Properties

Label 735.2.d.f.589.7
Level $735$
Weight $2$
Character 735.589
Analytic conductor $5.869$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(589,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.589"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.d (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 589.7
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 735.589
Dual form 735.2.d.f.589.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.93185i q^{2} -1.00000i q^{3} -1.73205 q^{4} +(-1.41421 - 1.73205i) q^{5} +1.93185 q^{6} +0.517638i q^{8} -1.00000 q^{9} +(3.34607 - 2.73205i) q^{10} -3.46410 q^{11} +1.73205i q^{12} +4.00000i q^{13} +(-1.73205 + 1.41421i) q^{15} -4.46410 q^{16} -4.00000i q^{17} -1.93185i q^{18} +0.378937 q^{19} +(2.44949 + 3.00000i) q^{20} -6.69213i q^{22} +6.31319i q^{23} +0.517638 q^{24} +(-1.00000 + 4.89898i) q^{25} -7.72741 q^{26} +1.00000i q^{27} -8.92820 q^{29} +(-2.73205 - 3.34607i) q^{30} -7.34847 q^{31} -7.58871i q^{32} +3.46410i q^{33} +7.72741 q^{34} +1.73205 q^{36} +0.757875i q^{37} +0.732051i q^{38} +4.00000 q^{39} +(0.896575 - 0.732051i) q^{40} -8.48528 q^{41} +6.00000 q^{44} +(1.41421 + 1.73205i) q^{45} -12.1962 q^{46} -6.00000i q^{47} +4.46410i q^{48} +(-9.46410 - 1.93185i) q^{50} -4.00000 q^{51} -6.92820i q^{52} -7.34847i q^{53} -1.93185 q^{54} +(4.89898 + 6.00000i) q^{55} -0.378937i q^{57} -17.2480i q^{58} -10.5558 q^{59} +(3.00000 - 2.44949i) q^{60} +9.14162 q^{61} -14.1962i q^{62} +5.73205 q^{64} +(6.92820 - 5.65685i) q^{65} -6.69213 q^{66} +6.96953i q^{67} +6.92820i q^{68} +6.31319 q^{69} +14.3923 q^{71} -0.517638i q^{72} +10.9282i q^{73} -1.46410 q^{74} +(4.89898 + 1.00000i) q^{75} -0.656339 q^{76} +7.72741i q^{78} +11.4641 q^{79} +(6.31319 + 7.73205i) q^{80} +1.00000 q^{81} -16.3923i q^{82} +6.00000i q^{83} +(-6.92820 + 5.65685i) q^{85} +8.92820i q^{87} -1.79315i q^{88} +4.14110 q^{89} +(-3.34607 + 2.73205i) q^{90} -10.9348i q^{92} +7.34847i q^{93} +11.5911 q^{94} +(-0.535898 - 0.656339i) q^{95} -7.58871 q^{96} -5.07180i q^{97} +3.46410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{9} - 8 q^{16} - 8 q^{25} - 16 q^{29} - 8 q^{30} + 32 q^{39} + 48 q^{44} - 56 q^{46} - 48 q^{50} - 32 q^{51} + 24 q^{60} + 32 q^{64} + 32 q^{71} + 16 q^{74} + 64 q^{79} + 8 q^{81} - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.93185i 1.36603i 0.730406 + 0.683013i \(0.239331\pi\)
−0.730406 + 0.683013i \(0.760669\pi\)
\(3\) 1.00000i 0.577350i
\(4\) −1.73205 −0.866025
\(5\) −1.41421 1.73205i −0.632456 0.774597i
\(6\) 1.93185 0.788675
\(7\) 0 0
\(8\) 0.517638i 0.183013i
\(9\) −1.00000 −0.333333
\(10\) 3.34607 2.73205i 1.05812 0.863950i
\(11\) −3.46410 −1.04447 −0.522233 0.852803i \(-0.674901\pi\)
−0.522233 + 0.852803i \(0.674901\pi\)
\(12\) 1.73205i 0.500000i
\(13\) 4.00000i 1.10940i 0.832050 + 0.554700i \(0.187167\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) −1.73205 + 1.41421i −0.447214 + 0.365148i
\(16\) −4.46410 −1.11603
\(17\) 4.00000i 0.970143i −0.874475 0.485071i \(-0.838794\pi\)
0.874475 0.485071i \(-0.161206\pi\)
\(18\) 1.93185i 0.455342i
\(19\) 0.378937 0.0869342 0.0434671 0.999055i \(-0.486160\pi\)
0.0434671 + 0.999055i \(0.486160\pi\)
\(20\) 2.44949 + 3.00000i 0.547723 + 0.670820i
\(21\) 0 0
\(22\) 6.69213i 1.42677i
\(23\) 6.31319i 1.31639i 0.752847 + 0.658196i \(0.228680\pi\)
−0.752847 + 0.658196i \(0.771320\pi\)
\(24\) 0.517638 0.105662
\(25\) −1.00000 + 4.89898i −0.200000 + 0.979796i
\(26\) −7.72741 −1.51547
\(27\) 1.00000i 0.192450i
\(28\) 0 0
\(29\) −8.92820 −1.65793 −0.828963 0.559304i \(-0.811069\pi\)
−0.828963 + 0.559304i \(0.811069\pi\)
\(30\) −2.73205 3.34607i −0.498802 0.610905i
\(31\) −7.34847 −1.31982 −0.659912 0.751343i \(-0.729406\pi\)
−0.659912 + 0.751343i \(0.729406\pi\)
\(32\) 7.58871i 1.34151i
\(33\) 3.46410i 0.603023i
\(34\) 7.72741 1.32524
\(35\) 0 0
\(36\) 1.73205 0.288675
\(37\) 0.757875i 0.124594i 0.998058 + 0.0622969i \(0.0198426\pi\)
−0.998058 + 0.0622969i \(0.980157\pi\)
\(38\) 0.732051i 0.118754i
\(39\) 4.00000 0.640513
\(40\) 0.896575 0.732051i 0.141761 0.115747i
\(41\) −8.48528 −1.32518 −0.662589 0.748983i \(-0.730542\pi\)
−0.662589 + 0.748983i \(0.730542\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 6.00000 0.904534
\(45\) 1.41421 + 1.73205i 0.210819 + 0.258199i
\(46\) −12.1962 −1.79822
\(47\) 6.00000i 0.875190i −0.899172 0.437595i \(-0.855830\pi\)
0.899172 0.437595i \(-0.144170\pi\)
\(48\) 4.46410i 0.644338i
\(49\) 0 0
\(50\) −9.46410 1.93185i −1.33843 0.273205i
\(51\) −4.00000 −0.560112
\(52\) 6.92820i 0.960769i
\(53\) 7.34847i 1.00939i −0.863298 0.504695i \(-0.831605\pi\)
0.863298 0.504695i \(-0.168395\pi\)
\(54\) −1.93185 −0.262892
\(55\) 4.89898 + 6.00000i 0.660578 + 0.809040i
\(56\) 0 0
\(57\) 0.378937i 0.0501915i
\(58\) 17.2480i 2.26477i
\(59\) −10.5558 −1.37425 −0.687126 0.726538i \(-0.741128\pi\)
−0.687126 + 0.726538i \(0.741128\pi\)
\(60\) 3.00000 2.44949i 0.387298 0.316228i
\(61\) 9.14162 1.17046 0.585232 0.810866i \(-0.301003\pi\)
0.585232 + 0.810866i \(0.301003\pi\)
\(62\) 14.1962i 1.80291i
\(63\) 0 0
\(64\) 5.73205 0.716506
\(65\) 6.92820 5.65685i 0.859338 0.701646i
\(66\) −6.69213 −0.823744
\(67\) 6.96953i 0.851464i 0.904849 + 0.425732i \(0.139983\pi\)
−0.904849 + 0.425732i \(0.860017\pi\)
\(68\) 6.92820i 0.840168i
\(69\) 6.31319 0.760019
\(70\) 0 0
\(71\) 14.3923 1.70805 0.854026 0.520230i \(-0.174154\pi\)
0.854026 + 0.520230i \(0.174154\pi\)
\(72\) 0.517638i 0.0610042i
\(73\) 10.9282i 1.27905i 0.768771 + 0.639525i \(0.220869\pi\)
−0.768771 + 0.639525i \(0.779131\pi\)
\(74\) −1.46410 −0.170198
\(75\) 4.89898 + 1.00000i 0.565685 + 0.115470i
\(76\) −0.656339 −0.0752872
\(77\) 0 0
\(78\) 7.72741i 0.874957i
\(79\) 11.4641 1.28981 0.644906 0.764262i \(-0.276896\pi\)
0.644906 + 0.764262i \(0.276896\pi\)
\(80\) 6.31319 + 7.73205i 0.705836 + 0.864470i
\(81\) 1.00000 0.111111
\(82\) 16.3923i 1.81023i
\(83\) 6.00000i 0.658586i 0.944228 + 0.329293i \(0.106810\pi\)
−0.944228 + 0.329293i \(0.893190\pi\)
\(84\) 0 0
\(85\) −6.92820 + 5.65685i −0.751469 + 0.613572i
\(86\) 0 0
\(87\) 8.92820i 0.957204i
\(88\) 1.79315i 0.191151i
\(89\) 4.14110 0.438956 0.219478 0.975617i \(-0.429565\pi\)
0.219478 + 0.975617i \(0.429565\pi\)
\(90\) −3.34607 + 2.73205i −0.352706 + 0.287983i
\(91\) 0 0
\(92\) 10.9348i 1.14003i
\(93\) 7.34847i 0.762001i
\(94\) 11.5911 1.19553
\(95\) −0.535898 0.656339i −0.0549820 0.0673389i
\(96\) −7.58871 −0.774519
\(97\) 5.07180i 0.514963i −0.966283 0.257481i \(-0.917107\pi\)
0.966283 0.257481i \(-0.0828926\pi\)
\(98\) 0 0
\(99\) 3.46410 0.348155
\(100\) 1.73205 8.48528i 0.173205 0.848528i
\(101\) −12.6264 −1.25637 −0.628186 0.778063i \(-0.716202\pi\)
−0.628186 + 0.778063i \(0.716202\pi\)
\(102\) 7.72741i 0.765127i
\(103\) 13.8564i 1.36531i −0.730740 0.682656i \(-0.760825\pi\)
0.730740 0.682656i \(-0.239175\pi\)
\(104\) −2.07055 −0.203034
\(105\) 0 0
\(106\) 14.1962 1.37885
\(107\) 15.5563i 1.50389i 0.659226 + 0.751945i \(0.270884\pi\)
−0.659226 + 0.751945i \(0.729116\pi\)
\(108\) 1.73205i 0.166667i
\(109\) 11.8564 1.13564 0.567819 0.823154i \(-0.307787\pi\)
0.567819 + 0.823154i \(0.307787\pi\)
\(110\) −11.5911 + 9.46410i −1.10517 + 0.902367i
\(111\) 0.757875 0.0719343
\(112\) 0 0
\(113\) 0.378937i 0.0356474i 0.999841 + 0.0178237i \(0.00567377\pi\)
−0.999841 + 0.0178237i \(0.994326\pi\)
\(114\) 0.732051 0.0685628
\(115\) 10.9348 8.92820i 1.01967 0.832559i
\(116\) 15.4641 1.43581
\(117\) 4.00000i 0.369800i
\(118\) 20.3923i 1.87726i
\(119\) 0 0
\(120\) −0.732051 0.896575i −0.0668268 0.0818458i
\(121\) 1.00000 0.0909091
\(122\) 17.6603i 1.59888i
\(123\) 8.48528i 0.765092i
\(124\) 12.7279 1.14300
\(125\) 9.89949 5.19615i 0.885438 0.464758i
\(126\) 0 0
\(127\) 2.82843i 0.250982i 0.992095 + 0.125491i \(0.0400507\pi\)
−0.992095 + 0.125491i \(0.959949\pi\)
\(128\) 4.10394i 0.362740i
\(129\) 0 0
\(130\) 10.9282 + 13.3843i 0.958467 + 1.17388i
\(131\) 5.65685 0.494242 0.247121 0.968985i \(-0.420516\pi\)
0.247121 + 0.968985i \(0.420516\pi\)
\(132\) 6.00000i 0.522233i
\(133\) 0 0
\(134\) −13.4641 −1.16312
\(135\) 1.73205 1.41421i 0.149071 0.121716i
\(136\) 2.07055 0.177548
\(137\) 4.52004i 0.386173i −0.981182 0.193087i \(-0.938150\pi\)
0.981182 0.193087i \(-0.0618498\pi\)
\(138\) 12.1962i 1.03821i
\(139\) −5.27792 −0.447667 −0.223834 0.974627i \(-0.571857\pi\)
−0.223834 + 0.974627i \(0.571857\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) 27.8038i 2.33324i
\(143\) 13.8564i 1.15873i
\(144\) 4.46410 0.372008
\(145\) 12.6264 + 15.4641i 1.04856 + 1.28422i
\(146\) −21.1117 −1.74721
\(147\) 0 0
\(148\) 1.31268i 0.107901i
\(149\) −20.9282 −1.71451 −0.857253 0.514896i \(-0.827831\pi\)
−0.857253 + 0.514896i \(0.827831\pi\)
\(150\) −1.93185 + 9.46410i −0.157735 + 0.772741i
\(151\) −12.5359 −1.02016 −0.510078 0.860128i \(-0.670384\pi\)
−0.510078 + 0.860128i \(0.670384\pi\)
\(152\) 0.196152i 0.0159101i
\(153\) 4.00000i 0.323381i
\(154\) 0 0
\(155\) 10.3923 + 12.7279i 0.834730 + 1.02233i
\(156\) −6.92820 −0.554700
\(157\) 18.9282i 1.51064i −0.655359 0.755318i \(-0.727483\pi\)
0.655359 0.755318i \(-0.272517\pi\)
\(158\) 22.1469i 1.76192i
\(159\) −7.34847 −0.582772
\(160\) −13.1440 + 10.7321i −1.03913 + 0.848443i
\(161\) 0 0
\(162\) 1.93185i 0.151781i
\(163\) 16.7675i 1.31333i −0.754182 0.656666i \(-0.771966\pi\)
0.754182 0.656666i \(-0.228034\pi\)
\(164\) 14.6969 1.14764
\(165\) 6.00000 4.89898i 0.467099 0.381385i
\(166\) −11.5911 −0.899645
\(167\) 5.07180i 0.392467i −0.980557 0.196234i \(-0.937129\pi\)
0.980557 0.196234i \(-0.0628711\pi\)
\(168\) 0 0
\(169\) −3.00000 −0.230769
\(170\) −10.9282 13.3843i −0.838155 1.02653i
\(171\) −0.378937 −0.0289781
\(172\) 0 0
\(173\) 16.0000i 1.21646i 0.793762 + 0.608229i \(0.208120\pi\)
−0.793762 + 0.608229i \(0.791880\pi\)
\(174\) −17.2480 −1.30756
\(175\) 0 0
\(176\) 15.4641 1.16565
\(177\) 10.5558i 0.793425i
\(178\) 8.00000i 0.599625i
\(179\) 10.3923 0.776757 0.388379 0.921500i \(-0.373035\pi\)
0.388379 + 0.921500i \(0.373035\pi\)
\(180\) −2.44949 3.00000i −0.182574 0.223607i
\(181\) −3.48477 −0.259021 −0.129510 0.991578i \(-0.541341\pi\)
−0.129510 + 0.991578i \(0.541341\pi\)
\(182\) 0 0
\(183\) 9.14162i 0.675768i
\(184\) −3.26795 −0.240916
\(185\) 1.31268 1.07180i 0.0965100 0.0788001i
\(186\) −14.1962 −1.04091
\(187\) 13.8564i 1.01328i
\(188\) 10.3923i 0.757937i
\(189\) 0 0
\(190\) 1.26795 1.03528i 0.0919867 0.0751068i
\(191\) −0.535898 −0.0387762 −0.0193881 0.999812i \(-0.506172\pi\)
−0.0193881 + 0.999812i \(0.506172\pi\)
\(192\) 5.73205i 0.413675i
\(193\) 16.2127i 1.16701i 0.812108 + 0.583507i \(0.198320\pi\)
−0.812108 + 0.583507i \(0.801680\pi\)
\(194\) 9.79796 0.703452
\(195\) −5.65685 6.92820i −0.405096 0.496139i
\(196\) 0 0
\(197\) 11.4896i 0.818598i 0.912400 + 0.409299i \(0.134227\pi\)
−0.912400 + 0.409299i \(0.865773\pi\)
\(198\) 6.69213i 0.475589i
\(199\) 3.20736 0.227364 0.113682 0.993517i \(-0.463735\pi\)
0.113682 + 0.993517i \(0.463735\pi\)
\(200\) −2.53590 0.517638i −0.179315 0.0366025i
\(201\) 6.96953 0.491593
\(202\) 24.3923i 1.71624i
\(203\) 0 0
\(204\) 6.92820 0.485071
\(205\) 12.0000 + 14.6969i 0.838116 + 1.02648i
\(206\) 26.7685 1.86505
\(207\) 6.31319i 0.438797i
\(208\) 17.8564i 1.23812i
\(209\) −1.31268 −0.0907998
\(210\) 0 0
\(211\) −13.0718 −0.899900 −0.449950 0.893054i \(-0.648558\pi\)
−0.449950 + 0.893054i \(0.648558\pi\)
\(212\) 12.7279i 0.874157i
\(213\) 14.3923i 0.986144i
\(214\) −30.0526 −2.05435
\(215\) 0 0
\(216\) −0.517638 −0.0352208
\(217\) 0 0
\(218\) 22.9048i 1.55131i
\(219\) 10.9282 0.738460
\(220\) −8.48528 10.3923i −0.572078 0.700649i
\(221\) 16.0000 1.07628
\(222\) 1.46410i 0.0982641i
\(223\) 8.00000i 0.535720i 0.963458 + 0.267860i \(0.0863164\pi\)
−0.963458 + 0.267860i \(0.913684\pi\)
\(224\) 0 0
\(225\) 1.00000 4.89898i 0.0666667 0.326599i
\(226\) −0.732051 −0.0486953
\(227\) 4.00000i 0.265489i −0.991150 0.132745i \(-0.957621\pi\)
0.991150 0.132745i \(-0.0423790\pi\)
\(228\) 0.656339i 0.0434671i
\(229\) −23.2838 −1.53863 −0.769317 0.638867i \(-0.779403\pi\)
−0.769317 + 0.638867i \(0.779403\pi\)
\(230\) 17.2480 + 21.1244i 1.13730 + 1.39290i
\(231\) 0 0
\(232\) 4.62158i 0.303421i
\(233\) 0.378937i 0.0248250i 0.999923 + 0.0124125i \(0.00395113\pi\)
−0.999923 + 0.0124125i \(0.996049\pi\)
\(234\) 7.72741 0.505156
\(235\) −10.3923 + 8.48528i −0.677919 + 0.553519i
\(236\) 18.2832 1.19014
\(237\) 11.4641i 0.744673i
\(238\) 0 0
\(239\) 15.4641 1.00029 0.500145 0.865942i \(-0.333280\pi\)
0.500145 + 0.865942i \(0.333280\pi\)
\(240\) 7.73205 6.31319i 0.499102 0.407515i
\(241\) 5.55532 0.357850 0.178925 0.983863i \(-0.442738\pi\)
0.178925 + 0.983863i \(0.442738\pi\)
\(242\) 1.93185i 0.124184i
\(243\) 1.00000i 0.0641500i
\(244\) −15.8338 −1.01365
\(245\) 0 0
\(246\) −16.3923 −1.04514
\(247\) 1.51575i 0.0964448i
\(248\) 3.80385i 0.241545i
\(249\) 6.00000 0.380235
\(250\) 10.0382 + 19.1244i 0.634871 + 1.20953i
\(251\) 9.04008 0.570605 0.285303 0.958438i \(-0.407906\pi\)
0.285303 + 0.958438i \(0.407906\pi\)
\(252\) 0 0
\(253\) 21.8695i 1.37493i
\(254\) −5.46410 −0.342848
\(255\) 5.65685 + 6.92820i 0.354246 + 0.433861i
\(256\) 19.3923 1.21202
\(257\) 3.46410i 0.216085i −0.994146 0.108042i \(-0.965542\pi\)
0.994146 0.108042i \(-0.0344582\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −12.0000 + 9.79796i −0.744208 + 0.607644i
\(261\) 8.92820 0.552642
\(262\) 10.9282i 0.675147i
\(263\) 21.7680i 1.34227i 0.741334 + 0.671136i \(0.234194\pi\)
−0.741334 + 0.671136i \(0.765806\pi\)
\(264\) −1.79315 −0.110361
\(265\) −12.7279 + 10.3923i −0.781870 + 0.638394i
\(266\) 0 0
\(267\) 4.14110i 0.253431i
\(268\) 12.0716i 0.737389i
\(269\) −8.28221 −0.504975 −0.252488 0.967600i \(-0.581249\pi\)
−0.252488 + 0.967600i \(0.581249\pi\)
\(270\) 2.73205 + 3.34607i 0.166267 + 0.203635i
\(271\) −13.0053 −0.790017 −0.395009 0.918677i \(-0.629258\pi\)
−0.395009 + 0.918677i \(0.629258\pi\)
\(272\) 17.8564i 1.08270i
\(273\) 0 0
\(274\) 8.73205 0.527522
\(275\) 3.46410 16.9706i 0.208893 1.02336i
\(276\) −10.9348 −0.658196
\(277\) 11.3137i 0.679775i −0.940466 0.339887i \(-0.889611\pi\)
0.940466 0.339887i \(-0.110389\pi\)
\(278\) 10.1962i 0.611525i
\(279\) 7.34847 0.439941
\(280\) 0 0
\(281\) 0.143594 0.00856607 0.00428304 0.999991i \(-0.498637\pi\)
0.00428304 + 0.999991i \(0.498637\pi\)
\(282\) 11.5911i 0.690241i
\(283\) 29.8564i 1.77478i 0.461020 + 0.887390i \(0.347484\pi\)
−0.461020 + 0.887390i \(0.652516\pi\)
\(284\) −24.9282 −1.47922
\(285\) −0.656339 + 0.535898i −0.0388782 + 0.0317439i
\(286\) 26.7685 1.58286
\(287\) 0 0
\(288\) 7.58871i 0.447169i
\(289\) 1.00000 0.0588235
\(290\) −29.8744 + 24.3923i −1.75428 + 1.43237i
\(291\) −5.07180 −0.297314
\(292\) 18.9282i 1.10769i
\(293\) 4.53590i 0.264990i 0.991184 + 0.132495i \(0.0422989\pi\)
−0.991184 + 0.132495i \(0.957701\pi\)
\(294\) 0 0
\(295\) 14.9282 + 18.2832i 0.869154 + 1.06449i
\(296\) −0.392305 −0.0228023
\(297\) 3.46410i 0.201008i
\(298\) 40.4302i 2.34206i
\(299\) −25.2528 −1.46041
\(300\) −8.48528 1.73205i −0.489898 0.100000i
\(301\) 0 0
\(302\) 24.2175i 1.39356i
\(303\) 12.6264i 0.725367i
\(304\) −1.69161 −0.0970208
\(305\) −12.9282 15.8338i −0.740267 0.906638i
\(306\) −7.72741 −0.441746
\(307\) 4.00000i 0.228292i 0.993464 + 0.114146i \(0.0364132\pi\)
−0.993464 + 0.114146i \(0.963587\pi\)
\(308\) 0 0
\(309\) −13.8564 −0.788263
\(310\) −24.5885 + 20.0764i −1.39653 + 1.14026i
\(311\) 15.4548 0.876362 0.438181 0.898887i \(-0.355623\pi\)
0.438181 + 0.898887i \(0.355623\pi\)
\(312\) 2.07055i 0.117222i
\(313\) 10.9282i 0.617699i 0.951111 + 0.308849i \(0.0999439\pi\)
−0.951111 + 0.308849i \(0.900056\pi\)
\(314\) 36.5665 2.06357
\(315\) 0 0
\(316\) −19.8564 −1.11701
\(317\) 29.2180i 1.64105i −0.571613 0.820524i \(-0.693682\pi\)
0.571613 0.820524i \(-0.306318\pi\)
\(318\) 14.1962i 0.796081i
\(319\) 30.9282 1.73165
\(320\) −8.10634 9.92820i −0.453158 0.555003i
\(321\) 15.5563 0.868271
\(322\) 0 0
\(323\) 1.51575i 0.0843386i
\(324\) −1.73205 −0.0962250
\(325\) −19.5959 4.00000i −1.08699 0.221880i
\(326\) 32.3923 1.79404
\(327\) 11.8564i 0.655661i
\(328\) 4.39230i 0.242524i
\(329\) 0 0
\(330\) 9.46410 + 11.5911i 0.520982 + 0.638070i
\(331\) 32.7846 1.80201 0.901003 0.433814i \(-0.142832\pi\)
0.901003 + 0.433814i \(0.142832\pi\)
\(332\) 10.3923i 0.570352i
\(333\) 0.757875i 0.0415313i
\(334\) 9.79796 0.536120
\(335\) 12.0716 9.85641i 0.659541 0.538513i
\(336\) 0 0
\(337\) 27.5264i 1.49946i −0.661745 0.749729i \(-0.730184\pi\)
0.661745 0.749729i \(-0.269816\pi\)
\(338\) 5.79555i 0.315237i
\(339\) 0.378937 0.0205811
\(340\) 12.0000 9.79796i 0.650791 0.531369i
\(341\) 25.4558 1.37851
\(342\) 0.732051i 0.0395848i
\(343\) 0 0
\(344\) 0 0
\(345\) −8.92820 10.9348i −0.480678 0.588708i
\(346\) −30.9096 −1.66171
\(347\) 11.4152i 0.612802i −0.951902 0.306401i \(-0.900875\pi\)
0.951902 0.306401i \(-0.0991249\pi\)
\(348\) 15.4641i 0.828963i
\(349\) −7.82894 −0.419074 −0.209537 0.977801i \(-0.567196\pi\)
−0.209537 + 0.977801i \(0.567196\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 26.2880i 1.40116i
\(353\) 4.53590i 0.241422i 0.992688 + 0.120711i \(0.0385174\pi\)
−0.992688 + 0.120711i \(0.961483\pi\)
\(354\) −20.3923 −1.08384
\(355\) −20.3538 24.9282i −1.08027 1.32305i
\(356\) −7.17260 −0.380147
\(357\) 0 0
\(358\) 20.0764i 1.06107i
\(359\) −8.53590 −0.450507 −0.225254 0.974300i \(-0.572321\pi\)
−0.225254 + 0.974300i \(0.572321\pi\)
\(360\) −0.896575 + 0.732051i −0.0472537 + 0.0385825i
\(361\) −18.8564 −0.992442
\(362\) 6.73205i 0.353829i
\(363\) 1.00000i 0.0524864i
\(364\) 0 0
\(365\) 18.9282 15.4548i 0.990747 0.808942i
\(366\) 17.6603 0.923116
\(367\) 4.00000i 0.208798i −0.994535 0.104399i \(-0.966708\pi\)
0.994535 0.104399i \(-0.0332919\pi\)
\(368\) 28.1827i 1.46913i
\(369\) 8.48528 0.441726
\(370\) 2.07055 + 2.53590i 0.107643 + 0.131835i
\(371\) 0 0
\(372\) 12.7279i 0.659912i
\(373\) 26.7685i 1.38602i −0.720927 0.693011i \(-0.756284\pi\)
0.720927 0.693011i \(-0.243716\pi\)
\(374\) −26.7685 −1.38417
\(375\) −5.19615 9.89949i −0.268328 0.511208i
\(376\) 3.10583 0.160171
\(377\) 35.7128i 1.83930i
\(378\) 0 0
\(379\) −4.53590 −0.232993 −0.116497 0.993191i \(-0.537166\pi\)
−0.116497 + 0.993191i \(0.537166\pi\)
\(380\) 0.928203 + 1.13681i 0.0476158 + 0.0583172i
\(381\) 2.82843 0.144905
\(382\) 1.03528i 0.0529693i
\(383\) 3.85641i 0.197053i 0.995134 + 0.0985266i \(0.0314129\pi\)
−0.995134 + 0.0985266i \(0.968587\pi\)
\(384\) −4.10394 −0.209428
\(385\) 0 0
\(386\) −31.3205 −1.59417
\(387\) 0 0
\(388\) 8.78461i 0.445971i
\(389\) −24.9282 −1.26391 −0.631955 0.775005i \(-0.717747\pi\)
−0.631955 + 0.775005i \(0.717747\pi\)
\(390\) 13.3843 10.9282i 0.677738 0.553371i
\(391\) 25.2528 1.27709
\(392\) 0 0
\(393\) 5.65685i 0.285351i
\(394\) −22.1962 −1.11823
\(395\) −16.2127 19.8564i −0.815749 0.999084i
\(396\) −6.00000 −0.301511
\(397\) 31.7128i 1.59162i 0.605546 + 0.795810i \(0.292955\pi\)
−0.605546 + 0.795810i \(0.707045\pi\)
\(398\) 6.19615i 0.310585i
\(399\) 0 0
\(400\) 4.46410 21.8695i 0.223205 1.09348i
\(401\) 2.00000 0.0998752 0.0499376 0.998752i \(-0.484098\pi\)
0.0499376 + 0.998752i \(0.484098\pi\)
\(402\) 13.4641i 0.671528i
\(403\) 29.3939i 1.46421i
\(404\) 21.8695 1.08805
\(405\) −1.41421 1.73205i −0.0702728 0.0860663i
\(406\) 0 0
\(407\) 2.62536i 0.130134i
\(408\) 2.07055i 0.102508i
\(409\) −31.0112 −1.53340 −0.766702 0.642004i \(-0.778103\pi\)
−0.766702 + 0.642004i \(0.778103\pi\)
\(410\) −28.3923 + 23.1822i −1.40220 + 1.14489i
\(411\) −4.52004 −0.222957
\(412\) 24.0000i 1.18240i
\(413\) 0 0
\(414\) 12.1962 0.599408
\(415\) 10.3923 8.48528i 0.510138 0.416526i
\(416\) 30.3548 1.48827
\(417\) 5.27792i 0.258461i
\(418\) 2.53590i 0.124035i
\(419\) −1.51575 −0.0740492 −0.0370246 0.999314i \(-0.511788\pi\)
−0.0370246 + 0.999314i \(0.511788\pi\)
\(420\) 0 0
\(421\) −28.7846 −1.40288 −0.701438 0.712730i \(-0.747458\pi\)
−0.701438 + 0.712730i \(0.747458\pi\)
\(422\) 25.2528i 1.22929i
\(423\) 6.00000i 0.291730i
\(424\) 3.80385 0.184731
\(425\) 19.5959 + 4.00000i 0.950542 + 0.194029i
\(426\) 27.8038 1.34710
\(427\) 0 0
\(428\) 26.9444i 1.30241i
\(429\) −13.8564 −0.668994
\(430\) 0 0
\(431\) 2.67949 0.129067 0.0645333 0.997916i \(-0.479444\pi\)
0.0645333 + 0.997916i \(0.479444\pi\)
\(432\) 4.46410i 0.214779i
\(433\) 9.85641i 0.473669i 0.971550 + 0.236834i \(0.0761099\pi\)
−0.971550 + 0.236834i \(0.923890\pi\)
\(434\) 0 0
\(435\) 15.4641 12.6264i 0.741447 0.605389i
\(436\) −20.5359 −0.983491
\(437\) 2.39230i 0.114439i
\(438\) 21.1117i 1.00875i
\(439\) −1.69161 −0.0807364 −0.0403682 0.999185i \(-0.512853\pi\)
−0.0403682 + 0.999185i \(0.512853\pi\)
\(440\) −3.10583 + 2.53590i −0.148065 + 0.120894i
\(441\) 0 0
\(442\) 30.9096i 1.47022i
\(443\) 26.6670i 1.26699i 0.773748 + 0.633493i \(0.218380\pi\)
−0.773748 + 0.633493i \(0.781620\pi\)
\(444\) −1.31268 −0.0622969
\(445\) −5.85641 7.17260i −0.277620 0.340014i
\(446\) −15.4548 −0.731807
\(447\) 20.9282i 0.989870i
\(448\) 0 0
\(449\) −8.14359 −0.384320 −0.192160 0.981364i \(-0.561549\pi\)
−0.192160 + 0.981364i \(0.561549\pi\)
\(450\) 9.46410 + 1.93185i 0.446142 + 0.0910684i
\(451\) 29.3939 1.38410
\(452\) 0.656339i 0.0308716i
\(453\) 12.5359i 0.588988i
\(454\) 7.72741 0.362665
\(455\) 0 0
\(456\) 0.196152 0.00918568
\(457\) 12.0716i 0.564685i −0.959314 0.282342i \(-0.908889\pi\)
0.959314 0.282342i \(-0.0911114\pi\)
\(458\) 44.9808i 2.10181i
\(459\) 4.00000 0.186704
\(460\) −18.9396 + 15.4641i −0.883062 + 0.721017i
\(461\) −12.8295 −0.597527 −0.298764 0.954327i \(-0.596574\pi\)
−0.298764 + 0.954327i \(0.596574\pi\)
\(462\) 0 0
\(463\) 16.7675i 0.779251i 0.920973 + 0.389626i \(0.127396\pi\)
−0.920973 + 0.389626i \(0.872604\pi\)
\(464\) 39.8564 1.85029
\(465\) 12.7279 10.3923i 0.590243 0.481932i
\(466\) −0.732051 −0.0339116
\(467\) 17.8564i 0.826296i −0.910664 0.413148i \(-0.864429\pi\)
0.910664 0.413148i \(-0.135571\pi\)
\(468\) 6.92820i 0.320256i
\(469\) 0 0
\(470\) −16.3923 20.0764i −0.756121 0.926055i
\(471\) −18.9282 −0.872166
\(472\) 5.46410i 0.251506i
\(473\) 0 0
\(474\) 22.1469 1.01724
\(475\) −0.378937 + 1.85641i −0.0173868 + 0.0851778i
\(476\) 0 0
\(477\) 7.34847i 0.336463i
\(478\) 29.8744i 1.36642i
\(479\) 13.9391 0.636892 0.318446 0.947941i \(-0.396839\pi\)
0.318446 + 0.947941i \(0.396839\pi\)
\(480\) 10.7321 + 13.1440i 0.489849 + 0.599940i
\(481\) −3.03150 −0.138224
\(482\) 10.7321i 0.488832i
\(483\) 0 0
\(484\) −1.73205 −0.0787296
\(485\) −8.78461 + 7.17260i −0.398889 + 0.325691i
\(486\) 1.93185 0.0876306
\(487\) 4.14110i 0.187651i −0.995589 0.0938257i \(-0.970090\pi\)
0.995589 0.0938257i \(-0.0299096\pi\)
\(488\) 4.73205i 0.214210i
\(489\) −16.7675 −0.758252
\(490\) 0 0
\(491\) 6.67949 0.301441 0.150721 0.988576i \(-0.451841\pi\)
0.150721 + 0.988576i \(0.451841\pi\)
\(492\) 14.6969i 0.662589i
\(493\) 35.7128i 1.60842i
\(494\) −2.92820 −0.131746
\(495\) −4.89898 6.00000i −0.220193 0.269680i
\(496\) 32.8043 1.47296
\(497\) 0 0
\(498\) 11.5911i 0.519410i
\(499\) −16.2487 −0.727392 −0.363696 0.931518i \(-0.618485\pi\)
−0.363696 + 0.931518i \(0.618485\pi\)
\(500\) −17.1464 + 9.00000i −0.766812 + 0.402492i
\(501\) −5.07180 −0.226591
\(502\) 17.4641i 0.779461i
\(503\) 3.85641i 0.171949i −0.996297 0.0859743i \(-0.972600\pi\)
0.996297 0.0859743i \(-0.0274003\pi\)
\(504\) 0 0
\(505\) 17.8564 + 21.8695i 0.794600 + 0.973182i
\(506\) 42.2487 1.87818
\(507\) 3.00000i 0.133235i
\(508\) 4.89898i 0.217357i
\(509\) −42.2233 −1.87152 −0.935758 0.352642i \(-0.885283\pi\)
−0.935758 + 0.352642i \(0.885283\pi\)
\(510\) −13.3843 + 10.9282i −0.592665 + 0.483909i
\(511\) 0 0
\(512\) 29.2552i 1.29291i
\(513\) 0.378937i 0.0167305i
\(514\) 6.69213 0.295177
\(515\) −24.0000 + 19.5959i −1.05757 + 0.863499i
\(516\) 0 0
\(517\) 20.7846i 0.914106i
\(518\) 0 0
\(519\) 16.0000 0.702322
\(520\) 2.92820 + 3.58630i 0.128410 + 0.157270i
\(521\) 28.2843 1.23916 0.619578 0.784935i \(-0.287304\pi\)
0.619578 + 0.784935i \(0.287304\pi\)
\(522\) 17.2480i 0.754923i
\(523\) 11.7128i 0.512166i 0.966655 + 0.256083i \(0.0824320\pi\)
−0.966655 + 0.256083i \(0.917568\pi\)
\(524\) −9.79796 −0.428026
\(525\) 0 0
\(526\) −42.0526 −1.83358
\(527\) 29.3939i 1.28042i
\(528\) 15.4641i 0.672989i
\(529\) −16.8564 −0.732887
\(530\) −20.0764 24.5885i −0.872063 1.06805i
\(531\) 10.5558 0.458084
\(532\) 0 0
\(533\) 33.9411i 1.47015i
\(534\) 8.00000 0.346194
\(535\) 26.9444 22.0000i 1.16491 0.951143i
\(536\) −3.60770 −0.155829
\(537\) 10.3923i 0.448461i
\(538\) 16.0000i 0.689809i
\(539\) 0 0
\(540\) −3.00000 + 2.44949i −0.129099 + 0.105409i
\(541\) −42.6410 −1.83328 −0.916640 0.399713i \(-0.869110\pi\)
−0.916640 + 0.399713i \(0.869110\pi\)
\(542\) 25.1244i 1.07918i
\(543\) 3.48477i 0.149546i
\(544\) −30.3548 −1.30145
\(545\) −16.7675 20.5359i −0.718240 0.879661i
\(546\) 0 0
\(547\) 29.5969i 1.26547i 0.774367 + 0.632737i \(0.218069\pi\)
−0.774367 + 0.632737i \(0.781931\pi\)
\(548\) 7.82894i 0.334436i
\(549\) −9.14162 −0.390155
\(550\) 32.7846 + 6.69213i 1.39794 + 0.285353i
\(551\) −3.38323 −0.144130
\(552\) 3.26795i 0.139093i
\(553\) 0 0
\(554\) 21.8564 0.928590
\(555\) −1.07180 1.31268i −0.0454952 0.0557201i
\(556\) 9.14162 0.387691
\(557\) 13.7632i 0.583165i 0.956546 + 0.291583i \(0.0941819\pi\)
−0.956546 + 0.291583i \(0.905818\pi\)
\(558\) 14.1962i 0.600971i
\(559\) 0 0
\(560\) 0 0
\(561\) 13.8564 0.585018
\(562\) 0.277401i 0.0117015i
\(563\) 31.8564i 1.34259i 0.741191 + 0.671294i \(0.234261\pi\)
−0.741191 + 0.671294i \(0.765739\pi\)
\(564\) 10.3923 0.437595
\(565\) 0.656339 0.535898i 0.0276124 0.0225454i
\(566\) −57.6781 −2.42439
\(567\) 0 0
\(568\) 7.45001i 0.312595i
\(569\) −11.8564 −0.497046 −0.248523 0.968626i \(-0.579945\pi\)
−0.248523 + 0.968626i \(0.579945\pi\)
\(570\) −1.03528 1.26795i −0.0433629 0.0531085i
\(571\) 39.7128 1.66193 0.830965 0.556325i \(-0.187789\pi\)
0.830965 + 0.556325i \(0.187789\pi\)
\(572\) 24.0000i 1.00349i
\(573\) 0.535898i 0.0223875i
\(574\) 0 0
\(575\) −30.9282 6.31319i −1.28980 0.263278i
\(576\) −5.73205 −0.238835
\(577\) 4.00000i 0.166522i −0.996528 0.0832611i \(-0.973466\pi\)
0.996528 0.0832611i \(-0.0265335\pi\)
\(578\) 1.93185i 0.0803544i
\(579\) 16.2127 0.673776
\(580\) −21.8695 26.7846i −0.908083 1.11217i
\(581\) 0 0
\(582\) 9.79796i 0.406138i
\(583\) 25.4558i 1.05427i
\(584\) −5.65685 −0.234082
\(585\) −6.92820 + 5.65685i −0.286446 + 0.233882i
\(586\) −8.76268 −0.361983
\(587\) 31.8564i 1.31485i 0.753518 + 0.657427i \(0.228355\pi\)
−0.753518 + 0.657427i \(0.771645\pi\)
\(588\) 0 0
\(589\) −2.78461 −0.114738
\(590\) −35.3205 + 28.8391i −1.45412 + 1.18729i
\(591\) 11.4896 0.472618
\(592\) 3.38323i 0.139050i
\(593\) 9.32051i 0.382747i −0.981517 0.191374i \(-0.938706\pi\)
0.981517 0.191374i \(-0.0612942\pi\)
\(594\) 6.69213 0.274581
\(595\) 0 0
\(596\) 36.2487 1.48481
\(597\) 3.20736i 0.131269i
\(598\) 48.7846i 1.99495i
\(599\) 5.32051 0.217390 0.108695 0.994075i \(-0.465333\pi\)
0.108695 + 0.994075i \(0.465333\pi\)
\(600\) −0.517638 + 2.53590i −0.0211325 + 0.103528i
\(601\) −33.6365 −1.37206 −0.686031 0.727572i \(-0.740649\pi\)
−0.686031 + 0.727572i \(0.740649\pi\)
\(602\) 0 0
\(603\) 6.96953i 0.283821i
\(604\) 21.7128 0.883482
\(605\) −1.41421 1.73205i −0.0574960 0.0704179i
\(606\) −24.3923 −0.990870
\(607\) 12.0000i 0.487065i 0.969893 + 0.243532i \(0.0783062\pi\)
−0.969893 + 0.243532i \(0.921694\pi\)
\(608\) 2.87564i 0.116623i
\(609\) 0 0
\(610\) 30.5885 24.9754i 1.23849 1.01122i
\(611\) 24.0000 0.970936
\(612\) 6.92820i 0.280056i
\(613\) 9.79796i 0.395736i 0.980229 + 0.197868i \(0.0634017\pi\)
−0.980229 + 0.197868i \(0.936598\pi\)
\(614\) −7.72741 −0.311853
\(615\) 14.6969 12.0000i 0.592638 0.483887i
\(616\) 0 0
\(617\) 12.4505i 0.501239i 0.968086 + 0.250620i \(0.0806343\pi\)
−0.968086 + 0.250620i \(0.919366\pi\)
\(618\) 26.7685i 1.07679i
\(619\) 3.76217 0.151214 0.0756071 0.997138i \(-0.475911\pi\)
0.0756071 + 0.997138i \(0.475911\pi\)
\(620\) −18.0000 22.0454i −0.722897 0.885365i
\(621\) −6.31319 −0.253340
\(622\) 29.8564i 1.19713i
\(623\) 0 0
\(624\) −17.8564 −0.714828
\(625\) −23.0000 9.79796i −0.920000 0.391918i
\(626\) −21.1117 −0.843792
\(627\) 1.31268i 0.0524233i
\(628\) 32.7846i 1.30825i
\(629\) 3.03150 0.120874
\(630\) 0 0
\(631\) 9.32051 0.371044 0.185522 0.982640i \(-0.440602\pi\)
0.185522 + 0.982640i \(0.440602\pi\)
\(632\) 5.93426i 0.236052i
\(633\) 13.0718i 0.519557i
\(634\) 56.4449 2.24171
\(635\) 4.89898 4.00000i 0.194410 0.158735i
\(636\) 12.7279 0.504695
\(637\) 0 0
\(638\) 59.7487i 2.36547i
\(639\) −14.3923 −0.569351
\(640\) −7.10823 + 5.80385i −0.280978 + 0.229417i
\(641\) 10.0000 0.394976 0.197488 0.980305i \(-0.436722\pi\)
0.197488 + 0.980305i \(0.436722\pi\)
\(642\) 30.0526i 1.18608i
\(643\) 4.00000i 0.157745i −0.996885 0.0788723i \(-0.974868\pi\)
0.996885 0.0788723i \(-0.0251319\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 2.92820 0.115209
\(647\) 29.0718i 1.14293i 0.820626 + 0.571465i \(0.193625\pi\)
−0.820626 + 0.571465i \(0.806375\pi\)
\(648\) 0.517638i 0.0203347i
\(649\) 36.5665 1.43536
\(650\) 7.72741 37.8564i 0.303094 1.48485i
\(651\) 0 0
\(652\) 29.0421i 1.13738i
\(653\) 18.6622i 0.730307i 0.930947 + 0.365154i \(0.118984\pi\)
−0.930947 + 0.365154i \(0.881016\pi\)
\(654\) 22.9048 0.895649
\(655\) −8.00000 9.79796i −0.312586 0.382838i
\(656\) 37.8792 1.47893
\(657\) 10.9282i 0.426350i
\(658\) 0 0
\(659\) 10.3923 0.404827 0.202413 0.979300i \(-0.435122\pi\)
0.202413 + 0.979300i \(0.435122\pi\)
\(660\) −10.3923 + 8.48528i −0.404520 + 0.330289i
\(661\) −23.2838 −0.905633 −0.452817 0.891604i \(-0.649581\pi\)
−0.452817 + 0.891604i \(0.649581\pi\)
\(662\) 63.3350i 2.46158i
\(663\) 16.0000i 0.621389i
\(664\) −3.10583 −0.120530
\(665\) 0 0
\(666\) 1.46410 0.0567328
\(667\) 56.3655i 2.18248i
\(668\) 8.78461i 0.339887i
\(669\) 8.00000 0.309298
\(670\) 19.0411 + 23.3205i 0.735622 + 0.900950i
\(671\) −31.6675 −1.22251
\(672\) 0 0
\(673\) 12.0716i 0.465325i −0.972557 0.232663i \(-0.925256\pi\)
0.972557 0.232663i \(-0.0747438\pi\)
\(674\) 53.1769 2.04830
\(675\) −4.89898 1.00000i −0.188562 0.0384900i
\(676\) 5.19615 0.199852
\(677\) 39.1769i 1.50569i −0.658197 0.752846i \(-0.728681\pi\)
0.658197 0.752846i \(-0.271319\pi\)
\(678\) 0.732051i 0.0281142i
\(679\) 0 0
\(680\) −2.92820 3.58630i −0.112291 0.137528i
\(681\) −4.00000 −0.153280
\(682\) 49.1769i 1.88308i
\(683\) 22.7290i 0.869699i 0.900503 + 0.434850i \(0.143198\pi\)
−0.900503 + 0.434850i \(0.856802\pi\)
\(684\) 0.656339 0.0250957
\(685\) −7.82894 + 6.39230i −0.299129 + 0.244237i
\(686\) 0 0
\(687\) 23.2838i 0.888331i
\(688\) 0 0
\(689\) 29.3939 1.11982
\(690\) 21.1244 17.2480i 0.804190 0.656619i
\(691\) −6.03579 −0.229612 −0.114806 0.993388i \(-0.536625\pi\)
−0.114806 + 0.993388i \(0.536625\pi\)
\(692\) 27.7128i 1.05348i
\(693\) 0 0
\(694\) 22.0526 0.837104
\(695\) 7.46410 + 9.14162i 0.283130 + 0.346761i
\(696\) −4.62158 −0.175180
\(697\) 33.9411i 1.28561i
\(698\) 15.1244i 0.572465i
\(699\) 0.378937 0.0143327
\(700\) 0 0
\(701\) −24.9282 −0.941525 −0.470763 0.882260i \(-0.656021\pi\)
−0.470763 + 0.882260i \(0.656021\pi\)
\(702\) 7.72741i 0.291652i
\(703\) 0.287187i 0.0108315i
\(704\) −19.8564 −0.748366
\(705\) 8.48528 + 10.3923i 0.319574 + 0.391397i
\(706\) −8.76268 −0.329788
\(707\) 0 0
\(708\) 18.2832i 0.687126i
\(709\) −2.92820 −0.109971 −0.0549855 0.998487i \(-0.517511\pi\)
−0.0549855 + 0.998487i \(0.517511\pi\)
\(710\) 48.1576 39.3205i 1.80732 1.47567i
\(711\) −11.4641 −0.429937
\(712\) 2.14359i 0.0803346i
\(713\) 46.3923i 1.73741i
\(714\) 0 0
\(715\) −24.0000 + 19.5959i −0.897549 + 0.732846i
\(716\) −18.0000 −0.672692
\(717\) 15.4641i 0.577517i
\(718\) 16.4901i 0.615405i
\(719\) −14.6969 −0.548103 −0.274052 0.961715i \(-0.588364\pi\)
−0.274052 + 0.961715i \(0.588364\pi\)
\(720\) −6.31319 7.73205i −0.235279 0.288157i
\(721\) 0 0
\(722\) 36.4278i 1.35570i
\(723\) 5.55532i 0.206605i
\(724\) 6.03579 0.224318
\(725\) 8.92820 43.7391i 0.331585 1.62443i
\(726\) 1.93185 0.0716977
\(727\) 31.7128i 1.17616i −0.808802 0.588082i \(-0.799883\pi\)
0.808802 0.588082i \(-0.200117\pi\)
\(728\) 0 0
\(729\) −1.00000 −0.0370370
\(730\) 29.8564 + 36.5665i 1.10504 + 1.35339i
\(731\) 0 0
\(732\) 15.8338i 0.585232i
\(733\) 9.85641i 0.364055i −0.983293 0.182027i \(-0.941734\pi\)
0.983293 0.182027i \(-0.0582659\pi\)
\(734\) 7.72741 0.285224
\(735\) 0 0
\(736\) 47.9090 1.76595
\(737\) 24.1432i 0.889325i
\(738\) 16.3923i 0.603409i
\(739\) −1.85641 −0.0682890 −0.0341445 0.999417i \(-0.510871\pi\)
−0.0341445 + 0.999417i \(0.510871\pi\)
\(740\) −2.27362 + 1.85641i −0.0835801 + 0.0682429i
\(741\) 1.51575 0.0556825
\(742\) 0 0
\(743\) 37.0197i 1.35812i −0.734081 0.679061i \(-0.762387\pi\)
0.734081 0.679061i \(-0.237613\pi\)
\(744\) −3.80385 −0.139456
\(745\) 29.5969 + 36.2487i 1.08435 + 1.32805i
\(746\) 51.7128 1.89334
\(747\) 6.00000i 0.219529i
\(748\) 24.0000i 0.877527i
\(749\) 0 0
\(750\) 19.1244 10.0382i 0.698323 0.366543i
\(751\) 4.78461 0.174593 0.0872964 0.996182i \(-0.472177\pi\)
0.0872964 + 0.996182i \(0.472177\pi\)
\(752\) 26.7846i 0.976734i
\(753\) 9.04008i 0.329439i
\(754\) 68.9919 2.51254
\(755\) 17.7284 + 21.7128i 0.645204 + 0.790210i
\(756\) 0 0
\(757\) 34.2929i 1.24640i −0.782064 0.623198i \(-0.785833\pi\)
0.782064 0.623198i \(-0.214167\pi\)
\(758\) 8.76268i 0.318275i
\(759\) −21.8695 −0.793814
\(760\) 0.339746 0.277401i 0.0123239 0.0100624i
\(761\) 40.7076 1.47565 0.737824 0.674993i \(-0.235853\pi\)
0.737824 + 0.674993i \(0.235853\pi\)
\(762\) 5.46410i 0.197944i
\(763\) 0 0
\(764\) 0.928203 0.0335812
\(765\) 6.92820 5.65685i 0.250490 0.204524i
\(766\) −7.45001 −0.269180
\(767\) 42.2233i 1.52460i
\(768\) 19.3923i 0.699760i
\(769\) −19.4944 −0.702985 −0.351493 0.936191i \(-0.614326\pi\)
−0.351493 + 0.936191i \(0.614326\pi\)
\(770\) 0 0
\(771\) −3.46410 −0.124757
\(772\) 28.0812i 1.01066i
\(773\) 10.1436i 0.364840i 0.983221 + 0.182420i \(0.0583930\pi\)
−0.983221 + 0.182420i \(0.941607\pi\)
\(774\) 0 0
\(775\) 7.34847 36.0000i 0.263965 1.29316i
\(776\) 2.62536 0.0942448
\(777\) 0 0
\(778\) 48.1576i 1.72653i
\(779\) −3.21539 −0.115203
\(780\) 9.79796 + 12.0000i 0.350823 + 0.429669i
\(781\) −49.8564 −1.78400
\(782\) 48.7846i 1.74453i
\(783\) 8.92820i 0.319068i
\(784\) 0 0
\(785\) −32.7846 + 26.7685i −1.17013 + 0.955410i
\(786\) 10.9282 0.389796
\(787\) 18.1436i 0.646749i 0.946271 + 0.323375i \(0.104817\pi\)
−0.946271 + 0.323375i \(0.895183\pi\)
\(788\) 19.9005i 0.708927i
\(789\) 21.7680 0.774962
\(790\) 38.3596 31.3205i 1.36477 1.11433i
\(791\) 0 0
\(792\) 1.79315i 0.0637168i
\(793\) 36.5665i 1.29851i
\(794\) −61.2645 −2.17419
\(795\) 10.3923 + 12.7279i 0.368577 + 0.451413i
\(796\) −5.55532 −0.196903
\(797\) 37.8564i 1.34094i 0.741935 + 0.670471i \(0.233908\pi\)
−0.741935 + 0.670471i \(0.766092\pi\)
\(798\) 0 0
\(799\) −24.0000 −0.849059
\(800\) 37.1769 + 7.58871i 1.31440 + 0.268301i
\(801\) −4.14110 −0.146319
\(802\) 3.86370i 0.136432i
\(803\) 37.8564i 1.33592i
\(804\) −12.0716 −0.425732
\(805\) 0 0
\(806\) 56.7846 2.00015
\(807\) 8.28221i 0.291548i
\(808\) 6.53590i 0.229932i
\(809\) 33.7128 1.18528 0.592640 0.805468i \(-0.298086\pi\)
0.592640 + 0.805468i \(0.298086\pi\)
\(810\) 3.34607 2.73205i 0.117569 0.0959945i
\(811\) −8.66115 −0.304134 −0.152067 0.988370i \(-0.548593\pi\)
−0.152067 + 0.988370i \(0.548593\pi\)
\(812\) 0 0
\(813\) 13.0053i 0.456117i
\(814\) 5.07180 0.177766
\(815\) −29.0421 + 23.7128i −1.01730 + 0.830624i
\(816\) 17.8564 0.625099
\(817\) 0 0
\(818\) 59.9090i 2.09467i
\(819\) 0 0
\(820\) −20.7846 25.4558i −0.725830 0.888957i
\(821\) −22.7846 −0.795188 −0.397594 0.917561i \(-0.630155\pi\)
−0.397594 + 0.917561i \(0.630155\pi\)
\(822\) 8.73205i 0.304565i
\(823\) 47.6771i 1.66192i 0.556332 + 0.830960i \(0.312208\pi\)
−0.556332 + 0.830960i \(0.687792\pi\)
\(824\) 7.17260 0.249869
\(825\) −16.9706 3.46410i −0.590839 0.120605i
\(826\) 0 0
\(827\) 50.6071i 1.75978i 0.475177 + 0.879890i \(0.342384\pi\)
−0.475177 + 0.879890i \(0.657616\pi\)
\(828\) 10.9348i 0.380010i
\(829\) −35.9101 −1.24721 −0.623605 0.781739i \(-0.714333\pi\)
−0.623605 + 0.781739i \(0.714333\pi\)
\(830\) 16.3923 + 20.0764i 0.568985 + 0.696862i
\(831\) −11.3137 −0.392468
\(832\) 22.9282i 0.794892i
\(833\) 0 0
\(834\) −10.1962 −0.353064
\(835\) −8.78461 + 7.17260i −0.304004 + 0.248218i
\(836\) 2.27362 0.0786349
\(837\) 7.34847i 0.254000i
\(838\) 2.92820i 0.101153i
\(839\) 9.04008 0.312098 0.156049 0.987749i \(-0.450124\pi\)
0.156049 + 0.987749i \(0.450124\pi\)
\(840\) 0 0
\(841\) 50.7128 1.74872
\(842\) 55.6076i 1.91636i
\(843\) 0.143594i 0.00494562i
\(844\) 22.6410 0.779336
\(845\) 4.24264 + 5.19615i 0.145951 + 0.178753i
\(846\) −11.5911 −0.398511
\(847\) 0 0
\(848\) 32.8043i 1.12650i
\(849\) 29.8564 1.02467
\(850\) −7.72741 + 37.8564i −0.265048 + 1.29846i
\(851\) −4.78461 −0.164014
\(852\) 24.9282i 0.854026i
\(853\) 26.9282i 0.922004i 0.887399 + 0.461002i \(0.152510\pi\)
−0.887399 + 0.461002i \(0.847490\pi\)
\(854\) 0 0
\(855\) 0.535898 + 0.656339i 0.0183273 + 0.0224463i
\(856\) −8.05256 −0.275231
\(857\) 17.8564i 0.609963i −0.952358 0.304982i \(-0.901350\pi\)
0.952358 0.304982i \(-0.0986503\pi\)
\(858\) 26.7685i 0.913862i
\(859\) −47.5013 −1.62072 −0.810361 0.585931i \(-0.800729\pi\)
−0.810361 + 0.585931i \(0.800729\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 5.17638i 0.176308i
\(863\) 52.6776i 1.79317i −0.442874 0.896584i \(-0.646041\pi\)
0.442874 0.896584i \(-0.353959\pi\)
\(864\) 7.58871 0.258173
\(865\) 27.7128 22.6274i 0.942264 0.769355i
\(866\) −19.0411 −0.647043
\(867\) 1.00000i 0.0339618i
\(868\) 0 0
\(869\) −39.7128 −1.34716
\(870\) 24.3923 + 29.8744i 0.826977 + 1.01284i
\(871\) −27.8781 −0.944614
\(872\) 6.13733i 0.207836i
\(873\) 5.07180i 0.171654i
\(874\) −4.62158 −0.156327
\(875\) 0 0
\(876\) −18.9282 −0.639525
\(877\) 33.9411i 1.14611i −0.819517 0.573055i \(-0.805758\pi\)
0.819517 0.573055i \(-0.194242\pi\)
\(878\) 3.26795i 0.110288i
\(879\) 4.53590 0.152992
\(880\) −21.8695 26.7846i −0.737222 0.902909i
\(881\) 10.0010 0.336943 0.168472 0.985707i \(-0.446117\pi\)
0.168472 + 0.985707i \(0.446117\pi\)
\(882\) 0 0
\(883\) 29.3939i 0.989183i 0.869126 + 0.494591i \(0.164682\pi\)
−0.869126 + 0.494591i \(0.835318\pi\)
\(884\) −27.7128 −0.932083
\(885\) 18.2832 14.9282i 0.614584 0.501806i
\(886\) −51.5167 −1.73074
\(887\) 41.7128i 1.40058i 0.713859 + 0.700290i \(0.246946\pi\)
−0.713859 + 0.700290i \(0.753054\pi\)
\(888\) 0.392305i 0.0131649i
\(889\) 0 0
\(890\) 13.8564 11.3137i 0.464468 0.379236i
\(891\) −3.46410 −0.116052
\(892\) 13.8564i 0.463947i
\(893\) 2.27362i 0.0760839i
\(894\) −40.4302 −1.35219
\(895\) −14.6969 18.0000i −0.491264 0.601674i
\(896\) 0 0
\(897\) 25.2528i 0.843166i
\(898\) 15.7322i 0.524991i
\(899\) 65.6086 2.18817
\(900\) −1.73205 + 8.48528i −0.0577350 + 0.282843i
\(901\) −29.3939 −0.979252
\(902\) 56.7846i 1.89072i
\(903\) 0 0
\(904\) −0.196152 −0.00652393
\(905\) 4.92820 + 6.03579i 0.163819 + 0.200637i
\(906\) −24.2175 −0.804572
\(907\) 52.0213i 1.72734i −0.504059 0.863669i \(-0.668161\pi\)
0.504059 0.863669i \(-0.331839\pi\)
\(908\) 6.92820i 0.229920i
\(909\) 12.6264 0.418791
\(910\) 0 0
\(911\) 30.3923 1.00694 0.503471 0.864012i \(-0.332056\pi\)
0.503471 + 0.864012i \(0.332056\pi\)
\(912\) 1.69161i 0.0560150i
\(913\) 20.7846i 0.687870i
\(914\) 23.3205 0.771374
\(915\) −15.8338 + 12.9282i −0.523448 + 0.427393i
\(916\) 40.3286 1.33250
\(917\) 0 0
\(918\) 7.72741i 0.255042i
\(919\) 22.9282 0.756332 0.378166 0.925738i \(-0.376555\pi\)
0.378166 + 0.925738i \(0.376555\pi\)
\(920\) 4.62158 + 5.66025i 0.152369 + 0.186613i
\(921\) 4.00000 0.131804
\(922\) 24.7846i 0.816238i
\(923\) 57.5692i 1.89491i
\(924\) 0 0
\(925\) −3.71281 0.757875i −0.122077 0.0249188i
\(926\) −32.3923 −1.06448
\(927\) 13.8564i 0.455104i
\(928\) 67.7535i 2.22412i
\(929\) 40.7076 1.33557 0.667786 0.744353i \(-0.267242\pi\)
0.667786 + 0.744353i \(0.267242\pi\)
\(930\) 20.0764 + 24.5885i 0.658331 + 0.806287i
\(931\) 0 0
\(932\) 0.656339i 0.0214991i
\(933\) 15.4548i 0.505968i
\(934\) 34.4959 1.12874
\(935\) 24.0000 19.5959i 0.784884 0.640855i
\(936\) 2.07055 0.0676781
\(937\) 24.7846i 0.809678i −0.914388 0.404839i \(-0.867328\pi\)
0.914388 0.404839i \(-0.132672\pi\)
\(938\) 0 0
\(939\) 10.9282 0.356628
\(940\) 18.0000 14.6969i 0.587095 0.479361i
\(941\) −39.3949 −1.28424 −0.642119 0.766605i \(-0.721944\pi\)
−0.642119 + 0.766605i \(0.721944\pi\)
\(942\) 36.5665i 1.19140i
\(943\) 53.5692i 1.74445i
\(944\) 47.1223 1.53370
\(945\) 0 0
\(946\) 0 0
\(947\) 18.3848i 0.597425i 0.954343 + 0.298712i \(0.0965572\pi\)
−0.954343 + 0.298712i \(0.903443\pi\)
\(948\) 19.8564i 0.644906i
\(949\) −43.7128 −1.41898
\(950\) −3.58630 0.732051i −0.116355 0.0237509i
\(951\) −29.2180 −0.947459
\(952\) 0 0
\(953\) 19.6231i 0.635655i −0.948148 0.317828i \(-0.897047\pi\)
0.948148 0.317828i \(-0.102953\pi\)
\(954\) −14.1962 −0.459617
\(955\) 0.757875 + 0.928203i 0.0245243 + 0.0300360i
\(956\) −26.7846 −0.866276
\(957\) 30.9282i 0.999767i
\(958\) 26.9282i 0.870011i
\(959\) 0 0
\(960\) −9.92820 + 8.10634i −0.320431 + 0.261631i
\(961\) 23.0000 0.741935
\(962\) 5.85641i 0.188818i
\(963\) 15.5563i 0.501296i
\(964\) −9.62209 −0.309907
\(965\) 28.0812 22.9282i 0.903966 0.738085i
\(966\) 0 0
\(967\) 29.5969i 0.951774i 0.879507 + 0.475887i \(0.157873\pi\)
−0.879507 + 0.475887i \(0.842127\pi\)
\(968\) 0.517638i 0.0166375i
\(969\) −1.51575 −0.0486929
\(970\) −13.8564 16.9706i −0.444902 0.544892i
\(971\) −56.9203 −1.82666 −0.913329 0.407222i \(-0.866498\pi\)
−0.913329 + 0.407222i \(0.866498\pi\)
\(972\) 1.73205i 0.0555556i
\(973\) 0 0
\(974\) 8.00000 0.256337
\(975\) −4.00000 + 19.5959i −0.128103 + 0.627572i
\(976\) −40.8091 −1.30627
\(977\) 50.5328i 1.61669i 0.588712 + 0.808343i \(0.299635\pi\)
−0.588712 + 0.808343i \(0.700365\pi\)
\(978\) 32.3923i 1.03579i
\(979\) −14.3452 −0.458475
\(980\) 0 0
\(981\) −11.8564 −0.378546
\(982\) 12.9038i 0.411776i
\(983\) 16.7846i 0.535346i 0.963510 + 0.267673i \(0.0862547\pi\)
−0.963510 + 0.267673i \(0.913745\pi\)
\(984\) −4.39230 −0.140022
\(985\) 19.9005 16.2487i 0.634083 0.517727i
\(986\) −68.9919 −2.19715
\(987\) 0 0
\(988\) 2.62536i 0.0835237i
\(989\) 0 0
\(990\) 11.5911 9.46410i 0.368390 0.300789i
\(991\) −28.7846 −0.914373 −0.457187 0.889371i \(-0.651143\pi\)
−0.457187 + 0.889371i \(0.651143\pi\)
\(992\) 55.7654i 1.77055i
\(993\) 32.7846i 1.04039i
\(994\) 0 0
\(995\) −4.53590 5.55532i −0.143798 0.176115i
\(996\) −10.3923 −0.329293
\(997\) 14.1436i 0.447932i −0.974597 0.223966i \(-0.928100\pi\)
0.974597 0.223966i \(-0.0719005\pi\)
\(998\) 31.3901i 0.993636i
\(999\) −0.757875 −0.0239781
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.d.f.589.7 yes 8
3.2 odd 2 2205.2.d.t.1324.2 8
5.2 odd 4 3675.2.a.bs.1.1 4
5.3 odd 4 3675.2.a.bu.1.4 4
5.4 even 2 inner 735.2.d.f.589.2 yes 8
7.2 even 3 735.2.q.c.214.4 8
7.3 odd 6 735.2.q.c.79.1 8
7.4 even 3 735.2.q.d.79.1 8
7.5 odd 6 735.2.q.d.214.4 8
7.6 odd 2 inner 735.2.d.f.589.8 yes 8
15.14 odd 2 2205.2.d.t.1324.8 8
21.20 even 2 2205.2.d.t.1324.1 8
35.4 even 6 735.2.q.c.79.4 8
35.9 even 6 735.2.q.d.214.1 8
35.13 even 4 3675.2.a.bs.1.4 4
35.19 odd 6 735.2.q.c.214.1 8
35.24 odd 6 735.2.q.d.79.4 8
35.27 even 4 3675.2.a.bu.1.1 4
35.34 odd 2 inner 735.2.d.f.589.1 8
105.104 even 2 2205.2.d.t.1324.7 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.d.f.589.1 8 35.34 odd 2 inner
735.2.d.f.589.2 yes 8 5.4 even 2 inner
735.2.d.f.589.7 yes 8 1.1 even 1 trivial
735.2.d.f.589.8 yes 8 7.6 odd 2 inner
735.2.q.c.79.1 8 7.3 odd 6
735.2.q.c.79.4 8 35.4 even 6
735.2.q.c.214.1 8 35.19 odd 6
735.2.q.c.214.4 8 7.2 even 3
735.2.q.d.79.1 8 7.4 even 3
735.2.q.d.79.4 8 35.24 odd 6
735.2.q.d.214.1 8 35.9 even 6
735.2.q.d.214.4 8 7.5 odd 6
2205.2.d.t.1324.1 8 21.20 even 2
2205.2.d.t.1324.2 8 3.2 odd 2
2205.2.d.t.1324.7 8 105.104 even 2
2205.2.d.t.1324.8 8 15.14 odd 2
3675.2.a.bs.1.1 4 5.2 odd 4
3675.2.a.bs.1.4 4 35.13 even 4
3675.2.a.bu.1.1 4 35.27 even 4
3675.2.a.bu.1.4 4 5.3 odd 4