Properties

Label 736.2.x.a.593.5
Level $736$
Weight $2$
Character 736.593
Analytic conductor $5.877$
Analytic rank $0$
Dimension $220$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [736,2,Mod(49,736)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(736, base_ring=CyclotomicField(22)) chi = DirichletCharacter(H, H._module([0, 11, 16])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("736.49"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 736 = 2^{5} \cdot 23 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 736.x (of order \(22\), degree \(10\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.87698958877\)
Analytic rank: \(0\)
Dimension: \(220\)
Relative dimension: \(22\) over \(\Q(\zeta_{22})\)
Twist minimal: no (minimal twist has level 184)
Sato-Tate group: $\mathrm{SU}(2)[C_{22}]$

Embedding invariants

Embedding label 593.5
Character \(\chi\) \(=\) 736.593
Dual form 736.2.x.a.561.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.56187 - 1.35337i) q^{3} +(1.30771 + 0.188020i) q^{5} +(-1.93127 - 4.22889i) q^{7} +(0.180888 + 1.25811i) q^{9} +(0.917064 + 3.12323i) q^{11} +(-4.99596 - 2.28158i) q^{13} +(-1.78801 - 2.06347i) q^{15} +(3.05609 - 1.96403i) q^{17} +(-1.11353 + 1.73268i) q^{19} +(-2.70685 + 9.21868i) q^{21} +(4.20285 + 2.30999i) q^{23} +(-3.12272 - 0.916913i) q^{25} +(-1.93179 + 3.00592i) q^{27} +(-0.0805869 - 0.125396i) q^{29} +(-5.26595 - 6.07723i) q^{31} +(2.79455 - 6.11921i) q^{33} +(-1.73042 - 5.89326i) q^{35} +(-6.57274 + 0.945018i) q^{37} +(4.71523 + 10.3249i) q^{39} +(-0.661733 + 4.60245i) q^{41} +(4.20419 + 3.64295i) q^{43} +1.67924i q^{45} -2.17073 q^{47} +(-9.56965 + 11.0440i) q^{49} +(-7.43128 - 1.06846i) q^{51} +(-1.56586 + 0.715106i) q^{53} +(0.612021 + 4.25670i) q^{55} +(4.08414 - 1.19921i) q^{57} +(-10.3139 - 4.71020i) q^{59} +(0.788289 - 0.683056i) q^{61} +(4.97104 - 3.19469i) q^{63} +(-6.10427 - 3.92298i) q^{65} +(1.96238 - 6.68327i) q^{67} +(-3.43804 - 9.29591i) q^{69} +(-4.09570 - 1.20261i) q^{71} +(-5.31849 - 3.41799i) q^{73} +(3.63636 + 5.65829i) q^{75} +(11.4367 - 9.90995i) q^{77} +(-3.36807 + 7.37505i) q^{79} +(10.7440 - 3.15472i) q^{81} +(-3.79551 + 0.545712i) q^{83} +(4.36575 - 1.99377i) q^{85} +(-0.0438403 + 0.304916i) q^{87} +(-5.49693 + 6.34379i) q^{89} +25.5337i q^{91} +16.6186i q^{93} +(-1.78195 + 2.05647i) q^{95} +(2.47737 - 17.2305i) q^{97} +(-3.76347 + 1.71872i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 220 q + 22 q^{7} + 22 q^{15} - 18 q^{17} + 16 q^{23} - 4 q^{25} + 34 q^{31} - 30 q^{33} + 18 q^{39} - 18 q^{41} + 40 q^{47} - 28 q^{49} + 38 q^{55} - 30 q^{57} - 18 q^{63} - 38 q^{65} + 26 q^{71} - 18 q^{73}+ \cdots - 18 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/736\mathbb{Z}\right)^\times\).

\(n\) \(97\) \(415\) \(645\)
\(\chi(n)\) \(e\left(\frac{6}{11}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.56187 1.35337i −0.901746 0.781367i 0.0746827 0.997207i \(-0.476206\pi\)
−0.976429 + 0.215840i \(0.930751\pi\)
\(4\) 0 0
\(5\) 1.30771 + 0.188020i 0.584824 + 0.0840851i 0.428375 0.903601i \(-0.359086\pi\)
0.156449 + 0.987686i \(0.449995\pi\)
\(6\) 0 0
\(7\) −1.93127 4.22889i −0.729950 1.59837i −0.799412 0.600784i \(-0.794855\pi\)
0.0694612 0.997585i \(-0.477872\pi\)
\(8\) 0 0
\(9\) 0.180888 + 1.25811i 0.0602961 + 0.419369i
\(10\) 0 0
\(11\) 0.917064 + 3.12323i 0.276505 + 0.941690i 0.974274 + 0.225367i \(0.0723581\pi\)
−0.697769 + 0.716323i \(0.745824\pi\)
\(12\) 0 0
\(13\) −4.99596 2.28158i −1.38563 0.632796i −0.423628 0.905836i \(-0.639244\pi\)
−0.962003 + 0.273040i \(0.911971\pi\)
\(14\) 0 0
\(15\) −1.78801 2.06347i −0.461662 0.532786i
\(16\) 0 0
\(17\) 3.05609 1.96403i 0.741211 0.476348i −0.114746 0.993395i \(-0.536605\pi\)
0.855957 + 0.517047i \(0.172969\pi\)
\(18\) 0 0
\(19\) −1.11353 + 1.73268i −0.255460 + 0.397504i −0.945168 0.326583i \(-0.894103\pi\)
0.689708 + 0.724088i \(0.257739\pi\)
\(20\) 0 0
\(21\) −2.70685 + 9.21868i −0.590683 + 2.01168i
\(22\) 0 0
\(23\) 4.20285 + 2.30999i 0.876355 + 0.481666i
\(24\) 0 0
\(25\) −3.12272 0.916913i −0.624544 0.183383i
\(26\) 0 0
\(27\) −1.93179 + 3.00592i −0.371773 + 0.578490i
\(28\) 0 0
\(29\) −0.0805869 0.125396i −0.0149646 0.0232854i 0.833691 0.552232i \(-0.186224\pi\)
−0.848655 + 0.528946i \(0.822587\pi\)
\(30\) 0 0
\(31\) −5.26595 6.07723i −0.945793 1.09150i −0.995690 0.0927488i \(-0.970435\pi\)
0.0498967 0.998754i \(-0.484111\pi\)
\(32\) 0 0
\(33\) 2.79455 6.11921i 0.486468 1.06522i
\(34\) 0 0
\(35\) −1.73042 5.89326i −0.292494 0.996143i
\(36\) 0 0
\(37\) −6.57274 + 0.945018i −1.08055 + 0.155360i −0.659521 0.751686i \(-0.729241\pi\)
−0.421031 + 0.907046i \(0.638332\pi\)
\(38\) 0 0
\(39\) 4.71523 + 10.3249i 0.755040 + 1.65331i
\(40\) 0 0
\(41\) −0.661733 + 4.60245i −0.103345 + 0.718783i 0.870599 + 0.491994i \(0.163732\pi\)
−0.973944 + 0.226789i \(0.927177\pi\)
\(42\) 0 0
\(43\) 4.20419 + 3.64295i 0.641133 + 0.555545i 0.913597 0.406621i \(-0.133293\pi\)
−0.272464 + 0.962166i \(0.587839\pi\)
\(44\) 0 0
\(45\) 1.67924i 0.250327i
\(46\) 0 0
\(47\) −2.17073 −0.316633 −0.158317 0.987388i \(-0.550607\pi\)
−0.158317 + 0.987388i \(0.550607\pi\)
\(48\) 0 0
\(49\) −9.56965 + 11.0440i −1.36709 + 1.57771i
\(50\) 0 0
\(51\) −7.43128 1.06846i −1.04059 0.149614i
\(52\) 0 0
\(53\) −1.56586 + 0.715106i −0.215088 + 0.0982273i −0.520045 0.854139i \(-0.674085\pi\)
0.304958 + 0.952366i \(0.401358\pi\)
\(54\) 0 0
\(55\) 0.612021 + 4.25670i 0.0825249 + 0.573973i
\(56\) 0 0
\(57\) 4.08414 1.19921i 0.540957 0.158839i
\(58\) 0 0
\(59\) −10.3139 4.71020i −1.34275 0.613215i −0.391089 0.920353i \(-0.627902\pi\)
−0.951665 + 0.307137i \(0.900629\pi\)
\(60\) 0 0
\(61\) 0.788289 0.683056i 0.100930 0.0874564i −0.602934 0.797791i \(-0.706002\pi\)
0.703864 + 0.710335i \(0.251456\pi\)
\(62\) 0 0
\(63\) 4.97104 3.19469i 0.626292 0.402494i
\(64\) 0 0
\(65\) −6.10427 3.92298i −0.757142 0.486585i
\(66\) 0 0
\(67\) 1.96238 6.68327i 0.239743 0.816491i −0.748438 0.663204i \(-0.769196\pi\)
0.988182 0.153287i \(-0.0489858\pi\)
\(68\) 0 0
\(69\) −3.43804 9.29591i −0.413892 1.11910i
\(70\) 0 0
\(71\) −4.09570 1.20261i −0.486071 0.142723i 0.0295097 0.999564i \(-0.490605\pi\)
−0.515580 + 0.856841i \(0.672424\pi\)
\(72\) 0 0
\(73\) −5.31849 3.41799i −0.622482 0.400045i 0.191037 0.981583i \(-0.438815\pi\)
−0.813519 + 0.581538i \(0.802451\pi\)
\(74\) 0 0
\(75\) 3.63636 + 5.65829i 0.419891 + 0.653363i
\(76\) 0 0
\(77\) 11.4367 9.90995i 1.30333 1.12934i
\(78\) 0 0
\(79\) −3.36807 + 7.37505i −0.378938 + 0.829758i 0.620041 + 0.784570i \(0.287116\pi\)
−0.998978 + 0.0451884i \(0.985611\pi\)
\(80\) 0 0
\(81\) 10.7440 3.15472i 1.19378 0.350525i
\(82\) 0 0
\(83\) −3.79551 + 0.545712i −0.416611 + 0.0598996i −0.347433 0.937705i \(-0.612947\pi\)
−0.0691778 + 0.997604i \(0.522038\pi\)
\(84\) 0 0
\(85\) 4.36575 1.99377i 0.473532 0.216255i
\(86\) 0 0
\(87\) −0.0438403 + 0.304916i −0.00470017 + 0.0326904i
\(88\) 0 0
\(89\) −5.49693 + 6.34379i −0.582673 + 0.672440i −0.968177 0.250266i \(-0.919482\pi\)
0.385504 + 0.922706i \(0.374027\pi\)
\(90\) 0 0
\(91\) 25.5337i 2.67666i
\(92\) 0 0
\(93\) 16.6186i 1.72327i
\(94\) 0 0
\(95\) −1.78195 + 2.05647i −0.182824 + 0.210990i
\(96\) 0 0
\(97\) 2.47737 17.2305i 0.251538 1.74949i −0.337447 0.941344i \(-0.609563\pi\)
0.588986 0.808144i \(-0.299527\pi\)
\(98\) 0 0
\(99\) −3.76347 + 1.71872i −0.378243 + 0.172738i
\(100\) 0 0
\(101\) 6.37368 0.916397i 0.634205 0.0911849i 0.182288 0.983245i \(-0.441650\pi\)
0.451917 + 0.892060i \(0.350740\pi\)
\(102\) 0 0
\(103\) 11.7000 3.43544i 1.15284 0.338504i 0.351194 0.936303i \(-0.385776\pi\)
0.801646 + 0.597798i \(0.203958\pi\)
\(104\) 0 0
\(105\) −5.27306 + 11.5464i −0.514598 + 1.12681i
\(106\) 0 0
\(107\) 9.79025 8.48330i 0.946459 0.820112i −0.0373552 0.999302i \(-0.511893\pi\)
0.983814 + 0.179191i \(0.0573479\pi\)
\(108\) 0 0
\(109\) −0.511817 0.796403i −0.0490232 0.0762816i 0.815877 0.578226i \(-0.196255\pi\)
−0.864900 + 0.501944i \(0.832618\pi\)
\(110\) 0 0
\(111\) 11.5447 + 7.41934i 1.09578 + 0.704213i
\(112\) 0 0
\(113\) 5.20573 + 1.52854i 0.489714 + 0.143793i 0.517261 0.855828i \(-0.326952\pi\)
−0.0275476 + 0.999620i \(0.508770\pi\)
\(114\) 0 0
\(115\) 5.06177 + 3.81101i 0.472013 + 0.355378i
\(116\) 0 0
\(117\) 1.96676 6.69816i 0.181827 0.619245i
\(118\) 0 0
\(119\) −14.2078 9.13079i −1.30243 0.837019i
\(120\) 0 0
\(121\) 0.340219 0.218645i 0.0309290 0.0198768i
\(122\) 0 0
\(123\) 7.26235 6.29287i 0.654824 0.567409i
\(124\) 0 0
\(125\) −9.92003 4.53032i −0.887274 0.405205i
\(126\) 0 0
\(127\) −0.354005 + 0.103945i −0.0314129 + 0.00922366i −0.297401 0.954753i \(-0.596120\pi\)
0.265988 + 0.963976i \(0.414302\pi\)
\(128\) 0 0
\(129\) −1.63614 11.3796i −0.144054 1.00192i
\(130\) 0 0
\(131\) 3.04328 1.38982i 0.265893 0.121429i −0.278008 0.960579i \(-0.589674\pi\)
0.543901 + 0.839150i \(0.316947\pi\)
\(132\) 0 0
\(133\) 9.47783 + 1.36271i 0.821832 + 0.118162i
\(134\) 0 0
\(135\) −3.09139 + 3.56765i −0.266064 + 0.307055i
\(136\) 0 0
\(137\) 12.1856 1.04108 0.520542 0.853836i \(-0.325730\pi\)
0.520542 + 0.853836i \(0.325730\pi\)
\(138\) 0 0
\(139\) 10.9900i 0.932160i −0.884743 0.466080i \(-0.845666\pi\)
0.884743 0.466080i \(-0.154334\pi\)
\(140\) 0 0
\(141\) 3.39040 + 2.93780i 0.285523 + 0.247407i
\(142\) 0 0
\(143\) 2.54429 17.6959i 0.212764 1.47981i
\(144\) 0 0
\(145\) −0.0818072 0.179133i −0.00679372 0.0148762i
\(146\) 0 0
\(147\) 29.8931 4.29798i 2.46554 0.354491i
\(148\) 0 0
\(149\) 1.30512 + 4.44483i 0.106920 + 0.364135i 0.995520 0.0945465i \(-0.0301401\pi\)
−0.888601 + 0.458681i \(0.848322\pi\)
\(150\) 0 0
\(151\) 7.15579 15.6690i 0.582330 1.27512i −0.357638 0.933860i \(-0.616418\pi\)
0.939968 0.341264i \(-0.110855\pi\)
\(152\) 0 0
\(153\) 3.02377 + 3.48962i 0.244457 + 0.282119i
\(154\) 0 0
\(155\) −5.74368 8.93734i −0.461344 0.717865i
\(156\) 0 0
\(157\) 2.38160 3.70585i 0.190073 0.295759i −0.733118 0.680102i \(-0.761936\pi\)
0.923190 + 0.384343i \(0.125572\pi\)
\(158\) 0 0
\(159\) 3.41348 + 1.00229i 0.270706 + 0.0794865i
\(160\) 0 0
\(161\) 1.65185 22.2346i 0.130184 1.75233i
\(162\) 0 0
\(163\) 6.69156 22.7894i 0.524123 1.78500i −0.0901744 0.995926i \(-0.528742\pi\)
0.614298 0.789074i \(-0.289439\pi\)
\(164\) 0 0
\(165\) 4.80498 7.47670i 0.374067 0.582060i
\(166\) 0 0
\(167\) −4.10239 + 2.63645i −0.317453 + 0.204014i −0.689657 0.724136i \(-0.742239\pi\)
0.372204 + 0.928151i \(0.378602\pi\)
\(168\) 0 0
\(169\) 11.2408 + 12.9726i 0.864680 + 0.997894i
\(170\) 0 0
\(171\) −2.38132 1.08751i −0.182104 0.0831641i
\(172\) 0 0
\(173\) −3.43944 11.7137i −0.261496 0.890573i −0.980658 0.195731i \(-0.937292\pi\)
0.719162 0.694843i \(-0.244526\pi\)
\(174\) 0 0
\(175\) 2.15328 + 14.9764i 0.162773 + 1.13211i
\(176\) 0 0
\(177\) 9.73433 + 21.3152i 0.731677 + 1.60215i
\(178\) 0 0
\(179\) −21.0854 3.03163i −1.57600 0.226594i −0.701876 0.712299i \(-0.747654\pi\)
−0.874123 + 0.485705i \(0.838563\pi\)
\(180\) 0 0
\(181\) 11.6255 + 10.0735i 0.864115 + 0.748760i 0.969349 0.245688i \(-0.0790137\pi\)
−0.105234 + 0.994447i \(0.533559\pi\)
\(182\) 0 0
\(183\) −2.15563 −0.159349
\(184\) 0 0
\(185\) −8.77290 −0.644997
\(186\) 0 0
\(187\) 8.93675 + 7.74374i 0.653520 + 0.566278i
\(188\) 0 0
\(189\) 16.4425 + 2.36408i 1.19602 + 0.171961i
\(190\) 0 0
\(191\) 7.99315 + 17.5026i 0.578364 + 1.26644i 0.942223 + 0.334986i \(0.108732\pi\)
−0.363859 + 0.931454i \(0.618541\pi\)
\(192\) 0 0
\(193\) −0.0340978 0.237156i −0.00245442 0.0170708i 0.988557 0.150845i \(-0.0481994\pi\)
−0.991012 + 0.133774i \(0.957290\pi\)
\(194\) 0 0
\(195\) 4.22485 + 14.3885i 0.302548 + 1.03038i
\(196\) 0 0
\(197\) −12.9836 5.92940i −0.925042 0.422452i −0.104816 0.994492i \(-0.533425\pi\)
−0.820226 + 0.572039i \(0.806153\pi\)
\(198\) 0 0
\(199\) −10.3270 11.9180i −0.732064 0.844847i 0.260638 0.965436i \(-0.416067\pi\)
−0.992702 + 0.120590i \(0.961522\pi\)
\(200\) 0 0
\(201\) −12.1099 + 7.78257i −0.854167 + 0.548940i
\(202\) 0 0
\(203\) −0.374649 + 0.582966i −0.0262952 + 0.0409162i
\(204\) 0 0
\(205\) −1.73071 + 5.89424i −0.120878 + 0.411672i
\(206\) 0 0
\(207\) −2.14596 + 5.70548i −0.149155 + 0.396558i
\(208\) 0 0
\(209\) −6.43274 1.88882i −0.444962 0.130653i
\(210\) 0 0
\(211\) 6.22132 9.68056i 0.428293 0.666437i −0.558299 0.829640i \(-0.688546\pi\)
0.986593 + 0.163202i \(0.0521823\pi\)
\(212\) 0 0
\(213\) 4.76939 + 7.42131i 0.326793 + 0.508500i
\(214\) 0 0
\(215\) 4.81290 + 5.55439i 0.328237 + 0.378806i
\(216\) 0 0
\(217\) −15.5300 + 34.0059i −1.05424 + 2.30847i
\(218\) 0 0
\(219\) 3.68100 + 12.5363i 0.248739 + 0.847127i
\(220\) 0 0
\(221\) −19.7492 + 2.83951i −1.32848 + 0.191006i
\(222\) 0 0
\(223\) −2.23447 4.89280i −0.149631 0.327646i 0.819943 0.572445i \(-0.194005\pi\)
−0.969574 + 0.244799i \(0.921278\pi\)
\(224\) 0 0
\(225\) 0.588710 4.09457i 0.0392473 0.272971i
\(226\) 0 0
\(227\) −5.60075 4.85307i −0.371735 0.322110i 0.448880 0.893592i \(-0.351823\pi\)
−0.820614 + 0.571482i \(0.806369\pi\)
\(228\) 0 0
\(229\) 9.88644i 0.653314i −0.945143 0.326657i \(-0.894078\pi\)
0.945143 0.326657i \(-0.105922\pi\)
\(230\) 0 0
\(231\) −31.2744 −2.05771
\(232\) 0 0
\(233\) −5.26267 + 6.07344i −0.344769 + 0.397884i −0.901479 0.432822i \(-0.857518\pi\)
0.556710 + 0.830707i \(0.312063\pi\)
\(234\) 0 0
\(235\) −2.83868 0.408140i −0.185175 0.0266241i
\(236\) 0 0
\(237\) 15.2417 6.96063i 0.990052 0.452141i
\(238\) 0 0
\(239\) −0.292625 2.03525i −0.0189284 0.131650i 0.978166 0.207825i \(-0.0666383\pi\)
−0.997094 + 0.0761750i \(0.975729\pi\)
\(240\) 0 0
\(241\) −8.25098 + 2.42271i −0.531492 + 0.156060i −0.536457 0.843927i \(-0.680238\pi\)
0.00496497 + 0.999988i \(0.498420\pi\)
\(242\) 0 0
\(243\) −11.2995 5.16030i −0.724862 0.331033i
\(244\) 0 0
\(245\) −14.5908 + 12.6430i −0.932171 + 0.807731i
\(246\) 0 0
\(247\) 9.51638 6.11581i 0.605513 0.389140i
\(248\) 0 0
\(249\) 6.66664 + 4.28439i 0.422481 + 0.271512i
\(250\) 0 0
\(251\) 0.580420 1.97673i 0.0366358 0.124770i −0.939145 0.343521i \(-0.888380\pi\)
0.975781 + 0.218751i \(0.0701984\pi\)
\(252\) 0 0
\(253\) −3.36035 + 15.2449i −0.211263 + 0.958438i
\(254\) 0 0
\(255\) −9.51704 2.79446i −0.595980 0.174996i
\(256\) 0 0
\(257\) 20.1251 + 12.9336i 1.25537 + 0.806777i 0.987643 0.156718i \(-0.0500913\pi\)
0.267726 + 0.963495i \(0.413728\pi\)
\(258\) 0 0
\(259\) 16.6901 + 25.9703i 1.03707 + 1.61372i
\(260\) 0 0
\(261\) 0.143184 0.124070i 0.00886286 0.00767971i
\(262\) 0 0
\(263\) −11.1950 + 24.5137i −0.690316 + 1.51158i 0.161014 + 0.986952i \(0.448524\pi\)
−0.851330 + 0.524630i \(0.824204\pi\)
\(264\) 0 0
\(265\) −2.18214 + 0.640735i −0.134048 + 0.0393601i
\(266\) 0 0
\(267\) 17.1710 2.46881i 1.05085 0.151089i
\(268\) 0 0
\(269\) −1.55248 + 0.708995i −0.0946565 + 0.0432282i −0.462181 0.886786i \(-0.652933\pi\)
0.367524 + 0.930014i \(0.380206\pi\)
\(270\) 0 0
\(271\) −2.41340 + 16.7856i −0.146604 + 1.01965i 0.775123 + 0.631810i \(0.217688\pi\)
−0.921727 + 0.387840i \(0.873221\pi\)
\(272\) 0 0
\(273\) 34.5565 39.8803i 2.09145 2.41367i
\(274\) 0 0
\(275\) 10.5938i 0.638833i
\(276\) 0 0
\(277\) 3.87012i 0.232533i 0.993218 + 0.116266i \(0.0370926\pi\)
−0.993218 + 0.116266i \(0.962907\pi\)
\(278\) 0 0
\(279\) 6.69325 7.72443i 0.400715 0.462449i
\(280\) 0 0
\(281\) 3.83410 26.6668i 0.228723 1.59081i −0.474773 0.880108i \(-0.657470\pi\)
0.703497 0.710699i \(-0.251621\pi\)
\(282\) 0 0
\(283\) 5.15847 2.35579i 0.306639 0.140037i −0.256152 0.966636i \(-0.582455\pi\)
0.562791 + 0.826599i \(0.309728\pi\)
\(284\) 0 0
\(285\) 5.56633 0.800318i 0.329721 0.0474067i
\(286\) 0 0
\(287\) 20.7412 6.09018i 1.22432 0.359492i
\(288\) 0 0
\(289\) −1.57977 + 3.45922i −0.0929279 + 0.203484i
\(290\) 0 0
\(291\) −27.1885 + 23.5589i −1.59382 + 1.38105i
\(292\) 0 0
\(293\) −12.0938 18.8183i −0.706528 1.09938i −0.990091 0.140426i \(-0.955153\pi\)
0.283563 0.958954i \(-0.408483\pi\)
\(294\) 0 0
\(295\) −12.6019 8.09878i −0.733713 0.471529i
\(296\) 0 0
\(297\) −11.1598 3.27680i −0.647556 0.190139i
\(298\) 0 0
\(299\) −15.7269 21.1297i −0.909508 1.22196i
\(300\) 0 0
\(301\) 7.28621 24.8146i 0.419970 1.43029i
\(302\) 0 0
\(303\) −11.1951 7.19464i −0.643141 0.413322i
\(304\) 0 0
\(305\) 1.15928 0.745024i 0.0663802 0.0426599i
\(306\) 0 0
\(307\) −9.52161 + 8.25053i −0.543427 + 0.470882i −0.882786 0.469774i \(-0.844335\pi\)
0.339359 + 0.940657i \(0.389790\pi\)
\(308\) 0 0
\(309\) −22.9234 10.4688i −1.30407 0.595547i
\(310\) 0 0
\(311\) 27.9339 8.20213i 1.58398 0.465100i 0.632952 0.774191i \(-0.281843\pi\)
0.951032 + 0.309091i \(0.100025\pi\)
\(312\) 0 0
\(313\) 0.965667 + 6.71636i 0.0545827 + 0.379631i 0.998742 + 0.0501420i \(0.0159674\pi\)
−0.944159 + 0.329489i \(0.893124\pi\)
\(314\) 0 0
\(315\) 7.10133 3.24307i 0.400115 0.182726i
\(316\) 0 0
\(317\) 3.80052 + 0.546432i 0.213458 + 0.0306907i 0.248214 0.968705i \(-0.420156\pi\)
−0.0347559 + 0.999396i \(0.511065\pi\)
\(318\) 0 0
\(319\) 0.317737 0.366688i 0.0177898 0.0205306i
\(320\) 0 0
\(321\) −26.7721 −1.49427
\(322\) 0 0
\(323\) 7.48223i 0.416323i
\(324\) 0 0
\(325\) 13.5090 + 11.7056i 0.749343 + 0.649309i
\(326\) 0 0
\(327\) −0.278435 + 1.93656i −0.0153975 + 0.107092i
\(328\) 0 0
\(329\) 4.19226 + 9.17976i 0.231127 + 0.506097i
\(330\) 0 0
\(331\) −32.6993 + 4.70145i −1.79732 + 0.258415i −0.958315 0.285714i \(-0.907769\pi\)
−0.839002 + 0.544129i \(0.816860\pi\)
\(332\) 0 0
\(333\) −2.37786 8.09826i −0.130306 0.443782i
\(334\) 0 0
\(335\) 3.82281 8.37079i 0.208863 0.457345i
\(336\) 0 0
\(337\) −15.6826 18.0987i −0.854286 0.985899i 0.145708 0.989328i \(-0.453454\pi\)
−0.999994 + 0.00342903i \(0.998909\pi\)
\(338\) 0 0
\(339\) −6.06199 9.43264i −0.329242 0.512311i
\(340\) 0 0
\(341\) 14.1514 22.0200i 0.766341 1.19245i
\(342\) 0 0
\(343\) 33.9604 + 9.97168i 1.83369 + 0.538420i
\(344\) 0 0
\(345\) −2.74814 12.8027i −0.147955 0.689277i
\(346\) 0 0
\(347\) −4.06310 + 13.8376i −0.218118 + 0.742843i 0.775629 + 0.631189i \(0.217433\pi\)
−0.993747 + 0.111654i \(0.964385\pi\)
\(348\) 0 0
\(349\) −20.1194 + 31.3063i −1.07696 + 1.67579i −0.463382 + 0.886158i \(0.653364\pi\)
−0.613582 + 0.789631i \(0.710272\pi\)
\(350\) 0 0
\(351\) 16.5094 10.6099i 0.881207 0.566317i
\(352\) 0 0
\(353\) −9.04476 10.4382i −0.481404 0.555570i 0.462144 0.886805i \(-0.347080\pi\)
−0.943548 + 0.331235i \(0.892535\pi\)
\(354\) 0 0
\(355\) −5.12987 2.34273i −0.272265 0.124339i
\(356\) 0 0
\(357\) 9.83340 + 33.4895i 0.520439 + 1.77245i
\(358\) 0 0
\(359\) 1.35324 + 9.41201i 0.0714214 + 0.496747i 0.993864 + 0.110612i \(0.0352811\pi\)
−0.922442 + 0.386135i \(0.873810\pi\)
\(360\) 0 0
\(361\) 6.13064 + 13.4242i 0.322665 + 0.706539i
\(362\) 0 0
\(363\) −0.827285 0.118946i −0.0434212 0.00624303i
\(364\) 0 0
\(365\) −6.31238 5.46971i −0.330405 0.286298i
\(366\) 0 0
\(367\) −15.5644 −0.812455 −0.406228 0.913772i \(-0.633156\pi\)
−0.406228 + 0.913772i \(0.633156\pi\)
\(368\) 0 0
\(369\) −5.91007 −0.307666
\(370\) 0 0
\(371\) 6.04820 + 5.24079i 0.314007 + 0.272088i
\(372\) 0 0
\(373\) −14.9484 2.14926i −0.774001 0.111285i −0.256014 0.966673i \(-0.582409\pi\)
−0.517987 + 0.855388i \(0.673318\pi\)
\(374\) 0 0
\(375\) 9.36260 + 20.5012i 0.483482 + 1.05868i
\(376\) 0 0
\(377\) 0.116509 + 0.810338i 0.00600052 + 0.0417345i
\(378\) 0 0
\(379\) −2.43021 8.27655i −0.124832 0.425138i 0.873234 0.487301i \(-0.162018\pi\)
−0.998066 + 0.0621628i \(0.980200\pi\)
\(380\) 0 0
\(381\) 0.693587 + 0.316751i 0.0355335 + 0.0162276i
\(382\) 0 0
\(383\) −16.7291 19.3064i −0.854815 0.986509i 0.145181 0.989405i \(-0.453623\pi\)
−0.999996 + 0.00289649i \(0.999078\pi\)
\(384\) 0 0
\(385\) 16.8191 10.8090i 0.857181 0.550877i
\(386\) 0 0
\(387\) −3.82273 + 5.94828i −0.194320 + 0.302368i
\(388\) 0 0
\(389\) 0.0160683 0.0547237i 0.000814697 0.00277460i −0.959085 0.283120i \(-0.908631\pi\)
0.959899 + 0.280345i \(0.0904489\pi\)
\(390\) 0 0
\(391\) 17.3812 1.19499i 0.879004 0.0604333i
\(392\) 0 0
\(393\) −6.63415 1.94796i −0.334649 0.0982617i
\(394\) 0 0
\(395\) −5.79111 + 9.01114i −0.291382 + 0.453400i
\(396\) 0 0
\(397\) −0.621609 0.967242i −0.0311976 0.0485445i 0.825304 0.564688i \(-0.191003\pi\)
−0.856502 + 0.516144i \(0.827367\pi\)
\(398\) 0 0
\(399\) −12.9589 14.9554i −0.648756 0.748704i
\(400\) 0 0
\(401\) 14.9916 32.8270i 0.748645 1.63930i −0.0201400 0.999797i \(-0.506411\pi\)
0.768785 0.639507i \(-0.220862\pi\)
\(402\) 0 0
\(403\) 12.4428 + 42.3763i 0.619820 + 2.11091i
\(404\) 0 0
\(405\) 14.6432 2.10537i 0.727624 0.104617i
\(406\) 0 0
\(407\) −8.97913 19.6616i −0.445079 0.974587i
\(408\) 0 0
\(409\) 1.60020 11.1297i 0.0791250 0.550327i −0.911243 0.411869i \(-0.864876\pi\)
0.990368 0.138458i \(-0.0442146\pi\)
\(410\) 0 0
\(411\) −19.0323 16.4916i −0.938793 0.813469i
\(412\) 0 0
\(413\) 52.7129i 2.59383i
\(414\) 0 0
\(415\) −5.06602 −0.248681
\(416\) 0 0
\(417\) −14.8735 + 17.1650i −0.728359 + 0.840572i
\(418\) 0 0
\(419\) 14.4310 + 2.07486i 0.704998 + 0.101363i 0.485484 0.874246i \(-0.338643\pi\)
0.219515 + 0.975609i \(0.429553\pi\)
\(420\) 0 0
\(421\) 26.0719 11.9066i 1.27067 0.580294i 0.338039 0.941132i \(-0.390237\pi\)
0.932629 + 0.360838i \(0.117509\pi\)
\(422\) 0 0
\(423\) −0.392659 2.73101i −0.0190918 0.132786i
\(424\) 0 0
\(425\) −11.3442 + 3.33095i −0.550273 + 0.161575i
\(426\) 0 0
\(427\) −4.41096 2.01442i −0.213462 0.0974846i
\(428\) 0 0
\(429\) −27.9229 + 24.1953i −1.34813 + 1.16816i
\(430\) 0 0
\(431\) −3.90268 + 2.50810i −0.187986 + 0.120811i −0.631248 0.775581i \(-0.717457\pi\)
0.443263 + 0.896392i \(0.353821\pi\)
\(432\) 0 0
\(433\) −22.3385 14.3561i −1.07352 0.689909i −0.120468 0.992717i \(-0.538439\pi\)
−0.953051 + 0.302808i \(0.902076\pi\)
\(434\) 0 0
\(435\) −0.114660 + 0.390498i −0.00549755 + 0.0187229i
\(436\) 0 0
\(437\) −8.68246 + 4.70997i −0.415338 + 0.225308i
\(438\) 0 0
\(439\) −4.16419 1.22272i −0.198746 0.0583570i 0.180845 0.983512i \(-0.442117\pi\)
−0.379590 + 0.925155i \(0.623935\pi\)
\(440\) 0 0
\(441\) −15.6255 10.0419i −0.744072 0.478186i
\(442\) 0 0
\(443\) −7.36742 11.4639i −0.350037 0.544668i 0.620935 0.783862i \(-0.286753\pi\)
−0.970972 + 0.239194i \(0.923117\pi\)
\(444\) 0 0
\(445\) −8.38113 + 7.26229i −0.397304 + 0.344266i
\(446\) 0 0
\(447\) 3.97707 8.70856i 0.188109 0.411901i
\(448\) 0 0
\(449\) 28.3201 8.31554i 1.33651 0.392435i 0.466087 0.884739i \(-0.345663\pi\)
0.870423 + 0.492304i \(0.163845\pi\)
\(450\) 0 0
\(451\) −14.9814 + 2.15400i −0.705446 + 0.101428i
\(452\) 0 0
\(453\) −32.3823 + 14.7885i −1.52145 + 0.694825i
\(454\) 0 0
\(455\) −4.80084 + 33.3906i −0.225067 + 1.56537i
\(456\) 0 0
\(457\) 6.07553 7.01153i 0.284201 0.327986i −0.595642 0.803250i \(-0.703102\pi\)
0.879843 + 0.475265i \(0.157648\pi\)
\(458\) 0 0
\(459\) 12.9805i 0.605877i
\(460\) 0 0
\(461\) 40.6482i 1.89318i −0.322446 0.946588i \(-0.604505\pi\)
0.322446 0.946588i \(-0.395495\pi\)
\(462\) 0 0
\(463\) −3.09248 + 3.56891i −0.143720 + 0.165861i −0.823046 0.567975i \(-0.807727\pi\)
0.679326 + 0.733837i \(0.262272\pi\)
\(464\) 0 0
\(465\) −3.12463 + 21.7323i −0.144901 + 1.00781i
\(466\) 0 0
\(467\) 33.1508 15.1394i 1.53403 0.700570i 0.543701 0.839279i \(-0.317022\pi\)
0.990333 + 0.138709i \(0.0442951\pi\)
\(468\) 0 0
\(469\) −32.0527 + 4.60848i −1.48005 + 0.212800i
\(470\) 0 0
\(471\) −8.73513 + 2.56486i −0.402493 + 0.118183i
\(472\) 0 0
\(473\) −7.52227 + 16.4715i −0.345874 + 0.757359i
\(474\) 0 0
\(475\) 5.06595 4.38967i 0.232442 0.201412i
\(476\) 0 0
\(477\) −1.18292 1.84067i −0.0541624 0.0842783i
\(478\) 0 0
\(479\) 16.2540 + 10.4458i 0.742664 + 0.477281i 0.856454 0.516224i \(-0.172663\pi\)
−0.113790 + 0.993505i \(0.536299\pi\)
\(480\) 0 0
\(481\) 34.9933 + 10.2750i 1.59556 + 0.468498i
\(482\) 0 0
\(483\) −32.6715 + 32.4920i −1.48661 + 1.47844i
\(484\) 0 0
\(485\) 6.47934 22.0666i 0.294212 1.00199i
\(486\) 0 0
\(487\) 5.12181 + 3.29159i 0.232091 + 0.149156i 0.651518 0.758633i \(-0.274132\pi\)
−0.419427 + 0.907789i \(0.637769\pi\)
\(488\) 0 0
\(489\) −41.2937 + 26.5379i −1.86737 + 1.20008i
\(490\) 0 0
\(491\) 18.0637 15.6523i 0.815202 0.706376i −0.143852 0.989599i \(-0.545949\pi\)
0.959054 + 0.283223i \(0.0914036\pi\)
\(492\) 0 0
\(493\) −0.492562 0.224946i −0.0221839 0.0101310i
\(494\) 0 0
\(495\) −5.24467 + 1.53997i −0.235730 + 0.0692167i
\(496\) 0 0
\(497\) 2.82421 + 19.6428i 0.126683 + 0.881101i
\(498\) 0 0
\(499\) 13.1259 5.99439i 0.587595 0.268346i −0.0993528 0.995052i \(-0.531677\pi\)
0.686948 + 0.726706i \(0.258950\pi\)
\(500\) 0 0
\(501\) 9.97549 + 1.43426i 0.445672 + 0.0640780i
\(502\) 0 0
\(503\) −2.25594 + 2.60350i −0.100588 + 0.116084i −0.803811 0.594884i \(-0.797198\pi\)
0.703224 + 0.710969i \(0.251743\pi\)
\(504\) 0 0
\(505\) 8.50721 0.378566
\(506\) 0 0
\(507\) 35.4745i 1.57548i
\(508\) 0 0
\(509\) −19.8545 17.2040i −0.880036 0.762555i 0.0924012 0.995722i \(-0.470546\pi\)
−0.972437 + 0.233167i \(0.925091\pi\)
\(510\) 0 0
\(511\) −4.18285 + 29.0923i −0.185038 + 1.28697i
\(512\) 0 0
\(513\) −3.05721 6.69435i −0.134979 0.295563i
\(514\) 0 0
\(515\) 15.9462 2.29271i 0.702672 0.101029i
\(516\) 0 0
\(517\) −1.99070 6.77969i −0.0875507 0.298170i
\(518\) 0 0
\(519\) −10.4809 + 22.9501i −0.460062 + 1.00740i
\(520\) 0 0
\(521\) 11.2878 + 13.0268i 0.494528 + 0.570716i 0.947070 0.321027i \(-0.104028\pi\)
−0.452542 + 0.891743i \(0.649483\pi\)
\(522\) 0 0
\(523\) −11.1856 17.4052i −0.489114 0.761076i 0.505709 0.862704i \(-0.331231\pi\)
−0.994822 + 0.101629i \(0.967595\pi\)
\(524\) 0 0
\(525\) 16.9055 26.3054i 0.737815 1.14806i
\(526\) 0 0
\(527\) −28.0291 8.23009i −1.22097 0.358508i
\(528\) 0 0
\(529\) 12.3279 + 19.4171i 0.535996 + 0.844221i
\(530\) 0 0
\(531\) 4.06026 13.8280i 0.176200 0.600084i
\(532\) 0 0
\(533\) 13.8069 21.4839i 0.598041 0.930570i
\(534\) 0 0
\(535\) 14.3978 9.25291i 0.622472 0.400038i
\(536\) 0 0
\(537\) 28.8298 + 33.2713i 1.24410 + 1.43576i
\(538\) 0 0
\(539\) −43.2689 19.7602i −1.86372 0.851133i
\(540\) 0 0
\(541\) 9.69721 + 33.0257i 0.416916 + 1.41988i 0.853910 + 0.520420i \(0.174225\pi\)
−0.436995 + 0.899464i \(0.643957\pi\)
\(542\) 0 0
\(543\) −4.52429 31.4671i −0.194156 1.35038i
\(544\) 0 0
\(545\) −0.519567 1.13769i −0.0222558 0.0487335i
\(546\) 0 0
\(547\) 18.3778 + 2.64233i 0.785778 + 0.112978i 0.523513 0.852018i \(-0.324621\pi\)
0.262265 + 0.964996i \(0.415530\pi\)
\(548\) 0 0
\(549\) 1.00195 + 0.868194i 0.0427622 + 0.0370536i
\(550\) 0 0
\(551\) 0.307006 0.0130789
\(552\) 0 0
\(553\) 37.6929 1.60287
\(554\) 0 0
\(555\) 13.7021 + 11.8730i 0.581623 + 0.503979i
\(556\) 0 0
\(557\) 5.93872 + 0.853859i 0.251632 + 0.0361792i 0.266976 0.963703i \(-0.413975\pi\)
−0.0153447 + 0.999882i \(0.504885\pi\)
\(558\) 0 0
\(559\) −12.6923 27.7922i −0.536827 1.17549i
\(560\) 0 0
\(561\) −3.47792 24.1894i −0.146838 1.02128i
\(562\) 0 0
\(563\) 6.62086 + 22.5486i 0.279036 + 0.950310i 0.973097 + 0.230394i \(0.0740015\pi\)
−0.694061 + 0.719916i \(0.744180\pi\)
\(564\) 0 0
\(565\) 6.52017 + 2.97766i 0.274306 + 0.125271i
\(566\) 0 0
\(567\) −34.0905 39.3425i −1.43167 1.65223i
\(568\) 0 0
\(569\) −10.6530 + 6.84627i −0.446597 + 0.287011i −0.744546 0.667571i \(-0.767334\pi\)
0.297949 + 0.954582i \(0.403698\pi\)
\(570\) 0 0
\(571\) −6.38252 + 9.93140i −0.267100 + 0.415616i −0.948733 0.316078i \(-0.897634\pi\)
0.681633 + 0.731694i \(0.261270\pi\)
\(572\) 0 0
\(573\) 11.2031 38.1544i 0.468018 1.59392i
\(574\) 0 0
\(575\) −11.0063 11.0671i −0.458993 0.461530i
\(576\) 0 0
\(577\) −9.21953 2.70710i −0.383814 0.112698i 0.0841328 0.996455i \(-0.473188\pi\)
−0.467947 + 0.883757i \(0.655006\pi\)
\(578\) 0 0
\(579\) −0.267702 + 0.416553i −0.0111253 + 0.0173114i
\(580\) 0 0
\(581\) 9.63789 + 14.9969i 0.399847 + 0.622174i
\(582\) 0 0
\(583\) −3.66944 4.23475i −0.151973 0.175386i
\(584\) 0 0
\(585\) 3.83133 8.38944i 0.158406 0.346861i
\(586\) 0 0
\(587\) 7.35050 + 25.0335i 0.303388 + 1.03324i 0.960229 + 0.279215i \(0.0900741\pi\)
−0.656841 + 0.754029i \(0.728108\pi\)
\(588\) 0 0
\(589\) 16.3937 2.35706i 0.675490 0.0971208i
\(590\) 0 0
\(591\) 12.2540 + 26.8325i 0.504062 + 1.10374i
\(592\) 0 0
\(593\) −1.45857 + 10.1446i −0.0598962 + 0.416587i 0.937709 + 0.347422i \(0.112943\pi\)
−0.997605 + 0.0691654i \(0.977966\pi\)
\(594\) 0 0
\(595\) −16.8629 14.6118i −0.691310 0.599023i
\(596\) 0 0
\(597\) 32.5907i 1.33385i
\(598\) 0 0
\(599\) 16.7339 0.683730 0.341865 0.939749i \(-0.388941\pi\)
0.341865 + 0.939749i \(0.388941\pi\)
\(600\) 0 0
\(601\) 6.25738 7.22140i 0.255244 0.294567i −0.613637 0.789588i \(-0.710294\pi\)
0.868881 + 0.495021i \(0.164840\pi\)
\(602\) 0 0
\(603\) 8.76323 + 1.25996i 0.356866 + 0.0513096i
\(604\) 0 0
\(605\) 0.486016 0.221956i 0.0197594 0.00902380i
\(606\) 0 0
\(607\) 2.94818 + 20.5050i 0.119663 + 0.832274i 0.957928 + 0.287010i \(0.0926613\pi\)
−0.838265 + 0.545263i \(0.816430\pi\)
\(608\) 0 0
\(609\) 1.37412 0.403478i 0.0556822 0.0163498i
\(610\) 0 0
\(611\) 10.8449 + 4.95269i 0.438737 + 0.200364i
\(612\) 0 0
\(613\) −25.3969 + 22.0066i −1.02577 + 0.888837i −0.993859 0.110653i \(-0.964706\pi\)
−0.0319138 + 0.999491i \(0.510160\pi\)
\(614\) 0 0
\(615\) 10.6802 6.86376i 0.430668 0.276773i
\(616\) 0 0
\(617\) −0.327411 0.210414i −0.0131811 0.00847095i 0.534034 0.845463i \(-0.320676\pi\)
−0.547215 + 0.836992i \(0.684312\pi\)
\(618\) 0 0
\(619\) −6.75022 + 22.9892i −0.271314 + 0.924012i 0.705281 + 0.708928i \(0.250821\pi\)
−0.976595 + 0.215084i \(0.930997\pi\)
\(620\) 0 0
\(621\) −15.0627 + 8.17104i −0.604444 + 0.327892i
\(622\) 0 0
\(623\) 37.4432 + 10.9943i 1.50013 + 0.440478i
\(624\) 0 0
\(625\) 1.56881 + 1.00821i 0.0627524 + 0.0403285i
\(626\) 0 0
\(627\) 7.49083 + 11.6560i 0.299155 + 0.465494i
\(628\) 0 0
\(629\) −18.2309 + 15.7971i −0.726912 + 0.629873i
\(630\) 0 0
\(631\) 3.94336 8.63475i 0.156983 0.343744i −0.814756 0.579804i \(-0.803129\pi\)
0.971738 + 0.236060i \(0.0758563\pi\)
\(632\) 0 0
\(633\) −22.8183 + 6.70004i −0.906944 + 0.266303i
\(634\) 0 0
\(635\) −0.482479 + 0.0693701i −0.0191466 + 0.00275287i
\(636\) 0 0
\(637\) 73.0073 33.3413i 2.89265 1.32103i
\(638\) 0 0
\(639\) 0.772142 5.37037i 0.0305455 0.212448i
\(640\) 0 0
\(641\) −27.2887 + 31.4928i −1.07784 + 1.24389i −0.109569 + 0.993979i \(0.534947\pi\)
−0.968269 + 0.249912i \(0.919598\pi\)
\(642\) 0 0
\(643\) 30.8155i 1.21524i −0.794226 0.607622i \(-0.792123\pi\)
0.794226 0.607622i \(-0.207877\pi\)
\(644\) 0 0
\(645\) 15.1889i 0.598061i
\(646\) 0 0
\(647\) 5.78546 6.67678i 0.227450 0.262491i −0.630541 0.776156i \(-0.717167\pi\)
0.857991 + 0.513665i \(0.171712\pi\)
\(648\) 0 0
\(649\) 5.25254 36.5322i 0.206180 1.43402i
\(650\) 0 0
\(651\) 70.2782 32.0950i 2.75442 1.25790i
\(652\) 0 0
\(653\) 21.6363 3.11084i 0.846695 0.121736i 0.294706 0.955588i \(-0.404778\pi\)
0.551989 + 0.833851i \(0.313869\pi\)
\(654\) 0 0
\(655\) 4.24104 1.24528i 0.165711 0.0486571i
\(656\) 0 0
\(657\) 3.33814 7.30950i 0.130233 0.285171i
\(658\) 0 0
\(659\) −25.9938 + 22.5237i −1.01257 + 0.877400i −0.992481 0.122398i \(-0.960942\pi\)
−0.0200929 + 0.999798i \(0.506396\pi\)
\(660\) 0 0
\(661\) −10.4877 16.3191i −0.407923 0.634740i 0.575130 0.818062i \(-0.304951\pi\)
−0.983053 + 0.183322i \(0.941315\pi\)
\(662\) 0 0
\(663\) 34.6886 + 22.2930i 1.34719 + 0.865789i
\(664\) 0 0
\(665\) 12.1380 + 3.56404i 0.470692 + 0.138208i
\(666\) 0 0
\(667\) −0.0490322 0.713174i −0.00189853 0.0276142i
\(668\) 0 0
\(669\) −3.13181 + 10.6660i −0.121083 + 0.412370i
\(670\) 0 0
\(671\) 2.85625 + 1.83560i 0.110264 + 0.0708627i
\(672\) 0 0
\(673\) −7.38986 + 4.74918i −0.284858 + 0.183067i −0.675265 0.737575i \(-0.735971\pi\)
0.390407 + 0.920642i \(0.372334\pi\)
\(674\) 0 0
\(675\) 8.78861 7.61537i 0.338274 0.293116i
\(676\) 0 0
\(677\) 34.3339 + 15.6798i 1.31956 + 0.602623i 0.945754 0.324884i \(-0.105325\pi\)
0.373806 + 0.927507i \(0.378052\pi\)
\(678\) 0 0
\(679\) −77.6501 + 22.8001i −2.97994 + 0.874988i
\(680\) 0 0
\(681\) 2.17964 + 15.1597i 0.0835241 + 0.580923i
\(682\) 0 0
\(683\) −0.384910 + 0.175782i −0.0147282 + 0.00672613i −0.422765 0.906239i \(-0.638941\pi\)
0.408037 + 0.912965i \(0.366213\pi\)
\(684\) 0 0
\(685\) 15.9352 + 2.29113i 0.608851 + 0.0875396i
\(686\) 0 0
\(687\) −13.3800 + 15.4413i −0.510479 + 0.589124i
\(688\) 0 0
\(689\) 9.45456 0.360190
\(690\) 0 0
\(691\) 12.7118i 0.483581i −0.970328 0.241791i \(-0.922265\pi\)
0.970328 0.241791i \(-0.0777347\pi\)
\(692\) 0 0
\(693\) 14.5365 + 12.5960i 0.552197 + 0.478482i
\(694\) 0 0
\(695\) 2.06634 14.3717i 0.0783807 0.545150i
\(696\) 0 0
\(697\) 7.01705 + 15.3652i 0.265790 + 0.581998i
\(698\) 0 0
\(699\) 16.4392 2.36360i 0.621788 0.0893996i
\(700\) 0 0
\(701\) −2.44522 8.32764i −0.0923545 0.314531i 0.900340 0.435188i \(-0.143318\pi\)
−0.992694 + 0.120657i \(0.961500\pi\)
\(702\) 0 0
\(703\) 5.68151 12.4408i 0.214282 0.469212i
\(704\) 0 0
\(705\) 3.88128 + 4.47924i 0.146178 + 0.168698i
\(706\) 0 0
\(707\) −16.1846 25.1838i −0.608685 0.947133i
\(708\) 0 0
\(709\) −12.5474 + 19.5241i −0.471227 + 0.733244i −0.992777 0.119977i \(-0.961718\pi\)
0.521550 + 0.853221i \(0.325354\pi\)
\(710\) 0 0
\(711\) −9.88784 2.90333i −0.370823 0.108883i
\(712\) 0 0
\(713\) −8.09367 37.7060i −0.303110 1.41210i
\(714\) 0 0
\(715\) 6.65436 22.6627i 0.248859 0.847536i
\(716\) 0 0
\(717\) −2.29740 + 3.57483i −0.0857981 + 0.133504i
\(718\) 0 0
\(719\) −15.8128 + 10.1623i −0.589718 + 0.378988i −0.801203 0.598393i \(-0.795806\pi\)
0.211485 + 0.977381i \(0.432170\pi\)
\(720\) 0 0
\(721\) −37.1240 42.8434i −1.38257 1.59557i
\(722\) 0 0
\(723\) 16.1658 + 7.38266i 0.601212 + 0.274564i
\(724\) 0 0
\(725\) 0.136673 + 0.465467i 0.00507592 + 0.0172870i
\(726\) 0 0
\(727\) −0.884465 6.15159i −0.0328030 0.228150i 0.966825 0.255441i \(-0.0822208\pi\)
−0.999628 + 0.0272916i \(0.991312\pi\)
\(728\) 0 0
\(729\) −3.29039 7.20496i −0.121866 0.266850i
\(730\) 0 0
\(731\) 20.0033 + 2.87604i 0.739847 + 0.106374i
\(732\) 0 0
\(733\) −25.4249 22.0308i −0.939092 0.813728i 0.0435862 0.999050i \(-0.486122\pi\)
−0.982678 + 0.185322i \(0.940667\pi\)
\(734\) 0 0
\(735\) 39.8995 1.47172
\(736\) 0 0
\(737\) 22.6730 0.835172
\(738\) 0 0
\(739\) 27.6796 + 23.9845i 1.01821 + 0.882285i 0.993085 0.117399i \(-0.0374558\pi\)
0.0251263 + 0.999684i \(0.492001\pi\)
\(740\) 0 0
\(741\) −23.1403 3.32707i −0.850080 0.122223i
\(742\) 0 0
\(743\) −9.03031 19.7736i −0.331290 0.725424i 0.668544 0.743673i \(-0.266918\pi\)
−0.999833 + 0.0182494i \(0.994191\pi\)
\(744\) 0 0
\(745\) 0.870998 + 6.05793i 0.0319109 + 0.221945i
\(746\) 0 0
\(747\) −1.37313 4.67644i −0.0502400 0.171102i
\(748\) 0 0
\(749\) −54.7825 25.0183i −2.00171 0.914150i
\(750\) 0 0
\(751\) 21.7012 + 25.0445i 0.791887 + 0.913886i 0.997907 0.0646614i \(-0.0205967\pi\)
−0.206020 + 0.978548i \(0.566051\pi\)
\(752\) 0 0
\(753\) −3.58178 + 2.30187i −0.130527 + 0.0838848i
\(754\) 0 0
\(755\) 12.3038 19.1450i 0.447780 0.696759i
\(756\) 0 0
\(757\) 0.442918 1.50844i 0.0160981 0.0548252i −0.951052 0.309030i \(-0.899996\pi\)
0.967150 + 0.254205i \(0.0818138\pi\)
\(758\) 0 0
\(759\) 25.8804 19.2627i 0.939398 0.699193i
\(760\) 0 0
\(761\) 30.3793 + 8.92016i 1.10125 + 0.323356i 0.781348 0.624096i \(-0.214533\pi\)
0.319900 + 0.947451i \(0.396351\pi\)
\(762\) 0 0
\(763\) −2.37944 + 3.70248i −0.0861416 + 0.134039i
\(764\) 0 0
\(765\) 3.29809 + 5.13193i 0.119243 + 0.185545i
\(766\) 0 0
\(767\) 40.7811 + 47.0639i 1.47252 + 1.69938i
\(768\) 0 0
\(769\) 1.12104 2.45473i 0.0404257 0.0885199i −0.888342 0.459183i \(-0.848142\pi\)
0.928767 + 0.370663i \(0.120870\pi\)
\(770\) 0 0
\(771\) −13.9289 47.4373i −0.501635 1.70841i
\(772\) 0 0
\(773\) 53.4426 7.68389i 1.92220 0.276370i 0.927064 0.374903i \(-0.122324\pi\)
0.995134 + 0.0985331i \(0.0314150\pi\)
\(774\) 0 0
\(775\) 10.8718 + 23.8059i 0.390526 + 0.855133i
\(776\) 0 0
\(777\) 9.07961 63.1501i 0.325729 2.26550i
\(778\) 0 0
\(779\) −7.23773 6.27153i −0.259318 0.224701i
\(780\) 0 0
\(781\) 13.8947i 0.497191i
\(782\) 0 0
\(783\) 0.532607 0.0190338
\(784\) 0 0
\(785\) 3.81121 4.39837i 0.136028 0.156985i
\(786\) 0 0
\(787\) 20.7182 + 2.97883i 0.738524 + 0.106184i 0.501303 0.865272i \(-0.332854\pi\)
0.237221 + 0.971456i \(0.423763\pi\)
\(788\) 0 0
\(789\) 50.6613 23.1363i 1.80359 0.823672i
\(790\) 0 0
\(791\) −3.58963 24.9664i −0.127633 0.887704i
\(792\) 0 0
\(793\) −5.49671 + 1.61398i −0.195194 + 0.0573141i
\(794\) 0 0
\(795\) 4.27538 + 1.95250i 0.151632 + 0.0692480i
\(796\) 0 0
\(797\) −12.1025 + 10.4869i −0.428692 + 0.371464i −0.842316 0.538984i \(-0.818808\pi\)
0.413624 + 0.910448i \(0.364263\pi\)
\(798\) 0 0
\(799\) −6.63395 + 4.26338i −0.234692 + 0.150828i
\(800\) 0 0
\(801\) −8.97549 5.76820i −0.317133 0.203809i
\(802\) 0 0
\(803\) 5.79777 19.7454i 0.204599 0.696800i
\(804\) 0 0
\(805\) 6.34068 28.7657i 0.223480 1.01386i
\(806\) 0 0
\(807\) 3.38431 + 0.993722i 0.119133 + 0.0349807i
\(808\) 0 0
\(809\) −47.3775 30.4477i −1.66571 1.07048i −0.909067 0.416650i \(-0.863204\pi\)
−0.756638 0.653834i \(-0.773160\pi\)
\(810\) 0 0
\(811\) 14.6119 + 22.7366i 0.513094 + 0.798390i 0.997054 0.0767001i \(-0.0244384\pi\)
−0.483960 + 0.875090i \(0.660802\pi\)
\(812\) 0 0
\(813\) 26.4865 22.9506i 0.928920 0.804914i
\(814\) 0 0
\(815\) 13.0355 28.5437i 0.456612 0.999841i
\(816\) 0 0
\(817\) −10.9936 + 3.22800i −0.384616 + 0.112933i
\(818\) 0 0
\(819\) −32.1241 + 4.61875i −1.12251 + 0.161392i
\(820\) 0 0
\(821\) −7.42725 + 3.39191i −0.259213 + 0.118378i −0.540783 0.841162i \(-0.681872\pi\)
0.281570 + 0.959541i \(0.409145\pi\)
\(822\) 0 0
\(823\) 2.42519 16.8675i 0.0845367 0.587966i −0.902888 0.429876i \(-0.858557\pi\)
0.987425 0.158090i \(-0.0505336\pi\)
\(824\) 0 0
\(825\) −14.3374 + 16.5462i −0.499163 + 0.576065i
\(826\) 0 0
\(827\) 45.1316i 1.56938i 0.619889 + 0.784690i \(0.287178\pi\)
−0.619889 + 0.784690i \(0.712822\pi\)
\(828\) 0 0
\(829\) 14.7254i 0.511435i 0.966752 + 0.255717i \(0.0823117\pi\)
−0.966752 + 0.255717i \(0.917688\pi\)
\(830\) 0 0
\(831\) 5.23769 6.04462i 0.181693 0.209685i
\(832\) 0 0
\(833\) −7.55504 + 52.5465i −0.261767 + 1.82063i
\(834\) 0 0
\(835\) −5.86043 + 2.67637i −0.202809 + 0.0926196i
\(836\) 0 0
\(837\) 28.4404 4.08911i 0.983044 0.141340i
\(838\) 0 0
\(839\) 33.3829 9.80209i 1.15250 0.338406i 0.350989 0.936380i \(-0.385846\pi\)
0.801516 + 0.597974i \(0.204027\pi\)
\(840\) 0 0
\(841\) 12.0378 26.3591i 0.415097 0.908935i
\(842\) 0 0
\(843\) −42.0783 + 36.4611i −1.44926 + 1.25579i
\(844\) 0 0
\(845\) 12.2606 + 19.0779i 0.421778 + 0.656299i
\(846\) 0 0
\(847\) −1.58168 1.01648i −0.0543471 0.0349268i
\(848\) 0 0
\(849\) −11.2451 3.30186i −0.385931 0.113320i
\(850\) 0 0
\(851\) −29.8072 11.2112i −1.02178 0.384315i
\(852\) 0 0
\(853\) 10.6935 36.4189i 0.366140 1.24696i −0.546245 0.837626i \(-0.683943\pi\)
0.912385 0.409333i \(-0.134239\pi\)
\(854\) 0 0
\(855\) −2.90960 1.86988i −0.0995061 0.0639487i
\(856\) 0 0
\(857\) −11.0369 + 7.09297i −0.377012 + 0.242291i −0.715399 0.698716i \(-0.753755\pi\)
0.338387 + 0.941007i \(0.390119\pi\)
\(858\) 0 0
\(859\) 26.2081 22.7094i 0.894207 0.774835i −0.0808644 0.996725i \(-0.525768\pi\)
0.975072 + 0.221890i \(0.0712226\pi\)
\(860\) 0 0
\(861\) −40.6374 18.5585i −1.38492 0.632471i
\(862\) 0 0
\(863\) 1.51809 0.445751i 0.0516763 0.0151735i −0.255792 0.966732i \(-0.582336\pi\)
0.307469 + 0.951558i \(0.400518\pi\)
\(864\) 0 0
\(865\) −2.29538 15.9647i −0.0780453 0.542817i
\(866\) 0 0
\(867\) 7.14901 3.26484i 0.242793 0.110880i
\(868\) 0 0
\(869\) −26.1227 3.75588i −0.886153 0.127410i
\(870\) 0 0
\(871\) −25.0524 + 28.9120i −0.848868 + 0.979646i
\(872\) 0 0
\(873\) 22.1259 0.748847
\(874\) 0 0
\(875\) 50.6999i 1.71397i
\(876\) 0 0
\(877\) 32.3282 + 28.0125i 1.09165 + 0.945916i 0.998761 0.0497609i \(-0.0158459\pi\)
0.0928841 + 0.995677i \(0.470391\pi\)
\(878\) 0 0
\(879\) −6.57918 + 45.7592i −0.221910 + 1.54342i
\(880\) 0 0
\(881\) −4.90329 10.7367i −0.165196 0.361729i 0.808872 0.587985i \(-0.200079\pi\)
−0.974068 + 0.226256i \(0.927351\pi\)
\(882\) 0 0
\(883\) −35.2810 + 5.07264i −1.18730 + 0.170708i −0.707528 0.706685i \(-0.750190\pi\)
−0.479772 + 0.877393i \(0.659281\pi\)
\(884\) 0 0
\(885\) 8.72197 + 29.7043i 0.293186 + 0.998499i
\(886\) 0 0
\(887\) −1.46551 + 3.20901i −0.0492069 + 0.107748i −0.932639 0.360812i \(-0.882500\pi\)
0.883432 + 0.468560i \(0.155227\pi\)
\(888\) 0 0
\(889\) 1.12325 + 1.29630i 0.0376727 + 0.0434766i
\(890\) 0 0
\(891\) 19.7059 + 30.6629i 0.660171 + 1.02725i
\(892\) 0 0
\(893\) 2.41716 3.76118i 0.0808873 0.125863i
\(894\) 0 0
\(895\) −27.0036 7.92896i −0.902629 0.265036i
\(896\) 0 0
\(897\) −4.03302 + 54.2861i −0.134659 + 1.81256i
\(898\) 0 0
\(899\) −0.337692 + 1.15007i −0.0112627 + 0.0383571i
\(900\) 0 0
\(901\) −3.38093 + 5.26083i −0.112635 + 0.175264i
\(902\) 0 0
\(903\) −44.9633 + 28.8962i −1.49629 + 0.961605i
\(904\) 0 0
\(905\) 13.3087 + 15.3591i 0.442396 + 0.510552i
\(906\) 0 0
\(907\) −38.3392 17.5089i −1.27303 0.581374i −0.339748 0.940516i \(-0.610342\pi\)
−0.933283 + 0.359143i \(0.883069\pi\)
\(908\) 0 0
\(909\) 2.30585 + 7.85300i 0.0764802 + 0.260468i
\(910\) 0 0
\(911\) −0.654460 4.55187i −0.0216832 0.150810i 0.976103 0.217306i \(-0.0697271\pi\)
−0.997787 + 0.0664962i \(0.978818\pi\)
\(912\) 0 0
\(913\) −5.18511 11.3538i −0.171602 0.375756i
\(914\) 0 0
\(915\) −2.81894 0.405302i −0.0931911 0.0133989i
\(916\) 0 0
\(917\) −11.7548 10.1856i −0.388177 0.336357i
\(918\) 0 0
\(919\) −12.9923 −0.428576 −0.214288 0.976771i \(-0.568743\pi\)
−0.214288 + 0.976771i \(0.568743\pi\)
\(920\) 0 0
\(921\) 26.0375 0.857966
\(922\) 0 0
\(923\) 17.7181 + 15.3528i 0.583199 + 0.505345i
\(924\) 0 0
\(925\) 21.3913 + 3.07561i 0.703342 + 0.101125i
\(926\) 0 0
\(927\) 6.43855 + 14.0985i 0.211470 + 0.463054i
\(928\) 0 0
\(929\) 7.60157 + 52.8701i 0.249399 + 1.73461i 0.601698 + 0.798724i \(0.294491\pi\)
−0.352299 + 0.935888i \(0.614600\pi\)
\(930\) 0 0
\(931\) −8.47961 28.8789i −0.277908 0.946468i
\(932\) 0 0
\(933\) −54.7296 24.9942i −1.79177 0.818272i
\(934\) 0 0
\(935\) 10.2307 + 11.8068i 0.334579 + 0.386125i
\(936\) 0 0
\(937\) 24.1611 15.5274i 0.789309 0.507258i −0.0828019 0.996566i \(-0.526387\pi\)
0.872111 + 0.489308i \(0.162751\pi\)
\(938\) 0 0
\(939\) 7.58146 11.7970i 0.247412 0.384980i
\(940\) 0 0
\(941\) −12.9281 + 44.0289i −0.421442 + 1.43530i 0.426150 + 0.904653i \(0.359870\pi\)
−0.847592 + 0.530648i \(0.821948\pi\)
\(942\) 0 0
\(943\) −13.4128 + 17.8148i −0.436780 + 0.580131i
\(944\) 0 0
\(945\) 21.0575 + 6.18304i 0.685000 + 0.201134i
\(946\) 0 0
\(947\) −3.34638 + 5.20708i −0.108743 + 0.169207i −0.891360 0.453296i \(-0.850248\pi\)
0.782617 + 0.622503i \(0.213884\pi\)
\(948\) 0 0
\(949\) 18.7726 + 29.2107i 0.609383 + 0.948219i
\(950\) 0 0
\(951\) −5.19639 5.99695i −0.168505 0.194465i
\(952\) 0 0
\(953\) 0.189560 0.415079i 0.00614046 0.0134457i −0.906537 0.422127i \(-0.861284\pi\)
0.912677 + 0.408681i \(0.134011\pi\)
\(954\) 0 0
\(955\) 7.16187 + 24.3911i 0.231753 + 0.789277i
\(956\) 0 0
\(957\) −0.992526 + 0.142704i −0.0320838 + 0.00461296i
\(958\) 0 0
\(959\) −23.5336 51.5314i −0.759940 1.66404i
\(960\) 0 0
\(961\) −4.79074 + 33.3204i −0.154540 + 1.07485i
\(962\) 0 0
\(963\) 12.4438 + 10.7826i 0.400997 + 0.347466i
\(964\) 0 0
\(965\) 0.316541i 0.0101898i
\(966\) 0 0
\(967\) −1.19554 −0.0384460 −0.0192230 0.999815i \(-0.506119\pi\)
−0.0192230 + 0.999815i \(0.506119\pi\)
\(968\) 0 0
\(969\) 10.1262 11.6863i 0.325301 0.375417i
\(970\) 0 0
\(971\) −40.0490 5.75818i −1.28523 0.184789i −0.534373 0.845249i \(-0.679452\pi\)
−0.750861 + 0.660460i \(0.770361\pi\)
\(972\) 0 0
\(973\) −46.4755 + 21.2246i −1.48994 + 0.680431i
\(974\) 0 0
\(975\) −5.25728 36.5652i −0.168368 1.17102i
\(976\) 0 0
\(977\) −16.9005 + 4.96244i −0.540695 + 0.158762i −0.540666 0.841238i \(-0.681828\pi\)
−2.93991e−5 1.00000i \(0.500009\pi\)
\(978\) 0 0
\(979\) −24.8542 11.3505i −0.794342 0.362764i
\(980\) 0 0
\(981\) 0.909378 0.787980i 0.0290342 0.0251583i
\(982\) 0 0
\(983\) −11.2551 + 7.23324i −0.358983 + 0.230705i −0.707683 0.706530i \(-0.750260\pi\)
0.348700 + 0.937234i \(0.386623\pi\)
\(984\) 0 0
\(985\) −15.8639 10.1951i −0.505465 0.324843i
\(986\) 0 0
\(987\) 5.87584 20.0113i 0.187030 0.636966i
\(988\) 0 0
\(989\) 9.25441 + 25.0224i 0.294273 + 0.795666i
\(990\) 0 0
\(991\) 21.3180 + 6.25952i 0.677188 + 0.198840i 0.602201 0.798344i \(-0.294290\pi\)
0.0749864 + 0.997185i \(0.476109\pi\)
\(992\) 0 0
\(993\) 57.4349 + 36.9111i 1.82264 + 1.17134i
\(994\) 0 0
\(995\) −11.2639 17.5270i −0.357090 0.555643i
\(996\) 0 0
\(997\) −16.5153 + 14.3106i −0.523046 + 0.453222i −0.875925 0.482447i \(-0.839748\pi\)
0.352879 + 0.935669i \(0.385203\pi\)
\(998\) 0 0
\(999\) 9.85651 21.5827i 0.311846 0.682848i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 736.2.x.a.593.5 220
4.3 odd 2 184.2.p.a.133.13 yes 220
8.3 odd 2 184.2.p.a.133.9 yes 220
8.5 even 2 inner 736.2.x.a.593.18 220
23.9 even 11 inner 736.2.x.a.561.18 220
92.55 odd 22 184.2.p.a.101.9 220
184.101 even 22 inner 736.2.x.a.561.5 220
184.147 odd 22 184.2.p.a.101.13 yes 220
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
184.2.p.a.101.9 220 92.55 odd 22
184.2.p.a.101.13 yes 220 184.147 odd 22
184.2.p.a.133.9 yes 220 8.3 odd 2
184.2.p.a.133.13 yes 220 4.3 odd 2
736.2.x.a.561.5 220 184.101 even 22 inner
736.2.x.a.561.18 220 23.9 even 11 inner
736.2.x.a.593.5 220 1.1 even 1 trivial
736.2.x.a.593.18 220 8.5 even 2 inner