Properties

Label 735.2.s.l.656.1
Level $735$
Weight $2$
Character 735.656
Analytic conductor $5.869$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(521,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.521"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.s (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,3,-2,3,4,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.856615824.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 36x^{4} + 32x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 105)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 656.1
Root \(-2.06288i\) of defining polynomial
Character \(\chi\) \(=\) 735.656
Dual form 735.2.s.l.521.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.78651 - 1.03144i) q^{2} +(-1.08415 - 1.35078i) q^{3} +(1.12774 + 1.95330i) q^{4} +(0.500000 - 0.866025i) q^{5} +(0.543588 + 3.53142i) q^{6} -0.527019i q^{8} +(-0.649237 + 2.92891i) q^{9} +(-1.78651 + 1.03144i) q^{10} +(4.06348 - 2.34605i) q^{11} +(1.41585 - 3.64100i) q^{12} +0.638688i q^{13} +(-1.71189 + 0.263509i) q^{15} +(1.71189 - 2.96508i) q^{16} +(-2.07462 - 3.59334i) q^{17} +(4.18086 - 4.56286i) q^{18} +(0.776975 + 0.448587i) q^{19} +2.25548 q^{20} -9.67925 q^{22} +(-5.89275 - 3.40218i) q^{23} +(-0.711889 + 0.571367i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(0.658769 - 1.14102i) q^{26} +(4.66019 - 2.29839i) q^{27} -2.14740i q^{29} +(3.33010 + 1.29495i) q^{30} +(2.02453 - 1.16886i) q^{31} +(-7.02943 + 4.05844i) q^{32} +(-7.57444 - 2.94542i) q^{33} +8.55938i q^{34} +(-6.45320 + 2.03489i) q^{36} +(5.69122 - 9.85748i) q^{37} +(-0.925382 - 1.60281i) q^{38} +(0.862730 - 0.692434i) q^{39} +(-0.456412 - 0.263509i) q^{40} -4.10624 q^{41} +3.14924 q^{43} +(9.16509 + 5.29147i) q^{44} +(2.21189 + 2.02671i) q^{45} +(7.01829 + 12.1560i) q^{46} +(-3.40471 + 5.89714i) q^{47} +(-5.86113 + 0.902197i) q^{48} +2.06288i q^{50} +(-2.60464 + 6.69809i) q^{51} +(-1.24755 + 0.720273i) q^{52} +(-1.96187 + 1.13269i) q^{53} +(-10.6961 - 0.700610i) q^{54} -4.69211i q^{55} +(-0.236414 - 1.53586i) q^{57} +(-2.21492 + 3.83635i) q^{58} +(-0.254055 - 0.440035i) q^{59} +(-2.44528 - 3.04666i) q^{60} +(-4.48946 - 2.59199i) q^{61} -4.82244 q^{62} +9.89660 q^{64} +(0.553120 + 0.319344i) q^{65} +(10.4938 + 13.0746i) q^{66} +(-2.41425 - 4.18160i) q^{67} +(4.67925 - 8.10471i) q^{68} +(1.79301 + 11.6483i) q^{69} +1.22800i q^{71} +(1.54359 + 0.342160i) q^{72} +(-12.5197 + 7.22826i) q^{73} +(-20.3348 + 11.7403i) q^{74} +(-0.627739 + 1.61429i) q^{75} +2.02356i q^{76} +(-2.25548 + 0.347183i) q^{78} +(-4.54056 + 7.86448i) q^{79} +(-1.71189 - 2.96508i) q^{80} +(-8.15698 - 3.80311i) q^{81} +(7.33583 + 4.23534i) q^{82} +2.76359 q^{83} -4.14924 q^{85} +(-5.62613 - 3.24825i) q^{86} +(-2.90067 + 2.32810i) q^{87} +(-1.23641 - 2.14153i) q^{88} +(-6.90067 + 11.9523i) q^{89} +(-1.86113 - 5.90216i) q^{90} -15.3471i q^{92} +(-3.77377 - 1.46748i) q^{93} +(12.1651 - 7.02352i) q^{94} +(0.776975 - 0.448587i) q^{95} +(13.1030 + 5.09528i) q^{96} -12.9085i q^{97} +(4.23321 + 13.4247i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{2} - 2 q^{3} + 3 q^{4} + 4 q^{5} + 5 q^{6} + 4 q^{9} + 3 q^{10} + 18 q^{12} - q^{15} + q^{16} - 12 q^{17} + 26 q^{18} - 9 q^{19} + 6 q^{20} - 40 q^{22} - 27 q^{23} + 7 q^{24} - 4 q^{25} - 6 q^{26}+ \cdots - 34 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.78651 1.03144i −1.26325 0.729338i −0.289549 0.957163i \(-0.593505\pi\)
−0.973702 + 0.227825i \(0.926839\pi\)
\(3\) −1.08415 1.35078i −0.625934 0.779876i
\(4\) 1.12774 + 1.95330i 0.563869 + 0.976650i
\(5\) 0.500000 0.866025i 0.223607 0.387298i
\(6\) 0.543588 + 3.53142i 0.221919 + 1.44170i
\(7\) 0 0
\(8\) 0.527019i 0.186329i
\(9\) −0.649237 + 2.92891i −0.216412 + 0.976302i
\(10\) −1.78651 + 1.03144i −0.564943 + 0.326170i
\(11\) 4.06348 2.34605i 1.22519 0.707362i 0.259167 0.965833i \(-0.416552\pi\)
0.966019 + 0.258471i \(0.0832186\pi\)
\(12\) 1.41585 3.64100i 0.408721 1.05107i
\(13\) 0.638688i 0.177140i 0.996070 + 0.0885701i \(0.0282297\pi\)
−0.996070 + 0.0885701i \(0.971770\pi\)
\(14\) 0 0
\(15\) −1.71189 + 0.263509i −0.442008 + 0.0680378i
\(16\) 1.71189 2.96508i 0.427972 0.741270i
\(17\) −2.07462 3.59334i −0.503169 0.871514i −0.999993 0.00366299i \(-0.998834\pi\)
0.496824 0.867851i \(-0.334499\pi\)
\(18\) 4.18086 4.56286i 0.985438 1.07548i
\(19\) 0.776975 + 0.448587i 0.178250 + 0.102913i 0.586470 0.809971i \(-0.300517\pi\)
−0.408220 + 0.912884i \(0.633850\pi\)
\(20\) 2.25548 0.504340
\(21\) 0 0
\(22\) −9.67925 −2.06362
\(23\) −5.89275 3.40218i −1.22872 0.709403i −0.261960 0.965079i \(-0.584369\pi\)
−0.966763 + 0.255675i \(0.917702\pi\)
\(24\) −0.711889 + 0.571367i −0.145314 + 0.116630i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0.658769 1.14102i 0.129195 0.223773i
\(27\) 4.66019 2.29839i 0.896854 0.442326i
\(28\) 0 0
\(29\) 2.14740i 0.398762i −0.979922 0.199381i \(-0.936107\pi\)
0.979922 0.199381i \(-0.0638932\pi\)
\(30\) 3.33010 + 1.29495i 0.607989 + 0.236424i
\(31\) 2.02453 1.16886i 0.363615 0.209933i −0.307050 0.951693i \(-0.599342\pi\)
0.670666 + 0.741760i \(0.266009\pi\)
\(32\) −7.02943 + 4.05844i −1.24264 + 0.717438i
\(33\) −7.57444 2.94542i −1.31854 0.512731i
\(34\) 8.55938i 1.46792i
\(35\) 0 0
\(36\) −6.45320 + 2.03489i −1.07553 + 0.339148i
\(37\) 5.69122 9.85748i 0.935631 1.62056i 0.162126 0.986770i \(-0.448165\pi\)
0.773505 0.633790i \(-0.218502\pi\)
\(38\) −0.925382 1.60281i −0.150117 0.260010i
\(39\) 0.862730 0.692434i 0.138147 0.110878i
\(40\) −0.456412 0.263509i −0.0721650 0.0416645i
\(41\) −4.10624 −0.641287 −0.320643 0.947200i \(-0.603899\pi\)
−0.320643 + 0.947200i \(0.603899\pi\)
\(42\) 0 0
\(43\) 3.14924 0.480254 0.240127 0.970741i \(-0.422811\pi\)
0.240127 + 0.970741i \(0.422811\pi\)
\(44\) 9.16509 + 5.29147i 1.38169 + 0.797719i
\(45\) 2.21189 + 2.02671i 0.329729 + 0.302124i
\(46\) 7.01829 + 12.1560i 1.03479 + 1.79231i
\(47\) −3.40471 + 5.89714i −0.496629 + 0.860186i −0.999992 0.00388861i \(-0.998762\pi\)
0.503364 + 0.864075i \(0.332096\pi\)
\(48\) −5.86113 + 0.902197i −0.845981 + 0.130221i
\(49\) 0 0
\(50\) 2.06288i 0.291735i
\(51\) −2.60464 + 6.69809i −0.364722 + 0.937920i
\(52\) −1.24755 + 0.720273i −0.173004 + 0.0998839i
\(53\) −1.96187 + 1.13269i −0.269484 + 0.155587i −0.628653 0.777686i \(-0.716393\pi\)
0.359169 + 0.933272i \(0.383060\pi\)
\(54\) −10.6961 0.700610i −1.45556 0.0953410i
\(55\) 4.69211i 0.632683i
\(56\) 0 0
\(57\) −0.236414 1.53586i −0.0313138 0.203430i
\(58\) −2.21492 + 3.83635i −0.290833 + 0.503737i
\(59\) −0.254055 0.440035i −0.0330751 0.0572877i 0.849014 0.528370i \(-0.177197\pi\)
−0.882089 + 0.471083i \(0.843863\pi\)
\(60\) −2.44528 3.04666i −0.315684 0.393323i
\(61\) −4.48946 2.59199i −0.574816 0.331870i 0.184255 0.982879i \(-0.441013\pi\)
−0.759070 + 0.651008i \(0.774346\pi\)
\(62\) −4.82244 −0.612450
\(63\) 0 0
\(64\) 9.89660 1.23708
\(65\) 0.553120 + 0.319344i 0.0686061 + 0.0396097i
\(66\) 10.4938 + 13.0746i 1.29169 + 1.60937i
\(67\) −2.41425 4.18160i −0.294947 0.510863i 0.680026 0.733188i \(-0.261969\pi\)
−0.974973 + 0.222325i \(0.928635\pi\)
\(68\) 4.67925 8.10471i 0.567443 0.982840i
\(69\) 1.79301 + 11.6483i 0.215853 + 1.40229i
\(70\) 0 0
\(71\) 1.22800i 0.145737i 0.997342 + 0.0728686i \(0.0232154\pi\)
−0.997342 + 0.0728686i \(0.976785\pi\)
\(72\) 1.54359 + 0.342160i 0.181914 + 0.0403239i
\(73\) −12.5197 + 7.22826i −1.46532 + 0.846004i −0.999249 0.0387429i \(-0.987665\pi\)
−0.466072 + 0.884747i \(0.654331\pi\)
\(74\) −20.3348 + 11.7403i −2.36387 + 1.36478i
\(75\) −0.627739 + 1.61429i −0.0724850 + 0.186403i
\(76\) 2.02356i 0.232118i
\(77\) 0 0
\(78\) −2.25548 + 0.347183i −0.255382 + 0.0393108i
\(79\) −4.54056 + 7.86448i −0.510853 + 0.884824i 0.489068 + 0.872246i \(0.337337\pi\)
−0.999921 + 0.0125778i \(0.995996\pi\)
\(80\) −1.71189 2.96508i −0.191395 0.331506i
\(81\) −8.15698 3.80311i −0.906331 0.422568i
\(82\) 7.33583 + 4.23534i 0.810107 + 0.467715i
\(83\) 2.76359 0.303343 0.151671 0.988431i \(-0.451534\pi\)
0.151671 + 0.988431i \(0.451534\pi\)
\(84\) 0 0
\(85\) −4.14924 −0.450048
\(86\) −5.62613 3.24825i −0.606682 0.350268i
\(87\) −2.90067 + 2.32810i −0.310985 + 0.249599i
\(88\) −1.23641 2.14153i −0.131802 0.228288i
\(89\) −6.90067 + 11.9523i −0.731470 + 1.26694i 0.224785 + 0.974408i \(0.427832\pi\)
−0.956255 + 0.292535i \(0.905501\pi\)
\(90\) −1.86113 5.90216i −0.196180 0.622142i
\(91\) 0 0
\(92\) 15.3471i 1.60004i
\(93\) −3.77377 1.46748i −0.391321 0.152170i
\(94\) 12.1651 7.02352i 1.25473 0.724421i
\(95\) 0.776975 0.448587i 0.0797160 0.0460241i
\(96\) 13.1030 + 5.09528i 1.33732 + 0.520035i
\(97\) 12.9085i 1.31066i −0.755344 0.655329i \(-0.772530\pi\)
0.755344 0.655329i \(-0.227470\pi\)
\(98\) 0 0
\(99\) 4.23321 + 13.4247i 0.425453 + 1.34923i
\(100\) 1.12774 1.95330i 0.112774 0.195330i
\(101\) −4.51989 7.82869i −0.449746 0.778983i 0.548623 0.836070i \(-0.315152\pi\)
−0.998369 + 0.0570865i \(0.981819\pi\)
\(102\) 11.5619 9.27965i 1.14480 0.918823i
\(103\) 13.4412 + 7.76030i 1.32440 + 0.764645i 0.984428 0.175789i \(-0.0562476\pi\)
0.339976 + 0.940434i \(0.389581\pi\)
\(104\) 0.336601 0.0330064
\(105\) 0 0
\(106\) 4.67320 0.453901
\(107\) 4.64012 + 2.67897i 0.448577 + 0.258986i 0.707229 0.706985i \(-0.249945\pi\)
−0.258652 + 0.965971i \(0.583278\pi\)
\(108\) 9.74493 + 6.51076i 0.937707 + 0.626499i
\(109\) −0.679436 1.17682i −0.0650782 0.112719i 0.831650 0.555299i \(-0.187396\pi\)
−0.896729 + 0.442581i \(0.854063\pi\)
\(110\) −4.83963 + 8.38248i −0.461440 + 0.799238i
\(111\) −19.4855 + 2.99938i −1.84948 + 0.284689i
\(112\) 0 0
\(113\) 11.9390i 1.12312i −0.827435 0.561562i \(-0.810201\pi\)
0.827435 0.561562i \(-0.189799\pi\)
\(114\) −1.16180 + 2.98768i −0.108812 + 0.279821i
\(115\) −5.89275 + 3.40218i −0.549502 + 0.317255i
\(116\) 4.19452 2.42171i 0.389451 0.224850i
\(117\) −1.87066 0.414660i −0.172942 0.0383353i
\(118\) 1.04817i 0.0964917i
\(119\) 0 0
\(120\) 0.138874 + 0.902197i 0.0126774 + 0.0823590i
\(121\) 5.50793 9.54001i 0.500721 0.867274i
\(122\) 5.34696 + 9.26121i 0.484091 + 0.838471i
\(123\) 4.45178 + 5.54665i 0.401404 + 0.500124i
\(124\) 4.56627 + 2.63634i 0.410063 + 0.236750i
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −16.8492 −1.49513 −0.747563 0.664191i \(-0.768776\pi\)
−0.747563 + 0.664191i \(0.768776\pi\)
\(128\) −3.62150 2.09088i −0.320099 0.184809i
\(129\) −3.41425 4.25394i −0.300608 0.374539i
\(130\) −0.658769 1.14102i −0.0577778 0.100074i
\(131\) 6.93473 12.0113i 0.605890 1.04943i −0.386020 0.922490i \(-0.626150\pi\)
0.991910 0.126942i \(-0.0405163\pi\)
\(132\) −2.78870 18.1168i −0.242725 1.57687i
\(133\) 0 0
\(134\) 9.96060i 0.860465i
\(135\) 0.339627 5.18504i 0.0292305 0.446257i
\(136\) −1.89376 + 1.09336i −0.162389 + 0.0937551i
\(137\) 3.75708 2.16915i 0.320989 0.185323i −0.330844 0.943685i \(-0.607333\pi\)
0.651833 + 0.758362i \(0.274000\pi\)
\(138\) 8.81130 22.6592i 0.750068 1.92888i
\(139\) 10.9631i 0.929881i −0.885342 0.464941i \(-0.846076\pi\)
0.885342 0.464941i \(-0.153924\pi\)
\(140\) 0 0
\(141\) 11.6570 1.79435i 0.981695 0.151111i
\(142\) 1.26661 2.19384i 0.106292 0.184103i
\(143\) 1.49840 + 2.59530i 0.125302 + 0.217030i
\(144\) 7.57301 + 6.93900i 0.631085 + 0.578250i
\(145\) −1.85970 1.07370i −0.154440 0.0891659i
\(146\) 29.8221 2.46809
\(147\) 0 0
\(148\) 25.6728 2.11029
\(149\) −7.50546 4.33328i −0.614871 0.354996i 0.159998 0.987117i \(-0.448851\pi\)
−0.774870 + 0.632121i \(0.782184\pi\)
\(150\) 2.78651 2.23647i 0.227517 0.182607i
\(151\) −6.73018 11.6570i −0.547694 0.948634i −0.998432 0.0559778i \(-0.982172\pi\)
0.450738 0.892656i \(-0.351161\pi\)
\(152\) 0.236414 0.409481i 0.0191757 0.0332133i
\(153\) 11.8715 3.74343i 0.959753 0.302638i
\(154\) 0 0
\(155\) 2.33772i 0.187770i
\(156\) 2.32546 + 0.904286i 0.186186 + 0.0724009i
\(157\) 6.76643 3.90660i 0.540020 0.311781i −0.205067 0.978748i \(-0.565741\pi\)
0.745087 + 0.666967i \(0.232408\pi\)
\(158\) 16.2235 9.36664i 1.29067 0.745170i
\(159\) 3.65698 + 1.42206i 0.290018 + 0.112777i
\(160\) 8.11688i 0.641696i
\(161\) 0 0
\(162\) 10.6498 + 15.2077i 0.836730 + 1.19483i
\(163\) −8.33945 + 14.4443i −0.653196 + 1.13137i 0.329147 + 0.944279i \(0.393239\pi\)
−0.982343 + 0.187090i \(0.940095\pi\)
\(164\) −4.63077 8.02072i −0.361602 0.626313i
\(165\) −6.33802 + 5.08695i −0.493414 + 0.396018i
\(166\) −4.93717 2.85047i −0.383198 0.221240i
\(167\) 0.465112 0.0359915 0.0179957 0.999838i \(-0.494271\pi\)
0.0179957 + 0.999838i \(0.494271\pi\)
\(168\) 0 0
\(169\) 12.5921 0.968621
\(170\) 7.41264 + 4.27969i 0.568524 + 0.328237i
\(171\) −1.81831 + 1.98445i −0.139050 + 0.151755i
\(172\) 3.55152 + 6.15141i 0.270801 + 0.469040i
\(173\) 5.59208 9.68576i 0.425158 0.736395i −0.571277 0.820757i \(-0.693552\pi\)
0.996435 + 0.0843622i \(0.0268853\pi\)
\(174\) 7.58338 1.16730i 0.574894 0.0884929i
\(175\) 0 0
\(176\) 16.0647i 1.21092i
\(177\) −0.318960 + 0.820237i −0.0239745 + 0.0616528i
\(178\) 24.6562 14.2353i 1.84806 1.06698i
\(179\) 0.214505 0.123845i 0.0160329 0.00925660i −0.491962 0.870617i \(-0.663720\pi\)
0.507995 + 0.861360i \(0.330387\pi\)
\(180\) −1.46434 + 6.60608i −0.109145 + 0.492388i
\(181\) 14.3385i 1.06578i −0.846186 0.532888i \(-0.821107\pi\)
0.846186 0.532888i \(-0.178893\pi\)
\(182\) 0 0
\(183\) 1.36603 + 8.87439i 0.100980 + 0.656014i
\(184\) −1.79301 + 3.10559i −0.132183 + 0.228947i
\(185\) −5.69122 9.85748i −0.418427 0.724737i
\(186\) 5.22825 + 6.51407i 0.383354 + 0.477635i
\(187\) −16.8604 9.73433i −1.23295 0.711845i
\(188\) −15.3585 −1.12013
\(189\) 0 0
\(190\) −1.85076 −0.134268
\(191\) −14.7572 8.52006i −1.06779 0.616490i −0.140214 0.990121i \(-0.544779\pi\)
−0.927577 + 0.373632i \(0.878112\pi\)
\(192\) −10.7294 13.3682i −0.774328 0.964765i
\(193\) −1.41181 2.44533i −0.101624 0.176019i 0.810730 0.585421i \(-0.199071\pi\)
−0.912354 + 0.409402i \(0.865737\pi\)
\(194\) −13.3143 + 23.0611i −0.955913 + 1.65569i
\(195\) −0.168300 1.09336i −0.0120522 0.0782973i
\(196\) 0 0
\(197\) 9.59675i 0.683740i 0.939747 + 0.341870i \(0.111060\pi\)
−0.939747 + 0.341870i \(0.888940\pi\)
\(198\) 6.28413 28.3496i 0.446594 2.01472i
\(199\) −10.5777 + 6.10706i −0.749836 + 0.432918i −0.825635 0.564205i \(-0.809183\pi\)
0.0757989 + 0.997123i \(0.475849\pi\)
\(200\) −0.456412 + 0.263509i −0.0322732 + 0.0186329i
\(201\) −3.03103 + 7.79460i −0.213792 + 0.549789i
\(202\) 18.6480i 1.31207i
\(203\) 0 0
\(204\) −16.0207 + 2.46605i −1.12168 + 0.172658i
\(205\) −2.05312 + 3.55611i −0.143396 + 0.248369i
\(206\) −16.0086 27.7277i −1.11537 1.93188i
\(207\) 13.7905 15.0505i 0.958503 1.04608i
\(208\) 1.89376 + 1.09336i 0.131309 + 0.0758111i
\(209\) 4.20964 0.291187
\(210\) 0 0
\(211\) 5.64113 0.388351 0.194176 0.980967i \(-0.437797\pi\)
0.194176 + 0.980967i \(0.437797\pi\)
\(212\) −4.42496 2.55475i −0.303908 0.175461i
\(213\) 1.65877 1.33134i 0.113657 0.0912220i
\(214\) −5.52640 9.57200i −0.377777 0.654329i
\(215\) 1.57462 2.72732i 0.107388 0.186002i
\(216\) −1.21130 2.45601i −0.0824183 0.167110i
\(217\) 0 0
\(218\) 2.80319i 0.189856i
\(219\) 23.3371 + 9.07491i 1.57697 + 0.613226i
\(220\) 9.16509 5.29147i 0.617910 0.356751i
\(221\) 2.29503 1.32503i 0.154380 0.0891314i
\(222\) 37.9046 + 14.7397i 2.54399 + 0.989263i
\(223\) 0.392378i 0.0262755i −0.999914 0.0131378i \(-0.995818\pi\)
0.999914 0.0131378i \(-0.00418200\pi\)
\(224\) 0 0
\(225\) 2.86113 0.902197i 0.190742 0.0601465i
\(226\) −12.3143 + 21.3290i −0.819137 + 1.41879i
\(227\) 11.7125 + 20.2867i 0.777388 + 1.34648i 0.933442 + 0.358728i \(0.116789\pi\)
−0.156054 + 0.987749i \(0.549877\pi\)
\(228\) 2.73339 2.19384i 0.181023 0.145290i
\(229\) −6.69286 3.86412i −0.442276 0.255348i 0.262286 0.964990i \(-0.415523\pi\)
−0.704563 + 0.709642i \(0.748857\pi\)
\(230\) 14.0366 0.925545
\(231\) 0 0
\(232\) −1.13172 −0.0743011
\(233\) −3.53323 2.03991i −0.231469 0.133639i 0.379780 0.925077i \(-0.376000\pi\)
−0.611250 + 0.791438i \(0.709333\pi\)
\(234\) 2.91425 + 2.67026i 0.190510 + 0.174561i
\(235\) 3.40471 + 5.89714i 0.222099 + 0.384687i
\(236\) 0.573014 0.992490i 0.0373001 0.0646056i
\(237\) 15.5459 2.39296i 1.00981 0.155440i
\(238\) 0 0
\(239\) 5.76281i 0.372765i 0.982477 + 0.186383i \(0.0596764\pi\)
−0.982477 + 0.186383i \(0.940324\pi\)
\(240\) −2.14924 + 5.52698i −0.138733 + 0.356765i
\(241\) 17.6840 10.2098i 1.13912 0.657674i 0.192911 0.981216i \(-0.438207\pi\)
0.946214 + 0.323542i \(0.104874\pi\)
\(242\) −19.6799 + 11.3622i −1.26507 + 0.730390i
\(243\) 3.70621 + 15.1415i 0.237754 + 0.971325i
\(244\) 11.6923i 0.748525i
\(245\) 0 0
\(246\) −2.23210 14.5009i −0.142314 0.924542i
\(247\) −0.286507 + 0.496245i −0.0182300 + 0.0315753i
\(248\) −0.616011 1.06696i −0.0391167 0.0677522i
\(249\) −2.99614 3.73301i −0.189873 0.236570i
\(250\) 1.78651 + 1.03144i 0.112989 + 0.0652340i
\(251\) 4.42544 0.279331 0.139666 0.990199i \(-0.455397\pi\)
0.139666 + 0.990199i \(0.455397\pi\)
\(252\) 0 0
\(253\) −31.9268 −2.00722
\(254\) 30.1012 + 17.3790i 1.88872 + 1.09045i
\(255\) 4.49840 + 5.60472i 0.281700 + 0.350981i
\(256\) −5.58338 9.67069i −0.348961 0.604418i
\(257\) 12.7539 22.0904i 0.795565 1.37796i −0.126915 0.991914i \(-0.540508\pi\)
0.922480 0.386045i \(-0.126159\pi\)
\(258\) 1.71189 + 11.1213i 0.106578 + 0.692381i
\(259\) 0 0
\(260\) 1.44055i 0.0893389i
\(261\) 6.28953 + 1.39417i 0.389312 + 0.0862971i
\(262\) −24.7779 + 14.3055i −1.53078 + 0.883798i
\(263\) −0.310020 + 0.178990i −0.0191166 + 0.0110370i −0.509528 0.860454i \(-0.670180\pi\)
0.490411 + 0.871491i \(0.336847\pi\)
\(264\) −1.55229 + 3.99187i −0.0955368 + 0.245683i
\(265\) 2.26538i 0.139161i
\(266\) 0 0
\(267\) 23.6264 3.63678i 1.44591 0.222568i
\(268\) 5.44528 9.43149i 0.332623 0.576120i
\(269\) 4.26905 + 7.39421i 0.260288 + 0.450833i 0.966319 0.257349i \(-0.0828490\pi\)
−0.706030 + 0.708182i \(0.749516\pi\)
\(270\) −5.95481 + 8.91281i −0.362398 + 0.542416i
\(271\) 7.30474 + 4.21739i 0.443731 + 0.256188i 0.705179 0.709029i \(-0.250867\pi\)
−0.261448 + 0.965218i \(0.584200\pi\)
\(272\) −14.2061 −0.861369
\(273\) 0 0
\(274\) −8.94940 −0.540653
\(275\) −4.06348 2.34605i −0.245037 0.141472i
\(276\) −20.7306 + 16.6385i −1.24783 + 1.00152i
\(277\) −5.05294 8.75195i −0.303602 0.525853i 0.673347 0.739326i \(-0.264856\pi\)
−0.976949 + 0.213473i \(0.931523\pi\)
\(278\) −11.3078 + 19.5857i −0.678198 + 1.17467i
\(279\) 2.10909 + 6.68851i 0.126268 + 0.400431i
\(280\) 0 0
\(281\) 15.1554i 0.904094i 0.891994 + 0.452047i \(0.149306\pi\)
−0.891994 + 0.452047i \(0.850694\pi\)
\(282\) −22.6760 8.81787i −1.35034 0.525096i
\(283\) −20.7322 + 11.9697i −1.23240 + 0.711527i −0.967530 0.252757i \(-0.918663\pi\)
−0.264871 + 0.964284i \(0.585329\pi\)
\(284\) −2.39866 + 1.38487i −0.142334 + 0.0821768i
\(285\) −1.44830 0.563191i −0.0857900 0.0333605i
\(286\) 6.18202i 0.365551i
\(287\) 0 0
\(288\) −7.32303 23.2234i −0.431514 1.36845i
\(289\) −0.108084 + 0.187206i −0.00635786 + 0.0110121i
\(290\) 2.21492 + 3.83635i 0.130064 + 0.225278i
\(291\) −17.4366 + 13.9947i −1.02215 + 0.820386i
\(292\) −28.2379 16.3032i −1.65250 0.954071i
\(293\) −21.2223 −1.23982 −0.619909 0.784673i \(-0.712831\pi\)
−0.619909 + 0.784673i \(0.712831\pi\)
\(294\) 0 0
\(295\) −0.508109 −0.0295833
\(296\) −5.19508 2.99938i −0.301958 0.174335i
\(297\) 13.5444 20.2725i 0.785929 1.17633i
\(298\) 8.93904 + 15.4829i 0.517825 + 0.896899i
\(299\) 2.17293 3.76363i 0.125664 0.217656i
\(300\) −3.86113 + 0.594339i −0.222922 + 0.0343142i
\(301\) 0 0
\(302\) 27.7671i 1.59782i
\(303\) −5.67462 + 14.5929i −0.325999 + 0.838339i
\(304\) 2.66019 1.53586i 0.152572 0.0880877i
\(305\) −4.48946 + 2.59199i −0.257065 + 0.148417i
\(306\) −25.0696 5.55707i −1.43314 0.317676i
\(307\) 24.2817i 1.38583i 0.721019 + 0.692916i \(0.243674\pi\)
−0.721019 + 0.692916i \(0.756326\pi\)
\(308\) 0 0
\(309\) −4.08982 26.5695i −0.232662 1.51149i
\(310\) −2.41122 + 4.17635i −0.136948 + 0.237201i
\(311\) 3.55858 + 6.16364i 0.201789 + 0.349508i 0.949105 0.314960i \(-0.101991\pi\)
−0.747316 + 0.664469i \(0.768658\pi\)
\(312\) −0.364926 0.454675i −0.0206598 0.0257409i
\(313\) −3.07200 1.77362i −0.173640 0.100251i 0.410661 0.911788i \(-0.365298\pi\)
−0.584301 + 0.811537i \(0.698631\pi\)
\(314\) −16.1177 −0.909575
\(315\) 0 0
\(316\) −20.4823 −1.15222
\(317\) 18.2527 + 10.5382i 1.02517 + 0.591885i 0.915599 0.402093i \(-0.131717\pi\)
0.109576 + 0.993978i \(0.465051\pi\)
\(318\) −5.06645 6.31249i −0.284112 0.353987i
\(319\) −5.03791 8.72592i −0.282069 0.488558i
\(320\) 4.94830 8.57071i 0.276619 0.479117i
\(321\) −1.41187 9.17220i −0.0788028 0.511942i
\(322\) 0 0
\(323\) 3.72259i 0.207130i
\(324\) −1.77033 20.2219i −0.0983517 1.12344i
\(325\) 0.553120 0.319344i 0.0306816 0.0177140i
\(326\) 29.7970 17.2033i 1.65030 0.952802i
\(327\) −0.853016 + 2.19362i −0.0471719 + 0.121307i
\(328\) 2.16407i 0.119491i
\(329\) 0 0
\(330\) 16.5698 2.55057i 0.912138 0.140404i
\(331\) 7.40412 12.8243i 0.406967 0.704888i −0.587581 0.809165i \(-0.699920\pi\)
0.994548 + 0.104277i \(0.0332529\pi\)
\(332\) 3.11660 + 5.39811i 0.171046 + 0.296260i
\(333\) 25.1767 + 23.0689i 1.37967 + 1.26417i
\(334\) −0.830926 0.479736i −0.0454663 0.0262500i
\(335\) −4.82849 −0.263809
\(336\) 0 0
\(337\) 20.5062 1.11704 0.558522 0.829490i \(-0.311369\pi\)
0.558522 + 0.829490i \(0.311369\pi\)
\(338\) −22.4958 12.9880i −1.22361 0.706453i
\(339\) −16.1270 + 12.9436i −0.875897 + 0.703001i
\(340\) −4.67925 8.10471i −0.253768 0.439539i
\(341\) 5.48442 9.49929i 0.296998 0.514415i
\(342\) 5.29527 1.66975i 0.286335 0.0902899i
\(343\) 0 0
\(344\) 1.65971i 0.0894854i
\(345\) 10.9842 + 4.27136i 0.591371 + 0.229962i
\(346\) −19.9806 + 11.5358i −1.07416 + 0.620168i
\(347\) −13.7103 + 7.91567i −0.736010 + 0.424935i −0.820617 0.571479i \(-0.806370\pi\)
0.0846070 + 0.996414i \(0.473037\pi\)
\(348\) −7.81869 3.04040i −0.419126 0.162982i
\(349\) 8.96019i 0.479628i −0.970819 0.239814i \(-0.922914\pi\)
0.970819 0.239814i \(-0.0770865\pi\)
\(350\) 0 0
\(351\) 1.46796 + 2.97641i 0.0783538 + 0.158869i
\(352\) −19.0426 + 32.9828i −1.01498 + 1.75799i
\(353\) 6.72876 + 11.6545i 0.358136 + 0.620309i 0.987649 0.156680i \(-0.0500792\pi\)
−0.629514 + 0.776989i \(0.716746\pi\)
\(354\) 1.41585 1.13637i 0.0752516 0.0603975i
\(355\) 1.06348 + 0.614002i 0.0564438 + 0.0325878i
\(356\) −31.1286 −1.64981
\(357\) 0 0
\(358\) −0.510954 −0.0270048
\(359\) 4.85824 + 2.80491i 0.256408 + 0.148037i 0.622695 0.782465i \(-0.286038\pi\)
−0.366287 + 0.930502i \(0.619371\pi\)
\(360\) 1.06811 1.16571i 0.0562945 0.0614381i
\(361\) −9.09754 15.7574i −0.478818 0.829337i
\(362\) −14.7894 + 25.6159i −0.777311 + 1.34634i
\(363\) −18.8579 + 2.90278i −0.989784 + 0.152356i
\(364\) 0 0
\(365\) 14.4565i 0.756689i
\(366\) 6.71299 17.2631i 0.350894 0.902359i
\(367\) 1.71154 0.988156i 0.0893415 0.0515813i −0.454664 0.890663i \(-0.650241\pi\)
0.544005 + 0.839082i \(0.316907\pi\)
\(368\) −20.1755 + 11.6483i −1.05172 + 0.607210i
\(369\) 2.66592 12.0268i 0.138782 0.626090i
\(370\) 23.4806i 1.22070i
\(371\) 0 0
\(372\) −1.38940 9.02623i −0.0720370 0.467988i
\(373\) 11.5467 19.9995i 0.597866 1.03553i −0.395270 0.918565i \(-0.629349\pi\)
0.993136 0.116969i \(-0.0373177\pi\)
\(374\) 20.0808 + 34.7809i 1.03835 + 1.79848i
\(375\) 1.08415 + 1.35078i 0.0559853 + 0.0697542i
\(376\) 3.10790 + 1.79435i 0.160278 + 0.0925364i
\(377\) 1.37152 0.0706368
\(378\) 0 0
\(379\) −17.0645 −0.876547 −0.438273 0.898842i \(-0.644410\pi\)
−0.438273 + 0.898842i \(0.644410\pi\)
\(380\) 1.75245 + 1.01178i 0.0898988 + 0.0519031i
\(381\) 18.2671 + 22.7597i 0.935851 + 1.16601i
\(382\) 17.5759 + 30.4423i 0.899259 + 1.55756i
\(383\) 13.3056 23.0460i 0.679886 1.17760i −0.295129 0.955457i \(-0.595363\pi\)
0.975015 0.222139i \(-0.0713040\pi\)
\(384\) 1.10193 + 7.15869i 0.0562327 + 0.365316i
\(385\) 0 0
\(386\) 5.82479i 0.296474i
\(387\) −2.04460 + 9.22382i −0.103933 + 0.468873i
\(388\) 25.2141 14.5574i 1.28005 0.739040i
\(389\) −8.20951 + 4.73976i −0.416239 + 0.240316i −0.693467 0.720489i \(-0.743918\pi\)
0.277228 + 0.960804i \(0.410584\pi\)
\(390\) −0.827069 + 2.12689i −0.0418803 + 0.107699i
\(391\) 28.2329i 1.42780i
\(392\) 0 0
\(393\) −23.7430 + 3.65473i −1.19767 + 0.184357i
\(394\) 9.89848 17.1447i 0.498678 0.863736i
\(395\) 4.54056 + 7.86448i 0.228460 + 0.395705i
\(396\) −21.4485 + 23.4083i −1.07783 + 1.17631i
\(397\) −10.7042 6.18009i −0.537230 0.310170i 0.206726 0.978399i \(-0.433719\pi\)
−0.743956 + 0.668229i \(0.767053\pi\)
\(398\) 25.1963 1.26297
\(399\) 0 0
\(400\) −3.42378 −0.171189
\(401\) −7.11494 4.10781i −0.355303 0.205134i 0.311715 0.950176i \(-0.399096\pi\)
−0.667019 + 0.745041i \(0.732430\pi\)
\(402\) 13.4546 10.7988i 0.671056 0.538595i
\(403\) 0.746537 + 1.29304i 0.0371877 + 0.0644109i
\(404\) 10.1945 17.6574i 0.507196 0.878490i
\(405\) −7.37208 + 5.16260i −0.366322 + 0.256532i
\(406\) 0 0
\(407\) 53.4076i 2.64732i
\(408\) 3.53002 + 1.37269i 0.174762 + 0.0679584i
\(409\) 17.9575 10.3678i 0.887942 0.512653i 0.0146731 0.999892i \(-0.495329\pi\)
0.873269 + 0.487239i \(0.161996\pi\)
\(410\) 7.33583 4.23534i 0.362291 0.209169i
\(411\) −7.00330 2.72332i −0.345447 0.134331i
\(412\) 35.0064i 1.72464i
\(413\) 0 0
\(414\) −40.1604 + 12.6638i −1.97378 + 0.622390i
\(415\) 1.38179 2.39334i 0.0678296 0.117484i
\(416\) −2.59208 4.48961i −0.127087 0.220121i
\(417\) −14.8088 + 11.8857i −0.725192 + 0.582045i
\(418\) −7.52054 4.34199i −0.367842 0.212374i
\(419\) 6.93924 0.339004 0.169502 0.985530i \(-0.445784\pi\)
0.169502 + 0.985530i \(0.445784\pi\)
\(420\) 0 0
\(421\) −15.2162 −0.741594 −0.370797 0.928714i \(-0.620915\pi\)
−0.370797 + 0.928714i \(0.620915\pi\)
\(422\) −10.0779 5.81849i −0.490585 0.283240i
\(423\) −15.0617 13.8007i −0.732325 0.671014i
\(424\) 0.596948 + 1.03394i 0.0289904 + 0.0502128i
\(425\) −2.07462 + 3.59334i −0.100634 + 0.174303i
\(426\) −4.33660 + 0.667529i −0.210109 + 0.0323419i
\(427\) 0 0
\(428\) 12.0847i 0.584137i
\(429\) 1.88120 4.83770i 0.0908253 0.233566i
\(430\) −5.62613 + 3.24825i −0.271316 + 0.156645i
\(431\) 26.9043 15.5332i 1.29594 0.748209i 0.316236 0.948681i \(-0.397581\pi\)
0.979699 + 0.200472i \(0.0642475\pi\)
\(432\) 1.16281 17.7524i 0.0559456 0.854114i
\(433\) 22.3083i 1.07207i −0.844196 0.536034i \(-0.819922\pi\)
0.844196 0.536034i \(-0.180078\pi\)
\(434\) 0 0
\(435\) 0.565860 + 3.67611i 0.0271309 + 0.176256i
\(436\) 1.53245 2.65429i 0.0733912 0.127117i
\(437\) −3.05235 5.28682i −0.146014 0.252903i
\(438\) −32.3316 40.2832i −1.54486 1.92481i
\(439\) 22.4126 + 12.9399i 1.06970 + 0.617590i 0.928099 0.372334i \(-0.121443\pi\)
0.141598 + 0.989924i \(0.454776\pi\)
\(440\) −2.47283 −0.117887
\(441\) 0 0
\(442\) −5.46677 −0.260028
\(443\) 26.8166 + 15.4826i 1.27409 + 0.735599i 0.975756 0.218862i \(-0.0702343\pi\)
0.298338 + 0.954460i \(0.403568\pi\)
\(444\) −27.8332 34.6785i −1.32091 1.64577i
\(445\) 6.90067 + 11.9523i 0.327123 + 0.566594i
\(446\) −0.404714 + 0.700985i −0.0191638 + 0.0331926i
\(447\) 2.28372 + 14.8362i 0.108016 + 0.701728i
\(448\) 0 0
\(449\) 24.2032i 1.14222i −0.820874 0.571110i \(-0.806513\pi\)
0.820874 0.571110i \(-0.193487\pi\)
\(450\) −6.04198 1.33930i −0.284822 0.0631351i
\(451\) −16.6856 + 9.63346i −0.785696 + 0.453622i
\(452\) 23.3204 13.4640i 1.09690 0.633295i
\(453\) −8.44959 + 21.7290i −0.396996 + 1.02092i
\(454\) 48.3231i 2.26792i
\(455\) 0 0
\(456\) −0.809428 + 0.124594i −0.0379049 + 0.00583467i
\(457\) 1.20726 2.09103i 0.0564731 0.0978143i −0.836407 0.548109i \(-0.815348\pi\)
0.892880 + 0.450295i \(0.148681\pi\)
\(458\) 7.97122 + 13.8066i 0.372471 + 0.645138i
\(459\) −17.9270 11.9774i −0.836763 0.559056i
\(460\) −13.2910 7.67354i −0.619694 0.357781i
\(461\) 7.45376 0.347156 0.173578 0.984820i \(-0.444467\pi\)
0.173578 + 0.984820i \(0.444467\pi\)
\(462\) 0 0
\(463\) 13.8862 0.645345 0.322672 0.946511i \(-0.395419\pi\)
0.322672 + 0.946511i \(0.395419\pi\)
\(464\) −6.36721 3.67611i −0.295590 0.170659i
\(465\) −3.15776 + 2.53444i −0.146437 + 0.117532i
\(466\) 4.20809 + 7.28862i 0.194936 + 0.337639i
\(467\) −10.0692 + 17.4404i −0.465948 + 0.807045i −0.999244 0.0388836i \(-0.987620\pi\)
0.533296 + 0.845929i \(0.320953\pi\)
\(468\) −1.29966 4.12158i −0.0600767 0.190520i
\(469\) 0 0
\(470\) 14.0470i 0.647942i
\(471\) −12.6128 4.90465i −0.581167 0.225994i
\(472\) −0.231907 + 0.133892i −0.0106744 + 0.00616286i
\(473\) 12.7969 7.38828i 0.588401 0.339713i
\(474\) −30.2410 11.7596i −1.38902 0.540136i
\(475\) 0.897174i 0.0411652i
\(476\) 0 0
\(477\) −2.04382 6.48153i −0.0935799 0.296769i
\(478\) 5.94399 10.2953i 0.271872 0.470896i
\(479\) −16.6189 28.7847i −0.759335 1.31521i −0.943190 0.332253i \(-0.892191\pi\)
0.183855 0.982953i \(-0.441142\pi\)
\(480\) 10.9642 8.79992i 0.500443 0.401659i
\(481\) 6.29586 + 3.63491i 0.287066 + 0.165738i
\(482\) −42.1234 −1.91867
\(483\) 0 0
\(484\) 24.8460 1.12936
\(485\) −11.1791 6.45424i −0.507616 0.293072i
\(486\) 8.99634 30.8731i 0.408082 1.40043i
\(487\) 16.1039 + 27.8927i 0.729736 + 1.26394i 0.956995 + 0.290105i \(0.0936902\pi\)
−0.227259 + 0.973834i \(0.572976\pi\)
\(488\) −1.36603 + 2.36603i −0.0618371 + 0.107105i
\(489\) 28.5524 4.39504i 1.29118 0.198751i
\(490\) 0 0
\(491\) 22.5003i 1.01542i 0.861527 + 0.507712i \(0.169509\pi\)
−0.861527 + 0.507712i \(0.830491\pi\)
\(492\) −5.81382 + 14.9508i −0.262107 + 0.674036i
\(493\) −7.71635 + 4.45504i −0.347527 + 0.200645i
\(494\) 1.02369 0.591030i 0.0460582 0.0265917i
\(495\) 13.7427 + 3.04629i 0.617690 + 0.136920i
\(496\) 8.00383i 0.359383i
\(497\) 0 0
\(498\) 1.50225 + 9.75939i 0.0673176 + 0.437329i
\(499\) −3.20702 + 5.55472i −0.143566 + 0.248663i −0.928837 0.370489i \(-0.879190\pi\)
0.785271 + 0.619152i \(0.212524\pi\)
\(500\) −1.12774 1.95330i −0.0504340 0.0873543i
\(501\) −0.504252 0.628266i −0.0225283 0.0280689i
\(502\) −7.90608 4.56458i −0.352866 0.203727i
\(503\) 38.0103 1.69479 0.847397 0.530960i \(-0.178169\pi\)
0.847397 + 0.530960i \(0.178169\pi\)
\(504\) 0 0
\(505\) −9.03979 −0.402265
\(506\) 57.0374 + 32.9306i 2.53562 + 1.46394i
\(507\) −13.6517 17.0092i −0.606293 0.755404i
\(508\) −19.0015 32.9116i −0.843056 1.46022i
\(509\) −6.34981 + 10.9982i −0.281450 + 0.487486i −0.971742 0.236045i \(-0.924149\pi\)
0.690292 + 0.723531i \(0.257482\pi\)
\(510\) −2.25548 14.6527i −0.0998742 0.648833i
\(511\) 0 0
\(512\) 31.3992i 1.38766i
\(513\) 4.65188 + 0.304705i 0.205386 + 0.0134530i
\(514\) −45.5698 + 26.3097i −2.01000 + 1.16047i
\(515\) 13.4412 7.76030i 0.592292 0.341960i
\(516\) 4.45885 11.4664i 0.196290 0.504779i
\(517\) 31.9506i 1.40518i
\(518\) 0 0
\(519\) −19.1460 + 2.94713i −0.840417 + 0.129365i
\(520\) 0.168300 0.291505i 0.00738046 0.0127833i
\(521\) 18.0970 + 31.3449i 0.792843 + 1.37324i 0.924200 + 0.381909i \(0.124733\pi\)
−0.131357 + 0.991335i \(0.541933\pi\)
\(522\) −9.79829 8.97798i −0.428860 0.392955i
\(523\) 4.27382 + 2.46749i 0.186881 + 0.107896i 0.590522 0.807022i \(-0.298922\pi\)
−0.403640 + 0.914918i \(0.632255\pi\)
\(524\) 31.2823 1.36657
\(525\) 0 0
\(526\) 0.738470 0.0321988
\(527\) −8.40023 4.84988i −0.365920 0.211264i
\(528\) −21.7000 + 17.4166i −0.944370 + 0.757959i
\(529\) 11.6496 + 20.1778i 0.506506 + 0.877295i
\(530\) 2.33660 4.04711i 0.101495 0.175795i
\(531\) 1.45376 0.458415i 0.0630880 0.0198935i
\(532\) 0 0
\(533\) 2.62261i 0.113598i
\(534\) −45.9598 17.8721i −1.98888 0.773399i
\(535\) 4.64012 2.67897i 0.200610 0.115822i
\(536\) −2.20378 + 1.27235i −0.0951888 + 0.0549573i
\(537\) −0.399844 0.155484i −0.0172545 0.00670964i
\(538\) 17.6131i 0.759354i
\(539\) 0 0
\(540\) 10.5110 5.18398i 0.452319 0.223083i
\(541\) −8.32849 + 14.4254i −0.358070 + 0.620195i −0.987638 0.156750i \(-0.949898\pi\)
0.629569 + 0.776945i \(0.283232\pi\)
\(542\) −8.69998 15.0688i −0.373696 0.647261i
\(543\) −19.3683 + 15.5451i −0.831172 + 0.667106i
\(544\) 29.1668 + 16.8394i 1.25051 + 0.721985i
\(545\) −1.35887 −0.0582077
\(546\) 0 0
\(547\) 21.2868 0.910159 0.455079 0.890451i \(-0.349611\pi\)
0.455079 + 0.890451i \(0.349611\pi\)
\(548\) 8.47401 + 4.89247i 0.361992 + 0.208996i
\(549\) 10.5064 11.4664i 0.448403 0.489373i
\(550\) 4.83963 + 8.38248i 0.206362 + 0.357430i
\(551\) 0.963296 1.66848i 0.0410378 0.0710795i
\(552\) 6.13887 0.944951i 0.261288 0.0402198i
\(553\) 0 0
\(554\) 20.8472i 0.885713i
\(555\) −7.14520 + 18.3746i −0.303297 + 0.779959i
\(556\) 21.4143 12.3636i 0.908169 0.524331i
\(557\) 16.5937 9.58040i 0.703099 0.405935i −0.105401 0.994430i \(-0.533613\pi\)
0.808501 + 0.588495i \(0.200279\pi\)
\(558\) 3.13091 14.1245i 0.132542 0.597936i
\(559\) 2.01138i 0.0850723i
\(560\) 0 0
\(561\) 5.13017 + 33.3282i 0.216596 + 1.40712i
\(562\) 15.6319 27.0752i 0.659390 1.14210i
\(563\) −13.6243 23.5981i −0.574198 0.994540i −0.996128 0.0879116i \(-0.971981\pi\)
0.421930 0.906628i \(-0.361353\pi\)
\(564\) 16.6509 + 20.7460i 0.701131 + 0.873566i
\(565\) −10.3394 5.96948i −0.434984 0.251138i
\(566\) 49.3843 2.07578
\(567\) 0 0
\(568\) 0.647181 0.0271551
\(569\) −22.7124 13.1130i −0.952153 0.549726i −0.0584038 0.998293i \(-0.518601\pi\)
−0.893749 + 0.448567i \(0.851934\pi\)
\(570\) 2.00650 + 2.49998i 0.0840432 + 0.104713i
\(571\) 13.4388 + 23.2767i 0.562397 + 0.974101i 0.997287 + 0.0736170i \(0.0234542\pi\)
−0.434889 + 0.900484i \(0.643212\pi\)
\(572\) −3.37960 + 5.85363i −0.141308 + 0.244753i
\(573\) 4.49023 + 29.1708i 0.187582 + 1.21863i
\(574\) 0 0
\(575\) 6.80436i 0.283761i
\(576\) −6.42524 + 28.9862i −0.267718 + 1.20776i
\(577\) 8.93069 5.15614i 0.371790 0.214653i −0.302450 0.953165i \(-0.597805\pi\)
0.674240 + 0.738512i \(0.264471\pi\)
\(578\) 0.386185 0.222964i 0.0160632 0.00927407i
\(579\) −1.77250 + 4.55815i −0.0736624 + 0.189430i
\(580\) 4.84341i 0.201112i
\(581\) 0 0
\(582\) 45.5853 7.01690i 1.88957 0.290860i
\(583\) −5.31469 + 9.20532i −0.220112 + 0.381245i
\(584\) 3.80943 + 6.59812i 0.157635 + 0.273032i
\(585\) −1.29443 + 1.41271i −0.0535183 + 0.0584082i
\(586\) 37.9138 + 21.8895i 1.56620 + 0.904248i
\(587\) 22.1492 0.914197 0.457098 0.889416i \(-0.348889\pi\)
0.457098 + 0.889416i \(0.348889\pi\)
\(588\) 0 0
\(589\) 2.09734 0.0864195
\(590\) 0.907741 + 0.524084i 0.0373711 + 0.0215762i
\(591\) 12.9631 10.4043i 0.533233 0.427977i
\(592\) −19.4855 33.7498i −0.800848 1.38711i
\(593\) 1.45861 2.52638i 0.0598978 0.103746i −0.834522 0.550975i \(-0.814256\pi\)
0.894419 + 0.447229i \(0.147589\pi\)
\(594\) −45.1072 + 22.2467i −1.85077 + 0.912795i
\(595\) 0 0
\(596\) 19.5472i 0.800686i
\(597\) 19.7172 + 7.66727i 0.806970 + 0.313800i
\(598\) −7.76391 + 4.48250i −0.317490 + 0.183303i
\(599\) 31.4551 18.1606i 1.28522 0.742023i 0.307424 0.951573i \(-0.400533\pi\)
0.977798 + 0.209550i \(0.0671998\pi\)
\(600\) 0.850763 + 0.330830i 0.0347323 + 0.0135061i
\(601\) 7.15198i 0.291735i 0.989304 + 0.145868i \(0.0465974\pi\)
−0.989304 + 0.145868i \(0.953403\pi\)
\(602\) 0 0
\(603\) 13.8149 4.35625i 0.562587 0.177400i
\(604\) 15.1798 26.2921i 0.617656 1.06981i
\(605\) −5.50793 9.54001i −0.223929 0.387857i
\(606\) 25.1894 20.2172i 1.02325 0.821269i
\(607\) 37.8248 + 21.8382i 1.53526 + 0.886384i 0.999106 + 0.0422651i \(0.0134574\pi\)
0.536156 + 0.844119i \(0.319876\pi\)
\(608\) −7.28226 −0.295334
\(609\) 0 0
\(610\) 10.6939 0.432984
\(611\) −3.76643 2.17455i −0.152373 0.0879729i
\(612\) 20.7000 + 18.9670i 0.836747 + 0.766694i
\(613\) 7.27926 + 12.6080i 0.294007 + 0.509234i 0.974753 0.223285i \(-0.0716779\pi\)
−0.680747 + 0.732519i \(0.738345\pi\)
\(614\) 25.0452 43.3795i 1.01074 1.75065i
\(615\) 7.02943 1.08203i 0.283454 0.0436318i
\(616\) 0 0
\(617\) 4.68442i 0.188588i −0.995544 0.0942938i \(-0.969941\pi\)
0.995544 0.0942938i \(-0.0300593\pi\)
\(618\) −20.0984 + 51.6851i −0.808476 + 2.07908i
\(619\) 33.0429 19.0773i 1.32810 0.766782i 0.343098 0.939299i \(-0.388524\pi\)
0.985006 + 0.172518i \(0.0551902\pi\)
\(620\) 4.56627 2.63634i 0.183386 0.105878i
\(621\) −35.2809 2.31095i −1.41577 0.0927350i
\(622\) 14.6819i 0.588689i
\(623\) 0 0
\(624\) −0.576223 3.74343i −0.0230674 0.149857i
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 3.65877 + 6.33717i 0.146234 + 0.253284i
\(627\) −4.56388 5.68631i −0.182264 0.227089i
\(628\) 15.2615 + 8.81125i 0.609001 + 0.351607i
\(629\) −47.2285 −1.88312
\(630\) 0 0
\(631\) 23.9959 0.955264 0.477632 0.878560i \(-0.341495\pi\)
0.477632 + 0.878560i \(0.341495\pi\)
\(632\) 4.14473 + 2.39296i 0.164869 + 0.0951869i
\(633\) −6.11583 7.61995i −0.243082 0.302866i
\(634\) −21.7391 37.6532i −0.863369 1.49540i
\(635\) −8.42461 + 14.5918i −0.334320 + 0.579060i
\(636\) 1.34640 + 8.74690i 0.0533883 + 0.346837i
\(637\) 0 0
\(638\) 20.7852i 0.822895i
\(639\) −3.59671 0.797266i −0.142284 0.0315393i
\(640\) −3.62150 + 2.09088i −0.143152 + 0.0826491i
\(641\) −20.0037 + 11.5491i −0.790099 + 0.456164i −0.839997 0.542590i \(-0.817444\pi\)
0.0498985 + 0.998754i \(0.484110\pi\)
\(642\) −6.93827 + 17.8425i −0.273832 + 0.704186i
\(643\) 22.7592i 0.897536i −0.893648 0.448768i \(-0.851863\pi\)
0.893648 0.448768i \(-0.148137\pi\)
\(644\) 0 0
\(645\) −5.39114 + 0.829853i −0.212276 + 0.0326754i
\(646\) −3.83963 + 6.65043i −0.151068 + 0.261658i
\(647\) 1.21349 + 2.10183i 0.0477073 + 0.0826315i 0.888893 0.458115i \(-0.151475\pi\)
−0.841186 + 0.540746i \(0.818142\pi\)
\(648\) −2.00431 + 4.29888i −0.0787367 + 0.168876i
\(649\) −2.06469 1.19205i −0.0810463 0.0467921i
\(650\) −1.31754 −0.0516781
\(651\) 0 0
\(652\) −37.6189 −1.47327
\(653\) 34.7760 + 20.0779i 1.36089 + 0.785709i 0.989742 0.142865i \(-0.0456315\pi\)
0.371146 + 0.928574i \(0.378965\pi\)
\(654\) 3.78651 3.03908i 0.148064 0.118837i
\(655\) −6.93473 12.0113i −0.270962 0.469321i
\(656\) −7.02943 + 12.1753i −0.274453 + 0.475366i
\(657\) −13.0426 41.3619i −0.508842 1.61368i
\(658\) 0 0
\(659\) 0.627454i 0.0244421i −0.999925 0.0122211i \(-0.996110\pi\)
0.999925 0.0122211i \(-0.00389018\pi\)
\(660\) −17.0840 6.64332i −0.664993 0.258591i
\(661\) 28.5745 16.4975i 1.11142 0.641678i 0.172222 0.985058i \(-0.444905\pi\)
0.939197 + 0.343380i \(0.111572\pi\)
\(662\) −26.4550 + 15.2738i −1.02820 + 0.593634i
\(663\) −4.27799 1.66355i −0.166143 0.0646069i
\(664\) 1.45646i 0.0565217i
\(665\) 0 0
\(666\) −21.1842 67.1810i −0.820869 2.60321i
\(667\) −7.30584 + 12.6541i −0.282883 + 0.489968i
\(668\) 0.524525 + 0.908504i 0.0202945 + 0.0351511i
\(669\) −0.530017 + 0.425396i −0.0204917 + 0.0164468i
\(670\) 8.62613 + 4.98030i 0.333257 + 0.192406i
\(671\) −24.3238 −0.939009
\(672\) 0 0
\(673\) 1.14437 0.0441121 0.0220560 0.999757i \(-0.492979\pi\)
0.0220560 + 0.999757i \(0.492979\pi\)
\(674\) −36.6345 21.1509i −1.41111 0.814703i
\(675\) −4.32056 2.88665i −0.166299 0.111107i
\(676\) 14.2006 + 24.5961i 0.546176 + 0.946004i
\(677\) 7.98910 13.8375i 0.307046 0.531820i −0.670669 0.741757i \(-0.733993\pi\)
0.977715 + 0.209938i \(0.0673261\pi\)
\(678\) 42.1615 6.48988i 1.61920 0.249242i
\(679\) 0 0
\(680\) 2.18673i 0.0838571i
\(681\) 14.7048 37.8150i 0.563490 1.44907i
\(682\) −19.5959 + 11.3137i −0.750366 + 0.433224i
\(683\) 1.96122 1.13231i 0.0750442 0.0433268i −0.462008 0.886876i \(-0.652871\pi\)
0.537053 + 0.843549i \(0.319538\pi\)
\(684\) −5.92680 1.31377i −0.226617 0.0502331i
\(685\) 4.33830i 0.165758i
\(686\) 0 0
\(687\) 2.03646 + 13.2299i 0.0776960 + 0.504752i
\(688\) 5.39114 9.33773i 0.205535 0.355998i
\(689\) −0.723434 1.25303i −0.0275607 0.0477365i
\(690\) −15.2178 18.9604i −0.579330 0.721810i
\(691\) 2.40044 + 1.38589i 0.0913169 + 0.0527218i 0.544963 0.838460i \(-0.316544\pi\)
−0.453646 + 0.891182i \(0.649877\pi\)
\(692\) 25.2256 0.958934
\(693\) 0 0
\(694\) 32.6582 1.23969
\(695\) −9.49436 5.48157i −0.360141 0.207928i
\(696\) 1.22695 + 1.52871i 0.0465076 + 0.0579456i
\(697\) 8.51888 + 14.7551i 0.322676 + 0.558891i
\(698\) −9.24191 + 16.0075i −0.349811 + 0.605891i
\(699\) 1.07507 + 6.98419i 0.0406629 + 0.264166i
\(700\) 0 0
\(701\) 23.1184i 0.873169i 0.899663 + 0.436585i \(0.143812\pi\)
−0.899663 + 0.436585i \(0.856188\pi\)
\(702\) 0.447471 6.83148i 0.0168887 0.257838i
\(703\) 8.84388 5.10602i 0.333553 0.192577i
\(704\) 40.2147 23.2180i 1.51565 0.875060i
\(705\) 4.27454 10.9924i 0.160989 0.413998i
\(706\) 27.7612i 1.04481i
\(707\) 0 0
\(708\) −1.96187 + 0.301989i −0.0737317 + 0.0113495i
\(709\) 18.0134 31.2002i 0.676508 1.17175i −0.299517 0.954091i \(-0.596826\pi\)
0.976026 0.217656i \(-0.0698410\pi\)
\(710\) −1.26661 2.19384i −0.0475351 0.0823333i
\(711\) −20.0864 18.4048i −0.753300 0.690234i
\(712\) 6.29910 + 3.63678i 0.236069 + 0.136294i
\(713\) −15.9067 −0.595710
\(714\) 0 0
\(715\) 2.99679 0.112074
\(716\) 0.483812 + 0.279329i 0.0180809 + 0.0104390i
\(717\) 7.78431 6.24775i 0.290710 0.233326i
\(718\) −5.78619 10.0220i −0.215939 0.374017i
\(719\) 8.57099 14.8454i 0.319644 0.553640i −0.660770 0.750589i \(-0.729770\pi\)
0.980414 + 0.196949i \(0.0631034\pi\)
\(720\) 9.79586 3.08892i 0.365070 0.115117i
\(721\) 0 0
\(722\) 37.5343i 1.39688i
\(723\) −32.9634 12.8182i −1.22592 0.476715i
\(724\) 28.0075 16.1701i 1.04089 0.600958i
\(725\) −1.85970 + 1.07370i −0.0690676 + 0.0398762i
\(726\) 36.6838 + 14.2650i 1.36147 + 0.529423i
\(727\) 16.6832i 0.618747i −0.950941 0.309374i \(-0.899881\pi\)
0.950941 0.309374i \(-0.100119\pi\)
\(728\) 0 0
\(729\) 16.4348 21.4219i 0.608695 0.793404i
\(730\) 14.9110 25.8267i 0.551882 0.955888i
\(731\) −6.53347 11.3163i −0.241649 0.418548i
\(732\) −15.7938 + 12.6763i −0.583757 + 0.468528i
\(733\) −32.9814 19.0418i −1.21820 0.703326i −0.253664 0.967292i \(-0.581636\pi\)
−0.964532 + 0.263967i \(0.914969\pi\)
\(734\) −4.07690 −0.150481
\(735\) 0 0
\(736\) 55.2302 2.03581
\(737\) −19.6205 11.3279i −0.722730 0.417268i
\(738\) −17.1676 + 18.7362i −0.631948 + 0.689689i
\(739\) 11.2186 + 19.4312i 0.412684 + 0.714790i 0.995182 0.0980422i \(-0.0312580\pi\)
−0.582498 + 0.812832i \(0.697925\pi\)
\(740\) 12.8364 22.2333i 0.471876 0.817313i
\(741\) 0.980937 0.150995i 0.0360356 0.00554693i
\(742\) 0 0
\(743\) 6.39189i 0.234496i −0.993103 0.117248i \(-0.962593\pi\)
0.993103 0.117248i \(-0.0374072\pi\)
\(744\) −0.773388 + 1.98885i −0.0283538 + 0.0729146i
\(745\) −7.50546 + 4.33328i −0.274979 + 0.158759i
\(746\) −41.2565 + 23.8195i −1.51051 + 0.872093i
\(747\) −1.79422 + 8.09428i −0.0656472 + 0.296154i
\(748\) 43.9111i 1.60555i
\(749\) 0 0
\(750\) −0.543588 3.53142i −0.0198490 0.128949i
\(751\) 5.49944 9.52531i 0.200677 0.347583i −0.748069 0.663620i \(-0.769019\pi\)
0.948747 + 0.316037i \(0.102352\pi\)
\(752\) 11.6570 + 20.1905i 0.425086 + 0.736271i
\(753\) −4.79784 5.97781i −0.174843 0.217844i
\(754\) −2.45023 1.41464i −0.0892320 0.0515181i
\(755\) −13.4604 −0.489873
\(756\) 0 0
\(757\) −27.8216 −1.01119 −0.505597 0.862770i \(-0.668728\pi\)
−0.505597 + 0.862770i \(0.668728\pi\)
\(758\) 30.4859 + 17.6011i 1.10730 + 0.639299i
\(759\) 34.6134 + 43.1262i 1.25639 + 1.56538i
\(760\) −0.236414 0.409481i −0.00857563 0.0148534i
\(761\) −6.54766 + 11.3409i −0.237352 + 0.411106i −0.959954 0.280159i \(-0.909613\pi\)
0.722601 + 0.691265i \(0.242946\pi\)
\(762\) −9.15904 59.5017i −0.331797 2.15552i
\(763\) 0 0
\(764\) 38.4336i 1.39048i
\(765\) 2.69384 12.1527i 0.0973959 0.439383i
\(766\) −47.5412 + 27.4479i −1.71773 + 0.991734i
\(767\) 0.281045 0.162262i 0.0101480 0.00585893i
\(768\) −7.00980 + 18.0264i −0.252944 + 0.650472i
\(769\) 7.74247i 0.279201i −0.990208 0.139600i \(-0.955418\pi\)
0.990208 0.139600i \(-0.0445818\pi\)
\(770\) 0 0
\(771\) −43.6664 + 6.72153i −1.57261 + 0.242070i
\(772\) 3.18431 5.51538i 0.114606 0.198503i
\(773\) 19.1733 + 33.2091i 0.689614 + 1.19445i 0.971963 + 0.235135i \(0.0755532\pi\)
−0.282349 + 0.959312i \(0.591113\pi\)
\(774\) 13.1665 14.3695i 0.473261 0.516502i
\(775\) −2.02453 1.16886i −0.0727231 0.0419867i
\(776\) −6.80301 −0.244214
\(777\) 0 0
\(778\) 19.5551 0.701086
\(779\) −3.19045 1.84201i −0.114310 0.0659967i
\(780\) 1.94587 1.56177i 0.0696732 0.0559203i
\(781\) 2.88096 + 4.98997i 0.103089 + 0.178555i
\(782\) 29.1205 50.4383i 1.04135 1.80367i
\(783\) −4.93557 10.0073i −0.176383 0.357632i
\(784\) 0 0
\(785\) 7.81320i 0.278865i
\(786\) 46.1866 + 17.9603i 1.64742 + 0.640621i
\(787\) 21.6178 12.4811i 0.770592 0.444901i −0.0624938 0.998045i \(-0.519905\pi\)
0.833086 + 0.553144i \(0.186572\pi\)
\(788\) −18.7453 + 10.8226i −0.667775 + 0.385540i
\(789\) 0.577885 + 0.224718i 0.0205732 + 0.00800016i
\(790\) 18.7333i 0.666500i
\(791\) 0 0
\(792\) 7.07507 2.23098i 0.251402 0.0792744i
\(793\) 1.65547 2.86736i 0.0587875 0.101823i
\(794\) 12.7488 + 22.0816i 0.452438 + 0.783645i
\(795\) 3.06003 2.45601i 0.108528 0.0871056i
\(796\) −23.8578 13.7743i −0.845619 0.488218i
\(797\) 5.81191 0.205868 0.102934 0.994688i \(-0.467177\pi\)
0.102934 + 0.994688i \(0.467177\pi\)
\(798\) 0 0
\(799\) 28.2539 0.999552
\(800\) 7.02943 + 4.05844i 0.248528 + 0.143488i
\(801\) −30.5270 27.9713i −1.07862 0.988318i
\(802\) 8.47393 + 14.6773i 0.299225 + 0.518273i
\(803\) −33.9158 + 58.7438i −1.19686 + 2.07302i
\(804\) −18.6434 + 2.86976i −0.657502 + 0.101209i
\(805\) 0 0
\(806\) 3.08003i 0.108490i
\(807\) 5.35969 13.7830i 0.188670 0.485184i
\(808\) −4.12586 + 2.38207i −0.145147 + 0.0838009i
\(809\) −1.51563 + 0.875048i −0.0532866 + 0.0307650i −0.526407 0.850233i \(-0.676461\pi\)
0.473120 + 0.880998i \(0.343128\pi\)
\(810\) 18.4952 1.61916i 0.649855 0.0568915i
\(811\) 28.4479i 0.998940i 0.866331 + 0.499470i \(0.166472\pi\)
−0.866331 + 0.499470i \(0.833528\pi\)
\(812\) 0 0
\(813\) −2.22265 14.4394i −0.0779516 0.506412i
\(814\) −55.0868 + 95.4131i −1.93079 + 3.34423i
\(815\) 8.33945 + 14.4443i 0.292118 + 0.505963i
\(816\) 15.4015 + 19.1893i 0.539161 + 0.671761i
\(817\) 2.44688 + 1.41271i 0.0856055 + 0.0494244i
\(818\) −42.7750 −1.49559
\(819\) 0 0
\(820\) −9.26153 −0.323427
\(821\) −25.9378 14.9752i −0.905236 0.522638i −0.0263407 0.999653i \(-0.508385\pi\)
−0.878895 + 0.477015i \(0.841719\pi\)
\(822\) 9.70250 + 12.0887i 0.338413 + 0.421642i
\(823\) −8.06283 13.9652i −0.281053 0.486798i 0.690592 0.723245i \(-0.257350\pi\)
−0.971644 + 0.236447i \(0.924017\pi\)
\(824\) 4.08982 7.08378i 0.142476 0.246775i
\(825\) 1.23641 + 8.03236i 0.0430464 + 0.279651i
\(826\) 0 0
\(827\) 15.9844i 0.555831i −0.960605 0.277916i \(-0.910356\pi\)
0.960605 0.277916i \(-0.0896436\pi\)
\(828\) 44.9501 + 9.96389i 1.56213 + 0.346269i
\(829\) −18.0763 + 10.4363i −0.627815 + 0.362469i −0.779905 0.625898i \(-0.784733\pi\)
0.152091 + 0.988367i \(0.451399\pi\)
\(830\) −4.93717 + 2.85047i −0.171372 + 0.0989414i
\(831\) −6.34385 + 16.3139i −0.220066 + 0.565921i
\(832\) 6.32084i 0.219136i
\(833\) 0 0
\(834\) 38.7155 5.95943i 1.34061 0.206358i
\(835\) 0.232556 0.402799i 0.00804794 0.0139394i
\(836\) 4.74737 + 8.22268i 0.164191 + 0.284387i
\(837\) 6.74817 10.1003i 0.233251 0.349116i
\(838\) −12.3970 7.15741i −0.428247 0.247249i
\(839\) −14.2504 −0.491977 −0.245989 0.969273i \(-0.579113\pi\)
−0.245989 + 0.969273i \(0.579113\pi\)
\(840\) 0 0
\(841\) 24.3887 0.840989
\(842\) 27.1839 + 15.6946i 0.936819 + 0.540873i
\(843\) 20.4716 16.4307i 0.705081 0.565903i
\(844\) 6.36172 + 11.0188i 0.218979 + 0.379283i
\(845\) 6.29604 10.9051i 0.216590 0.375145i
\(846\) 12.6732 + 40.1903i 0.435714 + 1.38177i
\(847\) 0 0
\(848\) 7.75614i 0.266347i
\(849\) 38.6453 + 15.0277i 1.32630 + 0.515750i
\(850\) 7.41264 4.27969i 0.254252 0.146792i
\(851\) −67.0739 + 38.7251i −2.29926 + 1.32748i
\(852\) 4.47117 + 1.73867i 0.153180 + 0.0595658i
\(853\) 49.6034i 1.69839i 0.528081 + 0.849194i \(0.322912\pi\)
−0.528081 + 0.849194i \(0.677088\pi\)
\(854\) 0 0
\(855\) 0.809428 + 2.56693i 0.0276819 + 0.0877871i
\(856\) 1.41187 2.44543i 0.0482567 0.0835830i
\(857\) 2.62252 + 4.54233i 0.0895834 + 0.155163i 0.907335 0.420408i \(-0.138113\pi\)
−0.817752 + 0.575571i \(0.804780\pi\)
\(858\) −8.35058 + 6.70224i −0.285084 + 0.228811i
\(859\) 10.1722 + 5.87292i 0.347071 + 0.200382i 0.663394 0.748270i \(-0.269115\pi\)
−0.316323 + 0.948651i \(0.602448\pi\)
\(860\) 7.10303 0.242211
\(861\) 0 0
\(862\) −64.0863 −2.18279
\(863\) −30.3896 17.5454i −1.03447 0.597254i −0.116211 0.993225i \(-0.537075\pi\)
−0.918263 + 0.395971i \(0.870408\pi\)
\(864\) −23.4306 + 35.0695i −0.797124 + 1.19309i
\(865\) −5.59208 9.68576i −0.190136 0.329326i
\(866\) −23.0097 + 39.8539i −0.781901 + 1.35429i
\(867\) 0.370054 0.0569621i 0.0125677 0.00193454i
\(868\) 0 0
\(869\) 42.6096i 1.44543i
\(870\) 2.78078 7.15105i 0.0942771 0.242443i
\(871\) 2.67074 1.54195i 0.0904944 0.0522470i
\(872\) −0.620205 + 0.358076i −0.0210028 + 0.0121260i
\(873\) 37.8077 + 8.38066i 1.27960 + 0.283642i
\(874\) 12.5933i 0.425973i
\(875\) 0 0
\(876\) 8.59208 + 55.8184i 0.290299 + 1.88593i
\(877\) 8.42662 14.5953i 0.284547 0.492850i −0.687952 0.725756i \(-0.741490\pi\)
0.972499 + 0.232906i \(0.0748235\pi\)
\(878\) −26.6936 46.2346i −0.900864 1.56034i
\(879\) 23.0081 + 28.6667i 0.776045 + 0.966905i
\(880\) −13.9125 8.03236i −0.468989 0.270771i
\(881\) −51.9437 −1.75003 −0.875015 0.484096i \(-0.839148\pi\)
−0.875015 + 0.484096i \(0.839148\pi\)
\(882\) 0 0
\(883\) 14.9096 0.501748 0.250874 0.968020i \(-0.419282\pi\)
0.250874 + 0.968020i \(0.419282\pi\)
\(884\) 5.17638 + 2.98858i 0.174100 + 0.100517i
\(885\) 0.550867 + 0.686346i 0.0185172 + 0.0230713i
\(886\) −31.9387 55.3194i −1.07300 1.85849i
\(887\) −6.59427 + 11.4216i −0.221414 + 0.383500i −0.955238 0.295840i \(-0.904401\pi\)
0.733824 + 0.679340i \(0.237734\pi\)
\(888\) 1.58073 + 10.2692i 0.0530458 + 0.344612i
\(889\) 0 0
\(890\) 28.4705i 0.954335i
\(891\) −42.0681 + 3.68285i −1.40933 + 0.123380i
\(892\) 0.766431 0.442499i 0.0256620 0.0148160i
\(893\) −5.29076 + 3.05462i −0.177048 + 0.102219i
\(894\) 11.2228 28.8605i 0.375345 0.965239i
\(895\) 0.247690i 0.00827935i
\(896\) 0 0
\(897\) −7.43963 + 1.14518i −0.248402 + 0.0382363i
\(898\) −24.9642 + 43.2392i −0.833065 + 1.44291i
\(899\) −2.51001 4.34747i −0.0837135 0.144996i
\(900\) 4.98886 + 4.57120i 0.166295 + 0.152373i
\(901\) 8.14028 + 4.69979i 0.271192 + 0.156573i
\(902\) 39.7453 1.32338
\(903\) 0 0
\(904\) −6.29206 −0.209271
\(905\) −12.4175 7.16927i −0.412773 0.238315i
\(906\) 37.5074 30.1037i 1.24610 1.00013i
\(907\) −23.4709 40.6527i −0.779337 1.34985i −0.932324 0.361623i \(-0.882223\pi\)
0.152987 0.988228i \(-0.451111\pi\)
\(908\) −26.4174 + 45.7562i −0.876691 + 1.51847i
\(909\) 25.8640 8.15567i 0.857854 0.270507i
\(910\) 0 0
\(911\) 45.2977i 1.50078i −0.660996 0.750389i \(-0.729866\pi\)
0.660996 0.750389i \(-0.270134\pi\)
\(912\) −4.95867 1.92824i −0.164198 0.0638504i
\(913\) 11.2298 6.48352i 0.371652 0.214573i
\(914\) −4.31355 + 2.49043i −0.142680 + 0.0823761i
\(915\) 8.36846 + 3.25418i 0.276653 + 0.107580i
\(916\) 17.4309i 0.575932i
\(917\) 0 0
\(918\) 19.6728 + 39.8884i 0.649300 + 1.31651i
\(919\) −21.5911 + 37.3969i −0.712225 + 1.23361i 0.251795 + 0.967781i \(0.418979\pi\)
−0.964020 + 0.265830i \(0.914354\pi\)
\(920\) 1.79301 + 3.10559i 0.0591139 + 0.102388i
\(921\) 32.7994 26.3250i 1.08078 0.867440i
\(922\) −13.3162 7.68811i −0.438546 0.253195i
\(923\) −0.784311 −0.0258159
\(924\) 0 0
\(925\) −11.3824 −0.374252
\(926\) −24.8077 14.3227i −0.815232 0.470675i
\(927\) −31.4557 + 34.3298i −1.03314 + 1.12754i
\(928\) 8.71510 + 15.0950i 0.286087 + 0.495517i
\(929\) −4.50570 + 7.80410i −0.147827 + 0.256044i −0.930424 0.366484i \(-0.880561\pi\)
0.782597 + 0.622529i \(0.213895\pi\)
\(930\) 8.25548 1.27076i 0.270708 0.0416698i
\(931\) 0 0
\(932\) 9.20194i 0.301419i
\(933\) 4.46772 11.4892i 0.146267 0.376139i
\(934\) 35.9774 20.7716i 1.17722 0.679667i
\(935\) −16.8604 + 9.73433i −0.551392 + 0.318347i
\(936\) −0.218534 + 0.985871i −0.00714299 + 0.0322242i
\(937\) 21.9677i 0.717654i 0.933404 + 0.358827i \(0.116823\pi\)
−0.933404 + 0.358827i \(0.883177\pi\)
\(938\) 0 0
\(939\) 0.934731 + 6.07248i 0.0305038 + 0.198168i
\(940\) −7.67925 + 13.3009i −0.250470 + 0.433826i
\(941\) 0.823861 + 1.42697i 0.0268571 + 0.0465178i 0.879142 0.476561i \(-0.158117\pi\)
−0.852284 + 0.523079i \(0.824783\pi\)
\(942\) 17.4740 + 21.7715i 0.569334 + 0.709355i
\(943\) 24.1970 + 13.9702i 0.787964 + 0.454931i
\(944\) −1.73965 −0.0566209
\(945\) 0 0
\(946\) −30.4823 −0.991064
\(947\) 23.6645 + 13.6627i 0.768994 + 0.443979i 0.832516 0.554002i \(-0.186900\pi\)
−0.0635217 + 0.997980i \(0.520233\pi\)
\(948\) 22.2059 + 27.6671i 0.721213 + 0.898586i
\(949\) −4.61660 7.99619i −0.149861 0.259567i
\(950\) −0.925382 + 1.60281i −0.0300233 + 0.0520020i
\(951\) −5.55384 36.0805i −0.180095 1.16999i
\(952\) 0 0
\(953\) 55.2380i 1.78933i 0.446734 + 0.894667i \(0.352587\pi\)
−0.446734 + 0.894667i \(0.647413\pi\)
\(954\) −3.03401 + 13.6874i −0.0982299 + 0.443145i
\(955\) −14.7572 + 8.52006i −0.477531 + 0.275703i
\(956\) −11.2565 + 6.49894i −0.364061 + 0.210191i
\(957\) −6.32499 + 16.2653i −0.204458 + 0.525784i
\(958\) 68.5654i 2.21525i
\(959\) 0 0
\(960\) −16.9419 + 2.60785i −0.546797 + 0.0841679i
\(961\) −12.7675 + 22.1140i −0.411856 + 0.713355i
\(962\) −7.49840 12.9876i −0.241758 0.418737i
\(963\) −10.8590 + 11.8512i −0.349926 + 0.381899i
\(964\) 39.8858 + 23.0281i 1.28464 + 0.741684i
\(965\) −2.82362 −0.0908956
\(966\) 0 0
\(967\) −34.5930 −1.11244 −0.556218 0.831036i \(-0.687748\pi\)
−0.556218 + 0.831036i \(0.687748\pi\)
\(968\) −5.02776 2.90278i −0.161598 0.0932989i
\(969\) −5.02841 + 4.03584i −0.161536 + 0.129650i
\(970\) 13.3143 + 23.0611i 0.427497 + 0.740447i
\(971\) 2.12246 3.67621i 0.0681129 0.117975i −0.829958 0.557826i \(-0.811636\pi\)
0.898071 + 0.439851i \(0.144969\pi\)
\(972\) −25.3962 + 24.3150i −0.814583 + 0.779903i
\(973\) 0 0
\(974\) 66.4407i 2.12890i
\(975\) −1.03103 0.400929i −0.0330194 0.0128400i
\(976\) −15.3709 + 8.87439i −0.492010 + 0.284062i
\(977\) 33.6806 19.4455i 1.07754 0.622118i 0.147308 0.989091i \(-0.452939\pi\)
0.930232 + 0.366973i \(0.119606\pi\)
\(978\) −55.5423 21.5983i −1.77605 0.690638i
\(979\) 64.7574i 2.06966i
\(980\) 0 0
\(981\) 3.88790 1.22597i 0.124131 0.0391422i
\(982\) 23.2077 40.1970i 0.740588 1.28274i
\(983\) −13.1884 22.8429i −0.420644 0.728577i 0.575359 0.817901i \(-0.304862\pi\)
−0.996003 + 0.0893246i \(0.971529\pi\)
\(984\) 2.92319 2.34617i 0.0931878 0.0747932i
\(985\) 8.31103 + 4.79838i 0.264812 + 0.152889i
\(986\) 18.3804 0.585352
\(987\) 0 0
\(988\) −1.29242 −0.0411174
\(989\) −18.5577 10.7143i −0.590099 0.340694i
\(990\) −21.4094 19.6170i −0.680436 0.623470i
\(991\) 6.90833 + 11.9656i 0.219450 + 0.380099i 0.954640 0.297762i \(-0.0962403\pi\)
−0.735190 + 0.677861i \(0.762907\pi\)
\(992\) −9.48750 + 16.4328i −0.301228 + 0.521743i
\(993\) −25.3501 + 3.90211i −0.804460 + 0.123830i
\(994\) 0 0
\(995\) 12.2141i 0.387213i
\(996\) 3.91282 10.0622i 0.123983 0.318834i
\(997\) −53.1001 + 30.6574i −1.68170 + 0.970929i −0.721165 + 0.692763i \(0.756393\pi\)
−0.960533 + 0.278166i \(0.910274\pi\)
\(998\) 11.4587 6.61570i 0.362720 0.209416i
\(999\) 3.86579 59.0184i 0.122308 1.86726i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.s.l.656.1 8
3.2 odd 2 735.2.s.k.656.4 8
7.2 even 3 735.2.b.d.146.7 8
7.3 odd 6 735.2.s.k.521.4 8
7.4 even 3 105.2.s.c.101.4 yes 8
7.5 odd 6 735.2.b.c.146.7 8
7.6 odd 2 105.2.s.d.26.1 yes 8
21.2 odd 6 735.2.b.c.146.2 8
21.5 even 6 735.2.b.d.146.2 8
21.11 odd 6 105.2.s.d.101.1 yes 8
21.17 even 6 inner 735.2.s.l.521.1 8
21.20 even 2 105.2.s.c.26.4 8
35.4 even 6 525.2.t.g.101.1 8
35.13 even 4 525.2.q.e.299.2 16
35.18 odd 12 525.2.q.f.374.2 16
35.27 even 4 525.2.q.e.299.7 16
35.32 odd 12 525.2.q.f.374.7 16
35.34 odd 2 525.2.t.f.26.4 8
105.32 even 12 525.2.q.e.374.2 16
105.53 even 12 525.2.q.e.374.7 16
105.62 odd 4 525.2.q.f.299.2 16
105.74 odd 6 525.2.t.f.101.4 8
105.83 odd 4 525.2.q.f.299.7 16
105.104 even 2 525.2.t.g.26.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
105.2.s.c.26.4 8 21.20 even 2
105.2.s.c.101.4 yes 8 7.4 even 3
105.2.s.d.26.1 yes 8 7.6 odd 2
105.2.s.d.101.1 yes 8 21.11 odd 6
525.2.q.e.299.2 16 35.13 even 4
525.2.q.e.299.7 16 35.27 even 4
525.2.q.e.374.2 16 105.32 even 12
525.2.q.e.374.7 16 105.53 even 12
525.2.q.f.299.2 16 105.62 odd 4
525.2.q.f.299.7 16 105.83 odd 4
525.2.q.f.374.2 16 35.18 odd 12
525.2.q.f.374.7 16 35.32 odd 12
525.2.t.f.26.4 8 35.34 odd 2
525.2.t.f.101.4 8 105.74 odd 6
525.2.t.g.26.1 8 105.104 even 2
525.2.t.g.101.1 8 35.4 even 6
735.2.b.c.146.2 8 21.2 odd 6
735.2.b.c.146.7 8 7.5 odd 6
735.2.b.d.146.2 8 21.5 even 6
735.2.b.d.146.7 8 7.2 even 3
735.2.s.k.521.4 8 7.3 odd 6
735.2.s.k.656.4 8 3.2 odd 2
735.2.s.l.521.1 8 21.17 even 6 inner
735.2.s.l.656.1 8 1.1 even 1 trivial