0.947326 0.320272i \(-0.896226\pi\)
0.464523 + 0.885561i \(0.346226\pi\)
\(258\) 0 0
\(259\) 12.8685 + 20.9995i 0.799610 + 1.30484i
\(260\) −0.453269 1.09429i −0.0281106 0.0678649i
\(261\) 0 0
\(262\) 12.0031 8.72076i 0.741554 0.538770i
\(263\) 7.93495 0.624494i 0.489290 0.0385080i 0.168585 0.985687i \(-0.446080\pi\)
0.320705 + 0.947179i \(0.396080\pi\)
\(264\) 0 0
\(265\) −1.19480 + 1.94973i −0.0733959 + 0.119771i
\(266\) 29.2671 + 4.63545i 1.79448 + 0.284218i
\(267\) 0 0
\(268\) −0.293263 0.179712i −0.0179139 0.0109776i
\(269\) 11.1099 + 8.07183i 0.677384 + 0.492148i 0.872489 0.488634i \(-0.162505\pi\)
−0.195105 + 0.980782i \(0.562505\pi\)
\(270\) 0 0
\(271\) −4.54279 6.25261i −0.275955 0.379819i 0.648434 0.761271i \(-0.275424\pi\)
−0.924389 + 0.381452i \(0.875424\pi\)
\(272\) −4.44568 + 3.79697i −0.269559 + 0.230225i
\(273\) 0 0
\(274\) 11.0115 6.74784i 0.665227 0.407652i
\(275\) −13.3068 1.04727i −0.802428 0.0631525i
\(276\) 0 0
\(277\) 6.23588 + 2.02616i 0.374678 + 0.121740i 0.490301 0.871553i \(-0.336887\pi\)
−0.115624 + 0.993293i \(0.536887\pi\)
\(278\) −9.73555 9.73555i −0.583899 0.583899i
\(279\) 0 0
\(280\) −1.08455 4.51748i −0.0648144 0.269971i
\(281\) −14.0867 3.38192i −0.840342 0.201748i −0.209645 0.977778i \(-0.567231\pi\)
−0.630697 + 0.776029i \(0.717231\pi\)
\(282\) 0 0
\(283\) 0.279578 + 0.860452i 0.0166192 + 0.0511486i 0.959022 0.283331i \(-0.0914395\pi\)
−0.942403 + 0.334480i \(0.891439\pi\)
\(284\) −3.42647 1.41929i −0.203324 0.0842195i
\(285\) 0 0
\(286\) 3.74194i 0.221266i
\(287\) −10.6943 + 23.6499i −0.631263 + 1.39601i
\(288\) 0 0
\(289\) 16.9695 2.68771i 0.998207 0.158100i
\(290\) −2.49955 + 6.03445i −0.146779 + 0.354355i
\(291\) 0 0
\(292\) −5.02507 + 9.86226i −0.294070 + 0.577145i
\(293\) −5.75810 + 23.9842i −0.336392 + 1.40117i 0.506106 + 0.862472i \(0.331085\pi\)
−0.842497 + 0.538701i \(0.818915\pi\)
\(294\) 0 0
\(295\) −10.5481 + 5.37454i −0.614135 + 0.312918i
\(296\) 4.29626 4.29626i 0.249715 0.249715i
\(297\) 0 0
\(298\) −2.35925 2.01499i −0.136667 0.116725i
\(299\) 0.0893843 1.13573i 0.00516923 0.0656812i
\(300\) 0 0
\(301\) −36.6732 + 15.1906i −2.11381 + 0.875569i
\(302\) 4.22159 + 4.94284i 0.242925 + 0.284429i
\(303\) 0 0
\(304\) −0.573543 7.28756i −0.0328950 0.417970i
\(305\) 4.95496 6.81992i 0.283720 0.390507i
\(306\) 0 0
\(307\) 2.08906 13.1898i 0.119229 0.752782i −0.853544 0.521021i \(-0.825551\pi\)
0.972773 0.231761i \(-0.0744487\pi\)
\(308\) −2.29603 + 14.4966i −0.130829 + 0.826019i
\(309\) 0 0
\(310\) −6.58597 + 9.06481i −0.374058 + 0.514847i
\(311\) 0.921123 + 11.7040i 0.0522321 + 0.663672i 0.966185 + 0.257851i \(0.0830143\pi\)
−0.913953 + 0.405821i \(0.866986\pi\)
\(312\) 0 0
\(313\) 1.03877 + 1.21624i 0.0587145 + 0.0687458i 0.788986 0.614411i \(-0.210606\pi\)
−0.730271 + 0.683157i \(0.760606\pi\)
\(314\) 0.761922 0.315598i 0.0429977 0.0178102i
\(315\) 0 0
\(316\) 0.567031 7.20481i 0.0318980 0.405302i
\(317\) 2.54153 + 2.17067i 0.142746 + 0.121917i 0.717954 0.696090i \(-0.245079\pi\)
−0.575208 + 0.818007i \(0.695079\pi\)
\(318\) 0 0
\(319\) 14.5911 14.5911i 0.816944 0.816944i
\(320\) −1.02120 + 0.520325i −0.0570866 + 0.0290871i
\(321\) 0 0
\(322\) 1.04316 4.34508i 0.0581331 0.242142i
\(323\) −19.4027 + 38.0799i −1.07960 + 2.11882i
\(324\) 0 0
\(325\) 1.45792 3.51972i 0.0808707 0.195239i
\(326\) −16.9989 + 2.69236i −0.941482 + 0.149116i
\(327\) 0 0
\(328\) 6.28904 + 1.20334i 0.347254 + 0.0664434i
\(329\) 46.8072i 2.58056i
\(330\) 0 0
\(331\) −24.9722 10.3438i −1.37260 0.568549i −0.430106 0.902778i \(-0.641524\pi\)
−0.942492 + 0.334230i \(0.891524\pi\)
\(332\) 3.97400 + 12.2307i 0.218101 + 0.671247i
\(333\) 0 0
\(334\) 12.3600 + 2.96738i 0.676311 + 0.162368i
\(335\) 0.0920247 + 0.383310i 0.00502785 + 0.0209425i
\(336\) 0 0
\(337\) 7.01392 + 7.01392i 0.382073 + 0.382073i 0.871848 0.489776i \(-0.162921\pi\)
−0.489776 + 0.871848i \(0.662921\pi\)
\(338\) 11.3480 + 3.68719i 0.617249 + 0.200557i
\(339\) 0 0
\(340\) 6.68005 + 0.525732i 0.362277 + 0.0285118i
\(341\) 30.1820 18.4955i 1.63444 1.00159i
\(342\) 0 0
\(343\) 7.49436 6.40079i 0.404657 0.345610i
\(344\) 5.75593 + 7.92236i 0.310339 + 0.427145i
\(345\) 0 0
\(346\) −8.97484 6.52060i −0.482490 0.350550i
\(347\) 22.4676 + 13.7682i 1.20612 + 0.739114i 0.972430 0.233197i \(-0.0749185\pi\)
0.233694 + 0.972310i \(0.424919\pi\)
\(348\) 0 0
\(349\) 19.2100 + 3.04257i 1.02829 + 0.162865i 0.647713 0.761885i \(-0.275726\pi\)
0.380576 + 0.924750i \(0.375726\pi\)
\(350\) 7.80777 12.7411i 0.417343 0.681042i
\(351\) 0 0
\(352\) 3.60967 0.284087i 0.192396 0.0151419i
\(353\) 25.1588 18.2789i 1.33907 0.972889i 0.339588 0.940574i \(-0.389712\pi\)
0.999478 0.0323144i \(-0.0102878\pi\)
\(354\) 0 0
\(355\) 1.62667 + 3.92713i 0.0863348 + 0.208431i
\(356\) 4.66805 + 7.61756i 0.247406 + 0.403730i
\(357\) 0 0
\(358\) −10.8319 + 12.6826i −0.572485 + 0.670294i
\(359\) −1.26525 + 3.89405i −0.0667775 + 0.205520i −0.978877 0.204448i \(-0.934460\pi\)
0.912100 + 0.409968i \(0.134460\pi\)
\(360\) 0 0
\(361\) −15.6343 30.6840i −0.822856 1.61495i
\(362\) −9.78873 + 2.35007i −0.514484 + 0.123517i
\(363\) 0 0
\(364\) −3.73255 1.90183i −0.195639 0.0996831i
\(365\) 12.0651 3.92018i 0.631515 0.205192i
\(366\) 0 0
\(367\) 3.06408 + 19.3458i 0.159944 + 1.00984i 0.928843 + 0.370474i \(0.120805\pi\)
−0.768899 + 0.639370i \(0.779195\pi\)
\(368\) −1.10238 −0.0574653
\(369\) 0 0
\(370\) −6.96360 −0.362020
\(371\) 1.26518 + 7.98800i 0.0656846 + 0.414717i
\(372\) 0 0
\(373\) −3.65279 + 1.18686i −0.189134 + 0.0614535i −0.402053 0.915616i \(-0.631703\pi\)
0.212918 + 0.977070i \(0.431703\pi\)
\(374\) −18.8618 9.61054i −0.975318 0.496949i
\(375\) 0 0
\(376\) 11.2281 2.69563i 0.579046 0.139017i
\(377\) 2.67380 + 5.24763i 0.137708 + 0.270267i
\(378\) 0 0
\(379\) −9.08124 + 27.9492i −0.466472 + 1.43565i 0.390650 + 0.920539i \(0.372250\pi\)
−0.857122 + 0.515114i \(0.827750\pi\)
\(380\) −5.44121 + 6.37084i −0.279128 + 0.326817i
\(381\) 0 0
\(382\) 10.3172 + 16.8361i 0.527872 + 0.861408i
\(383\) −5.76464 13.9171i −0.294559 0.711129i −0.999997 0.00235734i \(-0.999250\pi\)
0.705438 0.708772i \(-0.250750\pi\)
\(384\) 0 0
\(385\) 13.6092 9.88763i 0.693587 0.503920i
\(386\) 16.9341 1.33274i 0.861921 0.0678347i
\(387\) 0 0
\(388\) 7.85439 12.8172i 0.398746 0.650694i
\(389\) −26.1126 4.13584i −1.32396 0.209695i −0.545884 0.837861i \(-0.683806\pi\)
−0.778080 + 0.628166i \(0.783806\pi\)
\(390\) 0 0
\(391\) 5.49526 + 3.36750i 0.277907 + 0.170302i
\(392\) −7.63014 5.54362i −0.385380 0.279995i
\(393\) 0 0
\(394\) −9.65109 13.2836i −0.486215 0.669217i
\(395\) −6.29850 + 5.37943i −0.316912 + 0.270668i
\(396\) 0 0
\(397\) 6.57589 4.02971i 0.330034 0.202245i −0.347602 0.937642i \(-0.613004\pi\)
0.677637 + 0.735397i \(0.263004\pi\)
\(398\) −17.7501 1.39697i −0.889734 0.0700236i
\(399\) 0 0
\(400\) −3.50599 1.13917i −0.175300 0.0569583i
\(401\) −5.54304 5.54304i −0.276806 0.276806i 0.555027 0.831833i \(-0.312708\pi\)
−0.831833 + 0.555027i \(0.812708\pi\)
\(402\) 0 0
\(403\) 2.35856 + 9.82410i 0.117488 + 0.489373i
\(404\) 0.120137 + 0.0288423i 0.00597703 + 0.00143496i
\(405\) 0 0
\(406\) 7.13861 + 21.9704i 0.354283 + 1.09037i
\(407\) 20.3250 + 8.41887i 1.00747 + 0.417308i
\(408\) 0 0
\(409\) 4.08678i 0.202078i 0.994882 + 0.101039i \(0.0322167\pi\)
−0.994882 + 0.101039i \(0.967783\pi\)
\(410\) −4.12158 6.07201i −0.203550 0.299875i
\(411\) 0 0
\(412\) 8.62748 1.36646i 0.425045 0.0673206i
\(413\) −16.0230 + 38.6828i −0.788438 + 1.90346i
\(414\) 0 0
\(415\) 6.69145 13.1327i 0.328470 0.644659i
\(416\) −0.241253 + 1.00489i −0.0118284 + 0.0492689i
\(417\) 0 0
\(418\) 23.5837 12.0165i 1.15352 0.587746i
\(419\) 9.69760 9.69760i 0.473759 0.473759i −0.429370 0.903129i \(-0.641264\pi\)
0.903129 + 0.429370i \(0.141264\pi\)
\(420\) 0 0
\(421\) 5.18184 + 4.42571i 0.252548 + 0.215696i 0.766705 0.642000i \(-0.221895\pi\)
−0.514157 + 0.857696i \(0.671895\pi\)
\(422\) 1.40103 17.8017i 0.0682009 0.866575i
\(423\) 0 0
\(424\) 1.84330 0.763521i 0.0895187 0.0370799i
\(425\) 13.9972 + 16.3886i 0.678965 + 0.794966i
\(426\) 0 0
\(427\) −2.33923 29.7228i −0.113203 1.43839i
\(428\) 0.671644 0.924438i 0.0324651 0.0446844i
\(429\) 0 0
\(430\) 1.75573 11.0852i 0.0846688 0.534578i
\(431\) −1.00234 + 6.32853i −0.0482811 + 0.304835i −0.999998 0.00214331i \(-0.999318\pi\)
0.951717 + 0.306978i \(0.0993178\pi\)
\(432\) 0 0
\(433\) −10.6940 + 14.7191i −0.513923 + 0.707354i −0.984575 0.174965i \(-0.944019\pi\)
0.470652 + 0.882319i \(0.344019\pi\)
\(434\) 3.10923 + 39.5066i 0.149248 + 1.89638i
\(435\) 0 0
\(436\) −7.12363 8.34070i −0.341160 0.399447i
\(437\) −7.44505 + 3.08384i −0.356145 + 0.147520i
\(438\) 0 0
\(439\) −0.504774 + 6.41377i −0.0240916 + 0.306112i 0.973052 + 0.230585i \(0.0740640\pi\)
−0.997144 + 0.0755273i \(0.975936\pi\)
\(440\) −3.15560 2.69514i −0.150437 0.128486i
\(441\) 0 0
\(442\) 4.27234 4.27234i 0.203215 0.203215i
\(443\) 23.4040 11.9250i 1.11196 0.566572i 0.201217 0.979547i \(-0.435510\pi\)
0.910742 + 0.412975i \(0.135510\pi\)
\(444\) 0 0
\(445\) 2.39036 9.95657i 0.113314 0.471987i
\(446\) 11.4655 22.5023i 0.542906 1.06551i
\(447\) 0 0
\(448\) −1.55123 + 3.74500i −0.0732888 + 0.176935i
\(449\) 20.8093 3.29587i 0.982052 0.155542i 0.355293 0.934755i \(-0.384381\pi\)
0.626759 + 0.779213i \(0.284381\pi\)
\(450\) 0 0
\(451\) 4.68886 + 22.7056i 0.220790 + 1.06916i
\(452\) 4.57913i 0.215384i
\(453\) 0 0
\(454\) −0.265940 0.110156i −0.0124812 0.00516988i
\(455\) 1.48366 + 4.56625i 0.0695553 + 0.214069i
\(456\) 0 0
\(457\) −33.1569 7.96026i −1.55101 0.372365i −0.634678 0.772777i \(-0.718867\pi\)
−0.916336 + 0.400411i \(0.868867\pi\)
\(458\) −0.891877 3.71494i −0.0416747 0.173588i
\(459\) 0 0
\(460\) 0.893393 + 0.893393i 0.0416547 + 0.0416547i
\(461\) −15.9609 5.18603i −0.743376 0.241537i −0.0872472 0.996187i \(-0.527807\pi\)
−0.656128 + 0.754649i \(0.727807\pi\)
\(462\) 0 0
\(463\) 0.284906 + 0.0224226i 0.0132407 + 0.00104207i 0.0850777 0.996374i \(-0.472886\pi\)
−0.0718370 + 0.997416i \(0.522886\pi\)
\(464\) 4.85915 2.97769i 0.225580 0.138236i
\(465\) 0 0
\(466\) 16.5852 14.1651i 0.768294 0.656185i
\(467\) −2.27480 3.13100i −0.105265 0.144885i 0.753134 0.657867i \(-0.228541\pi\)
−0.858400 + 0.512981i \(0.828541\pi\)
\(468\) 0 0
\(469\) 1.12794 + 0.819496i 0.0520834 + 0.0378408i
\(470\) −11.2842 6.91494i −0.520499 0.318962i
\(471\) 0 0
\(472\) 10.2020 + 1.61584i 0.469586 + 0.0743751i
\(473\) −18.5264 + 30.2323i −0.851844 + 1.39008i
\(474\) 0 0
\(475\) −26.8650 + 2.11432i −1.23265 + 0.0970117i
\(476\) 19.1729 13.9299i 0.878787 0.638476i
\(477\) 0 0
\(478\) 1.87938 + 4.53723i 0.0859610 + 0.207528i
\(479\) −7.47500 12.1981i −0.341541 0.557345i 0.635044 0.772476i \(-0.280982\pi\)
−0.976585 + 0.215131i \(0.930982\pi\)
\(480\) 0 0
\(481\) −4.07792 + 4.77463i −0.185937 + 0.217704i
\(482\) 2.26646 6.97543i 0.103234 0.317722i
\(483\) 0 0
\(484\) 0.958116 + 1.88041i 0.0435507 + 0.0854732i
\(485\) −16.7528 + 4.02199i −0.760704 + 0.182629i
\(486\) 0 0
\(487\) 10.1121 + 5.15238i 0.458223 + 0.233476i 0.667837 0.744308i \(-0.267220\pi\)
−0.209613 + 0.977784i \(0.567220\pi\)
\(488\) −6.99519 + 2.27288i −0.316657 + 0.102888i
\(489\) 0 0
\(490\) 1.69097 + 10.6764i 0.0763902 + 0.482309i
\(491\) 22.4129 1.01148 0.505741 0.862686i \(-0.331219\pi\)
0.505741 + 0.862686i \(0.331219\pi\)
\(492\) 0 0
\(493\) −33.3186 −1.50059
\(494\) 1.18180 + 7.46158i 0.0531716 + 0.335713i
\(495\) 0 0
\(496\) 9.29778 3.02103i 0.417483 0.135648i
\(497\) 13.3952 + 6.82521i 0.600858 + 0.306152i
\(498\) 0 0
\(499\) 19.5606 4.69608i 0.875651 0.210225i 0.229384 0.973336i \(-0.426329\pi\)
0.646268 + 0.763111i \(0.276329\pi\)
\(500\) 4.51976 + 8.87054i 0.202130 + 0.396702i
\(501\) 0 0
\(502\) −5.05531 + 15.5587i −0.225630 + 0.694417i
\(503\) −15.2872 + 17.8990i −0.681622 + 0.798077i −0.988102 0.153800i \(-0.950849\pi\)
0.306480 + 0.951877i \(0.400849\pi\)
\(504\) 0 0
\(505\) −0.0739873 0.120736i −0.00329239 0.00537270i
\(506\) −1.52749 3.68768i −0.0679051 0.163937i
\(507\) 0 0
\(508\) 2.69533 1.95827i 0.119586 0.0868843i
\(509\) 27.3387 2.15161i 1.21177 0.0953682i 0.543578 0.839359i \(-0.317069\pi\)
0.668190 + 0.743990i \(0.267069\pi\)
\(510\) 0 0
\(511\) 23.4432 38.2559i 1.03707 1.69234i
\(512\) 0.987688 + 0.156434i 0.0436501 + 0.00691349i
\(513\) 0 0
\(514\) −10.1615 6.22697i −0.448204 0.274660i
\(515\) −8.09934 5.88451i −0.356900 0.259303i
\(516\) 0 0
\(517\) 24.5755 + 33.8253i 1.08083 + 1.48763i
\(518\) −18.7279 + 15.9951i −0.822855 + 0.702785i
\(519\) 0 0
\(520\) 1.00991 0.618873i 0.0442874 0.0271394i
\(521\) 15.1086 + 1.18907i 0.661920 + 0.0520942i 0.404969 0.914330i \(-0.367282\pi\)
0.256951 + 0.966425i \(0.417282\pi\)
\(522\) 0 0
\(523\) 38.9231 + 12.6469i 1.70199 + 0.553010i 0.988968 0.148132i \(-0.0473260\pi\)
0.713022 + 0.701142i \(0.247326\pi\)
\(524\) 10.4911 + 10.4911i 0.458305 + 0.458305i
\(525\) 0 0
\(526\) 1.85811 + 7.73957i 0.0810172 + 0.337461i
\(527\) −55.5773 13.3429i −2.42098 0.581227i
\(528\) 0 0
\(529\) −6.73186 20.7185i −0.292690 0.900806i
\(530\) −2.11264 0.875083i −0.0917671 0.0380112i
\(531\) 0 0
\(532\) 29.6319i 1.28471i
\(533\) −6.57692 0.729819i −0.284878 0.0316120i
\(534\) 0 0
\(535\) −1.29351 + 0.204871i −0.0559231 + 0.00885735i
\(536\) 0.131623 0.317765i 0.00568523 0.0137254i
\(537\) 0 0
\(538\) −6.23448 + 12.2358i −0.268787 + 0.527525i
\(539\) 7.97203 33.2059i 0.343380 1.43028i
\(540\) 0 0
\(541\) 24.3483 12.4061i 1.04681 0.533378i 0.156005 0.987756i \(-0.450138\pi\)
0.890809 + 0.454378i \(0.150138\pi\)
\(542\) 5.46499 5.46499i 0.234741 0.234741i
\(543\) 0 0
\(544\) −4.44568 3.79697i −0.190607 0.162794i
\(545\) −0.986344 + 12.5327i −0.0422503 + 0.536841i
\(546\) 0 0
\(547\) 16.3718 6.78142i 0.700008 0.289953i −0.00415508 0.999991i \(-0.501323\pi\)
0.704163 + 0.710039i \(0.251323\pi\)
\(548\) 8.38733 + 9.82031i 0.358289 + 0.419503i
\(549\) 0 0
\(550\) −1.04727 13.3068i −0.0446555 0.567403i
\(551\) 24.4870 33.7035i 1.04318 1.43582i
\(552\) 0 0
\(553\) −4.58282 + 28.9348i −0.194881 + 1.23043i
\(554\) −1.02571 + 6.47607i −0.0435782 + 0.275142i
\(555\) 0 0
\(556\) 8.09271 11.1387i 0.343207 0.472385i
\(557\) −1.28081 16.2742i −0.0542696 0.689561i −0.962533 0.271163i \(-0.912592\pi\)
0.908264 0.418398i \(-0.137408\pi\)
\(558\) 0 0
\(559\) −6.57249 7.69539i −0.277987 0.325480i
\(560\) 4.29220 1.77789i 0.181379 0.0751295i
\(561\) 0 0
\(562\) 1.13663 14.4423i 0.0479460 0.609212i
\(563\) −0.129985 0.111017i −0.00547820 0.00467882i 0.646705 0.762740i \(-0.276147\pi\)
−0.652183 + 0.758062i \(0.726147\pi\)
\(564\) 0 0
\(565\) 3.71105 3.71105i 0.156125 0.156125i
\(566\) −0.806123 + 0.410740i −0.0338839 + 0.0172647i
\(567\) 0 0
\(568\) 0.865800 3.60631i 0.0363281 0.151318i
\(569\) 16.3958 32.1786i 0.687348 1.34900i −0.238516 0.971139i \(-0.576661\pi\)
0.925864 0.377857i \(-0.123339\pi\)
\(570\) 0 0
\(571\) −15.7371 + 37.9927i −0.658576 + 1.58994i 0.141428 + 0.989949i \(0.454831\pi\)
−0.800004 + 0.599994i \(0.795169\pi\)
\(572\) −3.69587 + 0.585368i −0.154532 + 0.0244755i
\(573\) 0 0
\(574\) −25.0317 6.86294i −1.04480 0.286453i
\(575\) 4.06382i 0.169473i
\(576\) 0 0
\(577\) −23.2459 9.62876i −0.967739 0.400851i −0.157869 0.987460i \(-0.550462\pi\)
−0.809870 + 0.586609i \(0.800462\pi\)
\(578\) 5.30923 + 16.3401i 0.220835 + 0.679660i
\(579\) 0 0
\(580\) −6.35117 1.52478i −0.263718 0.0633131i
\(581\) −12.1693 50.6890i −0.504870 2.10293i
\(582\) 0 0
\(583\) 5.10828 + 5.10828i 0.211563 + 0.211563i
\(584\) −10.5269 3.42041i −0.435608 0.141537i
\(585\) 0 0
\(586\) −24.5897 1.93525i −1.01579 0.0799444i
\(587\) −21.2399 + 13.0158i −0.876664 + 0.537220i −0.886499 0.462731i \(-0.846869\pi\)
0.00983478 + 0.999952i \(0.496869\pi\)
\(588\) 0 0
\(589\) 54.3427 46.4131i 2.23915 1.91242i
\(590\) −6.95846 9.57749i −0.286475 0.394299i
\(591\) 0 0
\(592\) 4.91545 + 3.57129i 0.202024 + 0.146779i
\(593\) −17.4100 10.6688i −0.714942 0.438117i 0.116890 0.993145i \(-0.462708\pi\)
−0.831832 + 0.555028i \(0.812708\pi\)
\(594\) 0 0
\(595\) −26.8273 4.24903i −1.09981 0.174193i
\(596\) 1.62111 2.64541i 0.0664033 0.108360i
\(597\) 0 0
\(598\) 1.13573 0.0893843i 0.0464437 0.00365519i
\(599\) −6.22315 + 4.52138i −0.254271 + 0.184739i −0.707618 0.706596i \(-0.750230\pi\)
0.453346 + 0.891334i \(0.350230\pi\)
\(600\) 0 0
\(601\) −5.38186 12.9930i −0.219530 0.529994i 0.775294 0.631600i \(-0.217602\pi\)
−0.994825 + 0.101607i \(0.967602\pi\)
\(602\) −20.7405 33.8454i −0.845319 1.37944i
\(603\) 0 0
\(604\) −4.22159 + 4.94284i −0.171774 + 0.201121i
\(605\) 0.747450 2.30041i 0.0303882 0.0935251i
\(606\) 0 0
\(607\) −11.7522 23.0650i −0.477008 0.936180i −0.996649 0.0817959i \(-0.973934\pi\)
0.519641 0.854384i \(-0.326066\pi\)
\(608\) 7.10811 1.70651i 0.288272 0.0692080i
\(609\) 0 0
\(610\) 7.51108 + 3.82709i 0.304115 + 0.154954i
\(611\) −11.3493 + 3.68762i −0.459145 + 0.149185i
\(612\) 0 0
\(613\) −1.34719 8.50582i −0.0544125 0.343547i −0.999843 0.0177229i \(-0.994358\pi\)
0.945430 0.325824i \(-0.105642\pi\)
\(614\) 13.3542 0.538933
\(615\) 0 0
\(616\) −14.6773 −0.591364
\(617\) 4.52096 + 28.5442i 0.182007 + 1.14915i 0.894367 + 0.447334i \(0.147626\pi\)
−0.712360 + 0.701814i \(0.752374\pi\)
\(618\) 0 0
\(619\) −4.45505 + 1.44753i −0.179064 + 0.0581813i −0.397176 0.917742i \(-0.630010\pi\)
0.218113 + 0.975924i \(0.430010\pi\)
\(620\) −9.98348 5.08684i −0.400946 0.204292i
\(621\) 0 0
\(622\) −11.4158 + 2.74069i −0.457731 + 0.109892i
\(623\) −16.4412 32.2677i −0.658703 1.29278i
\(624\) 0 0
\(625\) −2.16986 + 6.67813i −0.0867943 + 0.267125i
\(626\) −1.03877 + 1.21624i −0.0415174 + 0.0486106i
\(627\) 0 0
\(628\) 0.430904 + 0.703171i 0.0171949 + 0.0280596i
\(629\) −13.5937 32.8181i −0.542017 1.30854i
\(630\) 0 0
\(631\) 22.4927 16.3419i 0.895421 0.650562i −0.0418647 0.999123i \(-0.513330\pi\)
0.937286 + 0.348562i \(0.113330\pi\)
\(632\) 7.20481 0.567031i 0.286592 0.0225553i
\(633\) 0 0
\(634\) −1.74636 + 2.84980i −0.0693569 + 0.113180i
\(635\) −3.77140 0.597331i −0.149663 0.0237044i
\(636\) 0 0
\(637\) 8.31054 + 5.09270i 0.329276 + 0.201780i
\(638\) 16.6940 + 12.1289i 0.660922 + 0.480188i
\(639\) 0 0
\(640\) −0.673669 0.927226i −0.0266291 0.0366518i
\(641\) 31.8036 27.1628i 1.25617 1.07287i 0.261993 0.965070i \(-0.415620\pi\)
0.994173 0.107797i \(-0.0343797\pi\)
\(642\) 0 0
\(643\) −17.1495 + 10.5092i −0.676310 + 0.414444i −0.817805 0.575495i \(-0.804809\pi\)
0.141494 + 0.989939i \(0.454809\pi\)
\(644\) 4.45477 + 0.350598i 0.175543 + 0.0138155i
\(645\) 0 0
\(646\) −40.6464 13.2068i −1.59921 0.519615i
\(647\) 20.2146 + 20.2146i 0.794718 + 0.794718i 0.982257 0.187539i \(-0.0600512\pi\)
−0.187539 + 0.982257i \(0.560051\pi\)
\(648\) 0 0
\(649\) 8.73092 + 36.3669i 0.342719 + 1.42753i
\(650\) 3.70446 + 0.889362i 0.145301 + 0.0348836i
\(651\) 0 0
\(652\) −5.31843 16.3684i −0.208286 0.641038i
\(653\) −41.8308 17.3269i −1.63696 0.678053i −0.640978 0.767559i \(-0.721471\pi\)
−0.995986 + 0.0895066i \(0.971471\pi\)
\(654\) 0 0
\(655\) 17.0045i 0.664420i
\(656\) −0.204703 + 6.39985i −0.00799232 + 0.249872i
\(657\) 0 0
\(658\) −46.2309 + 7.32225i −1.80227 + 0.285451i
\(659\) −6.88701 + 16.6267i −0.268280 + 0.647685i −0.999403 0.0345612i \(-0.988997\pi\)
0.731123 + 0.682246i \(0.238997\pi\)
\(660\) 0 0
\(661\) −3.84280 + 7.54191i −0.149467 + 0.293346i −0.953585 0.301124i \(-0.902638\pi\)
0.804118 + 0.594470i \(0.202638\pi\)
\(662\) 6.30997 26.2829i 0.245244 1.02151i
\(663\) 0 0
\(664\) −11.4585 + 5.83837i −0.444674 + 0.226573i
\(665\) 24.0145 24.0145i 0.931241 0.931241i
\(666\) 0 0
\(667\) −4.77715 4.08007i −0.184972 0.157981i
\(668\) −0.997313 + 12.6721i −0.0385872 + 0.490297i
\(669\) 0 0
\(670\) −0.364195 + 0.150855i −0.0140701 + 0.00582802i
\(671\) −17.2960 20.2510i −0.667705 0.781783i
\(672\) 0 0
\(673\) 3.02444 + 38.4292i 0.116584 + 1.48134i 0.725566 + 0.688153i \(0.241578\pi\)
−0.608982 + 0.793184i \(0.708422\pi\)
\(674\) −5.83035 + 8.02479i −0.224577 + 0.309103i
\(675\) 0 0
\(676\) −1.86657 + 11.7851i −0.0717913 + 0.453272i
\(677\) −4.37692 + 27.6348i −0.168219 + 1.06209i 0.748668 + 0.662945i \(0.230694\pi\)
−0.916887 + 0.399147i \(0.869306\pi\)
\(678\) 0 0
\(679\) −35.8165 + 49.2971i −1.37451 + 1.89185i
\(680\) 0.525732 + 6.68005i 0.0201609 + 0.256168i
\(681\) 0 0
\(682\) 22.9893 + 26.9170i 0.880306 + 1.03071i
\(683\) −6.95480 + 2.88077i −0.266118 + 0.110230i −0.511753 0.859133i \(-0.671004\pi\)
0.245635 + 0.969362i \(0.421004\pi\)
\(684\) 0 0
\(685\) 1.16132 14.7559i 0.0443716 0.563795i
\(686\) 7.49436 + 6.40079i 0.286136 + 0.244383i
\(687\) 0 0
\(688\) −6.92440 + 6.92440i −0.263990 + 0.263990i
\(689\) −1.83718 + 0.936088i −0.0699908 + 0.0356621i
\(690\) 0 0
\(691\) 3.01251 12.5480i 0.114601 0.477349i −0.885322 0.464978i \(-0.846062\pi\)
0.999923 0.0123706i \(-0.00393778\pi\)
\(692\) 5.03635 9.88439i 0.191453 0.375748i
\(693\) 0 0
\(694\) −10.0839 + 24.3448i −0.382781 + 0.924116i
\(695\) −15.5856 + 2.46852i −0.591195 + 0.0936362i
\(696\) 0 0
\(697\) 20.5705 31.2774i 0.779162 1.18472i
\(698\) 19.4495i 0.736174i
\(699\) 0 0
\(700\) 13.8057 + 5.71849i 0.521805 + 0.216139i
\(701\) −11.8059 36.3347i −0.445901 1.37234i −0.881493 0.472198i \(-0.843461\pi\)
0.435592 0.900144i \(-0.356539\pi\)
\(702\) 0 0
\(703\) 43.1877 + 10.3685i 1.62886 + 0.391054i
\(704\) 0.845267 + 3.52079i 0.0318572 + 0.132695i
\(705\) 0 0
\(706\) 21.9896 + 21.9896i 0.827588 + 0.827588i
\(707\) −0.476308 0.154762i −0.0179134 0.00582041i
\(708\) 0 0
\(709\) −11.5326 0.907637i −0.433117 0.0340870i −0.139973 0.990155i \(-0.544702\pi\)
−0.293144 + 0.956068i \(0.594702\pi\)
\(710\) −3.62432 + 2.22098i −0.136018 + 0.0833520i
\(711\) 0 0
\(712\) −6.79353 + 5.80222i −0.254598 + 0.217448i
\(713\) −6.33463 8.71887i −0.237234 0.326524i
\(714\) 0 0
\(715\) 3.46963 + 2.52083i 0.129757 + 0.0942737i
\(716\) −14.2209 8.71458i −0.531460 0.325679i
\(717\) 0 0
\(718\) −4.04404 0.640513i −0.150922 0.0239037i
\(719\) −13.2432 + 21.6110i −0.493889 + 0.805954i −0.998347 0.0574827i \(-0.981693\pi\)
0.504457 + 0.863437i \(0.331693\pi\)
\(720\) 0 0
\(721\) −35.2988 + 2.77808i −1.31460 + 0.103461i
\(722\) 27.8605 20.2418i 1.03686 0.753322i
\(723\) 0 0
\(724\) −3.85243 9.30059i −0.143174 0.345654i
\(725\) −10.9770 17.9129i −0.407676 0.665267i
\(726\) 0 0
\(727\) −11.3480 + 13.2868i −0.420874 + 0.492780i −0.929818 0.368020i \(-0.880036\pi\)
0.508944 + 0.860800i \(0.330036\pi\)
\(728\) 1.29452 3.98411i 0.0479780 0.147661i
\(729\) 0 0
\(730\) 5.75931 + 11.3033i 0.213162 + 0.418353i
\(731\) 55.6700 13.3652i 2.05903 0.494329i
\(732\) 0 0
\(733\) −1.86276 0.949125i −0.0688027 0.0350567i 0.419251 0.907871i \(-0.362293\pi\)
−0.488053 + 0.872814i \(0.662293\pi\)
\(734\) −18.6283 + 6.05271i −0.687584 + 0.223410i
\(735\) 0 0
\(736\) −0.172450 1.08880i −0.00635657 0.0401338i
\(737\) 1.24537 0.0458739
\(738\) 0 0
\(739\) −16.8125 −0.618457 −0.309228 0.950988i \(-0.600071\pi\)
−0.309228 + 0.950988i \(0.600071\pi\)
\(740\) −1.08935 6.87787i −0.0400452 0.252835i
\(741\) 0 0
\(742\) −7.69174 + 2.49920i −0.282373 + 0.0917485i
\(743\) 32.8476 + 16.7367i 1.20506 + 0.614010i 0.936979 0.349385i \(-0.113609\pi\)
0.268084 + 0.963395i \(0.413609\pi\)
\(744\) 0 0
\(745\) −3.45770 + 0.830120i −0.126680 + 0.0304132i
\(746\) −1.74368 3.42216i −0.0638405 0.125294i
\(747\) 0 0
\(748\) 6.54159 20.1330i 0.239184 0.736134i
\(749\) −3.00817 + 3.52211i −0.109916 + 0.128695i
\(750\) 0 0
\(751\) −16.0999 26.2727i −0.587495 0.958705i −0.998883 0.0472446i \(-0.984956\pi\)
0.411388 0.911460i \(-0.365044\pi\)
\(752\) 4.41891 + 10.6682i 0.161141 + 0.389029i
\(753\) 0 0
\(754\) −4.76475 + 3.46179i −0.173522 + 0.126071i
\(755\) 7.42709 0.584524i 0.270299 0.0212730i
\(756\) 0 0
\(757\) 22.3211 36.4248i 0.811275 1.32388i −0.131792 0.991277i \(-0.542073\pi\)
0.943067 0.332603i \(-0.107927\pi\)
\(758\) −29.0257 4.59722i −1.05426 0.166978i
\(759\) 0 0
\(760\) −7.14359 4.37760i −0.259125 0.158792i
\(761\) 1.71802 + 1.24822i 0.0622782 + 0.0452478i 0.618489 0.785794i \(-0.287745\pi\)
−0.556211 + 0.831041i \(0.687745\pi\)
\(762\) 0 0
\(763\) 26.1344 + 35.9709i 0.946129 + 1.30224i
\(764\) −15.0148 + 12.8239i −0.543218 + 0.463952i
\(765\) 0 0
\(766\) 12.8439 7.87078i 0.464070 0.284383i
\(767\) −10.6418 0.837525i −0.384252 0.0302413i
\(768\) 0 0
\(769\) −9.87630 3.20900i −0.356148 0.115720i 0.125478 0.992096i \(-0.459954\pi\)
−0.481626 + 0.876377i \(0.659954\pi\)
\(770\) 11.8948 + 11.8948i 0.428660 + 0.428660i
\(771\) 0 0
\(772\) 3.96540 + 16.5171i 0.142718 + 0.594463i
\(773\) 33.4580 + 8.03256i 1.20340 + 0.288911i 0.785084 0.619390i \(-0.212620\pi\)
0.418317 + 0.908301i \(0.362620\pi\)
\(774\) 0 0
\(775\) −11.1368 34.2755i −0.400046 1.23121i
\(776\) 13.8881 + 5.75264i 0.498553 + 0.206508i
\(777\) 0 0
\(778\) 26.4381i 0.947853i
\(779\) 16.5208 + 43.7950i 0.591918 + 1.56912i
\(780\) 0 0
\(781\) 13.2636 2.10074i 0.474608 0.0751705i
\(782\) −2.46639 + 5.95439i −0.0881979 + 0.212929i
\(783\) 0 0
\(784\) 4.28175 8.40342i 0.152920 0.300122i
\(785\) 0.220652 0.919083i 0.00787542 0.0328035i
\(786\) 0 0
\(787\) −14.4610 + 7.36826i −0.515480 + 0.262650i −0.692322 0.721589i \(-0.743412\pi\)
0.176842 + 0.984239i \(0.443412\pi\)
\(788\) 11.6103 11.6103i 0.413599 0.413599i
\(789\) 0 0
\(790\) −6.29850 5.37943i −0.224091 0.191391i
\(791\) 1.45634 18.5046i 0.0517816 0.657947i
\(792\) 0 0
\(793\) 7.02258 2.90885i 0.249379 0.103296i
\(794\) 5.00879 + 5.86454i 0.177755 + 0.208125i
\(795\) 0 0
\(796\) −1.39697 17.7501i −0.0495142 0.629137i
\(797\) −15.4487 + 21.2633i −0.547222 + 0.753186i −0.989632 0.143627i \(-0.954123\pi\)
0.442410 + 0.896813i \(0.354123\pi\)
\(798\) 0 0
\(799\) 10.5609 66.6788i 0.373617 2.35893i
\(800\) 0.576683 3.64104i 0.0203888 0.128730i
\(801\) 0 0
\(802\) 4.60767 6.34192i 0.162703 0.223941i
\(803\) −3.14447 39.9543i −0.110966 1.40996i
\(804\) 0 0
\(805\) −3.32613 3.89440i −0.117231 0.137259i
\(806\) −9.33419 + 3.86635i −0.328783 + 0.136186i
\(807\) 0 0
\(808\) −0.00969365 + 0.123170i −0.000341022 + 0.00433309i
\(809\) −30.6091 26.1426i −1.07616 0.919126i −0.0791842 0.996860i \(-0.525232\pi\)
−0.996974 + 0.0777339i \(0.975232\pi\)
\(810\) 0 0
\(811\) −39.5075 + 39.5075i −1.38729 + 1.38729i −0.556340 + 0.830955i \(0.687795\pi\)
−0.830955 + 0.556340i \(0.812205\pi\)
\(812\) −20.5832 + 10.4876i −0.722327 + 0.368044i
\(813\) 0 0
\(814\) −5.13570 + 21.3917i −0.180006 + 0.749780i
\(815\) −8.95521 + 17.5756i −0.313687 + 0.615646i
\(816\) 0 0
\(817\) −27.3943 + 66.1356i −0.958404 + 2.31379i
\(818\) −4.03646 + 0.639312i −0.141132 + 0.0223530i
\(819\) 0 0
\(820\) 5.35250 5.02071i 0.186917 0.175331i
\(821\) 24.9218i 0.869778i −0.900484 0.434889i \(-0.856788\pi\)
0.900484 0.434889i \(-0.143212\pi\)
\(822\) 0 0
\(823\) 40.8105 + 16.9043i 1.42257 + 0.589246i 0.955504 0.294979i \(-0.0953126\pi\)
0.467062 + 0.884225i \(0.345313\pi\)
\(824\) 2.69927 + 8.30750i 0.0940335 + 0.289405i
\(825\) 0 0
\(826\) −40.7131 9.77436i −1.41659 0.340093i
\(827\) 6.68016 + 27.8249i 0.232292 + 0.967565i 0.959625 + 0.281281i \(0.0907593\pi\)
−0.727334 + 0.686284i \(0.759241\pi\)
\(828\) 0 0
\(829\) 25.2878 + 25.2878i 0.878280 + 0.878280i 0.993357 0.115076i \(-0.0367112\pi\)
−0.115076 + 0.993357i \(0.536711\pi\)
\(830\) 14.0178 + 4.55466i 0.486565 + 0.158094i
\(831\) 0 0
\(832\) −1.03026 0.0810833i −0.0357179 0.00281106i
\(833\) −47.0147 + 28.8106i −1.62896 + 0.998229i
\(834\) 0 0
\(835\) 11.0780 9.46152i 0.383370 0.327429i
\(836\) 15.5579 + 21.4136i 0.538080 + 0.740604i
\(837\) 0 0
\(838\) 11.0952 + 8.06117i 0.383279 + 0.278468i
\(839\) −41.7031 25.5557i −1.43975 0.882281i −0.439876 0.898058i \(-0.644978\pi\)
−0.999876 + 0.0157774i \(0.994978\pi\)
\(840\) 0 0
\(841\) 3.43512 + 0.544069i 0.118452 + 0.0187610i
\(842\) −3.56060 + 5.81038i −0.122707 + 0.200239i
\(843\) 0 0
\(844\) 17.8017 1.40103i 0.612761 0.0482253i
\(845\) 11.0637 8.03821i 0.380601 0.276523i
\(846\) 0 0
\(847\) −3.27377 7.90358i −0.112488 0.271570i
\(848\) 1.04248 + 1.70117i 0.0357988 + 0.0584183i
\(849\) 0 0
\(850\) −13.9972 + 16.3886i −0.480101 + 0.562126i
\(851\) 2.06975 6.37003i 0.0709501 0.218362i
\(852\) 0 0
\(853\) −23.6622 46.4396i −0.810177 1.59006i −0.807355 0.590066i \(-0.799102\pi\)
−0.00282162 0.999996i \(-0.500898\pi\)
\(854\) 28.9909 6.96010i 0.992048 0.238170i
\(855\) 0 0
\(856\) 1.01813 + 0.518761i 0.0347988 + 0.0177309i
\(857\) −29.7842 + 9.67747i −1.01741 + 0.330576i −0.769801 0.638284i \(-0.779645\pi\)
−0.247608 + 0.968860i \(0.579645\pi\)
\(858\) 0 0
\(859\) 2.59112 + 16.3597i 0.0884079 + 0.558186i 0.991640 + 0.129034i \(0.0411875\pi\)
−0.903232 + 0.429152i \(0.858812\pi\)
\(860\) 11.2234 0.382715
\(861\) 0 0
\(862\) −6.40742 −0.218237
\(863\) −6.43147 40.6067i −0.218930 1.38227i −0.815058 0.579379i \(-0.803295\pi\)
0.596128 0.802889i \(-0.296705\pi\)
\(864\) 0 0
\(865\) −12.0921 + 3.92898i −0.411145 + 0.133589i
\(866\) −16.2108 8.25981i −0.550865 0.280680i
\(867\) 0 0
\(868\) −38.5338 + 9.25114i −1.30792 + 0.314004i
\(869\) 11.8801 + 23.3159i 0.403004 + 0.790939i
\(870\) 0 0
\(871\) −0.109840 + 0.338054i −0.00372180 + 0.0114545i
\(872\) 7.12363 8.34070i 0.241237 0.282452i
\(873\) 0 0
\(874\) −4.21054 6.87097i −0.142423 0.232414i
\(875\) −15.4435 37.2839i −0.522085 1.26043i
\(876\) 0 0
\(877\) −24.8667 + 18.0667i −0.839688 + 0.610069i −0.922283 0.386514i \(-0.873679\pi\)
0.0825957 + 0.996583i \(0.473679\pi\)
\(878\) −6.41377 + 0.504774i −0.216454 + 0.0170353i
\(879\) 0 0
\(880\) 2.16831 3.53836i 0.0730938 0.119278i
\(881\) 30.6211 + 4.84990i 1.03165 + 0.163397i 0.649231 0.760592i \(-0.275091\pi\)
0.382419 + 0.923989i \(0.375091\pi\)
\(882\) 0 0
\(883\) −13.4552 8.24534i −0.452802 0.277478i 0.277341 0.960772i \(-0.410547\pi\)
−0.730143 + 0.683294i \(0.760547\pi\)
\(884\) 4.88808 + 3.55140i 0.164404 + 0.119447i
\(885\) 0 0
\(886\) 15.4393 + 21.2504i 0.518695 + 0.713922i
\(887\) −22.5931 + 19.2963i −0.758601 + 0.647906i −0.942183 0.335098i \(-0.891231\pi\)
0.183582 + 0.983004i \(0.441231\pi\)
\(888\) 0 0
\(889\) −11.5148 + 7.05629i −0.386195 + 0.236660i
\(890\) 10.2079 + 0.803381i 0.342170 + 0.0269294i
\(891\) 0 0
\(892\) 24.0188 + 7.80419i 0.804209 + 0.261303i
\(893\) 59.6875 + 59.6875i 1.99736 + 1.99736i
\(894\) 0 0
\(895\) 4.46247 + 18.5875i 0.149164 + 0.621312i
\(896\) −3.94156 0.946286i −0.131678 0.0316132i
\(897\) 0 0
\(898\) 6.51059 + 20.0375i 0.217261 + 0.668661i
\(899\) 51.4734 + 21.3210i 1.71673 + 0.711094i
\(900\) 0 0
\(901\) 11.6647i 0.388608i
\(902\) −21.6925 + 8.18307i −0.722282 + 0.272466i
\(903\) 0 0
\(904\) −4.52276 + 0.716334i −0.150425 + 0.0238249i
\(905\) −4.41533 + 10.6595i −0.146770 + 0.354335i
\(906\) 0 0
\(907\) −2.44671 + 4.80194i −0.0812417 + 0.159446i −0.928054 0.372447i \(-0.878519\pi\)
0.846812 + 0.531892i \(0.178519\pi\)
\(908\) 0.0671977 0.279898i 0.00223003 0.00928875i
\(909\) 0 0
\(910\) −4.27794 + 2.17972i −0.141812 + 0.0722569i
\(911\) 37.6715 37.6715i 1.24811 1.24811i 0.291560 0.956553i \(-0.405826\pi\)
0.956553 0.291560i \(-0.0941743\pi\)
\(912\) 0 0
\(913\) −35.4078 30.2411i −1.17183 1.00084i
\(914\) 2.67538 33.9939i 0.0884937 1.12442i
\(915\) 0 0
\(916\) 3.52968 1.46204i 0.116624 0.0483072i
\(917\) −39.0586 45.7318i −1.28983 1.51020i
\(918\) 0 0
\(919\) −0.0910825 1.15731i −0.00300453 0.0381762i 0.995232 0.0975328i \(-0.0310951\pi\)
−0.998237 + 0.0593566i \(0.981095\pi\)
\(920\) −0.742636 + 1.02215i −0.0244840 + 0.0336993i
\(921\) 0 0
\(922\) 2.62534 16.5757i 0.0864608 0.545892i
\(923\) −0.599588 + 3.78565i −0.0197357 + 0.124606i
\(924\) 0 0
\(925\) 13.1653 18.1204i 0.432871 0.595796i
\(926\) 0.0224226 + 0.284906i 0.000736851 + 0.00936258i
\(927\) 0 0
\(928\) 3.70117 + 4.33351i 0.121497 + 0.142254i
\(929\) −54.6108 + 22.6205i −1.79172 + 0.742155i −0.802331 + 0.596880i \(0.796407\pi\)
−0.989391 + 0.145276i \(0.953593\pi\)
\(930\) 0 0
\(931\) 5.40930 68.7317i 0.177283 2.25259i
\(932\) 16.5852 + 14.1651i 0.543266 + 0.463993i
\(933\) 0 0
\(934\) 2.73659 2.73659i 0.0895440 0.0895440i
\(935\) −21.6177 + 11.0148i −0.706975 + 0.360222i
\(936\) 0 0
\(937\) −0.0173212 + 0.0721482i −0.000565860 + 0.00235698i −0.972652 0.232267i \(-0.925386\pi\)
0.972086 + 0.234624i \(0.0753858\pi\)
\(938\) −0.632958 + 1.24225i −0.0206668 + 0.0405609i
\(939\) 0 0
\(940\) 5.06458 12.2270i 0.165188 0.398800i
\(941\) 35.7442 5.66133i 1.16523 0.184554i 0.456294 0.889829i \(-0.349177\pi\)
0.708934 + 0.705275i \(0.249177\pi\)
\(942\) 0 0
\(943\) 6.77947 1.96551i 0.220770 0.0640059i
\(944\) 10.3292i 0.336186i
\(945\) 0 0
\(946\) −32.7583 13.5689i −1.06506 0.441164i
\(947\) 4.38478 + 13.4950i 0.142486 + 0.438527i 0.996679 0.0814289i \(-0.0259484\pi\)
−0.854193 + 0.519956i \(0.825948\pi\)
\(948\) 0 0
\(949\) 11.1228 + 2.67036i 0.361062 + 0.0866834i
\(950\) −6.29090 26.2035i −0.204104 0.850154i
\(951\) 0 0
\(952\) 16.7577 + 16.7577i 0.543120 + 0.543120i
\(953\) 22.7649 + 7.39676i 0.737427 + 0.239605i 0.653563 0.756872i \(-0.273274\pi\)
0.0838647 + 0.996477i \(0.473274\pi\)
\(954\) 0 0
\(955\) 22.5612 + 1.77560i 0.730063 + 0.0574572i
\(956\) −4.18737 + 2.56602i −0.135429 + 0.0829912i
\(957\) 0 0
\(958\) 10.8786 9.29117i 0.351470 0.300184i
\(959\) −30.7705 42.3520i −0.993633 1.36762i
\(960\) 0 0
\(961\) 52.2426 + 37.9565i 1.68524 + 1.22440i
\(962\) −5.35377 3.28080i −0.172613 0.105777i
\(963\) 0 0
\(964\) 7.24410 + 1.14735i 0.233317 + 0.0369538i
\(965\) 10.1722 16.5995i 0.327455 0.534358i
\(966\) 0 0
\(967\) −29.5128 + 2.32271i −0.949068 + 0.0746932i −0.543534 0.839387i \(-0.682914\pi\)
−0.405533 + 0.914080i \(0.632914\pi\)
\(968\) −1.70738 + 1.24048i −0.0548771 + 0.0398706i
\(969\) 0 0
\(970\) −6.59318 15.9173i −0.211694 0.511075i
\(971\) −7.68386 12.5389i −0.246587 0.402393i 0.705269 0.708940i \(-0.250826\pi\)
−0.951856 + 0.306547i \(0.900826\pi\)
\(972\) 0 0
\(973\) −36.2457 + 42.4383i −1.16198 + 1.36051i
\(974\) −3.50706 + 10.7936i −0.112373 + 0.345850i
\(975\) 0 0
\(976\) −3.33918 6.55351i −0.106885 0.209773i
\(977\) 30.0895 7.22384i 0.962647 0.231111i 0.278485 0.960441i \(-0.410168\pi\)
0.684163 + 0.729330i \(0.260168\pi\)
\(978\) 0 0
\(979\) −28.8230 14.6861i −0.921188 0.469369i
\(980\) −10.2804 + 3.34030i −0.328395 + 0.106702i
\(981\) 0 0
\(982\) 3.50615 + 22.1370i 0.111886 + 0.706419i
\(983\) −10.4847 −0.334409 −0.167205 0.985922i \(-0.553474\pi\)
−0.167205 + 0.985922i \(0.553474\pi\)
\(984\) 0 0
\(985\) −18.8185 −0.599608
\(986\) −5.21218 32.9084i −0.165990 1.04802i
\(987\) 0 0
\(988\) −7.18485 + 2.33450i −0.228580 + 0.0742703i
\(989\) 9.61850 + 4.90087i 0.305851 + 0.155839i
\(990\) 0 0
\(991\) 6.46056 1.55104i 0.205226 0.0492705i −0.129529 0.991576i \(-0.541346\pi\)
0.334755 + 0.942305i \(0.391346\pi\)
\(992\) 4.43833 + 8.71072i 0.140917 + 0.276566i
\(993\) 0 0
\(994\) −4.64570 + 14.2980i −0.147353 + 0.453505i
\(995\) −13.2530 + 15.5173i −0.420149 + 0.491932i
\(996\) 0 0
\(997\) −18.4529 30.1124i −0.584410 0.953670i −0.999045 0.0436826i \(-0.986091\pi\)
0.414636 0.909987i \(-0.363909\pi\)
\(998\) 7.69821 + 18.5851i 0.243683 + 0.588302i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 738.2.ba.c.503.3 yes 64
3.2 odd 2 738.2.ba.d.503.2 yes 64
41.15 odd 40 738.2.ba.d.179.2 yes 64
123.56 even 40 inner 738.2.ba.c.179.3 64
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
738.2.ba.c.179.3 64 123.56 even 40 inner
738.2.ba.c.503.3 yes 64 1.1 even 1 trivial
738.2.ba.d.179.2 yes 64 41.15 odd 40
738.2.ba.d.503.2 yes 64 3.2 odd 2