Properties

Label 735.2.a.o.1.4
Level $735$
Weight $2$
Character 735.1
Self dual yes
Analytic conductor $5.869$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [735,2,Mod(1,735)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("735.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(735, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 735 = 3 \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 735.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,4,4,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.86900454856\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.4352.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 6x^{2} - 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(0.334904\) of defining polynomial
Character \(\chi\) \(=\) 735.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.74912 q^{2} +1.00000 q^{3} +5.55765 q^{4} -1.00000 q^{5} +2.74912 q^{6} +9.78039 q^{8} +1.00000 q^{9} -2.74912 q^{10} -4.44549 q^{11} +5.55765 q^{12} -3.61706 q^{13} -1.00000 q^{15} +15.7721 q^{16} +4.94725 q^{17} +2.74912 q^{18} -2.74441 q^{19} -5.55765 q^{20} -12.2212 q^{22} -4.36147 q^{23} +9.78039 q^{24} +1.00000 q^{25} -9.94372 q^{26} +1.00000 q^{27} +0.660384 q^{29} -2.74912 q^{30} -1.25559 q^{31} +23.7987 q^{32} -4.44549 q^{33} +13.6006 q^{34} +5.55765 q^{36} -2.16804 q^{37} -7.54469 q^{38} -3.61706 q^{39} -9.78039 q^{40} +5.77568 q^{41} -9.11529 q^{43} -24.7064 q^{44} -1.00000 q^{45} -11.9902 q^{46} -6.48528 q^{47} +15.7721 q^{48} +2.74912 q^{50} +4.94725 q^{51} -20.1023 q^{52} +7.03127 q^{53} +2.74912 q^{54} +4.44549 q^{55} -2.74441 q^{57} +1.81547 q^{58} +13.8249 q^{59} -5.55765 q^{60} -9.41421 q^{61} -3.45178 q^{62} +33.8812 q^{64} +3.61706 q^{65} -12.2212 q^{66} +3.06608 q^{67} +27.4951 q^{68} -4.36147 q^{69} +0.277444 q^{71} +9.78039 q^{72} +10.6135 q^{73} -5.96021 q^{74} +1.00000 q^{75} -15.2524 q^{76} -9.94372 q^{78} -5.53803 q^{79} -15.7721 q^{80} +1.00000 q^{81} +15.8780 q^{82} +7.17157 q^{83} -4.94725 q^{85} -25.0590 q^{86} +0.660384 q^{87} -43.4786 q^{88} +0.828427 q^{89} -2.74912 q^{90} -24.2395 q^{92} -1.25559 q^{93} -17.8288 q^{94} +2.74441 q^{95} +23.7987 q^{96} -6.20784 q^{97} -4.44549 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{3} + 8 q^{4} - 4 q^{5} + 4 q^{6} + 12 q^{8} + 4 q^{9} - 4 q^{10} + 8 q^{11} + 8 q^{12} - 4 q^{15} + 12 q^{16} + 8 q^{17} + 4 q^{18} - 8 q^{19} - 8 q^{20} + 12 q^{24} + 4 q^{25} + 4 q^{27}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.74912 1.94392 0.971960 0.235147i \(-0.0755571\pi\)
0.971960 + 0.235147i \(0.0755571\pi\)
\(3\) 1.00000 0.577350
\(4\) 5.55765 2.77882
\(5\) −1.00000 −0.447214
\(6\) 2.74912 1.12232
\(7\) 0 0
\(8\) 9.78039 3.45789
\(9\) 1.00000 0.333333
\(10\) −2.74912 −0.869347
\(11\) −4.44549 −1.34036 −0.670182 0.742197i \(-0.733784\pi\)
−0.670182 + 0.742197i \(0.733784\pi\)
\(12\) 5.55765 1.60435
\(13\) −3.61706 −1.00319 −0.501596 0.865102i \(-0.667254\pi\)
−0.501596 + 0.865102i \(0.667254\pi\)
\(14\) 0 0
\(15\) −1.00000 −0.258199
\(16\) 15.7721 3.94304
\(17\) 4.94725 1.19988 0.599942 0.800043i \(-0.295190\pi\)
0.599942 + 0.800043i \(0.295190\pi\)
\(18\) 2.74912 0.647973
\(19\) −2.74441 −0.629610 −0.314805 0.949156i \(-0.601939\pi\)
−0.314805 + 0.949156i \(0.601939\pi\)
\(20\) −5.55765 −1.24273
\(21\) 0 0
\(22\) −12.2212 −2.60556
\(23\) −4.36147 −0.909428 −0.454714 0.890637i \(-0.650259\pi\)
−0.454714 + 0.890637i \(0.650259\pi\)
\(24\) 9.78039 1.99641
\(25\) 1.00000 0.200000
\(26\) −9.94372 −1.95012
\(27\) 1.00000 0.192450
\(28\) 0 0
\(29\) 0.660384 0.122630 0.0613151 0.998118i \(-0.480471\pi\)
0.0613151 + 0.998118i \(0.480471\pi\)
\(30\) −2.74912 −0.501918
\(31\) −1.25559 −0.225511 −0.112756 0.993623i \(-0.535968\pi\)
−0.112756 + 0.993623i \(0.535968\pi\)
\(32\) 23.7987 4.20706
\(33\) −4.44549 −0.773860
\(34\) 13.6006 2.33248
\(35\) 0 0
\(36\) 5.55765 0.926275
\(37\) −2.16804 −0.356424 −0.178212 0.983992i \(-0.557031\pi\)
−0.178212 + 0.983992i \(0.557031\pi\)
\(38\) −7.54469 −1.22391
\(39\) −3.61706 −0.579193
\(40\) −9.78039 −1.54642
\(41\) 5.77568 0.902009 0.451005 0.892522i \(-0.351066\pi\)
0.451005 + 0.892522i \(0.351066\pi\)
\(42\) 0 0
\(43\) −9.11529 −1.39007 −0.695035 0.718976i \(-0.744611\pi\)
−0.695035 + 0.718976i \(0.744611\pi\)
\(44\) −24.7064 −3.72464
\(45\) −1.00000 −0.149071
\(46\) −11.9902 −1.76786
\(47\) −6.48528 −0.945976 −0.472988 0.881069i \(-0.656825\pi\)
−0.472988 + 0.881069i \(0.656825\pi\)
\(48\) 15.7721 2.27651
\(49\) 0 0
\(50\) 2.74912 0.388784
\(51\) 4.94725 0.692754
\(52\) −20.1023 −2.78769
\(53\) 7.03127 0.965820 0.482910 0.875670i \(-0.339580\pi\)
0.482910 + 0.875670i \(0.339580\pi\)
\(54\) 2.74912 0.374108
\(55\) 4.44549 0.599429
\(56\) 0 0
\(57\) −2.74441 −0.363505
\(58\) 1.81547 0.238383
\(59\) 13.8249 1.79985 0.899924 0.436046i \(-0.143622\pi\)
0.899924 + 0.436046i \(0.143622\pi\)
\(60\) −5.55765 −0.717489
\(61\) −9.41421 −1.20537 −0.602683 0.797981i \(-0.705902\pi\)
−0.602683 + 0.797981i \(0.705902\pi\)
\(62\) −3.45178 −0.438376
\(63\) 0 0
\(64\) 33.8812 4.23514
\(65\) 3.61706 0.448641
\(66\) −12.2212 −1.50432
\(67\) 3.06608 0.374581 0.187290 0.982305i \(-0.440029\pi\)
0.187290 + 0.982305i \(0.440029\pi\)
\(68\) 27.4951 3.33427
\(69\) −4.36147 −0.525059
\(70\) 0 0
\(71\) 0.277444 0.0329265 0.0164632 0.999864i \(-0.494759\pi\)
0.0164632 + 0.999864i \(0.494759\pi\)
\(72\) 9.78039 1.15263
\(73\) 10.6135 1.24222 0.621110 0.783724i \(-0.286682\pi\)
0.621110 + 0.783724i \(0.286682\pi\)
\(74\) −5.96021 −0.692860
\(75\) 1.00000 0.115470
\(76\) −15.2524 −1.74957
\(77\) 0 0
\(78\) −9.94372 −1.12590
\(79\) −5.53803 −0.623077 −0.311539 0.950234i \(-0.600844\pi\)
−0.311539 + 0.950234i \(0.600844\pi\)
\(80\) −15.7721 −1.76338
\(81\) 1.00000 0.111111
\(82\) 15.8780 1.75343
\(83\) 7.17157 0.787182 0.393591 0.919286i \(-0.371233\pi\)
0.393591 + 0.919286i \(0.371233\pi\)
\(84\) 0 0
\(85\) −4.94725 −0.536605
\(86\) −25.0590 −2.70218
\(87\) 0.660384 0.0708006
\(88\) −43.4786 −4.63483
\(89\) 0.828427 0.0878131 0.0439065 0.999036i \(-0.486020\pi\)
0.0439065 + 0.999036i \(0.486020\pi\)
\(90\) −2.74912 −0.289782
\(91\) 0 0
\(92\) −24.2395 −2.52714
\(93\) −1.25559 −0.130199
\(94\) −17.8288 −1.83890
\(95\) 2.74441 0.281570
\(96\) 23.7987 2.42895
\(97\) −6.20784 −0.630310 −0.315155 0.949040i \(-0.602057\pi\)
−0.315155 + 0.949040i \(0.602057\pi\)
\(98\) 0 0
\(99\) −4.44549 −0.446788
\(100\) 5.55765 0.555765
\(101\) −4.11882 −0.409838 −0.204919 0.978779i \(-0.565693\pi\)
−0.204919 + 0.978779i \(0.565693\pi\)
\(102\) 13.6006 1.34666
\(103\) 8.16804 0.804821 0.402411 0.915459i \(-0.368172\pi\)
0.402411 + 0.915459i \(0.368172\pi\)
\(104\) −35.3763 −3.46893
\(105\) 0 0
\(106\) 19.3298 1.87748
\(107\) −8.52951 −0.824579 −0.412289 0.911053i \(-0.635271\pi\)
−0.412289 + 0.911053i \(0.635271\pi\)
\(108\) 5.55765 0.534785
\(109\) −3.65685 −0.350263 −0.175132 0.984545i \(-0.556035\pi\)
−0.175132 + 0.984545i \(0.556035\pi\)
\(110\) 12.2212 1.16524
\(111\) −2.16804 −0.205782
\(112\) 0 0
\(113\) 12.6085 1.18611 0.593056 0.805161i \(-0.297921\pi\)
0.593056 + 0.805161i \(0.297921\pi\)
\(114\) −7.54469 −0.706625
\(115\) 4.36147 0.406709
\(116\) 3.67018 0.340768
\(117\) −3.61706 −0.334397
\(118\) 38.0063 3.49876
\(119\) 0 0
\(120\) −9.78039 −0.892823
\(121\) 8.76235 0.796577
\(122\) −25.8808 −2.34314
\(123\) 5.77568 0.520775
\(124\) −6.97815 −0.626656
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −0.0562783 −0.00499389 −0.00249695 0.999997i \(-0.500795\pi\)
−0.00249695 + 0.999997i \(0.500795\pi\)
\(128\) 45.5459 4.02572
\(129\) −9.11529 −0.802557
\(130\) 9.94372 0.872122
\(131\) −19.6631 −1.71797 −0.858987 0.511997i \(-0.828906\pi\)
−0.858987 + 0.511997i \(0.828906\pi\)
\(132\) −24.7064 −2.15042
\(133\) 0 0
\(134\) 8.42900 0.728155
\(135\) −1.00000 −0.0860663
\(136\) 48.3861 4.14907
\(137\) −18.7507 −1.60198 −0.800989 0.598679i \(-0.795693\pi\)
−0.800989 + 0.598679i \(0.795693\pi\)
\(138\) −11.9902 −1.02067
\(139\) 6.14657 0.521345 0.260673 0.965427i \(-0.416056\pi\)
0.260673 + 0.965427i \(0.416056\pi\)
\(140\) 0 0
\(141\) −6.48528 −0.546159
\(142\) 0.762725 0.0640065
\(143\) 16.0796 1.34464
\(144\) 15.7721 1.31435
\(145\) −0.660384 −0.0548419
\(146\) 29.1778 2.41478
\(147\) 0 0
\(148\) −12.0492 −0.990440
\(149\) 20.2306 1.65735 0.828677 0.559727i \(-0.189094\pi\)
0.828677 + 0.559727i \(0.189094\pi\)
\(150\) 2.74912 0.224465
\(151\) 21.1082 1.71776 0.858882 0.512174i \(-0.171160\pi\)
0.858882 + 0.512174i \(0.171160\pi\)
\(152\) −26.8414 −2.17712
\(153\) 4.94725 0.399962
\(154\) 0 0
\(155\) 1.25559 0.100852
\(156\) −20.1023 −1.60948
\(157\) −1.96021 −0.156441 −0.0782207 0.996936i \(-0.524924\pi\)
−0.0782207 + 0.996936i \(0.524924\pi\)
\(158\) −15.2247 −1.21121
\(159\) 7.03127 0.557616
\(160\) −23.7987 −1.88145
\(161\) 0 0
\(162\) 2.74912 0.215991
\(163\) −8.18137 −0.640814 −0.320407 0.947280i \(-0.603820\pi\)
−0.320407 + 0.947280i \(0.603820\pi\)
\(164\) 32.0992 2.50653
\(165\) 4.44549 0.346081
\(166\) 19.7155 1.53022
\(167\) 3.76235 0.291139 0.145570 0.989348i \(-0.453498\pi\)
0.145570 + 0.989348i \(0.453498\pi\)
\(168\) 0 0
\(169\) 0.0831193 0.00639379
\(170\) −13.6006 −1.04312
\(171\) −2.74441 −0.209870
\(172\) −50.6596 −3.86276
\(173\) 15.7061 1.19411 0.597055 0.802200i \(-0.296337\pi\)
0.597055 + 0.802200i \(0.296337\pi\)
\(174\) 1.81547 0.137631
\(175\) 0 0
\(176\) −70.1149 −5.28511
\(177\) 13.8249 1.03914
\(178\) 2.27744 0.170702
\(179\) −1.28097 −0.0957444 −0.0478722 0.998853i \(-0.515244\pi\)
−0.0478722 + 0.998853i \(0.515244\pi\)
\(180\) −5.55765 −0.414243
\(181\) −16.5599 −1.23089 −0.615443 0.788181i \(-0.711023\pi\)
−0.615443 + 0.788181i \(0.711023\pi\)
\(182\) 0 0
\(183\) −9.41421 −0.695919
\(184\) −42.6568 −3.14470
\(185\) 2.16804 0.159398
\(186\) −3.45178 −0.253097
\(187\) −21.9929 −1.60828
\(188\) −36.0429 −2.62870
\(189\) 0 0
\(190\) 7.54469 0.547350
\(191\) 8.76272 0.634049 0.317024 0.948417i \(-0.397316\pi\)
0.317024 + 0.948417i \(0.397316\pi\)
\(192\) 33.8812 2.44516
\(193\) 26.4986 1.90741 0.953706 0.300741i \(-0.0972340\pi\)
0.953706 + 0.300741i \(0.0972340\pi\)
\(194\) −17.0661 −1.22527
\(195\) 3.61706 0.259023
\(196\) 0 0
\(197\) 4.11439 0.293138 0.146569 0.989200i \(-0.453177\pi\)
0.146569 + 0.989200i \(0.453177\pi\)
\(198\) −12.2212 −0.868520
\(199\) 7.63538 0.541258 0.270629 0.962684i \(-0.412768\pi\)
0.270629 + 0.962684i \(0.412768\pi\)
\(200\) 9.78039 0.691578
\(201\) 3.06608 0.216264
\(202\) −11.3231 −0.796693
\(203\) 0 0
\(204\) 27.4951 1.92504
\(205\) −5.77568 −0.403391
\(206\) 22.4549 1.56451
\(207\) −4.36147 −0.303143
\(208\) −57.0488 −3.95562
\(209\) 12.2002 0.843907
\(210\) 0 0
\(211\) −0.317238 −0.0218396 −0.0109198 0.999940i \(-0.503476\pi\)
−0.0109198 + 0.999940i \(0.503476\pi\)
\(212\) 39.0773 2.68384
\(213\) 0.277444 0.0190101
\(214\) −23.4486 −1.60291
\(215\) 9.11529 0.621658
\(216\) 9.78039 0.665471
\(217\) 0 0
\(218\) −10.0531 −0.680883
\(219\) 10.6135 0.717196
\(220\) 24.7064 1.66571
\(221\) −17.8945 −1.20371
\(222\) −5.96021 −0.400023
\(223\) −29.0590 −1.94594 −0.972968 0.230941i \(-0.925820\pi\)
−0.972968 + 0.230941i \(0.925820\pi\)
\(224\) 0 0
\(225\) 1.00000 0.0666667
\(226\) 34.6624 2.30571
\(227\) 20.8910 1.38658 0.693291 0.720657i \(-0.256160\pi\)
0.693291 + 0.720657i \(0.256160\pi\)
\(228\) −15.2524 −1.01012
\(229\) −4.92893 −0.325713 −0.162857 0.986650i \(-0.552071\pi\)
−0.162857 + 0.986650i \(0.552071\pi\)
\(230\) 11.9902 0.790609
\(231\) 0 0
\(232\) 6.45881 0.424042
\(233\) −1.09382 −0.0716585 −0.0358292 0.999358i \(-0.511407\pi\)
−0.0358292 + 0.999358i \(0.511407\pi\)
\(234\) −9.94372 −0.650041
\(235\) 6.48528 0.423053
\(236\) 76.8339 5.00146
\(237\) −5.53803 −0.359734
\(238\) 0 0
\(239\) 25.6725 1.66062 0.830309 0.557303i \(-0.188164\pi\)
0.830309 + 0.557303i \(0.188164\pi\)
\(240\) −15.7721 −1.01809
\(241\) −24.7468 −1.59408 −0.797040 0.603927i \(-0.793602\pi\)
−0.797040 + 0.603927i \(0.793602\pi\)
\(242\) 24.0887 1.54848
\(243\) 1.00000 0.0641500
\(244\) −52.3209 −3.34950
\(245\) 0 0
\(246\) 15.8780 1.01235
\(247\) 9.92668 0.631619
\(248\) −12.2802 −0.779794
\(249\) 7.17157 0.454480
\(250\) −2.74912 −0.173869
\(251\) −0.405692 −0.0256070 −0.0128035 0.999918i \(-0.504076\pi\)
−0.0128035 + 0.999918i \(0.504076\pi\)
\(252\) 0 0
\(253\) 19.3888 1.21897
\(254\) −0.154716 −0.00970772
\(255\) −4.94725 −0.309809
\(256\) 57.4486 3.59054
\(257\) 10.8910 0.679360 0.339680 0.940541i \(-0.389681\pi\)
0.339680 + 0.940541i \(0.389681\pi\)
\(258\) −25.0590 −1.56011
\(259\) 0 0
\(260\) 20.1023 1.24669
\(261\) 0.660384 0.0408767
\(262\) −54.0562 −3.33961
\(263\) 8.76716 0.540606 0.270303 0.962775i \(-0.412876\pi\)
0.270303 + 0.962775i \(0.412876\pi\)
\(264\) −43.4786 −2.67592
\(265\) −7.03127 −0.431928
\(266\) 0 0
\(267\) 0.828427 0.0506989
\(268\) 17.0402 1.04089
\(269\) −22.8347 −1.39226 −0.696128 0.717918i \(-0.745095\pi\)
−0.696128 + 0.717918i \(0.745095\pi\)
\(270\) −2.74912 −0.167306
\(271\) −10.6748 −0.648448 −0.324224 0.945980i \(-0.605103\pi\)
−0.324224 + 0.945980i \(0.605103\pi\)
\(272\) 78.0288 4.73119
\(273\) 0 0
\(274\) −51.5478 −3.11412
\(275\) −4.44549 −0.268073
\(276\) −24.2395 −1.45905
\(277\) −12.4361 −0.747211 −0.373605 0.927588i \(-0.621879\pi\)
−0.373605 + 0.927588i \(0.621879\pi\)
\(278\) 16.8976 1.01345
\(279\) −1.25559 −0.0751705
\(280\) 0 0
\(281\) 12.9169 0.770556 0.385278 0.922800i \(-0.374105\pi\)
0.385278 + 0.922800i \(0.374105\pi\)
\(282\) −17.8288 −1.06169
\(283\) −25.6139 −1.52259 −0.761294 0.648407i \(-0.775436\pi\)
−0.761294 + 0.648407i \(0.775436\pi\)
\(284\) 1.54193 0.0914969
\(285\) 2.74441 0.162565
\(286\) 44.2047 2.61388
\(287\) 0 0
\(288\) 23.7987 1.40235
\(289\) 7.47530 0.439723
\(290\) −1.81547 −0.106608
\(291\) −6.20784 −0.363910
\(292\) 58.9863 3.45191
\(293\) 1.68276 0.0983080 0.0491540 0.998791i \(-0.484347\pi\)
0.0491540 + 0.998791i \(0.484347\pi\)
\(294\) 0 0
\(295\) −13.8249 −0.804917
\(296\) −21.2043 −1.23248
\(297\) −4.44549 −0.257953
\(298\) 55.6163 3.22176
\(299\) 15.7757 0.912331
\(300\) 5.55765 0.320871
\(301\) 0 0
\(302\) 58.0290 3.33919
\(303\) −4.11882 −0.236620
\(304\) −43.2852 −2.48257
\(305\) 9.41421 0.539056
\(306\) 13.6006 0.777493
\(307\) 7.31371 0.417415 0.208708 0.977978i \(-0.433074\pi\)
0.208708 + 0.977978i \(0.433074\pi\)
\(308\) 0 0
\(309\) 8.16804 0.464664
\(310\) 3.45178 0.196048
\(311\) −11.2019 −0.635204 −0.317602 0.948224i \(-0.602878\pi\)
−0.317602 + 0.948224i \(0.602878\pi\)
\(312\) −35.3763 −2.00279
\(313\) 31.4857 1.77967 0.889837 0.456278i \(-0.150818\pi\)
0.889837 + 0.456278i \(0.150818\pi\)
\(314\) −5.38883 −0.304110
\(315\) 0 0
\(316\) −30.7784 −1.73142
\(317\) 8.45048 0.474626 0.237313 0.971433i \(-0.423733\pi\)
0.237313 + 0.971433i \(0.423733\pi\)
\(318\) 19.3298 1.08396
\(319\) −2.93573 −0.164369
\(320\) −33.8812 −1.89401
\(321\) −8.52951 −0.476071
\(322\) 0 0
\(323\) −13.5773 −0.755459
\(324\) 5.55765 0.308758
\(325\) −3.61706 −0.200638
\(326\) −22.4915 −1.24569
\(327\) −3.65685 −0.202225
\(328\) 56.4884 3.11905
\(329\) 0 0
\(330\) 12.2212 0.672753
\(331\) 16.6533 0.915349 0.457675 0.889120i \(-0.348682\pi\)
0.457675 + 0.889120i \(0.348682\pi\)
\(332\) 39.8571 2.18744
\(333\) −2.16804 −0.118808
\(334\) 10.3431 0.565952
\(335\) −3.06608 −0.167518
\(336\) 0 0
\(337\) 31.9178 1.73867 0.869337 0.494220i \(-0.164546\pi\)
0.869337 + 0.494220i \(0.164546\pi\)
\(338\) 0.228505 0.0124290
\(339\) 12.6085 0.684802
\(340\) −27.4951 −1.49113
\(341\) 5.58173 0.302268
\(342\) −7.54469 −0.407970
\(343\) 0 0
\(344\) −89.1511 −4.80671
\(345\) 4.36147 0.234813
\(346\) 43.1778 2.32126
\(347\) −7.91282 −0.424783 −0.212391 0.977185i \(-0.568125\pi\)
−0.212391 + 0.977185i \(0.568125\pi\)
\(348\) 3.67018 0.196742
\(349\) −25.1525 −1.34638 −0.673190 0.739469i \(-0.735076\pi\)
−0.673190 + 0.739469i \(0.735076\pi\)
\(350\) 0 0
\(351\) −3.61706 −0.193064
\(352\) −105.797 −5.63899
\(353\) 20.5667 1.09465 0.547327 0.836919i \(-0.315645\pi\)
0.547327 + 0.836919i \(0.315645\pi\)
\(354\) 38.0063 2.02001
\(355\) −0.277444 −0.0147252
\(356\) 4.60411 0.244017
\(357\) 0 0
\(358\) −3.52155 −0.186120
\(359\) −14.1023 −0.744293 −0.372147 0.928174i \(-0.621378\pi\)
−0.372147 + 0.928174i \(0.621378\pi\)
\(360\) −9.78039 −0.515472
\(361\) −11.4682 −0.603591
\(362\) −45.5251 −2.39274
\(363\) 8.76235 0.459904
\(364\) 0 0
\(365\) −10.6135 −0.555538
\(366\) −25.8808 −1.35281
\(367\) −0.386844 −0.0201931 −0.0100965 0.999949i \(-0.503214\pi\)
−0.0100965 + 0.999949i \(0.503214\pi\)
\(368\) −68.7897 −3.58591
\(369\) 5.77568 0.300670
\(370\) 5.96021 0.309856
\(371\) 0 0
\(372\) −6.97815 −0.361800
\(373\) −10.6345 −0.550632 −0.275316 0.961354i \(-0.588783\pi\)
−0.275316 + 0.961354i \(0.588783\pi\)
\(374\) −60.4612 −3.12637
\(375\) −1.00000 −0.0516398
\(376\) −63.4286 −3.27108
\(377\) −2.38865 −0.123022
\(378\) 0 0
\(379\) −26.4290 −1.35757 −0.678783 0.734339i \(-0.737492\pi\)
−0.678783 + 0.734339i \(0.737492\pi\)
\(380\) 15.2524 0.782434
\(381\) −0.0562783 −0.00288322
\(382\) 24.0898 1.23254
\(383\) −5.14567 −0.262931 −0.131466 0.991321i \(-0.541968\pi\)
−0.131466 + 0.991321i \(0.541968\pi\)
\(384\) 45.5459 2.32425
\(385\) 0 0
\(386\) 72.8478 3.70785
\(387\) −9.11529 −0.463356
\(388\) −34.5010 −1.75152
\(389\) −12.9080 −0.654462 −0.327231 0.944944i \(-0.606116\pi\)
−0.327231 + 0.944944i \(0.606116\pi\)
\(390\) 9.94372 0.503520
\(391\) −21.5773 −1.09121
\(392\) 0 0
\(393\) −19.6631 −0.991873
\(394\) 11.3109 0.569837
\(395\) 5.53803 0.278649
\(396\) −24.7064 −1.24155
\(397\) 22.7627 1.14243 0.571214 0.820801i \(-0.306473\pi\)
0.571214 + 0.820801i \(0.306473\pi\)
\(398\) 20.9906 1.05216
\(399\) 0 0
\(400\) 15.7721 0.788607
\(401\) −9.85080 −0.491926 −0.245963 0.969279i \(-0.579104\pi\)
−0.245963 + 0.969279i \(0.579104\pi\)
\(402\) 8.42900 0.420400
\(403\) 4.54156 0.226231
\(404\) −22.8910 −1.13887
\(405\) −1.00000 −0.0496904
\(406\) 0 0
\(407\) 9.63801 0.477738
\(408\) 48.3861 2.39547
\(409\) 14.6742 0.725594 0.362797 0.931868i \(-0.381822\pi\)
0.362797 + 0.931868i \(0.381822\pi\)
\(410\) −15.8780 −0.784159
\(411\) −18.7507 −0.924903
\(412\) 45.3951 2.23646
\(413\) 0 0
\(414\) −11.9902 −0.589285
\(415\) −7.17157 −0.352039
\(416\) −86.0813 −4.22049
\(417\) 6.14657 0.300999
\(418\) 33.5398 1.64049
\(419\) 9.89450 0.483378 0.241689 0.970354i \(-0.422299\pi\)
0.241689 + 0.970354i \(0.422299\pi\)
\(420\) 0 0
\(421\) 35.4388 1.72718 0.863591 0.504193i \(-0.168210\pi\)
0.863591 + 0.504193i \(0.168210\pi\)
\(422\) −0.872125 −0.0424544
\(423\) −6.48528 −0.315325
\(424\) 68.7686 3.33970
\(425\) 4.94725 0.239977
\(426\) 0.762725 0.0369541
\(427\) 0 0
\(428\) −47.4040 −2.29136
\(429\) 16.0796 0.776330
\(430\) 25.0590 1.20845
\(431\) −16.6931 −0.804079 −0.402040 0.915622i \(-0.631699\pi\)
−0.402040 + 0.915622i \(0.631699\pi\)
\(432\) 15.7721 0.758838
\(433\) 13.0363 0.626483 0.313241 0.949674i \(-0.398585\pi\)
0.313241 + 0.949674i \(0.398585\pi\)
\(434\) 0 0
\(435\) −0.660384 −0.0316630
\(436\) −20.3235 −0.973319
\(437\) 11.9696 0.572585
\(438\) 29.1778 1.39417
\(439\) −22.7114 −1.08396 −0.541979 0.840392i \(-0.682325\pi\)
−0.541979 + 0.840392i \(0.682325\pi\)
\(440\) 43.4786 2.07276
\(441\) 0 0
\(442\) −49.1941 −2.33992
\(443\) 8.24891 0.391917 0.195959 0.980612i \(-0.437218\pi\)
0.195959 + 0.980612i \(0.437218\pi\)
\(444\) −12.0492 −0.571831
\(445\) −0.828427 −0.0392712
\(446\) −79.8867 −3.78274
\(447\) 20.2306 0.956874
\(448\) 0 0
\(449\) 24.5212 1.15723 0.578613 0.815602i \(-0.303594\pi\)
0.578613 + 0.815602i \(0.303594\pi\)
\(450\) 2.74912 0.129595
\(451\) −25.6757 −1.20902
\(452\) 70.0738 3.29599
\(453\) 21.1082 0.991751
\(454\) 57.4317 2.69541
\(455\) 0 0
\(456\) −26.8414 −1.25696
\(457\) −28.3468 −1.32601 −0.663004 0.748616i \(-0.730719\pi\)
−0.663004 + 0.748616i \(0.730719\pi\)
\(458\) −13.5502 −0.633160
\(459\) 4.94725 0.230918
\(460\) 24.2395 1.13017
\(461\) −38.3727 −1.78720 −0.893598 0.448868i \(-0.851827\pi\)
−0.893598 + 0.448868i \(0.851827\pi\)
\(462\) 0 0
\(463\) 2.38530 0.110855 0.0554273 0.998463i \(-0.482348\pi\)
0.0554273 + 0.998463i \(0.482348\pi\)
\(464\) 10.4157 0.483536
\(465\) 1.25559 0.0582268
\(466\) −3.00704 −0.139298
\(467\) 19.8079 0.916598 0.458299 0.888798i \(-0.348459\pi\)
0.458299 + 0.888798i \(0.348459\pi\)
\(468\) −20.1023 −0.929231
\(469\) 0 0
\(470\) 17.8288 0.822381
\(471\) −1.96021 −0.0903215
\(472\) 135.213 6.22368
\(473\) 40.5219 1.86320
\(474\) −15.2247 −0.699293
\(475\) −2.74441 −0.125922
\(476\) 0 0
\(477\) 7.03127 0.321940
\(478\) 70.5768 3.22811
\(479\) 3.43959 0.157159 0.0785795 0.996908i \(-0.474962\pi\)
0.0785795 + 0.996908i \(0.474962\pi\)
\(480\) −23.7987 −1.08626
\(481\) 7.84194 0.357562
\(482\) −68.0318 −3.09876
\(483\) 0 0
\(484\) 48.6981 2.21355
\(485\) 6.20784 0.281883
\(486\) 2.74912 0.124703
\(487\) −7.12235 −0.322745 −0.161372 0.986894i \(-0.551592\pi\)
−0.161372 + 0.986894i \(0.551592\pi\)
\(488\) −92.0747 −4.16803
\(489\) −8.18137 −0.369974
\(490\) 0 0
\(491\) −31.6896 −1.43013 −0.715066 0.699057i \(-0.753603\pi\)
−0.715066 + 0.699057i \(0.753603\pi\)
\(492\) 32.0992 1.44714
\(493\) 3.26709 0.147142
\(494\) 27.2896 1.22782
\(495\) 4.44549 0.199810
\(496\) −19.8034 −0.889200
\(497\) 0 0
\(498\) 19.7155 0.883473
\(499\) −39.0027 −1.74600 −0.873001 0.487718i \(-0.837829\pi\)
−0.873001 + 0.487718i \(0.837829\pi\)
\(500\) −5.55765 −0.248546
\(501\) 3.76235 0.168089
\(502\) −1.11529 −0.0497780
\(503\) 18.5308 0.826247 0.413123 0.910675i \(-0.364438\pi\)
0.413123 + 0.910675i \(0.364438\pi\)
\(504\) 0 0
\(505\) 4.11882 0.183285
\(506\) 53.3022 2.36957
\(507\) 0.0831193 0.00369146
\(508\) −0.312775 −0.0138771
\(509\) 39.8053 1.76434 0.882169 0.470934i \(-0.156083\pi\)
0.882169 + 0.470934i \(0.156083\pi\)
\(510\) −13.6006 −0.602244
\(511\) 0 0
\(512\) 66.8412 2.95399
\(513\) −2.74441 −0.121168
\(514\) 29.9406 1.32062
\(515\) −8.16804 −0.359927
\(516\) −50.6596 −2.23016
\(517\) 28.8302 1.26795
\(518\) 0 0
\(519\) 15.7061 0.689420
\(520\) 35.3763 1.55135
\(521\) −26.3594 −1.15483 −0.577413 0.816452i \(-0.695938\pi\)
−0.577413 + 0.816452i \(0.695938\pi\)
\(522\) 1.81547 0.0794611
\(523\) 24.3727 1.06574 0.532872 0.846196i \(-0.321113\pi\)
0.532872 + 0.846196i \(0.321113\pi\)
\(524\) −109.281 −4.77395
\(525\) 0 0
\(526\) 24.1019 1.05089
\(527\) −6.21174 −0.270588
\(528\) −70.1149 −3.05136
\(529\) −3.97762 −0.172940
\(530\) −19.3298 −0.839633
\(531\) 13.8249 0.599949
\(532\) 0 0
\(533\) −20.8910 −0.904888
\(534\) 2.27744 0.0985546
\(535\) 8.52951 0.368763
\(536\) 29.9874 1.29526
\(537\) −1.28097 −0.0552781
\(538\) −62.7753 −2.70643
\(539\) 0 0
\(540\) −5.55765 −0.239163
\(541\) 24.3627 1.04744 0.523718 0.851892i \(-0.324545\pi\)
0.523718 + 0.851892i \(0.324545\pi\)
\(542\) −29.3463 −1.26053
\(543\) −16.5599 −0.710652
\(544\) 117.738 5.04798
\(545\) 3.65685 0.156642
\(546\) 0 0
\(547\) 10.1421 0.433646 0.216823 0.976211i \(-0.430430\pi\)
0.216823 + 0.976211i \(0.430430\pi\)
\(548\) −104.210 −4.45161
\(549\) −9.41421 −0.401789
\(550\) −12.2212 −0.521112
\(551\) −1.81236 −0.0772092
\(552\) −42.6568 −1.81560
\(553\) 0 0
\(554\) −34.1882 −1.45252
\(555\) 2.16804 0.0920283
\(556\) 34.1605 1.44873
\(557\) −14.5560 −0.616756 −0.308378 0.951264i \(-0.599786\pi\)
−0.308378 + 0.951264i \(0.599786\pi\)
\(558\) −3.45178 −0.146125
\(559\) 32.9706 1.39451
\(560\) 0 0
\(561\) −21.9929 −0.928543
\(562\) 35.5100 1.49790
\(563\) 36.5845 1.54185 0.770926 0.636925i \(-0.219794\pi\)
0.770926 + 0.636925i \(0.219794\pi\)
\(564\) −36.0429 −1.51768
\(565\) −12.6085 −0.530445
\(566\) −70.4156 −2.95979
\(567\) 0 0
\(568\) 2.71351 0.113856
\(569\) −3.64687 −0.152885 −0.0764424 0.997074i \(-0.524356\pi\)
−0.0764424 + 0.997074i \(0.524356\pi\)
\(570\) 7.54469 0.316012
\(571\) −38.5933 −1.61508 −0.807540 0.589812i \(-0.799202\pi\)
−0.807540 + 0.589812i \(0.799202\pi\)
\(572\) 89.3647 3.73653
\(573\) 8.76272 0.366068
\(574\) 0 0
\(575\) −4.36147 −0.181886
\(576\) 33.8812 1.41171
\(577\) −14.0523 −0.585006 −0.292503 0.956265i \(-0.594488\pi\)
−0.292503 + 0.956265i \(0.594488\pi\)
\(578\) 20.5505 0.854787
\(579\) 26.4986 1.10124
\(580\) −3.67018 −0.152396
\(581\) 0 0
\(582\) −17.0661 −0.707412
\(583\) −31.2574 −1.29455
\(584\) 103.804 4.29546
\(585\) 3.61706 0.149547
\(586\) 4.62611 0.191103
\(587\) 27.0402 1.11607 0.558034 0.829818i \(-0.311556\pi\)
0.558034 + 0.829818i \(0.311556\pi\)
\(588\) 0 0
\(589\) 3.44586 0.141984
\(590\) −38.0063 −1.56469
\(591\) 4.11439 0.169243
\(592\) −34.1947 −1.40539
\(593\) −21.6764 −0.890145 −0.445073 0.895495i \(-0.646822\pi\)
−0.445073 + 0.895495i \(0.646822\pi\)
\(594\) −12.2212 −0.501440
\(595\) 0 0
\(596\) 112.434 4.60550
\(597\) 7.63538 0.312495
\(598\) 43.3692 1.77350
\(599\) 25.9898 1.06191 0.530957 0.847399i \(-0.321833\pi\)
0.530957 + 0.847399i \(0.321833\pi\)
\(600\) 9.78039 0.399283
\(601\) −12.0746 −0.492533 −0.246267 0.969202i \(-0.579204\pi\)
−0.246267 + 0.969202i \(0.579204\pi\)
\(602\) 0 0
\(603\) 3.06608 0.124860
\(604\) 117.312 4.77336
\(605\) −8.76235 −0.356240
\(606\) −11.3231 −0.459971
\(607\) −41.7390 −1.69413 −0.847067 0.531486i \(-0.821634\pi\)
−0.847067 + 0.531486i \(0.821634\pi\)
\(608\) −65.3133 −2.64880
\(609\) 0 0
\(610\) 25.8808 1.04788
\(611\) 23.4576 0.948995
\(612\) 27.4951 1.11142
\(613\) −11.8016 −0.476662 −0.238331 0.971184i \(-0.576600\pi\)
−0.238331 + 0.971184i \(0.576600\pi\)
\(614\) 20.1062 0.811422
\(615\) −5.77568 −0.232898
\(616\) 0 0
\(617\) 12.2913 0.494829 0.247415 0.968910i \(-0.420419\pi\)
0.247415 + 0.968910i \(0.420419\pi\)
\(618\) 22.4549 0.903269
\(619\) −24.3772 −0.979801 −0.489900 0.871778i \(-0.662967\pi\)
−0.489900 + 0.871778i \(0.662967\pi\)
\(620\) 6.97815 0.280249
\(621\) −4.36147 −0.175020
\(622\) −30.7955 −1.23479
\(623\) 0 0
\(624\) −57.0488 −2.28378
\(625\) 1.00000 0.0400000
\(626\) 86.5578 3.45954
\(627\) 12.2002 0.487230
\(628\) −10.8941 −0.434723
\(629\) −10.7259 −0.427668
\(630\) 0 0
\(631\) −43.3200 −1.72454 −0.862271 0.506448i \(-0.830958\pi\)
−0.862271 + 0.506448i \(0.830958\pi\)
\(632\) −54.1641 −2.15453
\(633\) −0.317238 −0.0126091
\(634\) 23.2314 0.922635
\(635\) 0.0562783 0.00223334
\(636\) 39.0773 1.54952
\(637\) 0 0
\(638\) −8.07066 −0.319521
\(639\) 0.277444 0.0109755
\(640\) −45.5459 −1.80036
\(641\) 18.5408 0.732316 0.366158 0.930553i \(-0.380673\pi\)
0.366158 + 0.930553i \(0.380673\pi\)
\(642\) −23.4486 −0.925443
\(643\) −8.55489 −0.337372 −0.168686 0.985670i \(-0.553952\pi\)
−0.168686 + 0.985670i \(0.553952\pi\)
\(644\) 0 0
\(645\) 9.11529 0.358914
\(646\) −37.3255 −1.46855
\(647\) −43.0886 −1.69399 −0.846994 0.531603i \(-0.821590\pi\)
−0.846994 + 0.531603i \(0.821590\pi\)
\(648\) 9.78039 0.384210
\(649\) −61.4584 −2.41245
\(650\) −9.94372 −0.390025
\(651\) 0 0
\(652\) −45.4692 −1.78071
\(653\) −14.0277 −0.548948 −0.274474 0.961595i \(-0.588504\pi\)
−0.274474 + 0.961595i \(0.588504\pi\)
\(654\) −10.0531 −0.393108
\(655\) 19.6631 0.768302
\(656\) 91.0949 3.55666
\(657\) 10.6135 0.414073
\(658\) 0 0
\(659\) −19.1488 −0.745932 −0.372966 0.927845i \(-0.621659\pi\)
−0.372966 + 0.927845i \(0.621659\pi\)
\(660\) 24.7064 0.961697
\(661\) 26.5717 1.03352 0.516759 0.856131i \(-0.327138\pi\)
0.516759 + 0.856131i \(0.327138\pi\)
\(662\) 45.7819 1.77937
\(663\) −17.8945 −0.694965
\(664\) 70.1408 2.72199
\(665\) 0 0
\(666\) −5.96021 −0.230953
\(667\) −2.88024 −0.111523
\(668\) 20.9098 0.809025
\(669\) −29.0590 −1.12349
\(670\) −8.42900 −0.325641
\(671\) 41.8508 1.61563
\(672\) 0 0
\(673\) 46.6900 1.79977 0.899883 0.436132i \(-0.143652\pi\)
0.899883 + 0.436132i \(0.143652\pi\)
\(674\) 87.7458 3.37984
\(675\) 1.00000 0.0384900
\(676\) 0.461948 0.0177672
\(677\) −41.6953 −1.60248 −0.801240 0.598343i \(-0.795826\pi\)
−0.801240 + 0.598343i \(0.795826\pi\)
\(678\) 34.6624 1.33120
\(679\) 0 0
\(680\) −48.3861 −1.85552
\(681\) 20.8910 0.800544
\(682\) 15.3448 0.587584
\(683\) −21.5430 −0.824321 −0.412160 0.911111i \(-0.635226\pi\)
−0.412160 + 0.911111i \(0.635226\pi\)
\(684\) −15.2524 −0.583192
\(685\) 18.7507 0.716426
\(686\) 0 0
\(687\) −4.92893 −0.188050
\(688\) −143.768 −5.48110
\(689\) −25.4325 −0.968902
\(690\) 11.9902 0.456458
\(691\) −22.9224 −0.872010 −0.436005 0.899944i \(-0.643607\pi\)
−0.436005 + 0.899944i \(0.643607\pi\)
\(692\) 87.2888 3.31822
\(693\) 0 0
\(694\) −21.7533 −0.825743
\(695\) −6.14657 −0.233153
\(696\) 6.45881 0.244821
\(697\) 28.5737 1.08231
\(698\) −69.1471 −2.61726
\(699\) −1.09382 −0.0413720
\(700\) 0 0
\(701\) −51.4317 −1.94255 −0.971275 0.237960i \(-0.923521\pi\)
−0.971275 + 0.237960i \(0.923521\pi\)
\(702\) −9.94372 −0.375302
\(703\) 5.94999 0.224408
\(704\) −150.618 −5.67664
\(705\) 6.48528 0.244250
\(706\) 56.5402 2.12792
\(707\) 0 0
\(708\) 76.8339 2.88759
\(709\) −34.4682 −1.29448 −0.647241 0.762286i \(-0.724077\pi\)
−0.647241 + 0.762286i \(0.724077\pi\)
\(710\) −0.762725 −0.0286246
\(711\) −5.53803 −0.207692
\(712\) 8.10234 0.303648
\(713\) 5.47623 0.205086
\(714\) 0 0
\(715\) −16.0796 −0.601343
\(716\) −7.11920 −0.266057
\(717\) 25.6725 0.958759
\(718\) −38.7690 −1.44685
\(719\) −42.0751 −1.56914 −0.784568 0.620043i \(-0.787115\pi\)
−0.784568 + 0.620043i \(0.787115\pi\)
\(720\) −15.7721 −0.587793
\(721\) 0 0
\(722\) −31.5275 −1.17333
\(723\) −24.7468 −0.920342
\(724\) −92.0340 −3.42042
\(725\) 0.660384 0.0245260
\(726\) 24.0887 0.894017
\(727\) −36.6722 −1.36010 −0.680048 0.733168i \(-0.738041\pi\)
−0.680048 + 0.733168i \(0.738041\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −29.1778 −1.07992
\(731\) −45.0957 −1.66792
\(732\) −52.3209 −1.93384
\(733\) 46.3696 1.71270 0.856350 0.516397i \(-0.172727\pi\)
0.856350 + 0.516397i \(0.172727\pi\)
\(734\) −1.06348 −0.0392538
\(735\) 0 0
\(736\) −103.797 −3.82602
\(737\) −13.6302 −0.502075
\(738\) 15.8780 0.584478
\(739\) 1.35846 0.0499719 0.0249859 0.999688i \(-0.492046\pi\)
0.0249859 + 0.999688i \(0.492046\pi\)
\(740\) 12.0492 0.442938
\(741\) 9.92668 0.364666
\(742\) 0 0
\(743\) −26.2748 −0.963930 −0.481965 0.876191i \(-0.660077\pi\)
−0.481965 + 0.876191i \(0.660077\pi\)
\(744\) −12.2802 −0.450214
\(745\) −20.2306 −0.741191
\(746\) −29.2354 −1.07039
\(747\) 7.17157 0.262394
\(748\) −122.229 −4.46914
\(749\) 0 0
\(750\) −2.74912 −0.100384
\(751\) −25.2271 −0.920548 −0.460274 0.887777i \(-0.652249\pi\)
−0.460274 + 0.887777i \(0.652249\pi\)
\(752\) −102.287 −3.73002
\(753\) −0.405692 −0.0147842
\(754\) −6.56668 −0.239144
\(755\) −21.1082 −0.768207
\(756\) 0 0
\(757\) 6.02331 0.218921 0.109460 0.993991i \(-0.465088\pi\)
0.109460 + 0.993991i \(0.465088\pi\)
\(758\) −72.6564 −2.63900
\(759\) 19.3888 0.703770
\(760\) 26.8414 0.973638
\(761\) 30.8214 1.11727 0.558637 0.829412i \(-0.311325\pi\)
0.558637 + 0.829412i \(0.311325\pi\)
\(762\) −0.154716 −0.00560476
\(763\) 0 0
\(764\) 48.7001 1.76191
\(765\) −4.94725 −0.178868
\(766\) −14.1460 −0.511117
\(767\) −50.0055 −1.80559
\(768\) 57.4486 2.07300
\(769\) 31.8736 1.14939 0.574695 0.818367i \(-0.305121\pi\)
0.574695 + 0.818367i \(0.305121\pi\)
\(770\) 0 0
\(771\) 10.8910 0.392229
\(772\) 147.270 5.30036
\(773\) −17.0912 −0.614727 −0.307364 0.951592i \(-0.599447\pi\)
−0.307364 + 0.951592i \(0.599447\pi\)
\(774\) −25.0590 −0.900728
\(775\) −1.25559 −0.0451023
\(776\) −60.7151 −2.17954
\(777\) 0 0
\(778\) −35.4857 −1.27222
\(779\) −15.8508 −0.567914
\(780\) 20.1023 0.719779
\(781\) −1.23337 −0.0441335
\(782\) −59.3184 −2.12122
\(783\) 0.660384 0.0236002
\(784\) 0 0
\(785\) 1.96021 0.0699627
\(786\) −54.0562 −1.92812
\(787\) 28.1617 1.00386 0.501929 0.864909i \(-0.332624\pi\)
0.501929 + 0.864909i \(0.332624\pi\)
\(788\) 22.8663 0.814580
\(789\) 8.76716 0.312119
\(790\) 15.2247 0.541670
\(791\) 0 0
\(792\) −43.4786 −1.54494
\(793\) 34.0518 1.20921
\(794\) 62.5774 2.22079
\(795\) −7.03127 −0.249374
\(796\) 42.4347 1.50406
\(797\) −9.60058 −0.340070 −0.170035 0.985438i \(-0.554388\pi\)
−0.170035 + 0.985438i \(0.554388\pi\)
\(798\) 0 0
\(799\) −32.0843 −1.13506
\(800\) 23.7987 0.841411
\(801\) 0.828427 0.0292710
\(802\) −27.0810 −0.956264
\(803\) −47.1823 −1.66503
\(804\) 17.0402 0.600960
\(805\) 0 0
\(806\) 12.4853 0.439775
\(807\) −22.8347 −0.803819
\(808\) −40.2837 −1.41718
\(809\) −21.0331 −0.739485 −0.369742 0.929134i \(-0.620554\pi\)
−0.369742 + 0.929134i \(0.620554\pi\)
\(810\) −2.74912 −0.0965941
\(811\) −0.770313 −0.0270493 −0.0135247 0.999909i \(-0.504305\pi\)
−0.0135247 + 0.999909i \(0.504305\pi\)
\(812\) 0 0
\(813\) −10.6748 −0.374382
\(814\) 26.4960 0.928685
\(815\) 8.18137 0.286581
\(816\) 78.0288 2.73155
\(817\) 25.0161 0.875201
\(818\) 40.3412 1.41050
\(819\) 0 0
\(820\) −32.0992 −1.12095
\(821\) −16.4782 −0.575094 −0.287547 0.957767i \(-0.592840\pi\)
−0.287547 + 0.957767i \(0.592840\pi\)
\(822\) −51.5478 −1.79794
\(823\) −16.0563 −0.559687 −0.279843 0.960046i \(-0.590283\pi\)
−0.279843 + 0.960046i \(0.590283\pi\)
\(824\) 79.8867 2.78298
\(825\) −4.44549 −0.154772
\(826\) 0 0
\(827\) −1.11736 −0.0388545 −0.0194272 0.999811i \(-0.506184\pi\)
−0.0194272 + 0.999811i \(0.506184\pi\)
\(828\) −24.2395 −0.842380
\(829\) 52.5724 1.82592 0.912958 0.408054i \(-0.133793\pi\)
0.912958 + 0.408054i \(0.133793\pi\)
\(830\) −19.7155 −0.684335
\(831\) −12.4361 −0.431402
\(832\) −122.550 −4.24866
\(833\) 0 0
\(834\) 16.8976 0.585117
\(835\) −3.76235 −0.130202
\(836\) 67.8045 2.34507
\(837\) −1.25559 −0.0433997
\(838\) 27.2012 0.939648
\(839\) −8.65667 −0.298861 −0.149431 0.988772i \(-0.547744\pi\)
−0.149431 + 0.988772i \(0.547744\pi\)
\(840\) 0 0
\(841\) −28.5639 −0.984962
\(842\) 97.4254 3.35750
\(843\) 12.9169 0.444881
\(844\) −1.76310 −0.0606884
\(845\) −0.0831193 −0.00285939
\(846\) −17.8288 −0.612967
\(847\) 0 0
\(848\) 110.898 3.80826
\(849\) −25.6139 −0.879067
\(850\) 13.6006 0.466496
\(851\) 9.45584 0.324142
\(852\) 1.54193 0.0528258
\(853\) 21.9361 0.751078 0.375539 0.926807i \(-0.377458\pi\)
0.375539 + 0.926807i \(0.377458\pi\)
\(854\) 0 0
\(855\) 2.74441 0.0938567
\(856\) −83.4219 −2.85130
\(857\) −25.1253 −0.858263 −0.429132 0.903242i \(-0.641180\pi\)
−0.429132 + 0.903242i \(0.641180\pi\)
\(858\) 44.2047 1.50912
\(859\) −8.09183 −0.276090 −0.138045 0.990426i \(-0.544082\pi\)
−0.138045 + 0.990426i \(0.544082\pi\)
\(860\) 50.6596 1.72748
\(861\) 0 0
\(862\) −45.8913 −1.56307
\(863\) 23.0674 0.785222 0.392611 0.919705i \(-0.371572\pi\)
0.392611 + 0.919705i \(0.371572\pi\)
\(864\) 23.7987 0.809649
\(865\) −15.7061 −0.534023
\(866\) 35.8382 1.21783
\(867\) 7.47530 0.253874
\(868\) 0 0
\(869\) 24.6192 0.835150
\(870\) −1.81547 −0.0615503
\(871\) −11.0902 −0.375776
\(872\) −35.7655 −1.21117
\(873\) −6.20784 −0.210103
\(874\) 32.9059 1.11306
\(875\) 0 0
\(876\) 58.9863 1.99296
\(877\) −4.32351 −0.145994 −0.0729972 0.997332i \(-0.523256\pi\)
−0.0729972 + 0.997332i \(0.523256\pi\)
\(878\) −62.4364 −2.10713
\(879\) 1.68276 0.0567581
\(880\) 70.1149 2.36357
\(881\) 19.9929 0.673579 0.336790 0.941580i \(-0.390659\pi\)
0.336790 + 0.941580i \(0.390659\pi\)
\(882\) 0 0
\(883\) 1.89450 0.0637551 0.0318776 0.999492i \(-0.489851\pi\)
0.0318776 + 0.999492i \(0.489851\pi\)
\(884\) −99.4513 −3.34491
\(885\) −13.8249 −0.464719
\(886\) 22.6772 0.761856
\(887\) 5.22525 0.175447 0.0877234 0.996145i \(-0.472041\pi\)
0.0877234 + 0.996145i \(0.472041\pi\)
\(888\) −21.2043 −0.711570
\(889\) 0 0
\(890\) −2.27744 −0.0763401
\(891\) −4.44549 −0.148929
\(892\) −161.500 −5.40741
\(893\) 17.7982 0.595595
\(894\) 55.6163 1.86009
\(895\) 1.28097 0.0428182
\(896\) 0 0
\(897\) 15.7757 0.526735
\(898\) 67.4116 2.24955
\(899\) −0.829175 −0.0276545
\(900\) 5.55765 0.185255
\(901\) 34.7855 1.15887
\(902\) −70.5855 −2.35024
\(903\) 0 0
\(904\) 123.316 4.10144
\(905\) 16.5599 0.550469
\(906\) 58.0290 1.92789
\(907\) −5.41921 −0.179942 −0.0899709 0.995944i \(-0.528677\pi\)
−0.0899709 + 0.995944i \(0.528677\pi\)
\(908\) 116.105 3.85307
\(909\) −4.11882 −0.136613
\(910\) 0 0
\(911\) 0.226686 0.00751043 0.00375522 0.999993i \(-0.498805\pi\)
0.00375522 + 0.999993i \(0.498805\pi\)
\(912\) −43.2852 −1.43332
\(913\) −31.8811 −1.05511
\(914\) −77.9287 −2.57765
\(915\) 9.41421 0.311224
\(916\) −27.3933 −0.905099
\(917\) 0 0
\(918\) 13.6006 0.448886
\(919\) −8.10624 −0.267400 −0.133700 0.991022i \(-0.542686\pi\)
−0.133700 + 0.991022i \(0.542686\pi\)
\(920\) 42.6568 1.40635
\(921\) 7.31371 0.240995
\(922\) −105.491 −3.47417
\(923\) −1.00353 −0.0330316
\(924\) 0 0
\(925\) −2.16804 −0.0712848
\(926\) 6.55748 0.215492
\(927\) 8.16804 0.268274
\(928\) 15.7163 0.515912
\(929\) −2.29945 −0.0754424 −0.0377212 0.999288i \(-0.512010\pi\)
−0.0377212 + 0.999288i \(0.512010\pi\)
\(930\) 3.45178 0.113188
\(931\) 0 0
\(932\) −6.07906 −0.199126
\(933\) −11.2019 −0.366735
\(934\) 54.4541 1.78179
\(935\) 21.9929 0.719246
\(936\) −35.3763 −1.15631
\(937\) 16.1023 0.526041 0.263020 0.964790i \(-0.415281\pi\)
0.263020 + 0.964790i \(0.415281\pi\)
\(938\) 0 0
\(939\) 31.4857 1.02750
\(940\) 36.0429 1.17559
\(941\) −13.5247 −0.440893 −0.220446 0.975399i \(-0.570751\pi\)
−0.220446 + 0.975399i \(0.570751\pi\)
\(942\) −5.38883 −0.175578
\(943\) −25.1904 −0.820313
\(944\) 218.048 7.09687
\(945\) 0 0
\(946\) 111.400 3.62191
\(947\) 6.85381 0.222719 0.111359 0.993780i \(-0.464480\pi\)
0.111359 + 0.993780i \(0.464480\pi\)
\(948\) −30.7784 −0.999637
\(949\) −38.3898 −1.24618
\(950\) −7.54469 −0.244782
\(951\) 8.45048 0.274026
\(952\) 0 0
\(953\) −44.9483 −1.45602 −0.728009 0.685568i \(-0.759554\pi\)
−0.728009 + 0.685568i \(0.759554\pi\)
\(954\) 19.3298 0.625825
\(955\) −8.76272 −0.283555
\(956\) 142.679 4.61457
\(957\) −2.93573 −0.0948986
\(958\) 9.45584 0.305504
\(959\) 0 0
\(960\) −33.8812 −1.09351
\(961\) −29.4235 −0.949145
\(962\) 21.5584 0.695071
\(963\) −8.52951 −0.274860
\(964\) −137.534 −4.42967
\(965\) −26.4986 −0.853020
\(966\) 0 0
\(967\) 12.4245 0.399546 0.199773 0.979842i \(-0.435979\pi\)
0.199773 + 0.979842i \(0.435979\pi\)
\(968\) 85.6992 2.75448
\(969\) −13.5773 −0.436165
\(970\) 17.0661 0.547959
\(971\) −20.8158 −0.668012 −0.334006 0.942571i \(-0.608401\pi\)
−0.334006 + 0.942571i \(0.608401\pi\)
\(972\) 5.55765 0.178262
\(973\) 0 0
\(974\) −19.5802 −0.627390
\(975\) −3.61706 −0.115839
\(976\) −148.482 −4.75281
\(977\) 42.7418 1.36743 0.683716 0.729748i \(-0.260363\pi\)
0.683716 + 0.729748i \(0.260363\pi\)
\(978\) −22.4915 −0.719200
\(979\) −3.68276 −0.117702
\(980\) 0 0
\(981\) −3.65685 −0.116754
\(982\) −87.1184 −2.78006
\(983\) −5.68982 −0.181477 −0.0907386 0.995875i \(-0.528923\pi\)
−0.0907386 + 0.995875i \(0.528923\pi\)
\(984\) 56.4884 1.80078
\(985\) −4.11439 −0.131095
\(986\) 8.98160 0.286033
\(987\) 0 0
\(988\) 55.1690 1.75516
\(989\) 39.7560 1.26417
\(990\) 12.2212 0.388414
\(991\) 59.1216 1.87806 0.939029 0.343838i \(-0.111727\pi\)
0.939029 + 0.343838i \(0.111727\pi\)
\(992\) −29.8815 −0.948739
\(993\) 16.6533 0.528477
\(994\) 0 0
\(995\) −7.63538 −0.242058
\(996\) 39.8571 1.26292
\(997\) 45.5294 1.44193 0.720965 0.692972i \(-0.243699\pi\)
0.720965 + 0.692972i \(0.243699\pi\)
\(998\) −107.223 −3.39409
\(999\) −2.16804 −0.0685938
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 735.2.a.o.1.4 yes 4
3.2 odd 2 2205.2.a.bg.1.1 4
5.4 even 2 3675.2.a.bk.1.1 4
7.2 even 3 735.2.i.m.361.1 8
7.3 odd 6 735.2.i.n.226.1 8
7.4 even 3 735.2.i.m.226.1 8
7.5 odd 6 735.2.i.n.361.1 8
7.6 odd 2 735.2.a.n.1.4 4
21.20 even 2 2205.2.a.bf.1.1 4
35.34 odd 2 3675.2.a.bl.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
735.2.a.n.1.4 4 7.6 odd 2
735.2.a.o.1.4 yes 4 1.1 even 1 trivial
735.2.i.m.226.1 8 7.4 even 3
735.2.i.m.361.1 8 7.2 even 3
735.2.i.n.226.1 8 7.3 odd 6
735.2.i.n.361.1 8 7.5 odd 6
2205.2.a.bf.1.1 4 21.20 even 2
2205.2.a.bg.1.1 4 3.2 odd 2
3675.2.a.bk.1.1 4 5.4 even 2
3675.2.a.bl.1.1 4 35.34 odd 2