Properties

Label 735.2.q.c.79.4
Level $735$
Weight $2$
Character 735.79
Analytic conductor $5.869$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(79,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 3, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.79"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.q (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 79.4
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 735.79
Dual form 735.2.q.c.214.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.67303 + 0.965926i) q^{2} +(0.866025 - 0.500000i) q^{3} +(0.866025 + 1.50000i) q^{4} +(-0.792893 - 2.09077i) q^{5} +1.93185 q^{6} -0.517638i q^{8} +(0.500000 - 0.866025i) q^{9} +(0.692993 - 4.26380i) q^{10} +(1.73205 + 3.00000i) q^{11} +(1.50000 + 0.866025i) q^{12} -4.00000i q^{13} +(-1.73205 - 1.41421i) q^{15} +(2.23205 - 3.86603i) q^{16} +(3.46410 - 2.00000i) q^{17} +(1.67303 - 0.965926i) q^{18} +(-0.189469 + 0.328169i) q^{19} +(2.44949 - 3.00000i) q^{20} +6.69213i q^{22} +(5.46739 + 3.15660i) q^{23} +(-0.258819 - 0.448288i) q^{24} +(-3.74264 + 3.31552i) q^{25} +(3.86370 - 6.69213i) q^{26} -1.00000i q^{27} -8.92820 q^{29} +(-1.53175 - 4.03906i) q^{30} +(3.67423 + 6.36396i) q^{31} +(6.57201 - 3.79435i) q^{32} +(3.00000 + 1.73205i) q^{33} +7.72741 q^{34} +1.73205 q^{36} +(0.656339 + 0.378937i) q^{37} +(-0.633975 + 0.366025i) q^{38} +(-2.00000 - 3.46410i) q^{39} +(-1.08226 + 0.410432i) q^{40} -8.48528 q^{41} +(-3.00000 + 5.19615i) q^{44} +(-2.20711 - 0.358719i) q^{45} +(6.09808 + 10.5622i) q^{46} +(-5.19615 - 3.00000i) q^{47} -4.46410i q^{48} +(-9.46410 + 1.93185i) q^{50} +(2.00000 - 3.46410i) q^{51} +(6.00000 - 3.46410i) q^{52} +(6.36396 - 3.67423i) q^{53} +(0.965926 - 1.67303i) q^{54} +(4.89898 - 6.00000i) q^{55} +0.378937i q^{57} +(-14.9372 - 8.62398i) q^{58} +(5.27792 + 9.14162i) q^{59} +(0.621320 - 3.82282i) q^{60} +(-4.57081 + 7.91688i) q^{61} +14.1962i q^{62} +5.73205 q^{64} +(-8.36308 + 3.17157i) q^{65} +(3.34607 + 5.79555i) q^{66} +(-6.03579 + 3.48477i) q^{67} +(6.00000 + 3.46410i) q^{68} +6.31319 q^{69} +14.3923 q^{71} +(-0.448288 - 0.258819i) q^{72} +(-9.46410 + 5.46410i) q^{73} +(0.732051 + 1.26795i) q^{74} +(-1.58346 + 4.74264i) q^{75} -0.656339 q^{76} -7.72741i q^{78} +(-5.73205 + 9.92820i) q^{79} +(-9.85275 - 1.60136i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(-14.1962 - 8.19615i) q^{82} -6.00000i q^{83} +(-6.92820 - 5.65685i) q^{85} +(-7.73205 + 4.46410i) q^{87} +(1.55291 - 0.896575i) q^{88} +(-2.07055 + 3.58630i) q^{89} +(-3.34607 - 2.73205i) q^{90} +10.9348i q^{92} +(6.36396 + 3.67423i) q^{93} +(-5.79555 - 10.0382i) q^{94} +(0.836355 + 0.135932i) q^{95} +(3.79435 - 6.57201i) q^{96} +5.07180i q^{97} +3.46410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 12 q^{5} + 4 q^{9} + 12 q^{10} + 12 q^{12} + 4 q^{16} + 4 q^{25} - 16 q^{29} + 4 q^{30} + 24 q^{33} - 12 q^{38} - 16 q^{39} - 12 q^{40} - 24 q^{44} - 12 q^{45} + 28 q^{46} - 48 q^{50} + 16 q^{51}+ \cdots + 16 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.67303 + 0.965926i 1.18301 + 0.683013i 0.956710 0.291044i \(-0.0940027\pi\)
0.226303 + 0.974057i \(0.427336\pi\)
\(3\) 0.866025 0.500000i 0.500000 0.288675i
\(4\) 0.866025 + 1.50000i 0.433013 + 0.750000i
\(5\) −0.792893 2.09077i −0.354593 0.935021i
\(6\) 1.93185 0.788675
\(7\) 0 0
\(8\) 0.517638i 0.183013i
\(9\) 0.500000 0.866025i 0.166667 0.288675i
\(10\) 0.692993 4.26380i 0.219144 1.34833i
\(11\) 1.73205 + 3.00000i 0.522233 + 0.904534i 0.999665 + 0.0258656i \(0.00823419\pi\)
−0.477432 + 0.878668i \(0.658432\pi\)
\(12\) 1.50000 + 0.866025i 0.433013 + 0.250000i
\(13\) 4.00000i 1.10940i −0.832050 0.554700i \(-0.812833\pi\)
0.832050 0.554700i \(-0.187167\pi\)
\(14\) 0 0
\(15\) −1.73205 1.41421i −0.447214 0.365148i
\(16\) 2.23205 3.86603i 0.558013 0.966506i
\(17\) 3.46410 2.00000i 0.840168 0.485071i −0.0171533 0.999853i \(-0.505460\pi\)
0.857321 + 0.514782i \(0.172127\pi\)
\(18\) 1.67303 0.965926i 0.394338 0.227671i
\(19\) −0.189469 + 0.328169i −0.0434671 + 0.0752872i −0.886940 0.461884i \(-0.847174\pi\)
0.843473 + 0.537171i \(0.180507\pi\)
\(20\) 2.44949 3.00000i 0.547723 0.670820i
\(21\) 0 0
\(22\) 6.69213i 1.42677i
\(23\) 5.46739 + 3.15660i 1.14003 + 0.658196i 0.946438 0.322886i \(-0.104653\pi\)
0.193591 + 0.981082i \(0.437987\pi\)
\(24\) −0.258819 0.448288i −0.0528312 0.0915064i
\(25\) −3.74264 + 3.31552i −0.748528 + 0.663103i
\(26\) 3.86370 6.69213i 0.757735 1.31243i
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −8.92820 −1.65793 −0.828963 0.559304i \(-0.811069\pi\)
−0.828963 + 0.559304i \(0.811069\pi\)
\(30\) −1.53175 4.03906i −0.279658 0.737428i
\(31\) 3.67423 + 6.36396i 0.659912 + 1.14300i 0.980638 + 0.195829i \(0.0627398\pi\)
−0.320726 + 0.947172i \(0.603927\pi\)
\(32\) 6.57201 3.79435i 1.16178 0.670753i
\(33\) 3.00000 + 1.73205i 0.522233 + 0.301511i
\(34\) 7.72741 1.32524
\(35\) 0 0
\(36\) 1.73205 0.288675
\(37\) 0.656339 + 0.378937i 0.107901 + 0.0622969i 0.552980 0.833195i \(-0.313491\pi\)
−0.445078 + 0.895492i \(0.646824\pi\)
\(38\) −0.633975 + 0.366025i −0.102844 + 0.0593772i
\(39\) −2.00000 3.46410i −0.320256 0.554700i
\(40\) −1.08226 + 0.410432i −0.171121 + 0.0648950i
\(41\) −8.48528 −1.32518 −0.662589 0.748983i \(-0.730542\pi\)
−0.662589 + 0.748983i \(0.730542\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) −3.00000 + 5.19615i −0.452267 + 0.783349i
\(45\) −2.20711 0.358719i −0.329016 0.0534747i
\(46\) 6.09808 + 10.5622i 0.899112 + 1.55731i
\(47\) −5.19615 3.00000i −0.757937 0.437595i 0.0706177 0.997503i \(-0.477503\pi\)
−0.828554 + 0.559908i \(0.810836\pi\)
\(48\) 4.46410i 0.644338i
\(49\) 0 0
\(50\) −9.46410 + 1.93185i −1.33843 + 0.273205i
\(51\) 2.00000 3.46410i 0.280056 0.485071i
\(52\) 6.00000 3.46410i 0.832050 0.480384i
\(53\) 6.36396 3.67423i 0.874157 0.504695i 0.00542976 0.999985i \(-0.498272\pi\)
0.868728 + 0.495290i \(0.164938\pi\)
\(54\) 0.965926 1.67303i 0.131446 0.227671i
\(55\) 4.89898 6.00000i 0.660578 0.809040i
\(56\) 0 0
\(57\) 0.378937i 0.0501915i
\(58\) −14.9372 8.62398i −1.96135 1.13238i
\(59\) 5.27792 + 9.14162i 0.687126 + 1.19014i 0.972764 + 0.231800i \(0.0744614\pi\)
−0.285637 + 0.958338i \(0.592205\pi\)
\(60\) 0.621320 3.82282i 0.0802121 0.493524i
\(61\) −4.57081 + 7.91688i −0.585232 + 1.01365i 0.409614 + 0.912259i \(0.365663\pi\)
−0.994846 + 0.101393i \(0.967670\pi\)
\(62\) 14.1962i 1.80291i
\(63\) 0 0
\(64\) 5.73205 0.716506
\(65\) −8.36308 + 3.17157i −1.03731 + 0.393385i
\(66\) 3.34607 + 5.79555i 0.411872 + 0.713384i
\(67\) −6.03579 + 3.48477i −0.737389 + 0.425732i −0.821119 0.570757i \(-0.806650\pi\)
0.0837300 + 0.996488i \(0.473317\pi\)
\(68\) 6.00000 + 3.46410i 0.727607 + 0.420084i
\(69\) 6.31319 0.760019
\(70\) 0 0
\(71\) 14.3923 1.70805 0.854026 0.520230i \(-0.174154\pi\)
0.854026 + 0.520230i \(0.174154\pi\)
\(72\) −0.448288 0.258819i −0.0528312 0.0305021i
\(73\) −9.46410 + 5.46410i −1.10769 + 0.639525i −0.938230 0.346012i \(-0.887535\pi\)
−0.169459 + 0.985537i \(0.554202\pi\)
\(74\) 0.732051 + 1.26795i 0.0850992 + 0.147396i
\(75\) −1.58346 + 4.74264i −0.182843 + 0.547633i
\(76\) −0.656339 −0.0752872
\(77\) 0 0
\(78\) 7.72741i 0.874957i
\(79\) −5.73205 + 9.92820i −0.644906 + 1.11701i 0.339417 + 0.940636i \(0.389770\pi\)
−0.984323 + 0.176374i \(0.943563\pi\)
\(80\) −9.85275 1.60136i −1.10157 0.179038i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) −14.1962 8.19615i −1.56770 0.905114i
\(83\) 6.00000i 0.658586i −0.944228 0.329293i \(-0.893190\pi\)
0.944228 0.329293i \(-0.106810\pi\)
\(84\) 0 0
\(85\) −6.92820 5.65685i −0.751469 0.613572i
\(86\) 0 0
\(87\) −7.73205 + 4.46410i −0.828963 + 0.478602i
\(88\) 1.55291 0.896575i 0.165541 0.0955753i
\(89\) −2.07055 + 3.58630i −0.219478 + 0.380147i −0.954649 0.297735i \(-0.903769\pi\)
0.735170 + 0.677882i \(0.237102\pi\)
\(90\) −3.34607 2.73205i −0.352706 0.287983i
\(91\) 0 0
\(92\) 10.9348i 1.14003i
\(93\) 6.36396 + 3.67423i 0.659912 + 0.381000i
\(94\) −5.79555 10.0382i −0.597766 1.03536i
\(95\) 0.836355 + 0.135932i 0.0858082 + 0.0139464i
\(96\) 3.79435 6.57201i 0.387260 0.670753i
\(97\) 5.07180i 0.514963i 0.966283 + 0.257481i \(0.0828926\pi\)
−0.966283 + 0.257481i \(0.917107\pi\)
\(98\) 0 0
\(99\) 3.46410 0.348155
\(100\) −8.21449 2.74264i −0.821449 0.274264i
\(101\) 6.31319 + 10.9348i 0.628186 + 1.08805i 0.987915 + 0.154994i \(0.0495357\pi\)
−0.359729 + 0.933057i \(0.617131\pi\)
\(102\) 6.69213 3.86370i 0.662620 0.382564i
\(103\) −12.0000 6.92820i −1.18240 0.682656i −0.225828 0.974167i \(-0.572509\pi\)
−0.956567 + 0.291511i \(0.905842\pi\)
\(104\) −2.07055 −0.203034
\(105\) 0 0
\(106\) 14.1962 1.37885
\(107\) 13.4722 + 7.77817i 1.30241 + 0.751945i 0.980816 0.194935i \(-0.0624494\pi\)
0.321590 + 0.946879i \(0.395783\pi\)
\(108\) 1.50000 0.866025i 0.144338 0.0833333i
\(109\) −5.92820 10.2679i −0.567819 0.983491i −0.996781 0.0801688i \(-0.974454\pi\)
0.428962 0.903322i \(-0.358879\pi\)
\(110\) 13.9917 5.30614i 1.33406 0.505921i
\(111\) 0.757875 0.0719343
\(112\) 0 0
\(113\) 0.378937i 0.0356474i −0.999841 0.0178237i \(-0.994326\pi\)
0.999841 0.0178237i \(-0.00567377\pi\)
\(114\) −0.366025 + 0.633975i −0.0342814 + 0.0593772i
\(115\) 2.26467 13.9339i 0.211181 1.29934i
\(116\) −7.73205 13.3923i −0.717903 1.24344i
\(117\) −3.46410 2.00000i −0.320256 0.184900i
\(118\) 20.3923i 1.87726i
\(119\) 0 0
\(120\) −0.732051 + 0.896575i −0.0668268 + 0.0818458i
\(121\) −0.500000 + 0.866025i −0.0454545 + 0.0787296i
\(122\) −15.2942 + 8.83013i −1.38467 + 0.799442i
\(123\) −7.34847 + 4.24264i −0.662589 + 0.382546i
\(124\) −6.36396 + 11.0227i −0.571501 + 0.989868i
\(125\) 9.89949 + 5.19615i 0.885438 + 0.464758i
\(126\) 0 0
\(127\) 2.82843i 0.250982i −0.992095 0.125491i \(-0.959949\pi\)
0.992095 0.125491i \(-0.0400507\pi\)
\(128\) −3.55412 2.05197i −0.314142 0.181370i
\(129\) 0 0
\(130\) −17.0552 2.77197i −1.49584 0.243118i
\(131\) −2.82843 + 4.89898i −0.247121 + 0.428026i −0.962726 0.270479i \(-0.912818\pi\)
0.715605 + 0.698505i \(0.246151\pi\)
\(132\) 6.00000i 0.522233i
\(133\) 0 0
\(134\) −13.4641 −1.16312
\(135\) −2.09077 + 0.792893i −0.179945 + 0.0682414i
\(136\) −1.03528 1.79315i −0.0887742 0.153761i
\(137\) 3.91447 2.26002i 0.334436 0.193087i −0.323373 0.946272i \(-0.604817\pi\)
0.657809 + 0.753185i \(0.271483\pi\)
\(138\) 10.5622 + 6.09808i 0.899112 + 0.519103i
\(139\) −5.27792 −0.447667 −0.223834 0.974627i \(-0.571857\pi\)
−0.223834 + 0.974627i \(0.571857\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 24.0788 + 13.9019i 2.02065 + 1.16662i
\(143\) 12.0000 6.92820i 1.00349 0.579365i
\(144\) −2.23205 3.86603i −0.186004 0.322169i
\(145\) 7.07911 + 18.6668i 0.587888 + 1.55020i
\(146\) −21.1117 −1.74721
\(147\) 0 0
\(148\) 1.31268i 0.107901i
\(149\) 10.4641 18.1244i 0.857253 1.48481i −0.0172868 0.999851i \(-0.505503\pi\)
0.874539 0.484954i \(-0.161164\pi\)
\(150\) −7.23023 + 6.40508i −0.590346 + 0.522973i
\(151\) 6.26795 + 10.8564i 0.510078 + 0.883482i 0.999932 + 0.0116770i \(0.00371698\pi\)
−0.489853 + 0.871805i \(0.662950\pi\)
\(152\) 0.169873 + 0.0980762i 0.0137785 + 0.00795503i
\(153\) 4.00000i 0.323381i
\(154\) 0 0
\(155\) 10.3923 12.7279i 0.834730 1.02233i
\(156\) 3.46410 6.00000i 0.277350 0.480384i
\(157\) 16.3923 9.46410i 1.30825 0.755318i 0.326445 0.945216i \(-0.394149\pi\)
0.981804 + 0.189899i \(0.0608160\pi\)
\(158\) −19.1798 + 11.0735i −1.52586 + 0.880958i
\(159\) 3.67423 6.36396i 0.291386 0.504695i
\(160\) −13.1440 10.7321i −1.03913 0.848443i
\(161\) 0 0
\(162\) 1.93185i 0.151781i
\(163\) −14.5211 8.38375i −1.13738 0.656666i −0.191598 0.981473i \(-0.561367\pi\)
−0.945780 + 0.324808i \(0.894700\pi\)
\(164\) −7.34847 12.7279i −0.573819 0.993884i
\(165\) 1.24264 7.64564i 0.0967394 0.595212i
\(166\) 5.79555 10.0382i 0.449822 0.779115i
\(167\) 5.07180i 0.392467i 0.980557 + 0.196234i \(0.0628711\pi\)
−0.980557 + 0.196234i \(0.937129\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) −6.12701 16.1562i −0.469920 1.23913i
\(171\) 0.189469 + 0.328169i 0.0144890 + 0.0250957i
\(172\) 0 0
\(173\) 13.8564 + 8.00000i 1.05348 + 0.608229i 0.923622 0.383304i \(-0.125214\pi\)
0.129861 + 0.991532i \(0.458547\pi\)
\(174\) −17.2480 −1.30756
\(175\) 0 0
\(176\) 15.4641 1.16565
\(177\) 9.14162 + 5.27792i 0.687126 + 0.396713i
\(178\) −6.92820 + 4.00000i −0.519291 + 0.299813i
\(179\) −5.19615 9.00000i −0.388379 0.672692i 0.603853 0.797096i \(-0.293631\pi\)
−0.992232 + 0.124404i \(0.960298\pi\)
\(180\) −1.37333 3.62132i −0.102362 0.269917i
\(181\) −3.48477 −0.259021 −0.129510 0.991578i \(-0.541341\pi\)
−0.129510 + 0.991578i \(0.541341\pi\)
\(182\) 0 0
\(183\) 9.14162i 0.675768i
\(184\) 1.63397 2.83013i 0.120458 0.208640i
\(185\) 0.271864 1.67271i 0.0199879 0.122980i
\(186\) 7.09808 + 12.2942i 0.520456 + 0.901457i
\(187\) 12.0000 + 6.92820i 0.877527 + 0.506640i
\(188\) 10.3923i 0.757937i
\(189\) 0 0
\(190\) 1.26795 + 1.03528i 0.0919867 + 0.0751068i
\(191\) 0.267949 0.464102i 0.0193881 0.0335812i −0.856169 0.516697i \(-0.827162\pi\)
0.875557 + 0.483115i \(0.160495\pi\)
\(192\) 4.96410 2.86603i 0.358253 0.206838i
\(193\) −14.0406 + 8.10634i −1.01066 + 0.583507i −0.911386 0.411552i \(-0.864987\pi\)
−0.0992783 + 0.995060i \(0.531653\pi\)
\(194\) −4.89898 + 8.48528i −0.351726 + 0.609208i
\(195\) −5.65685 + 6.92820i −0.405096 + 0.496139i
\(196\) 0 0
\(197\) 11.4896i 0.818598i −0.912400 0.409299i \(-0.865773\pi\)
0.912400 0.409299i \(-0.134227\pi\)
\(198\) 5.79555 + 3.34607i 0.411872 + 0.237795i
\(199\) −1.60368 2.77766i −0.113682 0.196903i 0.803570 0.595210i \(-0.202931\pi\)
−0.917252 + 0.398307i \(0.869598\pi\)
\(200\) 1.71624 + 1.93733i 0.121356 + 0.136990i
\(201\) −3.48477 + 6.03579i −0.245796 + 0.425732i
\(202\) 24.3923i 1.71624i
\(203\) 0 0
\(204\) 6.92820 0.485071
\(205\) 6.72792 + 17.7408i 0.469898 + 1.23907i
\(206\) −13.3843 23.1822i −0.932526 1.61518i
\(207\) 5.46739 3.15660i 0.380010 0.219399i
\(208\) −15.4641 8.92820i −1.07224 0.619060i
\(209\) −1.31268 −0.0907998
\(210\) 0 0
\(211\) −13.0718 −0.899900 −0.449950 0.893054i \(-0.648558\pi\)
−0.449950 + 0.893054i \(0.648558\pi\)
\(212\) 11.0227 + 6.36396i 0.757042 + 0.437079i
\(213\) 12.4641 7.19615i 0.854026 0.493072i
\(214\) 15.0263 + 26.0263i 1.02718 + 1.77912i
\(215\) 0 0
\(216\) −0.517638 −0.0352208
\(217\) 0 0
\(218\) 22.9048i 1.55131i
\(219\) −5.46410 + 9.46410i −0.369230 + 0.639525i
\(220\) 13.2426 + 2.15232i 0.892819 + 0.145109i
\(221\) −8.00000 13.8564i −0.538138 0.932083i
\(222\) 1.26795 + 0.732051i 0.0850992 + 0.0491320i
\(223\) 8.00000i 0.535720i −0.963458 0.267860i \(-0.913684\pi\)
0.963458 0.267860i \(-0.0863164\pi\)
\(224\) 0 0
\(225\) 1.00000 + 4.89898i 0.0666667 + 0.326599i
\(226\) 0.366025 0.633975i 0.0243476 0.0421714i
\(227\) 3.46410 2.00000i 0.229920 0.132745i −0.380615 0.924734i \(-0.624288\pi\)
0.610535 + 0.791989i \(0.290954\pi\)
\(228\) −0.568406 + 0.328169i −0.0376436 + 0.0217335i
\(229\) 11.6419 20.1643i 0.769317 1.33250i −0.168617 0.985682i \(-0.553930\pi\)
0.937934 0.346814i \(-0.112737\pi\)
\(230\) 17.2480 21.1244i 1.13730 1.39290i
\(231\) 0 0
\(232\) 4.62158i 0.303421i
\(233\) 0.328169 + 0.189469i 0.0214991 + 0.0124125i 0.510711 0.859752i \(-0.329382\pi\)
−0.489212 + 0.872165i \(0.662716\pi\)
\(234\) −3.86370 6.69213i −0.252578 0.437478i
\(235\) −2.15232 + 13.2426i −0.140402 + 0.863855i
\(236\) −9.14162 + 15.8338i −0.595069 + 1.03069i
\(237\) 11.4641i 0.744673i
\(238\) 0 0
\(239\) 15.4641 1.00029 0.500145 0.865942i \(-0.333280\pi\)
0.500145 + 0.865942i \(0.333280\pi\)
\(240\) −9.33341 + 3.53956i −0.602469 + 0.228477i
\(241\) −2.77766 4.81105i −0.178925 0.309907i 0.762588 0.646885i \(-0.223929\pi\)
−0.941513 + 0.336978i \(0.890595\pi\)
\(242\) −1.67303 + 0.965926i −0.107547 + 0.0620921i
\(243\) −0.866025 0.500000i −0.0555556 0.0320750i
\(244\) −15.8338 −1.01365
\(245\) 0 0
\(246\) −16.3923 −1.04514
\(247\) 1.31268 + 0.757875i 0.0835237 + 0.0482224i
\(248\) 3.29423 1.90192i 0.209184 0.120772i
\(249\) −3.00000 5.19615i −0.190117 0.329293i
\(250\) 11.5431 + 18.2555i 0.730048 + 1.15458i
\(251\) 9.04008 0.570605 0.285303 0.958438i \(-0.407906\pi\)
0.285303 + 0.958438i \(0.407906\pi\)
\(252\) 0 0
\(253\) 21.8695i 1.37493i
\(254\) 2.73205 4.73205i 0.171424 0.296915i
\(255\) −8.82843 1.43488i −0.552858 0.0898555i
\(256\) −9.69615 16.7942i −0.606010 1.04964i
\(257\) −3.00000 1.73205i −0.187135 0.108042i 0.403506 0.914977i \(-0.367792\pi\)
−0.590641 + 0.806935i \(0.701125\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −12.0000 9.79796i −0.744208 0.607644i
\(261\) −4.46410 + 7.73205i −0.276321 + 0.478602i
\(262\) −9.46410 + 5.46410i −0.584694 + 0.337573i
\(263\) −18.8516 + 10.8840i −1.16244 + 0.671136i −0.951888 0.306446i \(-0.900860\pi\)
−0.210554 + 0.977582i \(0.567527\pi\)
\(264\) 0.896575 1.55291i 0.0551804 0.0955753i
\(265\) −12.7279 10.3923i −0.781870 0.638394i
\(266\) 0 0
\(267\) 4.14110i 0.253431i
\(268\) −10.4543 6.03579i −0.638598 0.368695i
\(269\) 4.14110 + 7.17260i 0.252488 + 0.437321i 0.964210 0.265139i \(-0.0854180\pi\)
−0.711722 + 0.702461i \(0.752085\pi\)
\(270\) −4.26380 0.692993i −0.259487 0.0421742i
\(271\) 6.50266 11.2629i 0.395009 0.684175i −0.598094 0.801426i \(-0.704075\pi\)
0.993102 + 0.117251i \(0.0374083\pi\)
\(272\) 17.8564i 1.08270i
\(273\) 0 0
\(274\) 8.73205 0.527522
\(275\) −16.4290 5.48528i −0.990705 0.330775i
\(276\) 5.46739 + 9.46979i 0.329098 + 0.570014i
\(277\) 9.79796 5.65685i 0.588702 0.339887i −0.175882 0.984411i \(-0.556278\pi\)
0.764584 + 0.644524i \(0.222944\pi\)
\(278\) −8.83013 5.09808i −0.529596 0.305762i
\(279\) 7.34847 0.439941
\(280\) 0 0
\(281\) 0.143594 0.00856607 0.00428304 0.999991i \(-0.498637\pi\)
0.00428304 + 0.999991i \(0.498637\pi\)
\(282\) −10.0382 5.79555i −0.597766 0.345120i
\(283\) −25.8564 + 14.9282i −1.53700 + 0.887390i −0.537992 + 0.842950i \(0.680817\pi\)
−0.999012 + 0.0444395i \(0.985850\pi\)
\(284\) 12.4641 + 21.5885i 0.739608 + 1.28104i
\(285\) 0.792271 0.300457i 0.0469301 0.0177975i
\(286\) 26.7685 1.58286
\(287\) 0 0
\(288\) 7.58871i 0.447169i
\(289\) −0.500000 + 0.866025i −0.0294118 + 0.0509427i
\(290\) −6.18718 + 38.0681i −0.363324 + 2.23544i
\(291\) 2.53590 + 4.39230i 0.148657 + 0.257481i
\(292\) −16.3923 9.46410i −0.959287 0.553845i
\(293\) 4.53590i 0.264990i −0.991184 0.132495i \(-0.957701\pi\)
0.991184 0.132495i \(-0.0422989\pi\)
\(294\) 0 0
\(295\) 14.9282 18.2832i 0.869154 1.06449i
\(296\) 0.196152 0.339746i 0.0114011 0.0197473i
\(297\) 3.00000 1.73205i 0.174078 0.100504i
\(298\) 35.0136 20.2151i 2.02828 1.17103i
\(299\) 12.6264 21.8695i 0.730203 1.26475i
\(300\) −8.48528 + 1.73205i −0.489898 + 0.100000i
\(301\) 0 0
\(302\) 24.2175i 1.39356i
\(303\) 10.9348 + 6.31319i 0.628186 + 0.362683i
\(304\) 0.845807 + 1.46498i 0.0485104 + 0.0840225i
\(305\) 20.1765 + 3.27928i 1.15530 + 0.187771i
\(306\) 3.86370 6.69213i 0.220873 0.382564i
\(307\) 4.00000i 0.228292i −0.993464 0.114146i \(-0.963587\pi\)
0.993464 0.114146i \(-0.0364132\pi\)
\(308\) 0 0
\(309\) −13.8564 −0.788263
\(310\) 29.6809 11.2560i 1.68576 0.639300i
\(311\) −7.72741 13.3843i −0.438181 0.758952i 0.559368 0.828919i \(-0.311044\pi\)
−0.997549 + 0.0699675i \(0.977710\pi\)
\(312\) −1.79315 + 1.03528i −0.101517 + 0.0586110i
\(313\) 9.46410 + 5.46410i 0.534943 + 0.308849i 0.743027 0.669262i \(-0.233389\pi\)
−0.208084 + 0.978111i \(0.566723\pi\)
\(314\) 36.5665 2.06357
\(315\) 0 0
\(316\) −19.8564 −1.11701
\(317\) −25.3035 14.6090i −1.42119 0.820524i −0.424788 0.905293i \(-0.639651\pi\)
−0.996401 + 0.0847694i \(0.972985\pi\)
\(318\) 12.2942 7.09808i 0.689426 0.398040i
\(319\) −15.4641 26.7846i −0.865823 1.49965i
\(320\) −4.54490 11.9844i −0.254068 0.669948i
\(321\) 15.5563 0.868271
\(322\) 0 0
\(323\) 1.51575i 0.0843386i
\(324\) 0.866025 1.50000i 0.0481125 0.0833333i
\(325\) 13.2621 + 14.9706i 0.735647 + 0.830417i
\(326\) −16.1962 28.0526i −0.897022 1.55369i
\(327\) −10.2679 5.92820i −0.567819 0.327830i
\(328\) 4.39230i 0.242524i
\(329\) 0 0
\(330\) 9.46410 11.5911i 0.520982 0.638070i
\(331\) −16.3923 + 28.3923i −0.901003 + 1.56058i −0.0748075 + 0.997198i \(0.523834\pi\)
−0.826195 + 0.563384i \(0.809499\pi\)
\(332\) 9.00000 5.19615i 0.493939 0.285176i
\(333\) 0.656339 0.378937i 0.0359671 0.0207656i
\(334\) −4.89898 + 8.48528i −0.268060 + 0.464294i
\(335\) 12.0716 + 9.85641i 0.659541 + 0.538513i
\(336\) 0 0
\(337\) 27.5264i 1.49946i 0.661745 + 0.749729i \(0.269816\pi\)
−0.661745 + 0.749729i \(0.730184\pi\)
\(338\) −5.01910 2.89778i −0.273003 0.157618i
\(339\) −0.189469 0.328169i −0.0102905 0.0178237i
\(340\) 2.48528 15.2913i 0.134783 0.829286i
\(341\) −12.7279 + 22.0454i −0.689256 + 1.19383i
\(342\) 0.732051i 0.0395848i
\(343\) 0 0
\(344\) 0 0
\(345\) −5.00569 13.1994i −0.269497 0.710634i
\(346\) 15.4548 + 26.7685i 0.830856 + 1.43908i
\(347\) 9.88589 5.70762i 0.530702 0.306401i −0.210600 0.977572i \(-0.567542\pi\)
0.741302 + 0.671171i \(0.234208\pi\)
\(348\) −13.3923 7.73205i −0.717903 0.414481i
\(349\) −7.82894 −0.419074 −0.209537 0.977801i \(-0.567196\pi\)
−0.209537 + 0.977801i \(0.567196\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 22.7661 + 13.1440i 1.21344 + 0.700579i
\(353\) −3.92820 + 2.26795i −0.209077 + 0.120711i −0.600882 0.799337i \(-0.705184\pi\)
0.391805 + 0.920048i \(0.371851\pi\)
\(354\) 10.1962 + 17.6603i 0.541919 + 0.938632i
\(355\) −11.4116 30.0910i −0.605663 1.59706i
\(356\) −7.17260 −0.380147
\(357\) 0 0
\(358\) 20.0764i 1.06107i
\(359\) 4.26795 7.39230i 0.225254 0.390151i −0.731142 0.682226i \(-0.761012\pi\)
0.956396 + 0.292075i \(0.0943456\pi\)
\(360\) −0.185687 + 1.14248i −0.00978656 + 0.0602141i
\(361\) 9.42820 + 16.3301i 0.496221 + 0.859480i
\(362\) −5.83013 3.36603i −0.306425 0.176914i
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) 18.9282 + 15.4548i 0.990747 + 0.808942i
\(366\) −8.83013 + 15.2942i −0.461558 + 0.799442i
\(367\) 3.46410 2.00000i 0.180825 0.104399i −0.406855 0.913493i \(-0.633375\pi\)
0.587680 + 0.809093i \(0.300041\pi\)
\(368\) 24.4070 14.0914i 1.27230 0.734563i
\(369\) −4.24264 + 7.34847i −0.220863 + 0.382546i
\(370\) 2.07055 2.53590i 0.107643 0.131835i
\(371\) 0 0
\(372\) 12.7279i 0.659912i
\(373\) −23.1822 13.3843i −1.20033 0.693011i −0.239701 0.970847i \(-0.577050\pi\)
−0.960629 + 0.277836i \(0.910383\pi\)
\(374\) 13.3843 + 23.1822i 0.692084 + 1.19872i
\(375\) 11.1713 0.449747i 0.576883 0.0232249i
\(376\) −1.55291 + 2.68973i −0.0800854 + 0.138712i
\(377\) 35.7128i 1.83930i
\(378\) 0 0
\(379\) −4.53590 −0.232993 −0.116497 0.993191i \(-0.537166\pi\)
−0.116497 + 0.993191i \(0.537166\pi\)
\(380\) 0.520407 + 1.37225i 0.0266963 + 0.0703951i
\(381\) −1.41421 2.44949i −0.0724524 0.125491i
\(382\) 0.896575 0.517638i 0.0458728 0.0264847i
\(383\) 3.33975 + 1.92820i 0.170653 + 0.0985266i 0.582894 0.812548i \(-0.301920\pi\)
−0.412241 + 0.911075i \(0.635254\pi\)
\(384\) −4.10394 −0.209428
\(385\) 0 0
\(386\) −31.3205 −1.59417
\(387\) 0 0
\(388\) −7.60770 + 4.39230i −0.386222 + 0.222985i
\(389\) 12.4641 + 21.5885i 0.631955 + 1.09458i 0.987152 + 0.159787i \(0.0510806\pi\)
−0.355197 + 0.934792i \(0.615586\pi\)
\(390\) −16.1562 + 6.12701i −0.818103 + 0.310253i
\(391\) 25.2528 1.27709
\(392\) 0 0
\(393\) 5.65685i 0.285351i
\(394\) 11.0981 19.2224i 0.559113 0.968412i
\(395\) 25.3025 + 4.11240i 1.27311 + 0.206917i
\(396\) 3.00000 + 5.19615i 0.150756 + 0.261116i
\(397\) 27.4641 + 15.8564i 1.37838 + 0.795810i 0.991965 0.126513i \(-0.0403786\pi\)
0.386419 + 0.922323i \(0.373712\pi\)
\(398\) 6.19615i 0.310585i
\(399\) 0 0
\(400\) 4.46410 + 21.8695i 0.223205 + 1.09348i
\(401\) −1.00000 + 1.73205i −0.0499376 + 0.0864945i −0.889914 0.456129i \(-0.849236\pi\)
0.839976 + 0.542623i \(0.182569\pi\)
\(402\) −11.6603 + 6.73205i −0.581561 + 0.335764i
\(403\) 25.4558 14.6969i 1.26805 0.732107i
\(404\) −10.9348 + 18.9396i −0.544025 + 0.942279i
\(405\) −1.41421 + 1.73205i −0.0702728 + 0.0860663i
\(406\) 0 0
\(407\) 2.62536i 0.130134i
\(408\) −1.79315 1.03528i −0.0887742 0.0512538i
\(409\) 15.5056 + 26.8565i 0.766702 + 1.32797i 0.939342 + 0.342981i \(0.111437\pi\)
−0.172641 + 0.984985i \(0.555230\pi\)
\(410\) −5.88024 + 36.1796i −0.290404 + 1.78678i
\(411\) 2.26002 3.91447i 0.111479 0.193087i
\(412\) 24.0000i 1.18240i
\(413\) 0 0
\(414\) 12.1962 0.599408
\(415\) −12.5446 + 4.75736i −0.615791 + 0.233530i
\(416\) −15.1774 26.2880i −0.744134 1.28888i
\(417\) −4.57081 + 2.63896i −0.223834 + 0.129230i
\(418\) −2.19615 1.26795i −0.107417 0.0620174i
\(419\) −1.51575 −0.0740492 −0.0370246 0.999314i \(-0.511788\pi\)
−0.0370246 + 0.999314i \(0.511788\pi\)
\(420\) 0 0
\(421\) −28.7846 −1.40288 −0.701438 0.712730i \(-0.747458\pi\)
−0.701438 + 0.712730i \(0.747458\pi\)
\(422\) −21.8695 12.6264i −1.06459 0.614643i
\(423\) −5.19615 + 3.00000i −0.252646 + 0.145865i
\(424\) −1.90192 3.29423i −0.0923656 0.159982i
\(425\) −6.33386 + 18.9706i −0.307237 + 0.920207i
\(426\) 27.8038 1.34710
\(427\) 0 0
\(428\) 26.9444i 1.30241i
\(429\) 6.92820 12.0000i 0.334497 0.579365i
\(430\) 0 0
\(431\) −1.33975 2.32051i −0.0645333 0.111775i 0.831954 0.554845i \(-0.187223\pi\)
−0.896487 + 0.443070i \(0.853889\pi\)
\(432\) −3.86603 2.23205i −0.186004 0.107390i
\(433\) 9.85641i 0.473669i −0.971550 0.236834i \(-0.923890\pi\)
0.971550 0.236834i \(-0.0761099\pi\)
\(434\) 0 0
\(435\) 15.4641 + 12.6264i 0.741447 + 0.605389i
\(436\) 10.2679 17.7846i 0.491746 0.851728i
\(437\) −2.07180 + 1.19615i −0.0991075 + 0.0572197i
\(438\) −18.2832 + 10.5558i −0.873607 + 0.504377i
\(439\) 0.845807 1.46498i 0.0403682 0.0699198i −0.845135 0.534552i \(-0.820480\pi\)
0.885504 + 0.464633i \(0.153814\pi\)
\(440\) −3.10583 2.53590i −0.148065 0.120894i
\(441\) 0 0
\(442\) 30.9096i 1.47022i
\(443\) 23.0943 + 13.3335i 1.09724 + 0.633493i 0.935495 0.353339i \(-0.114954\pi\)
0.161747 + 0.986832i \(0.448287\pi\)
\(444\) 0.656339 + 1.13681i 0.0311485 + 0.0539507i
\(445\) 9.13986 + 1.48549i 0.433271 + 0.0704192i
\(446\) 7.72741 13.3843i 0.365903 0.633763i
\(447\) 20.9282i 0.989870i
\(448\) 0 0
\(449\) −8.14359 −0.384320 −0.192160 0.981364i \(-0.561549\pi\)
−0.192160 + 0.981364i \(0.561549\pi\)
\(450\) −3.05902 + 9.16208i −0.144204 + 0.431905i
\(451\) −14.6969 25.4558i −0.692052 1.19867i
\(452\) 0.568406 0.328169i 0.0267356 0.0154358i
\(453\) 10.8564 + 6.26795i 0.510078 + 0.294494i
\(454\) 7.72741 0.362665
\(455\) 0 0
\(456\) 0.196152 0.00918568
\(457\) −10.4543 6.03579i −0.489031 0.282342i 0.235141 0.971961i \(-0.424445\pi\)
−0.724173 + 0.689619i \(0.757778\pi\)
\(458\) 38.9545 22.4904i 1.82022 1.05091i
\(459\) −2.00000 3.46410i −0.0933520 0.161690i
\(460\) 22.8621 8.67011i 1.06595 0.404246i
\(461\) −12.8295 −0.597527 −0.298764 0.954327i \(-0.596574\pi\)
−0.298764 + 0.954327i \(0.596574\pi\)
\(462\) 0 0
\(463\) 16.7675i 0.779251i −0.920973 0.389626i \(-0.872604\pi\)
0.920973 0.389626i \(-0.127396\pi\)
\(464\) −19.9282 + 34.5167i −0.925144 + 1.60240i
\(465\) 2.63604 16.2189i 0.122243 0.752131i
\(466\) 0.366025 + 0.633975i 0.0169558 + 0.0293683i
\(467\) −15.4641 8.92820i −0.715593 0.413148i 0.0975353 0.995232i \(-0.468904\pi\)
−0.813129 + 0.582084i \(0.802237\pi\)
\(468\) 6.92820i 0.320256i
\(469\) 0 0
\(470\) −16.3923 + 20.0764i −0.756121 + 0.926055i
\(471\) 9.46410 16.3923i 0.436083 0.755318i
\(472\) 4.73205 2.73205i 0.217810 0.125753i
\(473\) 0 0
\(474\) −11.0735 + 19.1798i −0.508621 + 0.880958i
\(475\) −0.378937 1.85641i −0.0173868 0.0851778i
\(476\) 0 0
\(477\) 7.34847i 0.336463i
\(478\) 25.8719 + 14.9372i 1.18336 + 0.683210i
\(479\) −6.96953 12.0716i −0.318446 0.551565i 0.661718 0.749753i \(-0.269828\pi\)
−0.980164 + 0.198188i \(0.936494\pi\)
\(480\) −16.7491 2.72222i −0.764488 0.124252i
\(481\) 1.51575 2.62536i 0.0691122 0.119706i
\(482\) 10.7321i 0.488832i
\(483\) 0 0
\(484\) −1.73205 −0.0787296
\(485\) 10.6040 4.02139i 0.481501 0.182602i
\(486\) −0.965926 1.67303i −0.0438153 0.0758903i
\(487\) 3.58630 2.07055i 0.162511 0.0938257i −0.416539 0.909118i \(-0.636757\pi\)
0.579050 + 0.815292i \(0.303424\pi\)
\(488\) 4.09808 + 2.36603i 0.185511 + 0.107105i
\(489\) −16.7675 −0.758252
\(490\) 0 0
\(491\) 6.67949 0.301441 0.150721 0.988576i \(-0.451841\pi\)
0.150721 + 0.988576i \(0.451841\pi\)
\(492\) −12.7279 7.34847i −0.573819 0.331295i
\(493\) −30.9282 + 17.8564i −1.39294 + 0.804212i
\(494\) 1.46410 + 2.53590i 0.0658730 + 0.114095i
\(495\) −2.74666 7.24264i −0.123453 0.325532i
\(496\) 32.8043 1.47296
\(497\) 0 0
\(498\) 11.5911i 0.519410i
\(499\) 8.12436 14.0718i 0.363696 0.629940i −0.624870 0.780729i \(-0.714848\pi\)
0.988566 + 0.150789i \(0.0481813\pi\)
\(500\) 0.778985 + 19.3492i 0.0348373 + 0.865324i
\(501\) 2.53590 + 4.39230i 0.113296 + 0.196234i
\(502\) 15.1244 + 8.73205i 0.675033 + 0.389731i
\(503\) 3.85641i 0.171949i 0.996297 + 0.0859743i \(0.0274003\pi\)
−0.996297 + 0.0859743i \(0.972600\pi\)
\(504\) 0 0
\(505\) 17.8564 21.8695i 0.794600 0.973182i
\(506\) −21.1244 + 36.5885i −0.939092 + 1.62656i
\(507\) −2.59808 + 1.50000i −0.115385 + 0.0666173i
\(508\) 4.24264 2.44949i 0.188237 0.108679i
\(509\) 21.1117 36.5665i 0.935758 1.62078i 0.162482 0.986712i \(-0.448050\pi\)
0.773276 0.634069i \(-0.218617\pi\)
\(510\) −13.3843 10.9282i −0.592665 0.483909i
\(511\) 0 0
\(512\) 29.2552i 1.29291i
\(513\) 0.328169 + 0.189469i 0.0144890 + 0.00836525i
\(514\) −3.34607 5.79555i −0.147589 0.255631i
\(515\) −4.97056 + 30.5826i −0.219029 + 1.34763i
\(516\) 0 0
\(517\) 20.7846i 0.914106i
\(518\) 0 0
\(519\) 16.0000 0.702322
\(520\) 1.64173 + 4.32905i 0.0719945 + 0.189841i
\(521\) −14.1421 24.4949i −0.619578 1.07314i −0.989563 0.144103i \(-0.953970\pi\)
0.369984 0.929038i \(-0.379363\pi\)
\(522\) −14.9372 + 8.62398i −0.653782 + 0.377461i
\(523\) 10.1436 + 5.85641i 0.443548 + 0.256083i 0.705102 0.709106i \(-0.250901\pi\)
−0.261553 + 0.965189i \(0.584235\pi\)
\(524\) −9.79796 −0.428026
\(525\) 0 0
\(526\) −42.0526 −1.83358
\(527\) 25.4558 + 14.6969i 1.10887 + 0.640209i
\(528\) 13.3923 7.73205i 0.582825 0.336494i
\(529\) 8.42820 + 14.5981i 0.366444 + 0.634699i
\(530\) −11.2560 29.6809i −0.488931 1.28926i
\(531\) 10.5558 0.458084
\(532\) 0 0
\(533\) 33.9411i 1.47015i
\(534\) −4.00000 + 6.92820i −0.173097 + 0.299813i
\(535\) 5.58037 34.3345i 0.241260 1.48441i
\(536\) 1.80385 + 3.12436i 0.0779143 + 0.134952i
\(537\) −9.00000 5.19615i −0.388379 0.224231i
\(538\) 16.0000i 0.689809i
\(539\) 0 0
\(540\) −3.00000 2.44949i −0.129099 0.105409i
\(541\) 21.3205 36.9282i 0.916640 1.58767i 0.112158 0.993690i \(-0.464224\pi\)
0.804482 0.593977i \(-0.202443\pi\)
\(542\) 21.7583 12.5622i 0.934600 0.539592i
\(543\) −3.01790 + 1.74238i −0.129510 + 0.0747728i
\(544\) 15.1774 26.2880i 0.650726 1.12709i
\(545\) −16.7675 + 20.5359i −0.718240 + 0.879661i
\(546\) 0 0
\(547\) 29.5969i 1.26547i −0.774367 0.632737i \(-0.781931\pi\)
0.774367 0.632737i \(-0.218069\pi\)
\(548\) 6.78006 + 3.91447i 0.289630 + 0.167218i
\(549\) 4.57081 + 7.91688i 0.195077 + 0.337884i
\(550\) −22.1879 25.0462i −0.946094 1.06798i
\(551\) 1.69161 2.92996i 0.0720652 0.124821i
\(552\) 3.26795i 0.139093i
\(553\) 0 0
\(554\) 21.8564 0.928590
\(555\) −0.600914 1.58454i −0.0255074 0.0672601i
\(556\) −4.57081 7.91688i −0.193846 0.335750i
\(557\) −11.9193 + 6.88160i −0.505036 + 0.291583i −0.730791 0.682601i \(-0.760849\pi\)
0.225755 + 0.974184i \(0.427515\pi\)
\(558\) 12.2942 + 7.09808i 0.520456 + 0.300486i
\(559\) 0 0
\(560\) 0 0
\(561\) 13.8564 0.585018
\(562\) 0.240237 + 0.138701i 0.0101338 + 0.00585074i
\(563\) −27.5885 + 15.9282i −1.16271 + 0.671294i −0.951953 0.306244i \(-0.900928\pi\)
−0.210762 + 0.977537i \(0.567594\pi\)
\(564\) −5.19615 9.00000i −0.218797 0.378968i
\(565\) −0.792271 + 0.300457i −0.0333311 + 0.0126403i
\(566\) −57.6781 −2.42439
\(567\) 0 0
\(568\) 7.45001i 0.312595i
\(569\) 5.92820 10.2679i 0.248523 0.430455i −0.714593 0.699540i \(-0.753388\pi\)
0.963116 + 0.269086i \(0.0867214\pi\)
\(570\) 1.61571 + 0.262601i 0.0676748 + 0.0109991i
\(571\) −19.8564 34.3923i −0.830965 1.43927i −0.897274 0.441474i \(-0.854456\pi\)
0.0663093 0.997799i \(-0.478878\pi\)
\(572\) 20.7846 + 12.0000i 0.869048 + 0.501745i
\(573\) 0.535898i 0.0223875i
\(574\) 0 0
\(575\) −30.9282 + 6.31319i −1.28980 + 0.263278i
\(576\) 2.86603 4.96410i 0.119418 0.206838i
\(577\) 3.46410 2.00000i 0.144212 0.0832611i −0.426158 0.904649i \(-0.640133\pi\)
0.570370 + 0.821388i \(0.306800\pi\)
\(578\) −1.67303 + 0.965926i −0.0695890 + 0.0401772i
\(579\) −8.10634 + 14.0406i −0.336888 + 0.583507i
\(580\) −21.8695 + 26.7846i −0.908083 + 1.11217i
\(581\) 0 0
\(582\) 9.79796i 0.406138i
\(583\) 22.0454 + 12.7279i 0.913027 + 0.527137i
\(584\) 2.82843 + 4.89898i 0.117041 + 0.202721i
\(585\) −1.43488 + 8.82843i −0.0593249 + 0.365011i
\(586\) 4.38134 7.58871i 0.180992 0.313487i
\(587\) 31.8564i 1.31485i −0.753518 0.657427i \(-0.771645\pi\)
0.753518 0.657427i \(-0.228355\pi\)
\(588\) 0 0
\(589\) −2.78461 −0.114738
\(590\) 42.6356 16.1689i 1.75528 0.665664i
\(591\) −5.74479 9.95026i −0.236309 0.409299i
\(592\) 2.92996 1.69161i 0.120421 0.0695249i
\(593\) −8.07180 4.66025i −0.331469 0.191374i 0.325024 0.945706i \(-0.394628\pi\)
−0.656493 + 0.754332i \(0.727961\pi\)
\(594\) 6.69213 0.274581
\(595\) 0 0
\(596\) 36.2487 1.48481
\(597\) −2.77766 1.60368i −0.113682 0.0656343i
\(598\) 42.2487 24.3923i 1.72768 0.997476i
\(599\) −2.66025 4.60770i −0.108695 0.188265i 0.806547 0.591170i \(-0.201334\pi\)
−0.915242 + 0.402905i \(0.868001\pi\)
\(600\) 2.45497 + 0.819661i 0.100224 + 0.0334625i
\(601\) −33.6365 −1.37206 −0.686031 0.727572i \(-0.740649\pi\)
−0.686031 + 0.727572i \(0.740649\pi\)
\(602\) 0 0
\(603\) 6.96953i 0.283821i
\(604\) −10.8564 + 18.8038i −0.441741 + 0.765118i
\(605\) 2.20711 + 0.358719i 0.0897317 + 0.0145840i
\(606\) 12.1962 + 21.1244i 0.495435 + 0.858118i
\(607\) 10.3923 + 6.00000i 0.421811 + 0.243532i 0.695852 0.718186i \(-0.255027\pi\)
−0.274041 + 0.961718i \(0.588360\pi\)
\(608\) 2.87564i 0.116623i
\(609\) 0 0
\(610\) 30.5885 + 24.9754i 1.23849 + 1.01122i
\(611\) −12.0000 + 20.7846i −0.485468 + 0.840855i
\(612\) 6.00000 3.46410i 0.242536 0.140028i
\(613\) −8.48528 + 4.89898i −0.342717 + 0.197868i −0.661473 0.749969i \(-0.730068\pi\)
0.318756 + 0.947837i \(0.396735\pi\)
\(614\) 3.86370 6.69213i 0.155926 0.270072i
\(615\) 14.6969 + 12.0000i 0.592638 + 0.483887i
\(616\) 0 0
\(617\) 12.4505i 0.501239i −0.968086 0.250620i \(-0.919366\pi\)
0.968086 0.250620i \(-0.0806343\pi\)
\(618\) −23.1822 13.3843i −0.932526 0.538394i
\(619\) −1.88108 3.25813i −0.0756071 0.130955i 0.825743 0.564047i \(-0.190756\pi\)
−0.901350 + 0.433091i \(0.857423\pi\)
\(620\) 28.0919 + 4.56575i 1.12820 + 0.183365i
\(621\) 3.15660 5.46739i 0.126670 0.219399i
\(622\) 29.8564i 1.19713i
\(623\) 0 0
\(624\) −17.8564 −0.714828
\(625\) 3.01472 24.8176i 0.120589 0.992703i
\(626\) 10.5558 + 18.2832i 0.421896 + 0.730745i
\(627\) −1.13681 + 0.656339i −0.0453999 + 0.0262116i
\(628\) 28.3923 + 16.3923i 1.13298 + 0.654124i
\(629\) 3.03150 0.120874
\(630\) 0 0
\(631\) 9.32051 0.371044 0.185522 0.982640i \(-0.440602\pi\)
0.185522 + 0.982640i \(0.440602\pi\)
\(632\) 5.13922 + 2.96713i 0.204427 + 0.118026i
\(633\) −11.3205 + 6.53590i −0.449950 + 0.259779i
\(634\) −28.2224 48.8827i −1.12086 1.94138i
\(635\) −5.91359 + 2.24264i −0.234674 + 0.0889965i
\(636\) 12.7279 0.504695
\(637\) 0 0
\(638\) 59.7487i 2.36547i
\(639\) 7.19615 12.4641i 0.284675 0.493072i
\(640\) −1.47216 + 9.05783i −0.0581924 + 0.358042i
\(641\) −5.00000 8.66025i −0.197488 0.342059i 0.750225 0.661182i \(-0.229945\pi\)
−0.947713 + 0.319123i \(0.896612\pi\)
\(642\) 26.0263 + 15.0263i 1.02718 + 0.593040i
\(643\) 4.00000i 0.157745i 0.996885 + 0.0788723i \(0.0251319\pi\)
−0.996885 + 0.0788723i \(0.974868\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −1.46410 + 2.53590i −0.0576043 + 0.0997736i
\(647\) −25.1769 + 14.5359i −0.989807 + 0.571465i −0.905216 0.424951i \(-0.860291\pi\)
−0.0845901 + 0.996416i \(0.526958\pi\)
\(648\) −0.448288 + 0.258819i −0.0176104 + 0.0101674i
\(649\) −18.2832 + 31.6675i −0.717680 + 1.24306i
\(650\) 7.72741 + 37.8564i 0.303094 + 1.48485i
\(651\) 0 0
\(652\) 29.0421i 1.13738i
\(653\) 16.1619 + 9.33109i 0.632465 + 0.365154i 0.781706 0.623647i \(-0.214350\pi\)
−0.149241 + 0.988801i \(0.547683\pi\)
\(654\) −11.4524 19.8362i −0.447825 0.775655i
\(655\) 12.4853 + 2.02922i 0.487840 + 0.0792883i
\(656\) −18.9396 + 32.8043i −0.739466 + 1.28079i
\(657\) 10.9282i 0.426350i
\(658\) 0 0
\(659\) 10.3923 0.404827 0.202413 0.979300i \(-0.435122\pi\)
0.202413 + 0.979300i \(0.435122\pi\)
\(660\) 12.5446 4.75736i 0.488299 0.185180i
\(661\) 11.6419 + 20.1643i 0.452817 + 0.784301i 0.998560 0.0536512i \(-0.0170859\pi\)
−0.545743 + 0.837953i \(0.683753\pi\)
\(662\) −54.8497 + 31.6675i −2.13179 + 1.23079i
\(663\) −13.8564 8.00000i −0.538138 0.310694i
\(664\) −3.10583 −0.120530
\(665\) 0 0
\(666\) 1.46410 0.0567328
\(667\) −48.8139 28.1827i −1.89008 1.09124i
\(668\) −7.60770 + 4.39230i −0.294351 + 0.169943i
\(669\) −4.00000 6.92820i −0.154649 0.267860i
\(670\) 10.6756 + 28.1503i 0.412434 + 1.08754i
\(671\) −31.6675 −1.22251
\(672\) 0 0
\(673\) 12.0716i 0.465325i 0.972557 + 0.232663i \(0.0747438\pi\)
−0.972557 + 0.232663i \(0.925256\pi\)
\(674\) −26.5885 + 46.0526i −1.02415 + 1.77388i
\(675\) 3.31552 + 3.74264i 0.127614 + 0.144054i
\(676\) −2.59808 4.50000i −0.0999260 0.173077i
\(677\) −33.9282 19.5885i −1.30397 0.752846i −0.322885 0.946438i \(-0.604653\pi\)
−0.981082 + 0.193593i \(0.937986\pi\)
\(678\) 0.732051i 0.0281142i
\(679\) 0 0
\(680\) −2.92820 + 3.58630i −0.112291 + 0.137528i
\(681\) 2.00000 3.46410i 0.0766402 0.132745i
\(682\) −42.5885 + 24.5885i −1.63080 + 0.941541i
\(683\) −19.6839 + 11.3645i −0.753182 + 0.434850i −0.826842 0.562434i \(-0.809865\pi\)
0.0736607 + 0.997283i \(0.476532\pi\)
\(684\) −0.328169 + 0.568406i −0.0125479 + 0.0217335i
\(685\) −7.82894 6.39230i −0.299129 0.244237i
\(686\) 0 0
\(687\) 23.2838i 0.888331i
\(688\) 0 0
\(689\) −14.6969 25.4558i −0.559909 0.969790i
\(690\) 4.37500 26.9182i 0.166553 1.02476i
\(691\) 3.01790 5.22715i 0.114806 0.198850i −0.802896 0.596119i \(-0.796709\pi\)
0.917702 + 0.397269i \(0.130042\pi\)
\(692\) 27.7128i 1.05348i
\(693\) 0 0
\(694\) 22.0526 0.837104
\(695\) 4.18482 + 11.0349i 0.158739 + 0.418578i
\(696\) 2.31079 + 4.00240i 0.0875902 + 0.151711i
\(697\) −29.3939 + 16.9706i −1.11337 + 0.642806i
\(698\) −13.0981 7.56218i −0.495769 0.286233i
\(699\) 0.378937 0.0143327
\(700\) 0 0
\(701\) −24.9282 −0.941525 −0.470763 0.882260i \(-0.656021\pi\)
−0.470763 + 0.882260i \(0.656021\pi\)
\(702\) −6.69213 3.86370i −0.252578 0.145826i
\(703\) −0.248711 + 0.143594i −0.00938032 + 0.00541573i
\(704\) 9.92820 + 17.1962i 0.374183 + 0.648104i
\(705\) 4.75736 + 12.5446i 0.179173 + 0.472458i
\(706\) −8.76268 −0.329788
\(707\) 0 0
\(708\) 18.2832i 0.687126i
\(709\) 1.46410 2.53590i 0.0549855 0.0952377i −0.837222 0.546862i \(-0.815822\pi\)
0.892208 + 0.451625i \(0.149155\pi\)
\(710\) 9.97376 61.3660i 0.374309 2.30302i
\(711\) 5.73205 + 9.92820i 0.214969 + 0.372337i
\(712\) 1.85641 + 1.07180i 0.0695718 + 0.0401673i
\(713\) 46.3923i 1.73741i
\(714\) 0 0
\(715\) −24.0000 19.5959i −0.897549 0.732846i
\(716\) 9.00000 15.5885i 0.336346 0.582568i
\(717\) 13.3923 7.73205i 0.500145 0.288759i
\(718\) 14.2808 8.24504i 0.532956 0.307702i
\(719\) 7.34847 12.7279i 0.274052 0.474671i −0.695844 0.718193i \(-0.744969\pi\)
0.969895 + 0.243522i \(0.0783027\pi\)
\(720\) −6.31319 + 7.73205i −0.235279 + 0.288157i
\(721\) 0 0
\(722\) 36.4278i 1.35570i
\(723\) −4.81105 2.77766i −0.178925 0.103302i
\(724\) −3.01790 5.22715i −0.112159 0.194265i
\(725\) 33.4151 29.6016i 1.24100 1.09938i
\(726\) −0.965926 + 1.67303i −0.0358489 + 0.0620921i
\(727\) 31.7128i 1.17616i 0.808802 + 0.588082i \(0.200117\pi\)
−0.808802 + 0.588082i \(0.799883\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 16.7393 + 44.1396i 0.619549 + 1.63368i
\(731\) 0 0
\(732\) −13.7124 + 7.91688i −0.506826 + 0.292616i
\(733\) −8.53590 4.92820i −0.315281 0.182027i 0.334006 0.942571i \(-0.391599\pi\)
−0.649287 + 0.760543i \(0.724933\pi\)
\(734\) 7.72741 0.285224
\(735\) 0 0
\(736\) 47.9090 1.76595
\(737\) −20.9086 12.0716i −0.770178 0.444662i
\(738\) −14.1962 + 8.19615i −0.522568 + 0.301705i
\(739\) 0.928203 + 1.60770i 0.0341445 + 0.0591400i 0.882593 0.470138i \(-0.155796\pi\)
−0.848448 + 0.529278i \(0.822463\pi\)
\(740\) 2.74451 1.04081i 0.100890 0.0382611i
\(741\) 1.51575 0.0556825
\(742\) 0 0
\(743\) 37.0197i 1.35812i 0.734081 + 0.679061i \(0.237613\pi\)
−0.734081 + 0.679061i \(0.762387\pi\)
\(744\) 1.90192 3.29423i 0.0697279 0.120772i
\(745\) −46.1908 7.50735i −1.69230 0.275048i
\(746\) −25.8564 44.7846i −0.946670 1.63968i
\(747\) −5.19615 3.00000i −0.190117 0.109764i
\(748\) 24.0000i 0.877527i
\(749\) 0 0
\(750\) 19.1244 + 10.0382i 0.698323 + 0.366543i
\(751\) −2.39230 + 4.14359i −0.0872964 + 0.151202i −0.906367 0.422490i \(-0.861156\pi\)
0.819071 + 0.573692i \(0.194489\pi\)
\(752\) −23.1962 + 13.3923i −0.845877 + 0.488367i
\(753\) 7.82894 4.52004i 0.285303 0.164719i
\(754\) −34.4959 + 59.7487i −1.25627 + 2.17592i
\(755\) 17.7284 21.7128i 0.645204 0.790210i
\(756\) 0 0
\(757\) 34.2929i 1.24640i 0.782064 + 0.623198i \(0.214167\pi\)
−0.782064 + 0.623198i \(0.785833\pi\)
\(758\) −7.58871 4.38134i −0.275634 0.159137i
\(759\) 10.9348 + 18.9396i 0.396907 + 0.687463i
\(760\) 0.0703637 0.432929i 0.00255236 0.0157040i
\(761\) −20.3538 + 35.2538i −0.737824 + 1.27795i 0.215649 + 0.976471i \(0.430813\pi\)
−0.953473 + 0.301478i \(0.902520\pi\)
\(762\) 5.46410i 0.197944i
\(763\) 0 0
\(764\) 0.928203 0.0335812
\(765\) −8.36308 + 3.17157i −0.302368 + 0.114668i
\(766\) 3.72500 + 6.45189i 0.134590 + 0.233116i
\(767\) 36.5665 21.1117i 1.32034 0.762298i
\(768\) −16.7942 9.69615i −0.606010 0.349880i
\(769\) −19.4944 −0.702985 −0.351493 0.936191i \(-0.614326\pi\)
−0.351493 + 0.936191i \(0.614326\pi\)
\(770\) 0 0
\(771\) −3.46410 −0.124757
\(772\) −24.3190 14.0406i −0.875261 0.505332i
\(773\) −8.78461 + 5.07180i −0.315960 + 0.182420i −0.649591 0.760284i \(-0.725060\pi\)
0.333630 + 0.942704i \(0.391726\pi\)
\(774\) 0 0
\(775\) −34.8511 11.6360i −1.25189 0.417979i
\(776\) 2.62536 0.0942448
\(777\) 0 0
\(778\) 48.1576i 1.72653i
\(779\) 1.60770 2.78461i 0.0576017 0.0997690i
\(780\) −15.2913 2.48528i −0.547516 0.0889873i
\(781\) 24.9282 + 43.1769i 0.892001 + 1.54499i
\(782\) 42.2487 + 24.3923i 1.51081 + 0.872267i
\(783\) 8.92820i 0.319068i
\(784\) 0 0
\(785\) −32.7846 26.7685i −1.17013 0.955410i
\(786\) −5.46410 + 9.46410i −0.194898 + 0.337573i
\(787\) −15.7128 + 9.07180i −0.560101 + 0.323375i −0.753186 0.657807i \(-0.771484\pi\)
0.193085 + 0.981182i \(0.438151\pi\)
\(788\) 17.2344 9.95026i 0.613949 0.354463i
\(789\) −10.8840 + 18.8516i −0.387481 + 0.671136i
\(790\) 38.3596 + 31.3205i 1.36477 + 1.11433i
\(791\) 0 0
\(792\) 1.79315i 0.0637168i
\(793\) 31.6675 + 18.2832i 1.12455 + 0.649257i
\(794\) 30.6322 + 53.0566i 1.08710 + 1.88291i
\(795\) −16.2189 2.63604i −0.575224 0.0934907i
\(796\) 2.77766 4.81105i 0.0984515 0.170523i
\(797\) 37.8564i 1.34094i −0.741935 0.670471i \(-0.766092\pi\)
0.741935 0.670471i \(-0.233908\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) −12.0164 + 35.9905i −0.424845 + 1.27246i
\(801\) 2.07055 + 3.58630i 0.0731594 + 0.126716i
\(802\) −3.34607 + 1.93185i −0.118154 + 0.0682161i
\(803\) −32.7846 18.9282i −1.15694 0.667962i
\(804\) −12.0716 −0.425732
\(805\) 0 0
\(806\) 56.7846 2.00015
\(807\) 7.17260 + 4.14110i 0.252488 + 0.145774i
\(808\) 5.66025 3.26795i 0.199127 0.114966i
\(809\) −16.8564 29.1962i −0.592640 1.02648i −0.993875 0.110507i \(-0.964752\pi\)
0.401236 0.915975i \(-0.368581\pi\)
\(810\) −4.03906 + 1.53175i −0.141918 + 0.0538203i
\(811\) −8.66115 −0.304134 −0.152067 0.988370i \(-0.548593\pi\)
−0.152067 + 0.988370i \(0.548593\pi\)
\(812\) 0 0
\(813\) 13.0053i 0.456117i
\(814\) −2.53590 + 4.39230i −0.0888832 + 0.153950i
\(815\) −6.01483 + 37.0076i −0.210690 + 1.29632i
\(816\) −8.92820 15.4641i −0.312550 0.541352i
\(817\) 0 0
\(818\) 59.9090i 2.09467i
\(819\) 0 0
\(820\) −20.7846 + 25.4558i −0.725830 + 0.888957i
\(821\) 11.3923 19.7321i 0.397594 0.688653i −0.595834 0.803107i \(-0.703179\pi\)
0.993429 + 0.114454i \(0.0365119\pi\)
\(822\) 7.56218 4.36603i 0.263761 0.152283i
\(823\) −41.2896 + 23.8386i −1.43926 + 0.830960i −0.997799 0.0663179i \(-0.978875\pi\)
−0.441466 + 0.897278i \(0.645542\pi\)
\(824\) −3.58630 + 6.21166i −0.124935 + 0.216393i
\(825\) −16.9706 + 3.46410i −0.590839 + 0.120605i
\(826\) 0 0
\(827\) 50.6071i 1.75978i −0.475177 0.879890i \(-0.657616\pi\)
0.475177 0.879890i \(-0.342384\pi\)
\(828\) 9.46979 + 5.46739i 0.329098 + 0.190005i
\(829\) 17.9551 + 31.0991i 0.623605 + 1.08012i 0.988809 + 0.149188i \(0.0476661\pi\)
−0.365203 + 0.930928i \(0.619001\pi\)
\(830\) −25.5828 4.15796i −0.887993 0.144325i
\(831\) 5.65685 9.79796i 0.196234 0.339887i
\(832\) 22.9282i 0.794892i
\(833\) 0 0
\(834\) −10.1962 −0.353064
\(835\) 10.6040 4.02139i 0.366965 0.139166i
\(836\) −1.13681 1.96902i −0.0393175 0.0680999i
\(837\) 6.36396 3.67423i 0.219971 0.127000i
\(838\) −2.53590 1.46410i −0.0876012 0.0505766i
\(839\) 9.04008 0.312098 0.156049 0.987749i \(-0.450124\pi\)
0.156049 + 0.987749i \(0.450124\pi\)
\(840\) 0 0
\(841\) 50.7128 1.74872
\(842\) −48.1576 27.8038i −1.65962 0.958182i
\(843\) 0.124356 0.0717968i 0.00428304 0.00247281i
\(844\) −11.3205 19.6077i −0.389668 0.674925i
\(845\) 2.37868 + 6.27231i 0.0818291 + 0.215774i
\(846\) −11.5911 −0.398511
\(847\) 0 0
\(848\) 32.8043i 1.12650i
\(849\) −14.9282 + 25.8564i −0.512335 + 0.887390i
\(850\) −28.9209 + 25.6203i −0.991979 + 0.878770i
\(851\) 2.39230 + 4.14359i 0.0820072 + 0.142041i
\(852\) 21.5885 + 12.4641i 0.739608 + 0.427013i
\(853\) 26.9282i 0.922004i −0.887399 0.461002i \(-0.847490\pi\)
0.887399 0.461002i \(-0.152510\pi\)
\(854\) 0 0
\(855\) 0.535898 0.656339i 0.0183273 0.0224463i
\(856\) 4.02628 6.97372i 0.137615 0.238357i
\(857\) 15.4641 8.92820i 0.528244 0.304982i −0.212057 0.977257i \(-0.568016\pi\)
0.740301 + 0.672276i \(0.234683\pi\)
\(858\) 23.1822 13.3843i 0.791428 0.456931i
\(859\) 23.7506 41.1373i 0.810361 1.40359i −0.102251 0.994759i \(-0.532604\pi\)
0.912612 0.408828i \(-0.134062\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 5.17638i 0.176308i
\(863\) −45.6202 26.3388i −1.55293 0.896584i −0.997901 0.0647515i \(-0.979375\pi\)
−0.555027 0.831832i \(-0.687292\pi\)
\(864\) −3.79435 6.57201i −0.129087 0.223584i
\(865\) 5.73951 35.3137i 0.195149 1.20070i
\(866\) 9.52056 16.4901i 0.323522 0.560356i
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) −39.7128 −1.34716
\(870\) 13.6758 + 36.0615i 0.463653 + 1.22260i
\(871\) 13.9391 + 24.1432i 0.472307 + 0.818060i
\(872\) −5.31508 + 3.06866i −0.179991 + 0.103918i
\(873\) 4.39230 + 2.53590i 0.148657 + 0.0858272i
\(874\) −4.62158 −0.156327
\(875\) 0 0
\(876\) −18.9282 −0.639525
\(877\) −29.3939 16.9706i −0.992561 0.573055i −0.0865220 0.996250i \(-0.527575\pi\)
−0.906039 + 0.423195i \(0.860909\pi\)
\(878\) 2.83013 1.63397i 0.0955122 0.0551440i
\(879\) −2.26795 3.92820i −0.0764960 0.132495i
\(880\) −12.2614 32.3319i −0.413331 1.08991i
\(881\) 10.0010 0.336943 0.168472 0.985707i \(-0.446117\pi\)
0.168472 + 0.985707i \(0.446117\pi\)
\(882\) 0 0
\(883\) 29.3939i 0.989183i −0.869126 0.494591i \(-0.835318\pi\)
0.869126 0.494591i \(-0.164682\pi\)
\(884\) 13.8564 24.0000i 0.466041 0.807207i
\(885\) 3.78658 23.2979i 0.127285 0.783149i
\(886\) 25.7583 + 44.6147i 0.865368 + 1.49886i
\(887\) 36.1244 + 20.8564i 1.21294 + 0.700290i 0.963398 0.268075i \(-0.0863875\pi\)
0.249539 + 0.968365i \(0.419721\pi\)
\(888\) 0.392305i 0.0131649i
\(889\) 0 0
\(890\) 13.8564 + 11.3137i 0.464468 + 0.379236i
\(891\) 1.73205 3.00000i 0.0580259 0.100504i
\(892\) 12.0000 6.92820i 0.401790 0.231973i
\(893\) 1.96902 1.13681i 0.0658906 0.0380420i
\(894\) 20.2151 35.0136i 0.676094 1.17103i
\(895\) −14.6969 + 18.0000i −0.491264 + 0.601674i
\(896\) 0 0
\(897\) 25.2528i 0.843166i
\(898\) −13.6245 7.86611i −0.454655 0.262495i
\(899\) −32.8043 56.8187i −1.09409 1.89501i
\(900\) −6.48244 + 5.74264i −0.216081 + 0.191421i
\(901\) 14.6969 25.4558i 0.489626 0.848057i
\(902\) 56.7846i 1.89072i
\(903\) 0 0
\(904\) −0.196152 −0.00652393
\(905\) 2.76305 + 7.28585i 0.0918468 + 0.242190i
\(906\) 12.1087 + 20.9730i 0.402286 + 0.696780i
\(907\) 45.0518 26.0106i 1.49592 0.863669i 0.495930 0.868362i \(-0.334827\pi\)
0.999989 + 0.00469302i \(0.00149384\pi\)
\(908\) 6.00000 + 3.46410i 0.199117 + 0.114960i
\(909\) 12.6264 0.418791
\(910\) 0 0
\(911\) 30.3923 1.00694 0.503471 0.864012i \(-0.332056\pi\)
0.503471 + 0.864012i \(0.332056\pi\)
\(912\) 1.46498 + 0.845807i 0.0485104 + 0.0280075i
\(913\) 18.0000 10.3923i 0.595713 0.343935i
\(914\) −11.6603 20.1962i −0.385687 0.668029i
\(915\) 19.1130 7.24833i 0.631857 0.239622i
\(916\) 40.3286 1.33250
\(917\) 0 0
\(918\) 7.72741i 0.255042i
\(919\) −11.4641 + 19.8564i −0.378166 + 0.655002i −0.990795 0.135368i \(-0.956778\pi\)
0.612630 + 0.790370i \(0.290112\pi\)
\(920\) −7.21271 1.17228i −0.237796 0.0386488i
\(921\) −2.00000 3.46410i −0.0659022 0.114146i
\(922\) −21.4641 12.3923i −0.706883 0.408119i
\(923\) 57.5692i 1.89491i
\(924\) 0 0
\(925\) −3.71281 + 0.757875i −0.122077 + 0.0249188i
\(926\) 16.1962 28.0526i 0.532239 0.921864i
\(927\) −12.0000 + 6.92820i −0.394132 + 0.227552i
\(928\) −58.6763 + 33.8768i −1.92614 + 1.11206i
\(929\) −20.3538 + 35.2538i −0.667786 + 1.15664i 0.310736 + 0.950496i \(0.399425\pi\)
−0.978522 + 0.206143i \(0.933909\pi\)
\(930\) 20.0764 24.5885i 0.658331 0.806287i
\(931\) 0 0
\(932\) 0.656339i 0.0214991i
\(933\) −13.3843 7.72741i −0.438181 0.252984i
\(934\) −17.2480 29.8744i −0.564371 0.977519i
\(935\) 4.97056 30.5826i 0.162555 1.00016i
\(936\) −1.03528 + 1.79315i −0.0338391 + 0.0586110i
\(937\) 24.7846i 0.809678i 0.914388 + 0.404839i \(0.132672\pi\)
−0.914388 + 0.404839i \(0.867328\pi\)
\(938\) 0 0
\(939\) 10.9282 0.356628
\(940\) −21.7279 + 8.23999i −0.708687 + 0.268759i
\(941\) 19.6975 + 34.1170i 0.642119 + 1.11218i 0.984959 + 0.172788i \(0.0552777\pi\)
−0.342840 + 0.939394i \(0.611389\pi\)
\(942\) 31.6675 18.2832i 1.03178 0.595700i
\(943\) −46.3923 26.7846i −1.51074 0.872227i
\(944\) 47.1223 1.53370
\(945\) 0 0
\(946\) 0 0
\(947\) 15.9217 + 9.19239i 0.517385 + 0.298712i 0.735864 0.677129i \(-0.236776\pi\)
−0.218479 + 0.975842i \(0.570110\pi\)
\(948\) −17.1962 + 9.92820i −0.558505 + 0.322453i
\(949\) 21.8564 + 37.8564i 0.709489 + 1.22887i
\(950\) 1.15918 3.47185i 0.0376086 0.112642i
\(951\) −29.2180 −0.947459
\(952\) 0 0
\(953\) 19.6231i 0.635655i 0.948148 + 0.317828i \(0.102953\pi\)
−0.948148 + 0.317828i \(0.897047\pi\)
\(954\) 7.09808 12.2942i 0.229809 0.398040i
\(955\) −1.18278 0.192237i −0.0382740 0.00622065i
\(956\) 13.3923 + 23.1962i 0.433138 + 0.750217i
\(957\) −26.7846 15.4641i −0.865823 0.499883i
\(958\) 26.9282i 0.870011i
\(959\) 0 0
\(960\) −9.92820 8.10634i −0.320431 0.261631i
\(961\) −11.5000 + 19.9186i −0.370968 + 0.642535i
\(962\) 5.07180 2.92820i 0.163521 0.0944091i
\(963\) 13.4722 7.77817i 0.434135 0.250648i
\(964\) 4.81105 8.33298i 0.154953 0.268387i
\(965\) 28.0812 + 22.9282i 0.903966 + 0.738085i
\(966\) 0 0
\(967\) 29.5969i 0.951774i −0.879507 0.475887i \(-0.842127\pi\)
0.879507 0.475887i \(-0.157873\pi\)
\(968\) 0.448288 + 0.258819i 0.0144085 + 0.00831876i
\(969\) 0.757875 + 1.31268i 0.0243464 + 0.0421693i
\(970\) 21.6251 + 3.51472i 0.694341 + 0.112851i
\(971\) 28.4601 49.2944i 0.913329 1.58193i 0.104000 0.994577i \(-0.466836\pi\)
0.809329 0.587355i \(-0.199831\pi\)
\(972\) 1.73205i 0.0555556i
\(973\) 0 0
\(974\) 8.00000 0.256337
\(975\) 18.9706 + 6.33386i 0.607544 + 0.202846i
\(976\) 20.4046 + 35.3417i 0.653134 + 1.13126i
\(977\) −43.7626 + 25.2664i −1.40009 + 0.808343i −0.994401 0.105668i \(-0.966302\pi\)
−0.405690 + 0.914011i \(0.632969\pi\)
\(978\) −28.0526 16.1962i −0.897022 0.517896i
\(979\) −14.3452 −0.458475
\(980\) 0 0
\(981\) −11.8564 −0.378546
\(982\) 11.1750 + 6.45189i 0.356609 + 0.205888i
\(983\) −14.5359 + 8.39230i −0.463623 + 0.267673i −0.713566 0.700588i \(-0.752921\pi\)
0.249943 + 0.968260i \(0.419588\pi\)
\(984\) 2.19615 + 3.80385i 0.0700108 + 0.121262i
\(985\) −24.0221 + 9.11001i −0.765406 + 0.290269i
\(986\) −68.9919 −2.19715
\(987\) 0 0
\(988\) 2.62536i 0.0835237i
\(989\) 0 0
\(990\) 2.40060 14.7702i 0.0762960 0.469429i
\(991\) 14.3923 + 24.9282i 0.457187 + 0.791870i 0.998811 0.0487502i \(-0.0155238\pi\)
−0.541624 + 0.840621i \(0.682190\pi\)
\(992\) 48.2942 + 27.8827i 1.53334 + 0.885276i
\(993\) 32.7846i 1.04039i
\(994\) 0 0
\(995\) −4.53590 + 5.55532i −0.143798 + 0.176115i
\(996\) 5.19615 9.00000i 0.164646 0.285176i
\(997\) 12.2487 7.07180i 0.387921 0.223966i −0.293338 0.956009i \(-0.594766\pi\)
0.681259 + 0.732043i \(0.261433\pi\)
\(998\) 27.1846 15.6950i 0.860514 0.496818i
\(999\) 0.378937 0.656339i 0.0119890 0.0207656i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.q.c.79.4 8
5.4 even 2 735.2.q.d.79.1 8
7.2 even 3 735.2.d.f.589.2 yes 8
7.3 odd 6 inner 735.2.q.c.214.1 8
7.4 even 3 735.2.q.d.214.1 8
7.5 odd 6 735.2.d.f.589.1 8
7.6 odd 2 735.2.q.d.79.4 8
21.2 odd 6 2205.2.d.t.1324.8 8
21.5 even 6 2205.2.d.t.1324.7 8
35.2 odd 12 3675.2.a.bu.1.4 4
35.4 even 6 inner 735.2.q.c.214.4 8
35.9 even 6 735.2.d.f.589.7 yes 8
35.12 even 12 3675.2.a.bs.1.4 4
35.19 odd 6 735.2.d.f.589.8 yes 8
35.23 odd 12 3675.2.a.bs.1.1 4
35.24 odd 6 735.2.q.d.214.4 8
35.33 even 12 3675.2.a.bu.1.1 4
35.34 odd 2 inner 735.2.q.c.79.1 8
105.44 odd 6 2205.2.d.t.1324.2 8
105.89 even 6 2205.2.d.t.1324.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.d.f.589.1 8 7.5 odd 6
735.2.d.f.589.2 yes 8 7.2 even 3
735.2.d.f.589.7 yes 8 35.9 even 6
735.2.d.f.589.8 yes 8 35.19 odd 6
735.2.q.c.79.1 8 35.34 odd 2 inner
735.2.q.c.79.4 8 1.1 even 1 trivial
735.2.q.c.214.1 8 7.3 odd 6 inner
735.2.q.c.214.4 8 35.4 even 6 inner
735.2.q.d.79.1 8 5.4 even 2
735.2.q.d.79.4 8 7.6 odd 2
735.2.q.d.214.1 8 7.4 even 3
735.2.q.d.214.4 8 35.24 odd 6
2205.2.d.t.1324.1 8 105.89 even 6
2205.2.d.t.1324.2 8 105.44 odd 6
2205.2.d.t.1324.7 8 21.5 even 6
2205.2.d.t.1324.8 8 21.2 odd 6
3675.2.a.bs.1.1 4 35.23 odd 12
3675.2.a.bs.1.4 4 35.12 even 12
3675.2.a.bu.1.1 4 35.33 even 12
3675.2.a.bu.1.4 4 35.2 odd 12