Properties

Label 735.2.i.n.226.1
Level $735$
Weight $2$
Character 735.226
Analytic conductor $5.869$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(226,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.226"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,-4,4,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.1534132224.10
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 6x^{6} - 8x^{5} + 34x^{4} - 24x^{3} + 28x^{2} + 8x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 226.1
Root \(0.874559 - 1.51478i\) of defining polynomial
Character \(\chi\) \(=\) 735.226
Dual form 735.2.i.n.361.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.37456 + 2.38081i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-2.77882 - 4.81306i) q^{4} +(-0.500000 + 0.866025i) q^{5} -2.74912 q^{6} +9.78039 q^{8} +(-0.500000 + 0.866025i) q^{9} +(-1.37456 - 2.38081i) q^{10} +(2.22274 + 3.84990i) q^{11} +(2.77882 - 4.81306i) q^{12} +3.61706 q^{13} -1.00000 q^{15} +(-7.88607 + 13.6591i) q^{16} +(2.47363 + 4.28445i) q^{17} +(-1.37456 - 2.38081i) q^{18} +(-1.37220 + 2.37672i) q^{19} +5.55765 q^{20} -12.2212 q^{22} +(2.18073 - 3.77714i) q^{23} +(4.89020 + 8.47007i) q^{24} +(-0.500000 - 0.866025i) q^{25} +(-4.97186 + 8.61152i) q^{26} -1.00000 q^{27} +0.660384 q^{29} +(1.37456 - 2.38081i) q^{30} +(-0.627797 - 1.08738i) q^{31} +(-11.8994 - 20.6103i) q^{32} +(-2.22274 + 3.84990i) q^{33} -13.6006 q^{34} +5.55765 q^{36} +(1.08402 - 1.87758i) q^{37} +(-3.77235 - 6.53390i) q^{38} +(1.80853 + 3.13247i) q^{39} +(-4.89020 + 8.47007i) q^{40} -5.77568 q^{41} -9.11529 q^{43} +(12.3532 - 21.3964i) q^{44} +(-0.500000 - 0.866025i) q^{45} +(5.99509 + 10.3838i) q^{46} +(-3.24264 + 5.61642i) q^{47} -15.7721 q^{48} +2.74912 q^{50} +(-2.47363 + 4.28445i) q^{51} +(-10.0512 - 17.4091i) q^{52} +(-3.51564 - 6.08926i) q^{53} +(1.37456 - 2.38081i) q^{54} -4.44549 q^{55} -2.74441 q^{57} +(-0.907737 + 1.57225i) q^{58} +(6.91245 + 11.9727i) q^{59} +(2.77882 + 4.81306i) q^{60} +(-4.70711 + 8.15295i) q^{61} +3.45178 q^{62} +33.8812 q^{64} +(-1.80853 + 3.13247i) q^{65} +(-6.11058 - 10.5838i) q^{66} +(-1.53304 - 2.65530i) q^{67} +(13.7475 - 23.8114i) q^{68} +4.36147 q^{69} +0.277444 q^{71} +(-4.89020 + 8.47007i) q^{72} +(5.30676 + 9.19159i) q^{73} +(2.98010 + 5.16169i) q^{74} +(0.500000 - 0.866025i) q^{75} +15.2524 q^{76} -9.94372 q^{78} +(2.76901 - 4.79607i) q^{79} +(-7.88607 - 13.6591i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(7.93901 - 13.7508i) q^{82} -7.17157 q^{83} -4.94725 q^{85} +(12.5295 - 21.7017i) q^{86} +(0.330192 + 0.571909i) q^{87} +(21.7393 + 37.6536i) q^{88} +(0.414214 - 0.717439i) q^{89} +2.74912 q^{90} -24.2395 q^{92} +(0.627797 - 1.08738i) q^{93} +(-8.91440 - 15.4402i) q^{94} +(-1.37220 - 2.37672i) q^{95} +(11.8994 - 20.6103i) q^{96} +6.20784 q^{97} -4.44549 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} + 4 q^{3} - 8 q^{4} - 4 q^{5} - 8 q^{6} + 24 q^{8} - 4 q^{9} - 4 q^{10} - 8 q^{11} + 8 q^{12} - 8 q^{15} - 12 q^{16} + 8 q^{17} - 4 q^{18} - 8 q^{19} + 16 q^{20} + 12 q^{24} - 4 q^{25} - 8 q^{27}+ \cdots + 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/735\mathbb{Z}\right)^\times\).

\(n\) \(346\) \(442\) \(491\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.37456 + 2.38081i −0.971960 + 1.68348i −0.282337 + 0.959315i \(0.591110\pi\)
−0.689623 + 0.724168i \(0.742224\pi\)
\(3\) 0.500000 + 0.866025i 0.288675 + 0.500000i
\(4\) −2.77882 4.81306i −1.38941 2.40653i
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) −2.74912 −1.12232
\(7\) 0 0
\(8\) 9.78039 3.45789
\(9\) −0.500000 + 0.866025i −0.166667 + 0.288675i
\(10\) −1.37456 2.38081i −0.434674 0.752877i
\(11\) 2.22274 + 3.84990i 0.670182 + 1.16079i 0.977852 + 0.209297i \(0.0671174\pi\)
−0.307670 + 0.951493i \(0.599549\pi\)
\(12\) 2.77882 4.81306i 0.802177 1.38941i
\(13\) 3.61706 1.00319 0.501596 0.865102i \(-0.332746\pi\)
0.501596 + 0.865102i \(0.332746\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) −7.88607 + 13.6591i −1.97152 + 3.41477i
\(17\) 2.47363 + 4.28445i 0.599942 + 1.03913i 0.992829 + 0.119544i \(0.0381432\pi\)
−0.392887 + 0.919587i \(0.628523\pi\)
\(18\) −1.37456 2.38081i −0.323987 0.561161i
\(19\) −1.37220 + 2.37672i −0.314805 + 0.545258i −0.979396 0.201949i \(-0.935272\pi\)
0.664591 + 0.747207i \(0.268606\pi\)
\(20\) 5.55765 1.24273
\(21\) 0 0
\(22\) −12.2212 −2.60556
\(23\) 2.18073 3.77714i 0.454714 0.787588i −0.543958 0.839113i \(-0.683075\pi\)
0.998672 + 0.0515247i \(0.0164081\pi\)
\(24\) 4.89020 + 8.47007i 0.998207 + 1.72895i
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) −4.97186 + 8.61152i −0.975062 + 1.68886i
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 0.660384 0.122630 0.0613151 0.998118i \(-0.480471\pi\)
0.0613151 + 0.998118i \(0.480471\pi\)
\(30\) 1.37456 2.38081i 0.250959 0.434674i
\(31\) −0.627797 1.08738i −0.112756 0.195299i 0.804125 0.594461i \(-0.202634\pi\)
−0.916880 + 0.399162i \(0.869301\pi\)
\(32\) −11.8994 20.6103i −2.10353 3.64342i
\(33\) −2.22274 + 3.84990i −0.386930 + 0.670182i
\(34\) −13.6006 −2.33248
\(35\) 0 0
\(36\) 5.55765 0.926275
\(37\) 1.08402 1.87758i 0.178212 0.308672i −0.763056 0.646332i \(-0.776302\pi\)
0.941268 + 0.337660i \(0.109635\pi\)
\(38\) −3.77235 6.53390i −0.611955 1.05994i
\(39\) 1.80853 + 3.13247i 0.289597 + 0.501596i
\(40\) −4.89020 + 8.47007i −0.773208 + 1.33924i
\(41\) −5.77568 −0.902009 −0.451005 0.892522i \(-0.648934\pi\)
−0.451005 + 0.892522i \(0.648934\pi\)
\(42\) 0 0
\(43\) −9.11529 −1.39007 −0.695035 0.718976i \(-0.744611\pi\)
−0.695035 + 0.718976i \(0.744611\pi\)
\(44\) 12.3532 21.3964i 1.86232 3.22563i
\(45\) −0.500000 0.866025i −0.0745356 0.129099i
\(46\) 5.99509 + 10.3838i 0.883928 + 1.53101i
\(47\) −3.24264 + 5.61642i −0.472988 + 0.819239i −0.999522 0.0309151i \(-0.990158\pi\)
0.526534 + 0.850154i \(0.323491\pi\)
\(48\) −15.7721 −2.27651
\(49\) 0 0
\(50\) 2.74912 0.388784
\(51\) −2.47363 + 4.28445i −0.346377 + 0.599942i
\(52\) −10.0512 17.4091i −1.39385 2.41421i
\(53\) −3.51564 6.08926i −0.482910 0.836424i 0.516898 0.856047i \(-0.327087\pi\)
−0.999807 + 0.0196229i \(0.993753\pi\)
\(54\) 1.37456 2.38081i 0.187054 0.323987i
\(55\) −4.44549 −0.599429
\(56\) 0 0
\(57\) −2.74441 −0.363505
\(58\) −0.907737 + 1.57225i −0.119192 + 0.206446i
\(59\) 6.91245 + 11.9727i 0.899924 + 1.55871i 0.827589 + 0.561334i \(0.189712\pi\)
0.0723348 + 0.997380i \(0.476955\pi\)
\(60\) 2.77882 + 4.81306i 0.358745 + 0.621364i
\(61\) −4.70711 + 8.15295i −0.602683 + 1.04388i 0.389730 + 0.920929i \(0.372568\pi\)
−0.992413 + 0.122949i \(0.960765\pi\)
\(62\) 3.45178 0.438376
\(63\) 0 0
\(64\) 33.8812 4.23514
\(65\) −1.80853 + 3.13247i −0.224321 + 0.388535i
\(66\) −6.11058 10.5838i −0.752161 1.30278i
\(67\) −1.53304 2.65530i −0.187290 0.324396i 0.757056 0.653351i \(-0.226637\pi\)
−0.944346 + 0.328954i \(0.893304\pi\)
\(68\) 13.7475 23.8114i 1.66713 2.88756i
\(69\) 4.36147 0.525059
\(70\) 0 0
\(71\) 0.277444 0.0329265 0.0164632 0.999864i \(-0.494759\pi\)
0.0164632 + 0.999864i \(0.494759\pi\)
\(72\) −4.89020 + 8.47007i −0.576315 + 0.998207i
\(73\) 5.30676 + 9.19159i 0.621110 + 1.07579i 0.989279 + 0.146035i \(0.0466513\pi\)
−0.368170 + 0.929759i \(0.620015\pi\)
\(74\) 2.98010 + 5.16169i 0.346430 + 0.600034i
\(75\) 0.500000 0.866025i 0.0577350 0.100000i
\(76\) 15.2524 1.74957
\(77\) 0 0
\(78\) −9.94372 −1.12590
\(79\) 2.76901 4.79607i 0.311539 0.539601i −0.667157 0.744917i \(-0.732489\pi\)
0.978696 + 0.205316i \(0.0658224\pi\)
\(80\) −7.88607 13.6591i −0.881690 1.52713i
\(81\) −0.500000 0.866025i −0.0555556 0.0962250i
\(82\) 7.93901 13.7508i 0.876717 1.51852i
\(83\) −7.17157 −0.787182 −0.393591 0.919286i \(-0.628767\pi\)
−0.393591 + 0.919286i \(0.628767\pi\)
\(84\) 0 0
\(85\) −4.94725 −0.536605
\(86\) 12.5295 21.7017i 1.35109 2.34016i
\(87\) 0.330192 + 0.571909i 0.0354003 + 0.0613151i
\(88\) 21.7393 + 37.6536i 2.31742 + 4.01388i
\(89\) 0.414214 0.717439i 0.0439065 0.0760484i −0.843237 0.537542i \(-0.819353\pi\)
0.887144 + 0.461494i \(0.152686\pi\)
\(90\) 2.74912 0.289782
\(91\) 0 0
\(92\) −24.2395 −2.52714
\(93\) 0.627797 1.08738i 0.0650995 0.112756i
\(94\) −8.91440 15.4402i −0.919450 1.59253i
\(95\) −1.37220 2.37672i −0.140785 0.243847i
\(96\) 11.8994 20.6103i 1.21447 2.10353i
\(97\) 6.20784 0.630310 0.315155 0.949040i \(-0.397943\pi\)
0.315155 + 0.949040i \(0.397943\pi\)
\(98\) 0 0
\(99\) −4.44549 −0.446788
\(100\) −2.77882 + 4.81306i −0.277882 + 0.481306i
\(101\) −2.05941 3.56701i −0.204919 0.354930i 0.745188 0.666855i \(-0.232360\pi\)
−0.950107 + 0.311924i \(0.899026\pi\)
\(102\) −6.80029 11.7784i −0.673329 1.16624i
\(103\) 4.08402 7.07373i 0.402411 0.696996i −0.591606 0.806227i \(-0.701506\pi\)
0.994016 + 0.109232i \(0.0348391\pi\)
\(104\) 35.3763 3.46893
\(105\) 0 0
\(106\) 19.3298 1.87748
\(107\) 4.26475 7.38677i 0.412289 0.714106i −0.582850 0.812580i \(-0.698063\pi\)
0.995140 + 0.0984734i \(0.0313960\pi\)
\(108\) 2.77882 + 4.81306i 0.267392 + 0.463137i
\(109\) 1.82843 + 3.16693i 0.175132 + 0.303337i 0.940207 0.340604i \(-0.110632\pi\)
−0.765075 + 0.643941i \(0.777298\pi\)
\(110\) 6.11058 10.5838i 0.582621 1.00913i
\(111\) 2.16804 0.205782
\(112\) 0 0
\(113\) 12.6085 1.18611 0.593056 0.805161i \(-0.297921\pi\)
0.593056 + 0.805161i \(0.297921\pi\)
\(114\) 3.77235 6.53390i 0.353313 0.611955i
\(115\) 2.18073 + 3.77714i 0.203354 + 0.352220i
\(116\) −1.83509 3.17847i −0.170384 0.295114i
\(117\) −1.80853 + 3.13247i −0.167199 + 0.289597i
\(118\) −38.0063 −3.49876
\(119\) 0 0
\(120\) −9.78039 −0.892823
\(121\) −4.38118 + 7.58842i −0.398289 + 0.689856i
\(122\) −12.9404 22.4134i −1.17157 2.02922i
\(123\) −2.88784 5.00188i −0.260388 0.451005i
\(124\) −3.48908 + 6.04326i −0.313328 + 0.542700i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −0.0562783 −0.00499389 −0.00249695 0.999997i \(-0.500795\pi\)
−0.00249695 + 0.999997i \(0.500795\pi\)
\(128\) −22.7729 + 39.4439i −2.01286 + 3.48638i
\(129\) −4.55765 7.89408i −0.401278 0.695035i
\(130\) −4.97186 8.61152i −0.436061 0.755280i
\(131\) −9.83156 + 17.0288i −0.858987 + 1.48781i 0.0139083 + 0.999903i \(0.495573\pi\)
−0.872896 + 0.487907i \(0.837761\pi\)
\(132\) 24.7064 2.15042
\(133\) 0 0
\(134\) 8.42900 0.728155
\(135\) 0.500000 0.866025i 0.0430331 0.0745356i
\(136\) 24.1930 + 41.9036i 2.07453 + 3.59320i
\(137\) 9.37534 + 16.2386i 0.800989 + 1.38735i 0.918966 + 0.394337i \(0.129026\pi\)
−0.117977 + 0.993016i \(0.537641\pi\)
\(138\) −5.99509 + 10.3838i −0.510336 + 0.883928i
\(139\) −6.14657 −0.521345 −0.260673 0.965427i \(-0.583944\pi\)
−0.260673 + 0.965427i \(0.583944\pi\)
\(140\) 0 0
\(141\) −6.48528 −0.546159
\(142\) −0.381362 + 0.660539i −0.0320032 + 0.0554312i
\(143\) 8.03979 + 13.9253i 0.672321 + 1.16449i
\(144\) −7.88607 13.6591i −0.657173 1.13826i
\(145\) −0.330192 + 0.571909i −0.0274210 + 0.0474945i
\(146\) −29.1778 −2.41478
\(147\) 0 0
\(148\) −12.0492 −0.990440
\(149\) −10.1153 + 17.5202i −0.828677 + 1.43531i 0.0703990 + 0.997519i \(0.477573\pi\)
−0.899076 + 0.437792i \(0.855761\pi\)
\(150\) 1.37456 + 2.38081i 0.112232 + 0.194392i
\(151\) −10.5541 18.2803i −0.858882 1.48763i −0.872996 0.487727i \(-0.837826\pi\)
0.0141145 0.999900i \(-0.495507\pi\)
\(152\) −13.4207 + 23.2453i −1.08856 + 1.88544i
\(153\) −4.94725 −0.399962
\(154\) 0 0
\(155\) 1.25559 0.100852
\(156\) 10.0512 17.4091i 0.804738 1.39385i
\(157\) −0.980103 1.69759i −0.0782207 0.135482i 0.824262 0.566209i \(-0.191591\pi\)
−0.902482 + 0.430727i \(0.858257\pi\)
\(158\) 7.61235 + 13.1850i 0.605606 + 1.04894i
\(159\) 3.51564 6.08926i 0.278808 0.482910i
\(160\) 23.7987 1.88145
\(161\) 0 0
\(162\) 2.74912 0.215991
\(163\) 4.09069 7.08527i 0.320407 0.554962i −0.660165 0.751121i \(-0.729514\pi\)
0.980572 + 0.196159i \(0.0628469\pi\)
\(164\) 16.0496 + 27.7987i 1.25326 + 2.17071i
\(165\) −2.22274 3.84990i −0.173040 0.299715i
\(166\) 9.85775 17.0741i 0.765110 1.32521i
\(167\) −3.76235 −0.291139 −0.145570 0.989348i \(-0.546502\pi\)
−0.145570 + 0.989348i \(0.546502\pi\)
\(168\) 0 0
\(169\) 0.0831193 0.00639379
\(170\) 6.80029 11.7784i 0.521558 0.903365i
\(171\) −1.37220 2.37672i −0.104935 0.181753i
\(172\) 25.3298 + 43.8725i 1.93138 + 3.34525i
\(173\) 7.85304 13.6019i 0.597055 1.03413i −0.396198 0.918165i \(-0.629671\pi\)
0.993253 0.115965i \(-0.0369961\pi\)
\(174\) −1.81547 −0.137631
\(175\) 0 0
\(176\) −70.1149 −5.28511
\(177\) −6.91245 + 11.9727i −0.519571 + 0.899924i
\(178\) 1.13872 + 1.97232i 0.0853508 + 0.147832i
\(179\) 0.640487 + 1.10936i 0.0478722 + 0.0829171i 0.888969 0.457968i \(-0.151423\pi\)
−0.841096 + 0.540885i \(0.818089\pi\)
\(180\) −2.77882 + 4.81306i −0.207121 + 0.358745i
\(181\) 16.5599 1.23089 0.615443 0.788181i \(-0.288977\pi\)
0.615443 + 0.788181i \(0.288977\pi\)
\(182\) 0 0
\(183\) −9.41421 −0.695919
\(184\) 21.3284 36.9419i 1.57235 2.72339i
\(185\) 1.08402 + 1.87758i 0.0796988 + 0.138042i
\(186\) 1.72589 + 2.98933i 0.126548 + 0.219188i
\(187\) −10.9965 + 19.0464i −0.804142 + 1.39281i
\(188\) 36.0429 2.62870
\(189\) 0 0
\(190\) 7.54469 0.547350
\(191\) −4.38136 + 7.58874i −0.317024 + 0.549102i −0.979866 0.199658i \(-0.936017\pi\)
0.662841 + 0.748760i \(0.269350\pi\)
\(192\) 16.9406 + 29.3419i 1.22258 + 2.11757i
\(193\) −13.2493 22.9485i −0.953706 1.65187i −0.737302 0.675563i \(-0.763901\pi\)
−0.216403 0.976304i \(-0.569433\pi\)
\(194\) −8.53304 + 14.7797i −0.612636 + 1.06112i
\(195\) −3.61706 −0.259023
\(196\) 0 0
\(197\) 4.11439 0.293138 0.146569 0.989200i \(-0.453177\pi\)
0.146569 + 0.989200i \(0.453177\pi\)
\(198\) 6.11058 10.5838i 0.434260 0.752161i
\(199\) 3.81769 + 6.61243i 0.270629 + 0.468743i 0.969023 0.246970i \(-0.0794351\pi\)
−0.698394 + 0.715713i \(0.746102\pi\)
\(200\) −4.89020 8.47007i −0.345789 0.598924i
\(201\) 1.53304 2.65530i 0.108132 0.187290i
\(202\) 11.3231 0.796693
\(203\) 0 0
\(204\) 27.4951 1.92504
\(205\) 2.88784 5.00188i 0.201695 0.349347i
\(206\) 11.2275 + 19.4465i 0.782254 + 1.35490i
\(207\) 2.18073 + 3.77714i 0.151571 + 0.262529i
\(208\) −28.5244 + 49.4057i −1.97781 + 3.42567i
\(209\) −12.2002 −0.843907
\(210\) 0 0
\(211\) −0.317238 −0.0218396 −0.0109198 0.999940i \(-0.503476\pi\)
−0.0109198 + 0.999940i \(0.503476\pi\)
\(212\) −19.5387 + 33.8420i −1.34192 + 2.32428i
\(213\) 0.138722 + 0.240273i 0.00950506 + 0.0164632i
\(214\) 11.7243 + 20.3071i 0.801457 + 1.38816i
\(215\) 4.55765 7.89408i 0.310829 0.538372i
\(216\) −9.78039 −0.665471
\(217\) 0 0
\(218\) −10.0531 −0.680883
\(219\) −5.30676 + 9.19159i −0.358598 + 0.621110i
\(220\) 12.3532 + 21.3964i 0.832854 + 1.44255i
\(221\) 8.94725 + 15.4971i 0.601857 + 1.04245i
\(222\) −2.98010 + 5.16169i −0.200011 + 0.346430i
\(223\) 29.0590 1.94594 0.972968 0.230941i \(-0.0741803\pi\)
0.972968 + 0.230941i \(0.0741803\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) −17.3312 + 30.0185i −1.15285 + 1.99680i
\(227\) 10.4455 + 18.0921i 0.693291 + 1.20082i 0.970753 + 0.240079i \(0.0771734\pi\)
−0.277462 + 0.960737i \(0.589493\pi\)
\(228\) 7.62622 + 13.2090i 0.505059 + 0.874787i
\(229\) −2.46447 + 4.26858i −0.162857 + 0.282076i −0.935892 0.352287i \(-0.885404\pi\)
0.773036 + 0.634363i \(0.218737\pi\)
\(230\) −11.9902 −0.790609
\(231\) 0 0
\(232\) 6.45881 0.424042
\(233\) 0.546910 0.947275i 0.0358292 0.0620581i −0.847555 0.530708i \(-0.821926\pi\)
0.883384 + 0.468650i \(0.155259\pi\)
\(234\) −4.97186 8.61152i −0.325021 0.562952i
\(235\) −3.24264 5.61642i −0.211527 0.366375i
\(236\) 38.4170 66.5401i 2.50073 4.33139i
\(237\) 5.53803 0.359734
\(238\) 0 0
\(239\) 25.6725 1.66062 0.830309 0.557303i \(-0.188164\pi\)
0.830309 + 0.557303i \(0.188164\pi\)
\(240\) 7.88607 13.6591i 0.509044 0.881690i
\(241\) −12.3734 21.4313i −0.797040 1.38051i −0.921536 0.388293i \(-0.873065\pi\)
0.124496 0.992220i \(-0.460269\pi\)
\(242\) −12.0444 20.8615i −0.774241 1.34103i
\(243\) 0.500000 0.866025i 0.0320750 0.0555556i
\(244\) 52.3209 3.34950
\(245\) 0 0
\(246\) 15.8780 1.01235
\(247\) −4.96334 + 8.59676i −0.315810 + 0.546998i
\(248\) −6.14010 10.6350i −0.389897 0.675321i
\(249\) −3.58579 6.21076i −0.227240 0.393591i
\(250\) −1.37456 + 2.38081i −0.0869347 + 0.150575i
\(251\) 0.405692 0.0256070 0.0128035 0.999918i \(-0.495924\pi\)
0.0128035 + 0.999918i \(0.495924\pi\)
\(252\) 0 0
\(253\) 19.3888 1.21897
\(254\) 0.0773578 0.133988i 0.00485386 0.00840713i
\(255\) −2.47363 4.28445i −0.154904 0.268302i
\(256\) −28.7243 49.7519i −1.79527 3.10950i
\(257\) 5.44549 9.43186i 0.339680 0.588343i −0.644692 0.764442i \(-0.723015\pi\)
0.984372 + 0.176099i \(0.0563479\pi\)
\(258\) 25.0590 1.56011
\(259\) 0 0
\(260\) 20.1023 1.24669
\(261\) −0.330192 + 0.571909i −0.0204384 + 0.0354003i
\(262\) −27.0281 46.8141i −1.66980 2.89218i
\(263\) −4.38358 7.59258i −0.270303 0.468179i 0.698636 0.715477i \(-0.253791\pi\)
−0.968939 + 0.247298i \(0.920457\pi\)
\(264\) −21.7393 + 37.6536i −1.33796 + 2.31742i
\(265\) 7.03127 0.431928
\(266\) 0 0
\(267\) 0.828427 0.0506989
\(268\) −8.52008 + 14.7572i −0.520447 + 0.901441i
\(269\) −11.4173 19.7754i −0.696128 1.20573i −0.969799 0.243906i \(-0.921571\pi\)
0.273671 0.961823i \(-0.411762\pi\)
\(270\) 1.37456 + 2.38081i 0.0836530 + 0.144891i
\(271\) −5.33740 + 9.24465i −0.324224 + 0.561572i −0.981355 0.192204i \(-0.938436\pi\)
0.657131 + 0.753776i \(0.271770\pi\)
\(272\) −78.0288 −4.73119
\(273\) 0 0
\(274\) −51.5478 −3.11412
\(275\) 2.22274 3.84990i 0.134036 0.232158i
\(276\) −12.1197 20.9920i −0.729523 1.26357i
\(277\) 6.21803 + 10.7699i 0.373605 + 0.647103i 0.990117 0.140242i \(-0.0447881\pi\)
−0.616512 + 0.787346i \(0.711455\pi\)
\(278\) 8.44882 14.6338i 0.506726 0.877676i
\(279\) 1.25559 0.0751705
\(280\) 0 0
\(281\) 12.9169 0.770556 0.385278 0.922800i \(-0.374105\pi\)
0.385278 + 0.922800i \(0.374105\pi\)
\(282\) 8.91440 15.4402i 0.530845 0.919450i
\(283\) −12.8070 22.1823i −0.761294 1.31860i −0.942184 0.335097i \(-0.891231\pi\)
0.180889 0.983503i \(-0.442102\pi\)
\(284\) −0.770967 1.33535i −0.0457485 0.0792387i
\(285\) 1.37220 2.37672i 0.0812823 0.140785i
\(286\) −44.2047 −2.61388
\(287\) 0 0
\(288\) 23.7987 1.40235
\(289\) −3.73765 + 6.47380i −0.219862 + 0.380812i
\(290\) −0.907737 1.57225i −0.0533041 0.0923255i
\(291\) 3.10392 + 5.37615i 0.181955 + 0.315155i
\(292\) 29.4931 51.0836i 1.72595 2.98944i
\(293\) −1.68276 −0.0983080 −0.0491540 0.998791i \(-0.515653\pi\)
−0.0491540 + 0.998791i \(0.515653\pi\)
\(294\) 0 0
\(295\) −13.8249 −0.804917
\(296\) 10.6022 18.3635i 0.616238 1.06735i
\(297\) −2.22274 3.84990i −0.128977 0.223394i
\(298\) −27.8081 48.1651i −1.61088 2.79013i
\(299\) 7.88784 13.6621i 0.456166 0.790102i
\(300\) −5.55765 −0.320871
\(301\) 0 0
\(302\) 58.0290 3.33919
\(303\) 2.05941 3.56701i 0.118310 0.204919i
\(304\) −21.6426 37.4861i −1.24129 2.14997i
\(305\) −4.70711 8.15295i −0.269528 0.466836i
\(306\) 6.80029 11.7784i 0.388747 0.673329i
\(307\) −7.31371 −0.417415 −0.208708 0.977978i \(-0.566926\pi\)
−0.208708 + 0.977978i \(0.566926\pi\)
\(308\) 0 0
\(309\) 8.16804 0.464664
\(310\) −1.72589 + 2.98933i −0.0980239 + 0.169782i
\(311\) −5.60097 9.70117i −0.317602 0.550103i 0.662385 0.749163i \(-0.269544\pi\)
−0.979987 + 0.199061i \(0.936211\pi\)
\(312\) 17.6881 + 30.6367i 1.00139 + 1.73446i
\(313\) 15.7428 27.2674i 0.889837 1.54124i 0.0497702 0.998761i \(-0.484151\pi\)
0.840067 0.542483i \(-0.182516\pi\)
\(314\) 5.38883 0.304110
\(315\) 0 0
\(316\) −30.7784 −1.73142
\(317\) −4.22524 + 7.31833i −0.237313 + 0.411038i −0.959942 0.280197i \(-0.909600\pi\)
0.722629 + 0.691236i \(0.242933\pi\)
\(318\) 9.66490 + 16.7401i 0.541981 + 0.938738i
\(319\) 1.46786 + 2.54242i 0.0821846 + 0.142348i
\(320\) −16.9406 + 29.3419i −0.947007 + 1.64026i
\(321\) 8.52951 0.476071
\(322\) 0 0
\(323\) −13.5773 −0.755459
\(324\) −2.77882 + 4.81306i −0.154379 + 0.267392i
\(325\) −1.80853 3.13247i −0.100319 0.173758i
\(326\) 11.2458 + 19.4783i 0.622846 + 1.07880i
\(327\) −1.82843 + 3.16693i −0.101112 + 0.175132i
\(328\) −56.4884 −3.11905
\(329\) 0 0
\(330\) 12.2212 0.672753
\(331\) −8.32666 + 14.4222i −0.457675 + 0.792716i −0.998838 0.0482019i \(-0.984651\pi\)
0.541163 + 0.840918i \(0.317984\pi\)
\(332\) 19.9285 + 34.5172i 1.09372 + 1.89438i
\(333\) 1.08402 + 1.87758i 0.0594040 + 0.102891i
\(334\) 5.17157 8.95743i 0.282976 0.490129i
\(335\) 3.06608 0.167518
\(336\) 0 0
\(337\) 31.9178 1.73867 0.869337 0.494220i \(-0.164546\pi\)
0.869337 + 0.494220i \(0.164546\pi\)
\(338\) −0.114252 + 0.197891i −0.00621451 + 0.0107639i
\(339\) 6.30427 + 10.9193i 0.342401 + 0.593056i
\(340\) 13.7475 + 23.8114i 0.745565 + 1.29136i
\(341\) 2.79086 4.83392i 0.151134 0.261771i
\(342\) 7.54469 0.407970
\(343\) 0 0
\(344\) −89.1511 −4.80671
\(345\) −2.18073 + 3.77714i −0.117407 + 0.203354i
\(346\) 21.5889 + 37.3931i 1.16063 + 2.01027i
\(347\) 3.95641 + 6.85271i 0.212391 + 0.367872i 0.952462 0.304656i \(-0.0985415\pi\)
−0.740071 + 0.672529i \(0.765208\pi\)
\(348\) 1.83509 3.17847i 0.0983712 0.170384i
\(349\) 25.1525 1.34638 0.673190 0.739469i \(-0.264924\pi\)
0.673190 + 0.739469i \(0.264924\pi\)
\(350\) 0 0
\(351\) −3.61706 −0.193064
\(352\) 52.8984 91.6228i 2.81950 4.88351i
\(353\) 10.2833 + 17.8113i 0.547327 + 0.947998i 0.998456 + 0.0555395i \(0.0176879\pi\)
−0.451130 + 0.892458i \(0.648979\pi\)
\(354\) −19.0031 32.9144i −1.01001 1.74938i
\(355\) −0.138722 + 0.240273i −0.00736259 + 0.0127524i
\(356\) −4.60411 −0.244017
\(357\) 0 0
\(358\) −3.52155 −0.186120
\(359\) 7.05117 12.2130i 0.372147 0.644577i −0.617749 0.786375i \(-0.711955\pi\)
0.989896 + 0.141799i \(0.0452885\pi\)
\(360\) −4.89020 8.47007i −0.257736 0.446412i
\(361\) 5.73412 + 9.93179i 0.301796 + 0.522726i
\(362\) −22.7625 + 39.4259i −1.19637 + 2.07218i
\(363\) −8.76235 −0.459904
\(364\) 0 0
\(365\) −10.6135 −0.555538
\(366\) 12.9404 22.4134i 0.676405 1.17157i
\(367\) −0.193422 0.335017i −0.0100965 0.0174877i 0.860933 0.508718i \(-0.169881\pi\)
−0.871030 + 0.491231i \(0.836547\pi\)
\(368\) 34.3948 + 59.5736i 1.79295 + 3.10549i
\(369\) 2.88784 5.00188i 0.150335 0.260388i
\(370\) −5.96021 −0.309856
\(371\) 0 0
\(372\) −6.97815 −0.361800
\(373\) 5.31724 9.20973i 0.275316 0.476862i −0.694899 0.719108i \(-0.744551\pi\)
0.970215 + 0.242246i \(0.0778841\pi\)
\(374\) −30.2306 52.3609i −1.56319 2.70752i
\(375\) 0.500000 + 0.866025i 0.0258199 + 0.0447214i
\(376\) −31.7143 + 54.9308i −1.63554 + 2.83284i
\(377\) 2.38865 0.123022
\(378\) 0 0
\(379\) −26.4290 −1.35757 −0.678783 0.734339i \(-0.737492\pi\)
−0.678783 + 0.734339i \(0.737492\pi\)
\(380\) −7.62622 + 13.2090i −0.391217 + 0.677607i
\(381\) −0.0281391 0.0487384i −0.00144161 0.00249695i
\(382\) −12.0449 20.8623i −0.616270 1.06741i
\(383\) −2.57283 + 4.45628i −0.131466 + 0.227705i −0.924242 0.381808i \(-0.875302\pi\)
0.792776 + 0.609513i \(0.208635\pi\)
\(384\) −45.5459 −2.32425
\(385\) 0 0
\(386\) 72.8478 3.70785
\(387\) 4.55765 7.89408i 0.231678 0.401278i
\(388\) −17.2505 29.8787i −0.875761 1.51686i
\(389\) 6.45401 + 11.1787i 0.327231 + 0.566781i 0.981961 0.189082i \(-0.0605511\pi\)
−0.654730 + 0.755863i \(0.727218\pi\)
\(390\) 4.97186 8.61152i 0.251760 0.436061i
\(391\) 21.5773 1.09121
\(392\) 0 0
\(393\) −19.6631 −0.991873
\(394\) −5.65547 + 9.79557i −0.284919 + 0.493494i
\(395\) 2.76901 + 4.79607i 0.139324 + 0.241317i
\(396\) 12.3532 + 21.3964i 0.620773 + 1.07521i
\(397\) 11.3814 19.7131i 0.571214 0.989372i −0.425227 0.905087i \(-0.639806\pi\)
0.996442 0.0842855i \(-0.0268608\pi\)
\(398\) −20.9906 −1.05216
\(399\) 0 0
\(400\) 15.7721 0.788607
\(401\) 4.92540 8.53105i 0.245963 0.426020i −0.716439 0.697650i \(-0.754229\pi\)
0.962402 + 0.271630i \(0.0875625\pi\)
\(402\) 4.21450 + 7.29973i 0.210200 + 0.364077i
\(403\) −2.27078 3.93311i −0.113116 0.195922i
\(404\) −11.4455 + 19.8242i −0.569434 + 0.986289i
\(405\) 1.00000 0.0496904
\(406\) 0 0
\(407\) 9.63801 0.477738
\(408\) −24.1930 + 41.9036i −1.19773 + 2.07453i
\(409\) 7.33712 + 12.7083i 0.362797 + 0.628383i 0.988420 0.151742i \(-0.0484884\pi\)
−0.625623 + 0.780126i \(0.715155\pi\)
\(410\) 7.93901 + 13.7508i 0.392080 + 0.679102i
\(411\) −9.37534 + 16.2386i −0.462451 + 0.800989i
\(412\) −45.3951 −2.23646
\(413\) 0 0
\(414\) −11.9902 −0.589285
\(415\) 3.58579 6.21076i 0.176019 0.304874i
\(416\) −43.0407 74.5486i −2.11024 3.65505i
\(417\) −3.07328 5.32308i −0.150499 0.260673i
\(418\) 16.7699 29.0463i 0.820243 1.42070i
\(419\) −9.89450 −0.483378 −0.241689 0.970354i \(-0.577701\pi\)
−0.241689 + 0.970354i \(0.577701\pi\)
\(420\) 0 0
\(421\) 35.4388 1.72718 0.863591 0.504193i \(-0.168210\pi\)
0.863591 + 0.504193i \(0.168210\pi\)
\(422\) 0.436063 0.755283i 0.0212272 0.0367666i
\(423\) −3.24264 5.61642i −0.157663 0.273080i
\(424\) −34.3843 59.5554i −1.66985 2.89226i
\(425\) 2.47363 4.28445i 0.119988 0.207826i
\(426\) −0.762725 −0.0369541
\(427\) 0 0
\(428\) −47.4040 −2.29136
\(429\) −8.03979 + 13.9253i −0.388165 + 0.672321i
\(430\) 12.5295 + 21.7017i 0.604227 + 1.04655i
\(431\) 8.34656 + 14.4567i 0.402040 + 0.696353i 0.993972 0.109635i \(-0.0349681\pi\)
−0.591932 + 0.805988i \(0.701635\pi\)
\(432\) 7.88607 13.6591i 0.379419 0.657173i
\(433\) −13.0363 −0.626483 −0.313241 0.949674i \(-0.601415\pi\)
−0.313241 + 0.949674i \(0.601415\pi\)
\(434\) 0 0
\(435\) −0.660384 −0.0316630
\(436\) 10.1618 17.6007i 0.486660 0.842919i
\(437\) 5.98481 + 10.3660i 0.286293 + 0.495873i
\(438\) −14.5889 25.2688i −0.697086 1.20739i
\(439\) −11.3557 + 19.6687i −0.541979 + 0.938735i 0.456811 + 0.889564i \(0.348991\pi\)
−0.998790 + 0.0491715i \(0.984342\pi\)
\(440\) −43.4786 −2.07276
\(441\) 0 0
\(442\) −49.1941 −2.33992
\(443\) −4.12445 + 7.14376i −0.195959 + 0.339410i −0.947214 0.320601i \(-0.896115\pi\)
0.751256 + 0.660011i \(0.229449\pi\)
\(444\) −6.02461 10.4349i −0.285915 0.495220i
\(445\) 0.414214 + 0.717439i 0.0196356 + 0.0340099i
\(446\) −39.9433 + 69.1839i −1.89137 + 3.27595i
\(447\) −20.2306 −0.956874
\(448\) 0 0
\(449\) 24.5212 1.15723 0.578613 0.815602i \(-0.303594\pi\)
0.578613 + 0.815602i \(0.303594\pi\)
\(450\) −1.37456 + 2.38081i −0.0647973 + 0.112232i
\(451\) −12.8379 22.2358i −0.604511 1.04704i
\(452\) −35.0369 60.6857i −1.64800 2.85442i
\(453\) 10.5541 18.2803i 0.495876 0.858882i
\(454\) −57.4317 −2.69541
\(455\) 0 0
\(456\) −26.8414 −1.25696
\(457\) 14.1734 24.5491i 0.663004 1.14836i −0.316818 0.948486i \(-0.602615\pi\)
0.979822 0.199871i \(-0.0640521\pi\)
\(458\) −6.77511 11.7348i −0.316580 0.548333i
\(459\) −2.47363 4.28445i −0.115459 0.199981i
\(460\) 12.1197 20.9920i 0.565086 0.978757i
\(461\) 38.3727 1.78720 0.893598 0.448868i \(-0.148173\pi\)
0.893598 + 0.448868i \(0.148173\pi\)
\(462\) 0 0
\(463\) 2.38530 0.110855 0.0554273 0.998463i \(-0.482348\pi\)
0.0554273 + 0.998463i \(0.482348\pi\)
\(464\) −5.20784 + 9.02024i −0.241768 + 0.418754i
\(465\) 0.627797 + 1.08738i 0.0291134 + 0.0504259i
\(466\) 1.50352 + 2.60417i 0.0696492 + 0.120636i
\(467\) 9.90393 17.1541i 0.458299 0.793797i −0.540572 0.841298i \(-0.681792\pi\)
0.998871 + 0.0475004i \(0.0151255\pi\)
\(468\) 20.1023 0.929231
\(469\) 0 0
\(470\) 17.8288 0.822381
\(471\) 0.980103 1.69759i 0.0451607 0.0782207i
\(472\) 67.6064 + 117.098i 3.11184 + 5.38986i
\(473\) −20.2610 35.0930i −0.931600 1.61358i
\(474\) −7.61235 + 13.1850i −0.349647 + 0.605606i
\(475\) 2.74441 0.125922
\(476\) 0 0
\(477\) 7.03127 0.321940
\(478\) −35.2884 + 61.1213i −1.61405 + 2.79563i
\(479\) 1.71980 + 2.97877i 0.0785795 + 0.136104i 0.902637 0.430402i \(-0.141628\pi\)
−0.824058 + 0.566506i \(0.808295\pi\)
\(480\) 11.8994 + 20.6103i 0.543129 + 0.940727i
\(481\) 3.92097 6.79132i 0.178781 0.309658i
\(482\) 68.0318 3.09876
\(483\) 0 0
\(484\) 48.6981 2.21355
\(485\) −3.10392 + 5.37615i −0.140942 + 0.244118i
\(486\) 1.37456 + 2.38081i 0.0623513 + 0.107996i
\(487\) 3.56118 + 6.16814i 0.161372 + 0.279505i 0.935361 0.353694i \(-0.115075\pi\)
−0.773989 + 0.633199i \(0.781741\pi\)
\(488\) −46.0373 + 79.7390i −2.08401 + 3.60962i
\(489\) 8.18137 0.369974
\(490\) 0 0
\(491\) −31.6896 −1.43013 −0.715066 0.699057i \(-0.753603\pi\)
−0.715066 + 0.699057i \(0.753603\pi\)
\(492\) −16.0496 + 27.7987i −0.723572 + 1.25326i
\(493\) 1.63354 + 2.82938i 0.0735711 + 0.127429i
\(494\) −13.6448 23.6335i −0.613909 1.06332i
\(495\) 2.22274 3.84990i 0.0999049 0.173040i
\(496\) 19.8034 0.889200
\(497\) 0 0
\(498\) 19.7155 0.883473
\(499\) 19.5014 33.7774i 0.873001 1.51208i 0.0141243 0.999900i \(-0.495504\pi\)
0.858877 0.512182i \(-0.171163\pi\)
\(500\) −2.77882 4.81306i −0.124273 0.215247i
\(501\) −1.88118 3.25829i −0.0840447 0.145570i
\(502\) −0.557647 + 0.965873i −0.0248890 + 0.0431090i
\(503\) −18.5308 −0.826247 −0.413123 0.910675i \(-0.635562\pi\)
−0.413123 + 0.910675i \(0.635562\pi\)
\(504\) 0 0
\(505\) 4.11882 0.183285
\(506\) −26.6511 + 46.1610i −1.18479 + 2.05211i
\(507\) 0.0415597 + 0.0719835i 0.00184573 + 0.00319690i
\(508\) 0.156387 + 0.270871i 0.00693857 + 0.0120180i
\(509\) 19.9026 34.4724i 0.882169 1.52796i 0.0332436 0.999447i \(-0.489416\pi\)
0.848925 0.528513i \(-0.177250\pi\)
\(510\) 13.6006 0.602244
\(511\) 0 0
\(512\) 66.8412 2.95399
\(513\) 1.37220 2.37672i 0.0605842 0.104935i
\(514\) 14.9703 + 25.9293i 0.660311 + 1.14369i
\(515\) 4.08402 + 7.07373i 0.179963 + 0.311706i
\(516\) −25.3298 + 43.8725i −1.11508 + 1.93138i
\(517\) −28.8302 −1.26795
\(518\) 0 0
\(519\) 15.7061 0.689420
\(520\) −17.6881 + 30.6367i −0.775676 + 1.34351i
\(521\) −13.1797 22.8279i −0.577413 1.00011i −0.995775 0.0918283i \(-0.970729\pi\)
0.418362 0.908280i \(-0.362604\pi\)
\(522\) −0.907737 1.57225i −0.0397306 0.0688153i
\(523\) 12.1864 21.1074i 0.532872 0.922962i −0.466391 0.884579i \(-0.654446\pi\)
0.999263 0.0383833i \(-0.0122208\pi\)
\(524\) 109.281 4.77395
\(525\) 0 0
\(526\) 24.1019 1.05089
\(527\) 3.10587 5.37953i 0.135294 0.234336i
\(528\) −35.0574 60.7213i −1.52568 2.64255i
\(529\) 1.98881 + 3.44472i 0.0864701 + 0.149771i
\(530\) −9.66490 + 16.7401i −0.419816 + 0.727143i
\(531\) −13.8249 −0.599949
\(532\) 0 0
\(533\) −20.8910 −0.904888
\(534\) −1.13872 + 1.97232i −0.0492773 + 0.0853508i
\(535\) 4.26475 + 7.38677i 0.184381 + 0.319358i
\(536\) −14.9937 25.9699i −0.647630 1.12173i
\(537\) −0.640487 + 1.10936i −0.0276390 + 0.0478722i
\(538\) 62.7753 2.70643
\(539\) 0 0
\(540\) −5.55765 −0.239163
\(541\) −12.1814 + 21.0988i −0.523718 + 0.907106i 0.475901 + 0.879499i \(0.342122\pi\)
−0.999619 + 0.0276073i \(0.991211\pi\)
\(542\) −14.6731 25.4146i −0.630265 1.09165i
\(543\) 8.27994 + 14.3413i 0.355326 + 0.615443i
\(544\) 58.8691 101.964i 2.52399 4.37168i
\(545\) −3.65685 −0.156642
\(546\) 0 0
\(547\) 10.1421 0.433646 0.216823 0.976211i \(-0.430430\pi\)
0.216823 + 0.976211i \(0.430430\pi\)
\(548\) 52.1048 90.2482i 2.22581 3.85521i
\(549\) −4.70711 8.15295i −0.200894 0.347959i
\(550\) 6.11058 + 10.5838i 0.260556 + 0.451296i
\(551\) −0.906181 + 1.56955i −0.0386046 + 0.0668651i
\(552\) 42.6568 1.81560
\(553\) 0 0
\(554\) −34.1882 −1.45252
\(555\) −1.08402 + 1.87758i −0.0460142 + 0.0796988i
\(556\) 17.0802 + 29.5838i 0.724363 + 1.25463i
\(557\) 7.27799 + 12.6058i 0.308378 + 0.534127i 0.978008 0.208569i \(-0.0668804\pi\)
−0.669630 + 0.742695i \(0.733547\pi\)
\(558\) −1.72589 + 2.98933i −0.0730627 + 0.126548i
\(559\) −32.9706 −1.39451
\(560\) 0 0
\(561\) −21.9929 −0.928543
\(562\) −17.7550 + 30.7526i −0.748950 + 1.29722i
\(563\) 18.2922 + 31.6831i 0.770926 + 1.33528i 0.937056 + 0.349179i \(0.113539\pi\)
−0.166130 + 0.986104i \(0.553127\pi\)
\(564\) 18.0215 + 31.2141i 0.758840 + 1.31435i
\(565\) −6.30427 + 10.9193i −0.265223 + 0.459379i
\(566\) 70.4156 2.95979
\(567\) 0 0
\(568\) 2.71351 0.113856
\(569\) 1.82344 3.15828i 0.0764424 0.132402i −0.825270 0.564738i \(-0.808977\pi\)
0.901713 + 0.432336i \(0.142311\pi\)
\(570\) 3.77235 + 6.53390i 0.158006 + 0.273675i
\(571\) 19.2967 + 33.4228i 0.807540 + 1.39870i 0.914563 + 0.404444i \(0.132535\pi\)
−0.107022 + 0.994257i \(0.534132\pi\)
\(572\) 44.6823 77.3921i 1.86826 3.23593i
\(573\) −8.76272 −0.366068
\(574\) 0 0
\(575\) −4.36147 −0.181886
\(576\) −16.9406 + 29.3419i −0.705857 + 1.22258i
\(577\) −7.02617 12.1697i −0.292503 0.506630i 0.681898 0.731447i \(-0.261155\pi\)
−0.974401 + 0.224817i \(0.927822\pi\)
\(578\) −10.2752 17.7972i −0.427393 0.740267i
\(579\) 13.2493 22.9485i 0.550622 0.953706i
\(580\) 3.67018 0.152396
\(581\) 0 0
\(582\) −17.0661 −0.707412
\(583\) 15.6287 27.0697i 0.647275 1.12111i
\(584\) 51.9022 + 89.8973i 2.14773 + 3.71998i
\(585\) −1.80853 3.13247i −0.0747735 0.129512i
\(586\) 2.31305 4.00633i 0.0955514 0.165500i
\(587\) −27.0402 −1.11607 −0.558034 0.829818i \(-0.688444\pi\)
−0.558034 + 0.829818i \(0.688444\pi\)
\(588\) 0 0
\(589\) 3.44586 0.141984
\(590\) 19.0031 32.9144i 0.782347 1.35506i
\(591\) 2.05720 + 3.56317i 0.0846217 + 0.146569i
\(592\) 17.0973 + 29.6135i 0.702697 + 1.21711i
\(593\) −10.8382 + 18.7724i −0.445073 + 0.770888i −0.998057 0.0623031i \(-0.980155\pi\)
0.552985 + 0.833191i \(0.313489\pi\)
\(594\) 12.2212 0.501440
\(595\) 0 0
\(596\) 112.434 4.60550
\(597\) −3.81769 + 6.61243i −0.156248 + 0.270629i
\(598\) 21.6846 + 37.5588i 0.886749 + 1.53589i
\(599\) −12.9949 22.5078i −0.530957 0.919644i −0.999347 0.0361227i \(-0.988499\pi\)
0.468390 0.883522i \(-0.344834\pi\)
\(600\) 4.89020 8.47007i 0.199641 0.345789i
\(601\) 12.0746 0.492533 0.246267 0.969202i \(-0.420796\pi\)
0.246267 + 0.969202i \(0.420796\pi\)
\(602\) 0 0
\(603\) 3.06608 0.124860
\(604\) −58.6561 + 101.595i −2.38668 + 4.13385i
\(605\) −4.38118 7.58842i −0.178120 0.308513i
\(606\) 5.66157 + 9.80612i 0.229985 + 0.398346i
\(607\) −20.8695 + 36.1470i −0.847067 + 1.46716i 0.0367474 + 0.999325i \(0.488300\pi\)
−0.883814 + 0.467838i \(0.845033\pi\)
\(608\) 65.3133 2.64880
\(609\) 0 0
\(610\) 25.8808 1.04788
\(611\) −11.7288 + 20.3149i −0.474497 + 0.821854i
\(612\) 13.7475 + 23.8114i 0.555711 + 0.962520i
\(613\) 5.90079 + 10.2205i 0.238331 + 0.412801i 0.960235 0.279192i \(-0.0900664\pi\)
−0.721905 + 0.691993i \(0.756733\pi\)
\(614\) 10.0531 17.4125i 0.405711 0.702712i
\(615\) 5.77568 0.232898
\(616\) 0 0
\(617\) 12.2913 0.494829 0.247415 0.968910i \(-0.420419\pi\)
0.247415 + 0.968910i \(0.420419\pi\)
\(618\) −11.2275 + 19.4465i −0.451634 + 0.782254i
\(619\) −12.1886 21.1112i −0.489900 0.848532i 0.510032 0.860155i \(-0.329634\pi\)
−0.999932 + 0.0116231i \(0.996300\pi\)
\(620\) −3.48908 6.04326i −0.140125 0.242703i
\(621\) −2.18073 + 3.77714i −0.0875098 + 0.151571i
\(622\) 30.7955 1.23479
\(623\) 0 0
\(624\) −57.0488 −2.28378
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 43.2789 + 74.9612i 1.72977 + 2.99605i
\(627\) −6.10011 10.5657i −0.243615 0.421953i
\(628\) −5.44706 + 9.43459i −0.217362 + 0.376481i
\(629\) 10.7259 0.427668
\(630\) 0 0
\(631\) −43.3200 −1.72454 −0.862271 0.506448i \(-0.830958\pi\)
−0.862271 + 0.506448i \(0.830958\pi\)
\(632\) 27.0820 46.9075i 1.07727 1.86588i
\(633\) −0.158619 0.274736i −0.00630455 0.0109198i
\(634\) −11.6157 20.1189i −0.461318 0.799025i
\(635\) 0.0281391 0.0487384i 0.00111667 0.00193413i
\(636\) −39.0773 −1.54952
\(637\) 0 0
\(638\) −8.07066 −0.319521
\(639\) −0.138722 + 0.240273i −0.00548775 + 0.00950506i
\(640\) −22.7729 39.4439i −0.900179 1.55916i
\(641\) −9.27038 16.0568i −0.366158 0.634205i 0.622803 0.782379i \(-0.285994\pi\)
−0.988961 + 0.148174i \(0.952660\pi\)
\(642\) −11.7243 + 20.3071i −0.462722 + 0.801457i
\(643\) 8.55489 0.337372 0.168686 0.985670i \(-0.446048\pi\)
0.168686 + 0.985670i \(0.446048\pi\)
\(644\) 0 0
\(645\) 9.11529 0.358914
\(646\) 18.6627 32.3248i 0.734276 1.27180i
\(647\) −21.5443 37.3158i −0.846994 1.46704i −0.883878 0.467717i \(-0.845077\pi\)
0.0368847 0.999320i \(-0.488257\pi\)
\(648\) −4.89020 8.47007i −0.192105 0.332736i
\(649\) −30.7292 + 53.2245i −1.20623 + 2.08925i
\(650\) 9.94372 0.390025
\(651\) 0 0
\(652\) −45.4692 −1.78071
\(653\) 7.01387 12.1484i 0.274474 0.475403i −0.695528 0.718499i \(-0.744830\pi\)
0.970002 + 0.243096i \(0.0781629\pi\)
\(654\) −5.02656 8.70626i −0.196554 0.340442i
\(655\) −9.83156 17.0288i −0.384151 0.665369i
\(656\) 45.5474 78.8905i 1.77833 3.08016i
\(657\) −10.6135 −0.414073
\(658\) 0 0
\(659\) −19.1488 −0.745932 −0.372966 0.927845i \(-0.621659\pi\)
−0.372966 + 0.927845i \(0.621659\pi\)
\(660\) −12.3532 + 21.3964i −0.480849 + 0.832854i
\(661\) 13.2858 + 23.0117i 0.516759 + 0.895053i 0.999811 + 0.0194610i \(0.00619502\pi\)
−0.483052 + 0.875592i \(0.660472\pi\)
\(662\) −22.8910 39.6483i −0.889683 1.54098i
\(663\) −8.94725 + 15.4971i −0.347482 + 0.601857i
\(664\) −70.1408 −2.72199
\(665\) 0 0
\(666\) −5.96021 −0.230953
\(667\) 1.44012 2.49436i 0.0557617 0.0965821i
\(668\) 10.4549 + 18.1084i 0.404513 + 0.700636i
\(669\) 14.5295 + 25.1658i 0.561743 + 0.972968i
\(670\) −4.21450 + 7.29973i −0.162820 + 0.282013i
\(671\) −41.8508 −1.61563
\(672\) 0 0
\(673\) 46.6900 1.79977 0.899883 0.436132i \(-0.143652\pi\)
0.899883 + 0.436132i \(0.143652\pi\)
\(674\) −43.8729 + 75.9901i −1.68992 + 2.92703i
\(675\) 0.500000 + 0.866025i 0.0192450 + 0.0333333i
\(676\) −0.230974 0.400059i −0.00888361 0.0153869i
\(677\) −20.8476 + 36.1092i −0.801240 + 1.38779i 0.117560 + 0.993066i \(0.462493\pi\)
−0.918800 + 0.394723i \(0.870841\pi\)
\(678\) −34.6624 −1.33120
\(679\) 0 0
\(680\) −48.3861 −1.85552
\(681\) −10.4455 + 18.0921i −0.400272 + 0.693291i
\(682\) 7.67241 + 13.2890i 0.293792 + 0.508862i
\(683\) 10.7715 + 18.6568i 0.412160 + 0.713883i 0.995126 0.0986143i \(-0.0314410\pi\)
−0.582965 + 0.812497i \(0.698108\pi\)
\(684\) −7.62622 + 13.2090i −0.291596 + 0.505059i
\(685\) −18.7507 −0.716426
\(686\) 0 0
\(687\) −4.92893 −0.188050
\(688\) 71.8839 124.507i 2.74055 4.74677i
\(689\) −12.7163 22.0252i −0.484451 0.839094i
\(690\) −5.99509 10.3838i −0.228229 0.395305i
\(691\) −11.4612 + 19.8514i −0.436005 + 0.755183i −0.997377 0.0723805i \(-0.976940\pi\)
0.561372 + 0.827564i \(0.310274\pi\)
\(692\) −87.2888 −3.31822
\(693\) 0 0
\(694\) −21.7533 −0.825743
\(695\) 3.07328 5.32308i 0.116576 0.201916i
\(696\) 3.22941 + 5.59350i 0.122410 + 0.212021i
\(697\) −14.2869 24.7456i −0.541154 0.937306i
\(698\) −34.5735 + 59.8831i −1.30863 + 2.26661i
\(699\) 1.09382 0.0413720
\(700\) 0 0
\(701\) −51.4317 −1.94255 −0.971275 0.237960i \(-0.923521\pi\)
−0.971275 + 0.237960i \(0.923521\pi\)
\(702\) 4.97186 8.61152i 0.187651 0.325021i
\(703\) 2.97499 + 5.15284i 0.112204 + 0.194343i
\(704\) 75.3091 + 130.439i 2.83832 + 4.91611i
\(705\) 3.24264 5.61642i 0.122125 0.211527i
\(706\) −56.5402 −2.12792
\(707\) 0 0
\(708\) 76.8339 2.88759
\(709\) 17.2341 29.8504i 0.647241 1.12105i −0.336538 0.941670i \(-0.609256\pi\)
0.983779 0.179384i \(-0.0574106\pi\)
\(710\) −0.381362 0.660539i −0.0143123 0.0247896i
\(711\) 2.76901 + 4.79607i 0.103846 + 0.179867i
\(712\) 4.05117 7.01683i 0.151824 0.262967i
\(713\) −5.47623 −0.205086
\(714\) 0 0
\(715\) −16.0796 −0.601343
\(716\) 3.55960 6.16541i 0.133028 0.230412i
\(717\) 12.8363 + 22.2331i 0.479379 + 0.830309i
\(718\) 19.3845 + 33.5749i 0.723423 + 1.25301i
\(719\) −21.0375 + 36.4381i −0.784568 + 1.35891i 0.144689 + 0.989477i \(0.453782\pi\)
−0.929257 + 0.369434i \(0.879551\pi\)
\(720\) 15.7721 0.587793
\(721\) 0 0
\(722\) −31.5275 −1.17333
\(723\) 12.3734 21.4313i 0.460171 0.797040i
\(724\) −46.0170 79.7038i −1.71021 2.96217i
\(725\) −0.330192 0.571909i −0.0122630 0.0212402i
\(726\) 12.0444 20.8615i 0.447008 0.774241i
\(727\) 36.6722 1.36010 0.680048 0.733168i \(-0.261959\pi\)
0.680048 + 0.733168i \(0.261959\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 14.5889 25.2688i 0.539960 0.935238i
\(731\) −22.5478 39.0540i −0.833962 1.44446i
\(732\) 26.1604 + 45.3112i 0.966918 + 1.67475i
\(733\) 23.1848 40.1572i 0.856350 1.48324i −0.0190378 0.999819i \(-0.506060\pi\)
0.875387 0.483422i \(-0.160606\pi\)
\(734\) 1.06348 0.0392538
\(735\) 0 0
\(736\) −103.797 −3.82602
\(737\) 6.81510 11.8041i 0.251037 0.434810i
\(738\) 7.93901 + 13.7508i 0.292239 + 0.506173i
\(739\) −0.679232 1.17646i −0.0249859 0.0432769i 0.853262 0.521482i \(-0.174621\pi\)
−0.878248 + 0.478205i \(0.841287\pi\)
\(740\) 6.02461 10.4349i 0.221469 0.383596i
\(741\) −9.92668 −0.364666
\(742\) 0 0
\(743\) −26.2748 −0.963930 −0.481965 0.876191i \(-0.660077\pi\)
−0.481965 + 0.876191i \(0.660077\pi\)
\(744\) 6.14010 10.6350i 0.225107 0.389897i
\(745\) −10.1153 17.5202i −0.370596 0.641891i
\(746\) 14.6177 + 25.3186i 0.535193 + 0.926981i
\(747\) 3.58579 6.21076i 0.131197 0.227240i
\(748\) 122.229 4.46914
\(749\) 0 0
\(750\) −2.74912 −0.100384
\(751\) 12.6135 21.8473i 0.460274 0.797218i −0.538700 0.842498i \(-0.681084\pi\)
0.998974 + 0.0452792i \(0.0144178\pi\)
\(752\) −51.1434 88.5830i −1.86501 3.23029i
\(753\) 0.202846 + 0.351339i 0.00739212 + 0.0128035i
\(754\) −3.28334 + 5.68691i −0.119572 + 0.207105i
\(755\) 21.1082 0.768207
\(756\) 0 0
\(757\) 6.02331 0.218921 0.109460 0.993991i \(-0.465088\pi\)
0.109460 + 0.993991i \(0.465088\pi\)
\(758\) 36.3282 62.9223i 1.31950 2.28544i
\(759\) 9.69442 + 16.7912i 0.351885 + 0.609483i
\(760\) −13.4207 23.2453i −0.486819 0.843196i
\(761\) 15.4107 26.6921i 0.558637 0.967587i −0.438974 0.898500i \(-0.644658\pi\)
0.997611 0.0690875i \(-0.0220088\pi\)
\(762\) 0.154716 0.00560476
\(763\) 0 0
\(764\) 48.7001 1.76191
\(765\) 2.47363 4.28445i 0.0894341 0.154904i
\(766\) −7.07302 12.2508i −0.255559 0.442640i
\(767\) 25.0027 + 43.3060i 0.902797 + 1.56369i
\(768\) 28.7243 49.7519i 1.03650 1.79527i
\(769\) −31.8736 −1.14939 −0.574695 0.818367i \(-0.694879\pi\)
−0.574695 + 0.818367i \(0.694879\pi\)
\(770\) 0 0
\(771\) 10.8910 0.392229
\(772\) −73.6350 + 127.539i −2.65018 + 4.59025i
\(773\) −8.54560 14.8014i −0.307364 0.532370i 0.670421 0.741981i \(-0.266113\pi\)
−0.977785 + 0.209611i \(0.932780\pi\)
\(774\) 12.5295 + 21.7017i 0.450364 + 0.780053i
\(775\) −0.627797 + 1.08738i −0.0225511 + 0.0390597i
\(776\) 60.7151 2.17954
\(777\) 0 0
\(778\) −35.4857 −1.27222
\(779\) 7.92540 13.7272i 0.283957 0.491828i
\(780\) 10.0512 + 17.4091i 0.359890 + 0.623347i
\(781\) 0.616686 + 1.06813i 0.0220668 + 0.0382207i
\(782\) −29.6592 + 51.3713i −1.06061 + 1.83703i
\(783\) −0.660384 −0.0236002
\(784\) 0 0
\(785\) 1.96021 0.0699627
\(786\) 27.0281 46.8141i 0.964061 1.66980i
\(787\) 14.0809 + 24.3888i 0.501929 + 0.869366i 0.999998 + 0.00222844i \(0.000709335\pi\)
−0.498069 + 0.867137i \(0.665957\pi\)
\(788\) −11.4332 19.8028i −0.407290 0.705447i
\(789\) 4.38358 7.59258i 0.156060 0.270303i
\(790\) −15.2247 −0.541670
\(791\) 0 0
\(792\) −43.4786 −1.54494
\(793\) −17.0259 + 29.4897i −0.604607 + 1.04721i
\(794\) 31.2887 + 54.1936i 1.11039 + 1.92326i
\(795\) 3.51564 + 6.08926i 0.124687 + 0.215964i
\(796\) 21.2174 36.7496i 0.752030 1.30255i
\(797\) 9.60058 0.340070 0.170035 0.985438i \(-0.445612\pi\)
0.170035 + 0.985438i \(0.445612\pi\)
\(798\) 0 0
\(799\) −32.0843 −1.13506
\(800\) −11.8994 + 20.6103i −0.420706 + 0.728684i
\(801\) 0.414214 + 0.717439i 0.0146355 + 0.0253495i
\(802\) 13.5405 + 23.4529i 0.478132 + 0.828149i
\(803\) −23.5912 + 40.8611i −0.832514 + 1.44196i
\(804\) −17.0402 −0.600960
\(805\) 0 0
\(806\) 12.4853 0.439775
\(807\) 11.4173 19.7754i 0.401910 0.696128i
\(808\) −20.1419 34.8867i −0.708588 1.22731i
\(809\) 10.5166 + 18.2152i 0.369742 + 0.640413i 0.989525 0.144361i \(-0.0461126\pi\)
−0.619783 + 0.784773i \(0.712779\pi\)
\(810\) −1.37456 + 2.38081i −0.0482971 + 0.0836530i
\(811\) 0.770313 0.0270493 0.0135247 0.999909i \(-0.495695\pi\)
0.0135247 + 0.999909i \(0.495695\pi\)
\(812\) 0 0
\(813\) −10.6748 −0.374382
\(814\) −13.2480 + 22.9462i −0.464342 + 0.804265i
\(815\) 4.09069 + 7.08527i 0.143290 + 0.248186i
\(816\) −39.0144 67.5749i −1.36578 2.36560i
\(817\) 12.5080 21.6645i 0.437601 0.757947i
\(818\) −40.3412 −1.41050
\(819\) 0 0
\(820\) −32.0992 −1.12095
\(821\) 8.23911 14.2706i 0.287547 0.498046i −0.685677 0.727906i \(-0.740494\pi\)
0.973224 + 0.229860i \(0.0738269\pi\)
\(822\) −25.7739 44.6417i −0.898968 1.55706i
\(823\) 8.02814 + 13.9051i 0.279843 + 0.484703i 0.971346 0.237671i \(-0.0763841\pi\)
−0.691502 + 0.722374i \(0.743051\pi\)
\(824\) 39.9433 69.1839i 1.39149 2.41013i
\(825\) 4.44549 0.154772
\(826\) 0 0
\(827\) −1.11736 −0.0388545 −0.0194272 0.999811i \(-0.506184\pi\)
−0.0194272 + 0.999811i \(0.506184\pi\)
\(828\) 12.1197 20.9920i 0.421190 0.729523i
\(829\) 26.2862 + 45.5290i 0.912958 + 1.58129i 0.809864 + 0.586617i \(0.199541\pi\)
0.103094 + 0.994672i \(0.467126\pi\)
\(830\) 9.85775 + 17.0741i 0.342167 + 0.592651i
\(831\) −6.21803 + 10.7699i −0.215701 + 0.373605i
\(832\) 122.550 4.24866
\(833\) 0 0
\(834\) 16.8976 0.585117
\(835\) 1.88118 3.25829i 0.0651008 0.112758i
\(836\) 33.9023 + 58.7204i 1.17253 + 2.03089i
\(837\) 0.627797 + 1.08738i 0.0216998 + 0.0375852i
\(838\) 13.6006 23.5569i 0.469824 0.813759i
\(839\) 8.65667 0.298861 0.149431 0.988772i \(-0.452256\pi\)
0.149431 + 0.988772i \(0.452256\pi\)
\(840\) 0 0
\(841\) −28.5639 −0.984962
\(842\) −48.7127 + 84.3729i −1.67875 + 2.90768i
\(843\) 6.45844 + 11.1863i 0.222441 + 0.385278i
\(844\) 0.881549 + 1.52689i 0.0303442 + 0.0525577i
\(845\) −0.0415597 + 0.0719835i −0.00142970 + 0.00247631i
\(846\) 17.8288 0.612967
\(847\) 0 0
\(848\) 110.898 3.80826
\(849\) 12.8070 22.1823i 0.439533 0.761294i
\(850\) 6.80029 + 11.7784i 0.233248 + 0.403997i
\(851\) −4.72792 8.18900i −0.162071 0.280715i
\(852\) 0.770967 1.33535i 0.0264129 0.0457485i
\(853\) −21.9361 −0.751078 −0.375539 0.926807i \(-0.622542\pi\)
−0.375539 + 0.926807i \(0.622542\pi\)
\(854\) 0 0
\(855\) 2.74441 0.0938567
\(856\) 41.7110 72.2455i 1.42565 2.46930i
\(857\) −12.5626 21.7591i −0.429132 0.743278i 0.567665 0.823260i \(-0.307847\pi\)
−0.996796 + 0.0799821i \(0.974514\pi\)
\(858\) −22.1023 38.2824i −0.754561 1.30694i
\(859\) −4.04591 + 7.00773i −0.138045 + 0.239101i −0.926756 0.375663i \(-0.877415\pi\)
0.788712 + 0.614763i \(0.210748\pi\)
\(860\) −50.6596 −1.72748
\(861\) 0 0
\(862\) −45.8913 −1.56307
\(863\) −11.5337 + 19.9769i −0.392611 + 0.680022i −0.992793 0.119841i \(-0.961761\pi\)
0.600182 + 0.799863i \(0.295095\pi\)
\(864\) 11.8994 + 20.6103i 0.404824 + 0.701176i
\(865\) 7.85304 + 13.6019i 0.267011 + 0.462477i
\(866\) 17.9191 31.0368i 0.608916 1.05467i
\(867\) −7.47530 −0.253874
\(868\) 0 0
\(869\) 24.6192 0.835150
\(870\) 0.907737 1.57225i 0.0307752 0.0533041i
\(871\) −5.54509 9.60438i −0.187888 0.325432i
\(872\) 17.8827 + 30.9738i 0.605586 + 1.04891i
\(873\) −3.10392 + 5.37615i −0.105052 + 0.181955i
\(874\) −32.9059 −1.11306
\(875\) 0 0
\(876\) 58.9863 1.99296
\(877\) 2.16175 3.74427i 0.0729972 0.126435i −0.827216 0.561884i \(-0.810077\pi\)
0.900214 + 0.435449i \(0.143410\pi\)
\(878\) −31.2182 54.0715i −1.05356 1.82483i
\(879\) −0.841381 1.45731i −0.0283791 0.0491540i
\(880\) 35.0574 60.7213i 1.18179 2.04691i
\(881\) −19.9929 −0.673579 −0.336790 0.941580i \(-0.609341\pi\)
−0.336790 + 0.941580i \(0.609341\pi\)
\(882\) 0 0
\(883\) 1.89450 0.0637551 0.0318776 0.999492i \(-0.489851\pi\)
0.0318776 + 0.999492i \(0.489851\pi\)
\(884\) 49.7257 86.1274i 1.67246 2.89678i
\(885\) −6.91245 11.9727i −0.232359 0.402458i
\(886\) −11.3386 19.6390i −0.380928 0.659787i
\(887\) 2.61263 4.52520i 0.0877234 0.151941i −0.818825 0.574043i \(-0.805374\pi\)
0.906548 + 0.422102i \(0.138707\pi\)
\(888\) 21.2043 0.711570
\(889\) 0 0
\(890\) −2.27744 −0.0763401
\(891\) 2.22274 3.84990i 0.0744647 0.128977i
\(892\) −80.7499 139.863i −2.70371 4.68296i
\(893\) −8.89912 15.4137i −0.297798 0.515801i
\(894\) 27.8081 48.1651i 0.930043 1.61088i
\(895\) −1.28097 −0.0428182
\(896\) 0 0
\(897\) 15.7757 0.526735
\(898\) −33.7058 + 58.3801i −1.12478 + 1.94817i
\(899\) −0.414587 0.718086i −0.0138273 0.0239495i
\(900\) −2.77882 4.81306i −0.0926275 0.160435i
\(901\) 17.3927 30.1251i 0.579436 1.00361i
\(902\) 70.5855 2.35024
\(903\) 0 0
\(904\) 123.316 4.10144
\(905\) −8.27994 + 14.3413i −0.275235 + 0.476720i
\(906\) 29.0145 + 50.2546i 0.963943 + 1.66960i
\(907\) 2.70960 + 4.69317i 0.0899709 + 0.155834i 0.907499 0.420055i \(-0.137989\pi\)
−0.817528 + 0.575889i \(0.804656\pi\)
\(908\) 58.0523 100.550i 1.92653 3.33686i
\(909\) 4.11882 0.136613
\(910\) 0 0
\(911\) 0.226686 0.00751043 0.00375522 0.999993i \(-0.498805\pi\)
0.00375522 + 0.999993i \(0.498805\pi\)
\(912\) 21.6426 37.4861i 0.716658 1.24129i
\(913\) −15.9406 27.6099i −0.527556 0.913753i
\(914\) 38.9644 + 67.4883i 1.28883 + 2.23231i
\(915\) 4.70711 8.15295i 0.155612 0.269528i
\(916\) 27.3933 0.905099
\(917\) 0 0
\(918\) 13.6006 0.448886
\(919\) 4.05312 7.02021i 0.133700 0.231575i −0.791400 0.611299i \(-0.790647\pi\)
0.925100 + 0.379723i \(0.123981\pi\)
\(920\) 21.3284 + 36.9419i 0.703177 + 1.21794i
\(921\) −3.65685 6.33386i −0.120497 0.208708i
\(922\) −52.7456 + 91.3580i −1.73708 + 3.00872i
\(923\) 1.00353 0.0330316
\(924\) 0 0
\(925\) −2.16804 −0.0712848
\(926\) −3.27874 + 5.67895i −0.107746 + 0.186622i
\(927\) 4.08402 + 7.07373i 0.134137 + 0.232332i
\(928\) −7.85814 13.6107i −0.257956 0.446793i
\(929\) −1.14972 + 1.99138i −0.0377212 + 0.0653351i −0.884270 0.466977i \(-0.845343\pi\)
0.846548 + 0.532312i \(0.178677\pi\)
\(930\) −3.45178 −0.113188
\(931\) 0 0
\(932\) −6.07906 −0.199126
\(933\) 5.60097 9.70117i 0.183368 0.317602i
\(934\) 27.2271 + 47.1587i 0.890897 + 1.54308i
\(935\) −10.9965 19.0464i −0.359623 0.622885i
\(936\) −17.6881 + 30.6367i −0.578155 + 1.00139i
\(937\) −16.1023 −0.526041 −0.263020 0.964790i \(-0.584719\pi\)
−0.263020 + 0.964790i \(0.584719\pi\)
\(938\) 0 0
\(939\) 31.4857 1.02750
\(940\) −18.0215 + 31.2141i −0.587795 + 1.01809i
\(941\) −6.76235 11.7127i −0.220446 0.381824i 0.734497 0.678612i \(-0.237418\pi\)
−0.954944 + 0.296787i \(0.904085\pi\)
\(942\) 2.69442 + 4.66687i 0.0877889 + 0.152055i
\(943\) −12.5952 + 21.8155i −0.410156 + 0.710412i
\(944\) −218.048 −7.09687
\(945\) 0 0
\(946\) 111.400 3.62191
\(947\) −3.42690 + 5.93557i −0.111359 + 0.192880i −0.916319 0.400450i \(-0.868854\pi\)
0.804959 + 0.593330i \(0.202187\pi\)
\(948\) −15.3892 26.6549i −0.499818 0.865711i
\(949\) 19.1949 + 33.2465i 0.623092 + 1.07923i
\(950\) −3.77235 + 6.53390i −0.122391 + 0.211988i
\(951\) −8.45048 −0.274026
\(952\) 0 0
\(953\) −44.9483 −1.45602 −0.728009 0.685568i \(-0.759554\pi\)
−0.728009 + 0.685568i \(0.759554\pi\)
\(954\) −9.66490 + 16.7401i −0.312913 + 0.541981i
\(955\) −4.38136 7.58874i −0.141778 0.245566i
\(956\) −71.3395 123.564i −2.30728 3.99633i
\(957\) −1.46786 + 2.54242i −0.0474493 + 0.0821846i
\(958\) −9.45584 −0.305504
\(959\) 0 0
\(960\) −33.8812 −1.09351
\(961\) 14.7117 25.4815i 0.474572 0.821983i
\(962\) 10.7792 + 18.6701i 0.347536 + 0.601949i
\(963\) 4.26475 + 7.38677i 0.137430 + 0.238035i
\(964\) −68.7669 + 119.108i −2.21483 + 3.83620i
\(965\) 26.4986 0.853020
\(966\) 0 0
\(967\) 12.4245 0.399546 0.199773 0.979842i \(-0.435979\pi\)
0.199773 + 0.979842i \(0.435979\pi\)
\(968\) −42.8496 + 74.2177i −1.37724 + 2.38545i
\(969\) −6.78863 11.7583i −0.218082 0.377730i
\(970\) −8.53304 14.7797i −0.273979 0.474546i
\(971\) −10.4079 + 18.0271i −0.334006 + 0.578516i −0.983293 0.182028i \(-0.941734\pi\)
0.649287 + 0.760543i \(0.275067\pi\)
\(972\) −5.55765 −0.178262
\(973\) 0 0
\(974\) −19.5802 −0.627390
\(975\) 1.80853 3.13247i 0.0579193 0.100319i
\(976\) −74.2412 128.590i −2.37640 4.11605i
\(977\) −21.3709 37.0155i −0.683716 1.18423i −0.973839 0.227241i \(-0.927029\pi\)
0.290123 0.956989i \(-0.406304\pi\)
\(978\) −11.2458 + 19.4783i −0.359600 + 0.622846i
\(979\) 3.68276 0.117702
\(980\) 0 0
\(981\) −3.65685 −0.116754
\(982\) 43.5592 75.4468i 1.39003 2.40760i
\(983\) −2.84491 4.92753i −0.0907386 0.157164i 0.817084 0.576519i \(-0.195589\pi\)
−0.907822 + 0.419355i \(0.862256\pi\)
\(984\) −28.2442 48.9204i −0.900392 1.55952i
\(985\) −2.05720 + 3.56317i −0.0655477 + 0.113532i
\(986\) −8.98160 −0.286033
\(987\) 0 0
\(988\) 55.1690 1.75516
\(989\) −19.8780 + 34.4297i −0.632084 + 1.09480i
\(990\) 6.11058 + 10.5838i 0.194207 + 0.336377i
\(991\) −29.5608 51.2008i −0.939029 1.62645i −0.767287 0.641304i \(-0.778394\pi\)
−0.171743 0.985142i \(-0.554940\pi\)
\(992\) −14.9408 + 25.8782i −0.474370 + 0.821632i
\(993\) −16.6533 −0.528477
\(994\) 0 0
\(995\) −7.63538 −0.242058
\(996\) −19.9285 + 34.5172i −0.631460 + 1.09372i
\(997\) 22.7647 + 39.4296i 0.720965 + 1.24875i 0.960614 + 0.277888i \(0.0896343\pi\)
−0.239649 + 0.970860i \(0.577032\pi\)
\(998\) 53.6116 + 92.8579i 1.69704 + 2.93937i
\(999\) −1.08402 + 1.87758i −0.0342969 + 0.0594040i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.i.n.226.1 8
7.2 even 3 735.2.a.n.1.4 4
7.3 odd 6 735.2.i.m.361.1 8
7.4 even 3 inner 735.2.i.n.361.1 8
7.5 odd 6 735.2.a.o.1.4 yes 4
7.6 odd 2 735.2.i.m.226.1 8
21.2 odd 6 2205.2.a.bf.1.1 4
21.5 even 6 2205.2.a.bg.1.1 4
35.9 even 6 3675.2.a.bl.1.1 4
35.19 odd 6 3675.2.a.bk.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.a.n.1.4 4 7.2 even 3
735.2.a.o.1.4 yes 4 7.5 odd 6
735.2.i.m.226.1 8 7.6 odd 2
735.2.i.m.361.1 8 7.3 odd 6
735.2.i.n.226.1 8 1.1 even 1 trivial
735.2.i.n.361.1 8 7.4 even 3 inner
2205.2.a.bf.1.1 4 21.2 odd 6
2205.2.a.bg.1.1 4 21.5 even 6
3675.2.a.bk.1.1 4 35.19 odd 6
3675.2.a.bl.1.1 4 35.9 even 6