Properties

Label 7350.2.a.dt
Level $7350$
Weight $2$
Character orbit 7350.a
Self dual yes
Analytic conductor $58.690$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7350,2,Mod(1,7350)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7350, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7350.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7350 = 2 \cdot 3 \cdot 5^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7350.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,-4,4,0,-4,0,4,4,0,0,-4,0,0,0,4,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(58.6900454856\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.10304.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1470)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{2} - q^{3} + q^{4} - q^{6} + q^{8} + q^{9} + (\beta_{2} - \beta_1) q^{11} - q^{12} + (2 \beta_{2} - \beta_1) q^{13} + q^{16} + (\beta_{3} - \beta_{2} + \beta_1 - 1) q^{17} + q^{18} + ( - \beta_{3} - 2 \beta_{2} + \beta_1 - 3) q^{19}+ \cdots + (\beta_{2} - \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} - 4 q^{3} + 4 q^{4} - 4 q^{6} + 4 q^{8} + 4 q^{9} - 4 q^{12} + 4 q^{16} - 4 q^{17} + 4 q^{18} - 12 q^{19} + 4 q^{23} - 4 q^{24} - 4 q^{27} - 8 q^{29} - 16 q^{31} + 4 q^{32} - 4 q^{34} + 4 q^{36}+ \cdots - 20 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 2x^{3} - 7x^{2} + 8x + 8 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} - \nu^{2} - 4\nu ) / 2 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{2} - \nu - 4 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + \nu^{2} + 8\nu - 2 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta _1 + 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{3} + 4\beta_{2} + \beta _1 + 9 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 5\beta_{3} + 4\beta_{2} + 9\beta _1 + 13 ) / 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
3.16053
−0.692297
1.69230
−2.16053
1.00000 −1.00000 1.00000 0 −1.00000 0 1.00000 1.00000 0
1.2 1.00000 −1.00000 1.00000 0 −1.00000 0 1.00000 1.00000 0
1.3 1.00000 −1.00000 1.00000 0 −1.00000 0 1.00000 1.00000 0
1.4 1.00000 −1.00000 1.00000 0 −1.00000 0 1.00000 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7350.2.a.dt 4
5.b even 2 1 7350.2.a.ds 4
5.c odd 4 2 1470.2.g.j 8
7.b odd 2 1 7350.2.a.du 4
35.c odd 2 1 7350.2.a.dr 4
35.f even 4 2 1470.2.g.k yes 8
35.k even 12 4 1470.2.n.k 16
35.l odd 12 4 1470.2.n.l 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1470.2.g.j 8 5.c odd 4 2
1470.2.g.k yes 8 35.f even 4 2
1470.2.n.k 16 35.k even 12 4
1470.2.n.l 16 35.l odd 12 4
7350.2.a.dr 4 35.c odd 2 1
7350.2.a.ds 4 5.b even 2 1
7350.2.a.dt 4 1.a even 1 1 trivial
7350.2.a.du 4 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7350))\):

\( T_{11}^{4} - 18T_{11}^{2} - 16T_{11} + 32 \) Copy content Toggle raw display
\( T_{13}^{4} - 26T_{13}^{2} - 48T_{13} - 16 \) Copy content Toggle raw display
\( T_{17}^{4} + 4T_{17}^{3} - 32T_{17}^{2} - 8T_{17} + 124 \) Copy content Toggle raw display
\( T_{19}^{4} + 12T_{19}^{3} + 12T_{19}^{2} - 224T_{19} - 448 \) Copy content Toggle raw display
\( T_{23}^{4} - 4T_{23}^{3} - 36T_{23}^{2} + 128 \) Copy content Toggle raw display
\( T_{31}^{4} + 16T_{31}^{3} + 78T_{31}^{2} + 128T_{31} + 64 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T - 1)^{4} \) Copy content Toggle raw display
$3$ \( (T + 1)^{4} \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} - 18 T^{2} + \cdots + 32 \) Copy content Toggle raw display
$13$ \( T^{4} - 26 T^{2} + \cdots - 16 \) Copy content Toggle raw display
$17$ \( T^{4} + 4 T^{3} + \cdots + 124 \) Copy content Toggle raw display
$19$ \( T^{4} + 12 T^{3} + \cdots - 448 \) Copy content Toggle raw display
$23$ \( T^{4} - 4 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$29$ \( T^{4} + 8 T^{3} + \cdots + 1568 \) Copy content Toggle raw display
$31$ \( T^{4} + 16 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$37$ \( T^{4} + 8 T^{3} + \cdots + 200 \) Copy content Toggle raw display
$41$ \( T^{4} + 12 T^{3} + \cdots - 376 \) Copy content Toggle raw display
$43$ \( T^{4} - 4 T^{3} + \cdots + 736 \) Copy content Toggle raw display
$47$ \( T^{4} + 12 T^{3} + \cdots - 1024 \) Copy content Toggle raw display
$53$ \( T^{4} - 20 T^{3} + \cdots + 64 \) Copy content Toggle raw display
$59$ \( T^{4} + 20 T^{3} + \cdots - 3008 \) Copy content Toggle raw display
$61$ \( T^{4} + 12 T^{3} + \cdots - 648 \) Copy content Toggle raw display
$67$ \( T^{4} + 4 T^{3} + \cdots + 32 \) Copy content Toggle raw display
$71$ \( T^{4} + 20 T^{3} + \cdots + 2944 \) Copy content Toggle raw display
$73$ \( T^{4} - 12 T^{3} + \cdots - 248 \) Copy content Toggle raw display
$79$ \( T^{4} + 8 T^{3} + \cdots - 3584 \) Copy content Toggle raw display
$83$ \( T^{4} + 8 T^{3} + \cdots + 128 \) Copy content Toggle raw display
$89$ \( T^{4} + 44 T^{3} + \cdots + 5048 \) Copy content Toggle raw display
$97$ \( T^{4} + 20 T^{3} + \cdots - 10376 \) Copy content Toggle raw display
show more
show less