Properties

Label 735.2.s
Level 735735
Weight 22
Character orbit 735.s
Rep. character χ735(521,)\chi_{735}(521,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 108108
Newform subspaces 1414
Sturm bound 224224
Trace bound 66

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 735=3572 735 = 3 \cdot 5 \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 735.s (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 21 21
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 14 14
Sturm bound: 224224
Trace bound: 66
Distinguishing TpT_p: 22, 1313, 1717

Dimensions

The following table gives the dimensions of various subspaces of M2(735,[χ])M_{2}(735, [\chi]).

Total New Old
Modular forms 256 108 148
Cusp forms 192 108 84
Eisenstein series 64 0 64

Trace form

108q+56q4+6q9+30q128q1592q16+2q18+6q19+88q2218q2454q252q30+54q3124q33+4q36+22q37108q43+18q45+68q99+O(q100) 108 q + 56 q^{4} + 6 q^{9} + 30 q^{12} - 8 q^{15} - 92 q^{16} + 2 q^{18} + 6 q^{19} + 88 q^{22} - 18 q^{24} - 54 q^{25} - 2 q^{30} + 54 q^{31} - 24 q^{33} + 4 q^{36} + 22 q^{37} - 108 q^{43} + 18 q^{45}+ \cdots - 68 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S2new(735,[χ])S_{2}^{\mathrm{new}}(735, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
735.2.s.a 735.s 21.g 22 5.8695.869 Q(3)\Q(\sqrt{-3}) None 105.2.b.a 3-3 3-3 1-1 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(2+ζ6)q2+(1ζ6)q3+(1+)q4+q+(-2+\zeta_{6})q^{2}+(-1-\zeta_{6})q^{3}+(1+\cdots)q^{4}+\cdots
735.2.s.b 735.s 21.g 22 5.8695.869 Q(3)\Q(\sqrt{-3}) None 105.2.b.a 3-3 33 11 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(2+ζ6)q2+(1+ζ6)q3+(1ζ6)q4+q+(-2+\zeta_{6})q^{2}+(1+\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots
735.2.s.c 735.s 21.g 22 5.8695.869 Q(3)\Q(\sqrt{-3}) None 105.2.s.a 3-3 33 11 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(2+ζ6)q2+(2ζ6)q3+(1ζ6)q4+q+(-2+\zeta_{6})q^{2}+(2-\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots
735.2.s.d 735.s 21.g 22 5.8695.869 Q(3)\Q(\sqrt{-3}) None 105.2.b.a 33 3-3 11 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(2ζ6)q2+(1ζ6)q3+(1ζ6)q4+q+(2-\zeta_{6})q^{2}+(-1-\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots
735.2.s.e 735.s 21.g 22 5.8695.869 Q(3)\Q(\sqrt{-3}) None 105.2.s.a 33 00 1-1 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(2ζ6)q2+(1+2ζ6)q3+(1ζ6)q4+q+(2-\zeta_{6})q^{2}+(-1+2\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots
735.2.s.f 735.s 21.g 22 5.8695.869 Q(3)\Q(\sqrt{-3}) None 105.2.b.a 33 33 1-1 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(2ζ6)q2+(1+ζ6)q3+(1ζ6)q4+q+(2-\zeta_{6})q^{2}+(1+\zeta_{6})q^{3}+(1-\zeta_{6})q^{4}+\cdots
735.2.s.g 735.s 21.g 44 5.8695.869 Q(3,11)\Q(\sqrt{-3}, \sqrt{-11}) None 105.2.b.c 3-3 2-2 2-2 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(1β3)q2+(1+β1β3)q3+q+(-1-\beta _{3})q^{2}+(-1+\beta _{1}-\beta _{3})q^{3}+\cdots
735.2.s.h 735.s 21.g 44 5.8695.869 Q(3,11)\Q(\sqrt{-3}, \sqrt{-11}) None 105.2.b.c 3-3 22 22 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(1β3)q2+(1β1+β3)q3+q+(-1-\beta _{3})q^{2}+(1-\beta _{1}+\beta _{3})q^{3}+\cdots
735.2.s.i 735.s 21.g 44 5.8695.869 Q(3,11)\Q(\sqrt{-3}, \sqrt{-11}) None 105.2.b.c 33 1-1 22 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(1β1)q2β1q3+(12β1+β2+)q4+q+(1-\beta _{1})q^{2}-\beta _{1}q^{3}+(1-2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots
735.2.s.j 735.s 21.g 44 5.8695.869 Q(3,11)\Q(\sqrt{-3}, \sqrt{-11}) None 105.2.b.c 33 11 2-2 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(1β1)q2+β1q3+(12β1+β2+)q4+q+(1-\beta _{1})q^{2}+\beta _{1}q^{3}+(1-2\beta _{1}+\beta _{2}+\cdots)q^{4}+\cdots
735.2.s.k 735.s 21.g 88 5.8695.869 8.0.856615824.2 None 105.2.s.c 3-3 1-1 4-4 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] q+(β1+β3)q2+(1+β1β4β6+)q3+q+(\beta _{1}+\beta _{3})q^{2}+(-1+\beta _{1}-\beta _{4}-\beta _{6}+\cdots)q^{3}+\cdots
735.2.s.l 735.s 21.g 88 5.8695.869 8.0.856615824.2 None 105.2.s.c 33 2-2 44 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}] qβ3q2+(1β3β6)q3+(1+)q4+q-\beta _{3}q^{2}+(-1-\beta _{3}-\beta _{6})q^{3}+(-1+\cdots)q^{4}+\cdots
735.2.s.m 735.s 21.g 3232 5.8695.869 None 735.2.b.e 00 4-4 1616 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}]
735.2.s.n 735.s 21.g 3232 5.8695.869 None 735.2.b.e 00 44 16-16 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Decomposition of S2old(735,[χ])S_{2}^{\mathrm{old}}(735, [\chi]) into lower level spaces

S2old(735,[χ]) S_{2}^{\mathrm{old}}(735, [\chi]) \simeq S2new(21,[χ])S_{2}^{\mathrm{new}}(21, [\chi])4^{\oplus 4}\oplusS2new(105,[χ])S_{2}^{\mathrm{new}}(105, [\chi])2^{\oplus 2}\oplusS2new(147,[χ])S_{2}^{\mathrm{new}}(147, [\chi])2^{\oplus 2}