Properties

Label 728.2.h.b.27.14
Level $728$
Weight $2$
Character 728.27
Analytic conductor $5.813$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(27,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.27"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,1,0,1,0,10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 27.14
Character \(\chi\) \(=\) 728.27
Dual form 728.2.h.b.27.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.879218 + 1.10769i) q^{2} +1.92788i q^{3} +(-0.453951 - 1.94780i) q^{4} +2.16680 q^{5} +(-2.13549 - 1.69503i) q^{6} +(-1.74001 + 1.99308i) q^{7} +(2.55668 + 1.20971i) q^{8} -0.716713 q^{9} +(-1.90509 + 2.40014i) q^{10} -5.04203 q^{11} +(3.75512 - 0.875162i) q^{12} +1.00000 q^{13} +(-0.677869 - 3.67974i) q^{14} +4.17733i q^{15} +(-3.58786 + 1.76841i) q^{16} +0.687834i q^{17} +(0.630147 - 0.793895i) q^{18} -1.09617i q^{19} +(-0.983622 - 4.22050i) q^{20} +(-3.84242 - 3.35452i) q^{21} +(4.43304 - 5.58500i) q^{22} +3.80258i q^{23} +(-2.33216 + 4.92897i) q^{24} -0.304972 q^{25} +(-0.879218 + 1.10769i) q^{26} +4.40190i q^{27} +(4.67200 + 2.48443i) q^{28} +6.62535i q^{29} +(-4.62718 - 3.67278i) q^{30} -8.65921 q^{31} +(1.19566 - 5.52905i) q^{32} -9.72042i q^{33} +(-0.761906 - 0.604756i) q^{34} +(-3.77025 + 4.31861i) q^{35} +(0.325352 + 1.39601i) q^{36} +9.25001i q^{37} +(1.21422 + 0.963776i) q^{38} +1.92788i q^{39} +(5.53982 + 2.62119i) q^{40} -6.30848i q^{41} +(7.09409 - 1.30685i) q^{42} -3.27423 q^{43} +(2.28883 + 9.82087i) q^{44} -1.55297 q^{45} +(-4.21208 - 3.34330i) q^{46} +2.09029 q^{47} +(-3.40928 - 6.91695i) q^{48} +(-0.944747 - 6.93595i) q^{49} +(0.268137 - 0.337814i) q^{50} -1.32606 q^{51} +(-0.453951 - 1.94780i) q^{52} +2.89312i q^{53} +(-4.87594 - 3.87023i) q^{54} -10.9251 q^{55} +(-6.85968 + 2.99078i) q^{56} +2.11329 q^{57} +(-7.33883 - 5.82513i) q^{58} -11.6482i q^{59} +(8.13660 - 1.89630i) q^{60} +1.96479 q^{61} +(7.61334 - 9.59172i) q^{62} +(1.24709 - 1.42847i) q^{63} +(5.07323 + 6.18566i) q^{64} +2.16680 q^{65} +(10.7672 + 8.54637i) q^{66} +13.5558 q^{67} +(1.33976 - 0.312243i) q^{68} -7.33091 q^{69} +(-1.46881 - 7.97327i) q^{70} -5.07363i q^{71} +(-1.83241 - 0.867011i) q^{72} +2.08832i q^{73} +(-10.2461 - 8.13278i) q^{74} -0.587948i q^{75} +(-2.13513 + 0.497609i) q^{76} +(8.77317 - 10.0492i) q^{77} +(-2.13549 - 1.69503i) q^{78} +0.772654i q^{79} +(-7.77417 + 3.83180i) q^{80} -10.6365 q^{81} +(6.98783 + 5.54653i) q^{82} -5.41871i q^{83} +(-4.78967 + 9.00705i) q^{84} +1.49040i q^{85} +(2.87876 - 3.62683i) q^{86} -12.7729 q^{87} +(-12.8909 - 6.09937i) q^{88} +3.65311i q^{89} +(1.36540 - 1.72021i) q^{90} +(-1.74001 + 1.99308i) q^{91} +(7.40667 - 1.72618i) q^{92} -16.6939i q^{93} +(-1.83782 + 2.31539i) q^{94} -2.37519i q^{95} +(10.6593 + 2.30508i) q^{96} +2.48774i q^{97} +(8.51352 + 5.05173i) q^{98} +3.61369 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + q^{4} + 10 q^{6} - 5 q^{8} - 48 q^{9} - 4 q^{11} - 10 q^{12} + 48 q^{13} - 6 q^{14} + 5 q^{16} - 15 q^{18} + 22 q^{20} - 6 q^{22} + 48 q^{25} + q^{26} - 26 q^{28} - 26 q^{30} - 19 q^{32}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.879218 + 1.10769i −0.621701 + 0.783255i
\(3\) 1.92788i 1.11306i 0.830827 + 0.556530i \(0.187868\pi\)
−0.830827 + 0.556530i \(0.812132\pi\)
\(4\) −0.453951 1.94780i −0.226975 0.973900i
\(5\) 2.16680 0.969023 0.484512 0.874785i \(-0.338997\pi\)
0.484512 + 0.874785i \(0.338997\pi\)
\(6\) −2.13549 1.69503i −0.871810 0.691991i
\(7\) −1.74001 + 1.99308i −0.657661 + 0.753314i
\(8\) 2.55668 + 1.20971i 0.903923 + 0.427695i
\(9\) −0.716713 −0.238904
\(10\) −1.90509 + 2.40014i −0.602443 + 0.758992i
\(11\) −5.04203 −1.52023 −0.760115 0.649789i \(-0.774857\pi\)
−0.760115 + 0.649789i \(0.774857\pi\)
\(12\) 3.75512 0.875162i 1.08401 0.252638i
\(13\) 1.00000 0.277350
\(14\) −0.677869 3.67974i −0.181168 0.983452i
\(15\) 4.17733i 1.07858i
\(16\) −3.58786 + 1.76841i −0.896964 + 0.442103i
\(17\) 0.687834i 0.166824i 0.996515 + 0.0834121i \(0.0265818\pi\)
−0.996515 + 0.0834121i \(0.973418\pi\)
\(18\) 0.630147 0.793895i 0.148527 0.187123i
\(19\) 1.09617i 0.251479i −0.992063 0.125740i \(-0.959870\pi\)
0.992063 0.125740i \(-0.0401304\pi\)
\(20\) −0.983622 4.22050i −0.219944 0.943732i
\(21\) −3.84242 3.35452i −0.838484 0.732017i
\(22\) 4.43304 5.58500i 0.945128 1.19073i
\(23\) 3.80258i 0.792892i 0.918058 + 0.396446i \(0.129757\pi\)
−0.918058 + 0.396446i \(0.870243\pi\)
\(24\) −2.33216 + 4.92897i −0.476051 + 1.00612i
\(25\) −0.304972 −0.0609943
\(26\) −0.879218 + 1.10769i −0.172429 + 0.217236i
\(27\) 4.40190i 0.847146i
\(28\) 4.67200 + 2.48443i 0.882926 + 0.469513i
\(29\) 6.62535i 1.23030i 0.788411 + 0.615148i \(0.210904\pi\)
−0.788411 + 0.615148i \(0.789096\pi\)
\(30\) −4.62718 3.67278i −0.844804 0.670555i
\(31\) −8.65921 −1.55524 −0.777620 0.628734i \(-0.783573\pi\)
−0.777620 + 0.628734i \(0.783573\pi\)
\(32\) 1.19566 5.52905i 0.211364 0.977407i
\(33\) 9.72042i 1.69211i
\(34\) −0.761906 0.604756i −0.130666 0.103715i
\(35\) −3.77025 + 4.31861i −0.637289 + 0.729979i
\(36\) 0.325352 + 1.39601i 0.0542254 + 0.232669i
\(37\) 9.25001i 1.52069i 0.649518 + 0.760346i \(0.274971\pi\)
−0.649518 + 0.760346i \(0.725029\pi\)
\(38\) 1.21422 + 0.963776i 0.196972 + 0.156345i
\(39\) 1.92788i 0.308708i
\(40\) 5.53982 + 2.62119i 0.875922 + 0.414447i
\(41\) 6.30848i 0.985218i −0.870251 0.492609i \(-0.836043\pi\)
0.870251 0.492609i \(-0.163957\pi\)
\(42\) 7.09409 1.30685i 1.09464 0.201651i
\(43\) −3.27423 −0.499315 −0.249657 0.968334i \(-0.580318\pi\)
−0.249657 + 0.968334i \(0.580318\pi\)
\(44\) 2.28883 + 9.82087i 0.345055 + 1.48055i
\(45\) −1.55297 −0.231504
\(46\) −4.21208 3.34330i −0.621037 0.492942i
\(47\) 2.09029 0.304900 0.152450 0.988311i \(-0.451284\pi\)
0.152450 + 0.988311i \(0.451284\pi\)
\(48\) −3.40928 6.91695i −0.492088 0.998376i
\(49\) −0.944747 6.93595i −0.134964 0.990851i
\(50\) 0.268137 0.337814i 0.0379202 0.0477741i
\(51\) −1.32606 −0.185685
\(52\) −0.453951 1.94780i −0.0629517 0.270111i
\(53\) 2.89312i 0.397400i 0.980060 + 0.198700i \(0.0636720\pi\)
−0.980060 + 0.198700i \(0.936328\pi\)
\(54\) −4.87594 3.87023i −0.663531 0.526671i
\(55\) −10.9251 −1.47314
\(56\) −6.85968 + 2.99078i −0.916664 + 0.399659i
\(57\) 2.11329 0.279912
\(58\) −7.33883 5.82513i −0.963635 0.764877i
\(59\) 11.6482i 1.51647i −0.651980 0.758236i \(-0.726061\pi\)
0.651980 0.758236i \(-0.273939\pi\)
\(60\) 8.13660 1.89630i 1.05043 0.244812i
\(61\) 1.96479 0.251566 0.125783 0.992058i \(-0.459856\pi\)
0.125783 + 0.992058i \(0.459856\pi\)
\(62\) 7.61334 9.59172i 0.966895 1.21815i
\(63\) 1.24709 1.42847i 0.157118 0.179970i
\(64\) 5.07323 + 6.18566i 0.634153 + 0.773207i
\(65\) 2.16680 0.268759
\(66\) 10.7672 + 8.54637i 1.32535 + 1.05199i
\(67\) 13.5558 1.65611 0.828053 0.560650i \(-0.189449\pi\)
0.828053 + 0.560650i \(0.189449\pi\)
\(68\) 1.33976 0.312243i 0.162470 0.0378650i
\(69\) −7.33091 −0.882537
\(70\) −1.46881 7.97327i −0.175556 0.952988i
\(71\) 5.07363i 0.602129i −0.953604 0.301064i \(-0.902658\pi\)
0.953604 0.301064i \(-0.0973419\pi\)
\(72\) −1.83241 0.867011i −0.215951 0.102178i
\(73\) 2.08832i 0.244420i 0.992504 + 0.122210i \(0.0389981\pi\)
−0.992504 + 0.122210i \(0.961002\pi\)
\(74\) −10.2461 8.13278i −1.19109 0.945416i
\(75\) 0.587948i 0.0678904i
\(76\) −2.13513 + 0.497609i −0.244916 + 0.0570797i
\(77\) 8.77317 10.0492i 0.999796 1.14521i
\(78\) −2.13549 1.69503i −0.241797 0.191924i
\(79\) 0.772654i 0.0869303i 0.999055 + 0.0434652i \(0.0138398\pi\)
−0.999055 + 0.0434652i \(0.986160\pi\)
\(80\) −7.77417 + 3.83180i −0.869179 + 0.428408i
\(81\) −10.6365 −1.18183
\(82\) 6.98783 + 5.54653i 0.771677 + 0.612511i
\(83\) 5.41871i 0.594781i −0.954756 0.297390i \(-0.903884\pi\)
0.954756 0.297390i \(-0.0961163\pi\)
\(84\) −4.78967 + 9.00705i −0.522596 + 0.982750i
\(85\) 1.49040i 0.161656i
\(86\) 2.87876 3.62683i 0.310425 0.391091i
\(87\) −12.7729 −1.36939
\(88\) −12.8909 6.09937i −1.37417 0.650195i
\(89\) 3.65311i 0.387229i 0.981078 + 0.193615i \(0.0620212\pi\)
−0.981078 + 0.193615i \(0.937979\pi\)
\(90\) 1.36540 1.72021i 0.143926 0.181326i
\(91\) −1.74001 + 1.99308i −0.182402 + 0.208932i
\(92\) 7.40667 1.72618i 0.772198 0.179967i
\(93\) 16.6939i 1.73108i
\(94\) −1.83782 + 2.31539i −0.189557 + 0.238815i
\(95\) 2.37519i 0.243689i
\(96\) 10.6593 + 2.30508i 1.08791 + 0.235261i
\(97\) 2.48774i 0.252592i 0.991993 + 0.126296i \(0.0403088\pi\)
−0.991993 + 0.126296i \(0.959691\pi\)
\(98\) 8.51352 + 5.05173i 0.859995 + 0.510302i
\(99\) 3.61369 0.363189
\(100\) 0.138442 + 0.594024i 0.0138442 + 0.0594024i
\(101\) 17.2080 1.71226 0.856131 0.516759i \(-0.172862\pi\)
0.856131 + 0.516759i \(0.172862\pi\)
\(102\) 1.16590 1.46886i 0.115441 0.145439i
\(103\) 7.58040 0.746919 0.373460 0.927646i \(-0.378171\pi\)
0.373460 + 0.927646i \(0.378171\pi\)
\(104\) 2.55668 + 1.20971i 0.250703 + 0.118621i
\(105\) −8.32576 7.26858i −0.812511 0.709341i
\(106\) −3.20468 2.54368i −0.311266 0.247064i
\(107\) 3.55104 0.343292 0.171646 0.985159i \(-0.445092\pi\)
0.171646 + 0.985159i \(0.445092\pi\)
\(108\) 8.57402 1.99825i 0.825036 0.192281i
\(109\) 8.44828i 0.809199i 0.914494 + 0.404599i \(0.132589\pi\)
−0.914494 + 0.404599i \(0.867411\pi\)
\(110\) 9.60553 12.1016i 0.915851 1.15384i
\(111\) −17.8329 −1.69262
\(112\) 2.71831 10.2279i 0.256856 0.966450i
\(113\) −15.2181 −1.43159 −0.715797 0.698308i \(-0.753936\pi\)
−0.715797 + 0.698308i \(0.753936\pi\)
\(114\) −1.85804 + 2.34087i −0.174022 + 0.219242i
\(115\) 8.23943i 0.768331i
\(116\) 12.9049 3.00758i 1.19819 0.279247i
\(117\) −0.716713 −0.0662601
\(118\) 12.9026 + 10.2413i 1.18778 + 0.942793i
\(119\) −1.37091 1.19684i −0.125671 0.109714i
\(120\) −5.05334 + 10.6801i −0.461304 + 0.974955i
\(121\) 14.4221 1.31110
\(122\) −1.72748 + 2.17638i −0.156399 + 0.197040i
\(123\) 12.1620 1.09661
\(124\) 3.93086 + 16.8664i 0.353002 + 1.51465i
\(125\) −11.4948 −1.02813
\(126\) 0.485837 + 2.63732i 0.0432818 + 0.234951i
\(127\) 4.05535i 0.359854i 0.983680 + 0.179927i \(0.0575862\pi\)
−0.983680 + 0.179927i \(0.942414\pi\)
\(128\) −11.3123 + 0.181015i −0.999872 + 0.0159996i
\(129\) 6.31231i 0.555768i
\(130\) −1.90509 + 2.40014i −0.167088 + 0.210506i
\(131\) 12.3281i 1.07711i 0.842591 + 0.538554i \(0.181029\pi\)
−0.842591 + 0.538554i \(0.818971\pi\)
\(132\) −18.9334 + 4.41259i −1.64794 + 0.384067i
\(133\) 2.18476 + 1.90735i 0.189443 + 0.165388i
\(134\) −11.9185 + 15.0156i −1.02960 + 1.29715i
\(135\) 9.53804i 0.820904i
\(136\) −0.832076 + 1.75857i −0.0713499 + 0.150796i
\(137\) −10.0410 −0.857859 −0.428929 0.903338i \(-0.641109\pi\)
−0.428929 + 0.903338i \(0.641109\pi\)
\(138\) 6.44547 8.12037i 0.548674 0.691251i
\(139\) 22.5954i 1.91651i 0.285909 + 0.958257i \(0.407705\pi\)
−0.285909 + 0.958257i \(0.592295\pi\)
\(140\) 10.1233 + 5.38326i 0.855575 + 0.454969i
\(141\) 4.02983i 0.339373i
\(142\) 5.62000 + 4.46083i 0.471620 + 0.374344i
\(143\) −5.04203 −0.421636
\(144\) 2.57146 1.26744i 0.214289 0.105620i
\(145\) 14.3558i 1.19219i
\(146\) −2.31321 1.83609i −0.191443 0.151956i
\(147\) 13.3717 1.82136i 1.10288 0.150223i
\(148\) 18.0172 4.19905i 1.48100 0.345160i
\(149\) 0.279812i 0.0229231i 0.999934 + 0.0114615i \(0.00364840\pi\)
−0.999934 + 0.0114615i \(0.996352\pi\)
\(150\) 0.651264 + 0.516934i 0.0531755 + 0.0422075i
\(151\) 19.0561i 1.55076i 0.631493 + 0.775382i \(0.282443\pi\)
−0.631493 + 0.775382i \(0.717557\pi\)
\(152\) 1.32605 2.80257i 0.107557 0.227318i
\(153\) 0.492979i 0.0398550i
\(154\) 3.41783 + 18.5534i 0.275417 + 1.49507i
\(155\) −18.7628 −1.50706
\(156\) 3.75512 0.875162i 0.300650 0.0700690i
\(157\) −12.5958 −1.00525 −0.502626 0.864504i \(-0.667633\pi\)
−0.502626 + 0.864504i \(0.667633\pi\)
\(158\) −0.855860 0.679331i −0.0680886 0.0540447i
\(159\) −5.57758 −0.442331
\(160\) 2.59075 11.9804i 0.204817 0.947130i
\(161\) −7.57885 6.61652i −0.597297 0.521454i
\(162\) 9.35177 11.7819i 0.734744 0.925673i
\(163\) 14.7205 1.15300 0.576498 0.817099i \(-0.304419\pi\)
0.576498 + 0.817099i \(0.304419\pi\)
\(164\) −12.2877 + 2.86374i −0.959505 + 0.223620i
\(165\) 21.0622i 1.63969i
\(166\) 6.00225 + 4.76423i 0.465865 + 0.369776i
\(167\) 6.51701 0.504302 0.252151 0.967688i \(-0.418862\pi\)
0.252151 + 0.967688i \(0.418862\pi\)
\(168\) −5.76585 13.2246i −0.444845 1.02030i
\(169\) 1.00000 0.0769231
\(170\) −1.65090 1.31039i −0.126618 0.100502i
\(171\) 0.785642i 0.0600795i
\(172\) 1.48634 + 6.37754i 0.113332 + 0.486283i
\(173\) 21.8519 1.66137 0.830686 0.556742i \(-0.187949\pi\)
0.830686 + 0.556742i \(0.187949\pi\)
\(174\) 11.2301 14.1484i 0.851354 1.07258i
\(175\) 0.530653 0.607833i 0.0401136 0.0459479i
\(176\) 18.0901 8.91639i 1.36359 0.672098i
\(177\) 22.4564 1.68793
\(178\) −4.04652 3.21188i −0.303299 0.240741i
\(179\) 12.9272 0.966228 0.483114 0.875557i \(-0.339506\pi\)
0.483114 + 0.875557i \(0.339506\pi\)
\(180\) 0.704974 + 3.02488i 0.0525457 + 0.225462i
\(181\) 9.89018 0.735132 0.367566 0.929998i \(-0.380191\pi\)
0.367566 + 0.929998i \(0.380191\pi\)
\(182\) −0.677869 3.67974i −0.0502470 0.272761i
\(183\) 3.78788i 0.280008i
\(184\) −4.60000 + 9.72198i −0.339116 + 0.716714i
\(185\) 20.0429i 1.47359i
\(186\) 18.4917 + 14.6776i 1.35587 + 1.07621i
\(187\) 3.46808i 0.253611i
\(188\) −0.948890 4.07147i −0.0692049 0.296943i
\(189\) −8.77334 7.65934i −0.638167 0.557135i
\(190\) 2.63097 + 2.08831i 0.190871 + 0.151502i
\(191\) 13.5574i 0.980978i −0.871448 0.490489i \(-0.836818\pi\)
0.871448 0.490489i \(-0.163182\pi\)
\(192\) −11.9252 + 9.78056i −0.860627 + 0.705851i
\(193\) −23.1425 −1.66584 −0.832919 0.553396i \(-0.813332\pi\)
−0.832919 + 0.553396i \(0.813332\pi\)
\(194\) −2.75564 2.18726i −0.197843 0.157036i
\(195\) 4.17733i 0.299145i
\(196\) −13.0810 + 4.98876i −0.934356 + 0.356340i
\(197\) 0.809664i 0.0576862i 0.999584 + 0.0288431i \(0.00918232\pi\)
−0.999584 + 0.0288431i \(0.990818\pi\)
\(198\) −3.17722 + 4.00284i −0.225795 + 0.284470i
\(199\) 13.7274 0.973109 0.486554 0.873650i \(-0.338254\pi\)
0.486554 + 0.873650i \(0.338254\pi\)
\(200\) −0.779715 0.368926i −0.0551342 0.0260870i
\(201\) 26.1339i 1.84335i
\(202\) −15.1296 + 19.0611i −1.06452 + 1.34114i
\(203\) −13.2049 11.5282i −0.926800 0.809118i
\(204\) 0.601966 + 2.58290i 0.0421460 + 0.180839i
\(205\) 13.6692i 0.954699i
\(206\) −6.66483 + 8.39673i −0.464361 + 0.585028i
\(207\) 2.72536i 0.189425i
\(208\) −3.58786 + 1.76841i −0.248773 + 0.122617i
\(209\) 5.52694i 0.382306i
\(210\) 15.3715 2.83168i 1.06073 0.195404i
\(211\) 22.1210 1.52288 0.761438 0.648238i \(-0.224494\pi\)
0.761438 + 0.648238i \(0.224494\pi\)
\(212\) 5.63522 1.31333i 0.387028 0.0902001i
\(213\) 9.78134 0.670206
\(214\) −3.12214 + 3.93345i −0.213425 + 0.268885i
\(215\) −7.09460 −0.483848
\(216\) −5.32500 + 11.2542i −0.362320 + 0.765755i
\(217\) 15.0671 17.2585i 1.02282 1.17158i
\(218\) −9.35807 7.42789i −0.633809 0.503080i
\(219\) −4.02603 −0.272054
\(220\) 4.95945 + 21.2799i 0.334366 + 1.43469i
\(221\) 0.687834i 0.0462687i
\(222\) 15.6790 19.7533i 1.05231 1.32575i
\(223\) 10.5227 0.704650 0.352325 0.935878i \(-0.385391\pi\)
0.352325 + 0.935878i \(0.385391\pi\)
\(224\) 8.93939 + 12.0036i 0.597288 + 0.802027i
\(225\) 0.218577 0.0145718
\(226\) 13.3800 16.8569i 0.890024 1.12130i
\(227\) 15.9121i 1.05612i −0.849206 0.528062i \(-0.822919\pi\)
0.849206 0.528062i \(-0.177081\pi\)
\(228\) −0.959329 4.11627i −0.0635331 0.272606i
\(229\) 10.2718 0.678779 0.339390 0.940646i \(-0.389779\pi\)
0.339390 + 0.940646i \(0.389779\pi\)
\(230\) −9.12673 7.24426i −0.601799 0.477672i
\(231\) 19.3736 + 16.9136i 1.27469 + 1.11283i
\(232\) −8.01472 + 16.9389i −0.526192 + 1.11209i
\(233\) −4.62581 −0.303047 −0.151524 0.988454i \(-0.548418\pi\)
−0.151524 + 0.988454i \(0.548418\pi\)
\(234\) 0.630147 0.793895i 0.0411940 0.0518985i
\(235\) 4.52925 0.295456
\(236\) −22.6885 + 5.28773i −1.47689 + 0.344202i
\(237\) −1.48958 −0.0967588
\(238\) 2.53105 0.466261i 0.164064 0.0302232i
\(239\) 5.81217i 0.375958i −0.982173 0.187979i \(-0.939806\pi\)
0.982173 0.187979i \(-0.0601937\pi\)
\(240\) −7.38724 14.9877i −0.476844 0.967449i
\(241\) 0.550538i 0.0354633i 0.999843 + 0.0177316i \(0.00564445\pi\)
−0.999843 + 0.0177316i \(0.994356\pi\)
\(242\) −12.6801 + 15.9752i −0.815111 + 1.02692i
\(243\) 7.30010i 0.468302i
\(244\) −0.891920 3.82703i −0.0570993 0.245000i
\(245\) −2.04708 15.0288i −0.130783 0.960157i
\(246\) −10.6930 + 13.4717i −0.681762 + 0.858923i
\(247\) 1.09617i 0.0697479i
\(248\) −22.1388 10.4751i −1.40582 0.665169i
\(249\) 10.4466 0.662027
\(250\) 10.1065 12.7327i 0.639188 0.805286i
\(251\) 26.0984i 1.64731i 0.567088 + 0.823657i \(0.308070\pi\)
−0.567088 + 0.823657i \(0.691930\pi\)
\(252\) −3.34848 1.78062i −0.210935 0.112169i
\(253\) 19.1727i 1.20538i
\(254\) −4.49207 3.56554i −0.281857 0.223722i
\(255\) −2.87331 −0.179933
\(256\) 9.74544 12.6896i 0.609090 0.793101i
\(257\) 23.7161i 1.47937i −0.672952 0.739686i \(-0.734974\pi\)
0.672952 0.739686i \(-0.265026\pi\)
\(258\) 6.99208 + 5.54990i 0.435308 + 0.345521i
\(259\) −18.4360 16.0951i −1.14556 1.00010i
\(260\) −0.983622 4.22050i −0.0610016 0.261744i
\(261\) 4.74847i 0.293923i
\(262\) −13.6557 10.8391i −0.843649 0.669639i
\(263\) 15.7303i 0.969970i 0.874522 + 0.484985i \(0.161175\pi\)
−0.874522 + 0.484985i \(0.838825\pi\)
\(264\) 11.7588 24.8520i 0.723707 1.52953i
\(265\) 6.26881i 0.385090i
\(266\) −4.03363 + 0.743062i −0.247318 + 0.0455600i
\(267\) −7.04276 −0.431010
\(268\) −6.15367 26.4040i −0.375895 1.61288i
\(269\) −26.9053 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(270\) −10.5652 8.38602i −0.642977 0.510357i
\(271\) 23.7291 1.44144 0.720720 0.693226i \(-0.243811\pi\)
0.720720 + 0.693226i \(0.243811\pi\)
\(272\) −1.21637 2.46785i −0.0737535 0.149635i
\(273\) −3.84242 3.35452i −0.232554 0.203025i
\(274\) 8.82821 11.1223i 0.533332 0.671922i
\(275\) 1.53768 0.0927254
\(276\) 3.32787 + 14.2791i 0.200314 + 0.859504i
\(277\) 29.3334i 1.76248i 0.472673 + 0.881238i \(0.343289\pi\)
−0.472673 + 0.881238i \(0.656711\pi\)
\(278\) −25.0286 19.8663i −1.50112 1.19150i
\(279\) 6.20617 0.371554
\(280\) −14.8636 + 6.48042i −0.888268 + 0.387279i
\(281\) 9.82013 0.585820 0.292910 0.956140i \(-0.405376\pi\)
0.292910 + 0.956140i \(0.405376\pi\)
\(282\) −4.46380 3.54310i −0.265815 0.210988i
\(283\) 18.2222i 1.08320i 0.840637 + 0.541599i \(0.182181\pi\)
−0.840637 + 0.541599i \(0.817819\pi\)
\(284\) −9.88242 + 2.30318i −0.586414 + 0.136669i
\(285\) 4.57908 0.271241
\(286\) 4.43304 5.58500i 0.262131 0.330248i
\(287\) 12.5733 + 10.9768i 0.742179 + 0.647940i
\(288\) −0.856943 + 3.96274i −0.0504959 + 0.233507i
\(289\) 16.5269 0.972170
\(290\) −15.9018 12.6219i −0.933785 0.741183i
\(291\) −4.79606 −0.281150
\(292\) 4.06764 0.947997i 0.238041 0.0554773i
\(293\) 10.0394 0.586508 0.293254 0.956034i \(-0.405262\pi\)
0.293254 + 0.956034i \(0.405262\pi\)
\(294\) −9.73912 + 16.4130i −0.567997 + 0.957227i
\(295\) 25.2394i 1.46950i
\(296\) −11.1898 + 23.6493i −0.650393 + 1.37459i
\(297\) 22.1945i 1.28786i
\(298\) −0.309944 0.246015i −0.0179546 0.0142513i
\(299\) 3.80258i 0.219909i
\(300\) −1.14521 + 0.266900i −0.0661185 + 0.0154095i
\(301\) 5.69718 6.52580i 0.328380 0.376141i
\(302\) −21.1082 16.7545i −1.21464 0.964111i
\(303\) 33.1750i 1.90585i
\(304\) 1.93849 + 3.93291i 0.111180 + 0.225568i
\(305\) 4.25732 0.243773
\(306\) 0.546068 + 0.433436i 0.0312166 + 0.0247779i
\(307\) 3.94497i 0.225151i −0.993643 0.112576i \(-0.964090\pi\)
0.993643 0.112576i \(-0.0359101\pi\)
\(308\) −23.5564 12.5266i −1.34225 0.713767i
\(309\) 14.6141i 0.831367i
\(310\) 16.4966 20.7834i 0.936944 1.18042i
\(311\) −17.3290 −0.982640 −0.491320 0.870979i \(-0.663485\pi\)
−0.491320 + 0.870979i \(0.663485\pi\)
\(312\) −2.33216 + 4.92897i −0.132033 + 0.279048i
\(313\) 10.1877i 0.575844i 0.957654 + 0.287922i \(0.0929645\pi\)
−0.957654 + 0.287922i \(0.907036\pi\)
\(314\) 11.0744 13.9522i 0.624966 0.787368i
\(315\) 2.70219 3.09520i 0.152251 0.174395i
\(316\) 1.50498 0.350747i 0.0846615 0.0197311i
\(317\) 5.12951i 0.288102i −0.989570 0.144051i \(-0.953987\pi\)
0.989570 0.144051i \(-0.0460130\pi\)
\(318\) 4.90391 6.17822i 0.274997 0.346458i
\(319\) 33.4052i 1.87033i
\(320\) 10.9927 + 13.4031i 0.614509 + 0.749256i
\(321\) 6.84596i 0.382105i
\(322\) 13.9925 2.57765i 0.779772 0.143647i
\(323\) 0.753985 0.0419529
\(324\) 4.82843 + 20.7177i 0.268246 + 1.15098i
\(325\) −0.304972 −0.0169168
\(326\) −12.9425 + 16.3057i −0.716818 + 0.903089i
\(327\) −16.2873 −0.900688
\(328\) 7.63140 16.1288i 0.421373 0.890562i
\(329\) −3.63712 + 4.16612i −0.200521 + 0.229686i
\(330\) 23.3304 + 18.5183i 1.28430 + 1.01940i
\(331\) −10.6345 −0.584527 −0.292263 0.956338i \(-0.594408\pi\)
−0.292263 + 0.956338i \(0.594408\pi\)
\(332\) −10.5546 + 2.45983i −0.579257 + 0.135001i
\(333\) 6.62960i 0.363300i
\(334\) −5.72988 + 7.21883i −0.313525 + 0.394997i
\(335\) 29.3727 1.60480
\(336\) 19.7182 + 5.24057i 1.07572 + 0.285896i
\(337\) −19.4556 −1.05981 −0.529906 0.848057i \(-0.677773\pi\)
−0.529906 + 0.848057i \(0.677773\pi\)
\(338\) −0.879218 + 1.10769i −0.0478232 + 0.0602504i
\(339\) 29.3386i 1.59345i
\(340\) 2.90300 0.676568i 0.157437 0.0366921i
\(341\) 43.6600 2.36432
\(342\) −0.870247 0.690750i −0.0470576 0.0373515i
\(343\) 15.4678 + 10.1857i 0.835182 + 0.549974i
\(344\) −8.37115 3.96085i −0.451342 0.213555i
\(345\) −15.8846 −0.855199
\(346\) −19.2126 + 24.2051i −1.03288 + 1.30128i
\(347\) 27.4986 1.47620 0.738102 0.674690i \(-0.235723\pi\)
0.738102 + 0.674690i \(0.235723\pi\)
\(348\) 5.79825 + 24.8790i 0.310819 + 1.33365i
\(349\) −23.0163 −1.23203 −0.616017 0.787733i \(-0.711255\pi\)
−0.616017 + 0.787733i \(0.711255\pi\)
\(350\) 0.206731 + 1.12222i 0.0110502 + 0.0599850i
\(351\) 4.40190i 0.234956i
\(352\) −6.02854 + 27.8776i −0.321322 + 1.48588i
\(353\) 32.6293i 1.73668i −0.495967 0.868342i \(-0.665186\pi\)
0.495967 0.868342i \(-0.334814\pi\)
\(354\) −19.7441 + 24.8747i −1.04939 + 1.32208i
\(355\) 10.9935i 0.583477i
\(356\) 7.11554 1.65833i 0.377123 0.0878916i
\(357\) 2.30735 2.64294i 0.122118 0.139879i
\(358\) −11.3659 + 14.3194i −0.600705 + 0.756802i
\(359\) 14.0579i 0.741947i 0.928643 + 0.370973i \(0.120976\pi\)
−0.928643 + 0.370973i \(0.879024\pi\)
\(360\) −3.97046 1.87864i −0.209262 0.0990131i
\(361\) 17.7984 0.936758
\(362\) −8.69563 + 10.9553i −0.457032 + 0.575795i
\(363\) 27.8040i 1.45933i
\(364\) 4.67200 + 2.48443i 0.244880 + 0.130219i
\(365\) 4.52498i 0.236849i
\(366\) −4.19580 3.33037i −0.219318 0.174081i
\(367\) 13.8941 0.725266 0.362633 0.931932i \(-0.381878\pi\)
0.362633 + 0.931932i \(0.381878\pi\)
\(368\) −6.72453 13.6431i −0.350540 0.711196i
\(369\) 4.52137i 0.235373i
\(370\) −22.2013 17.6221i −1.15419 0.916130i
\(371\) −5.76622 5.03405i −0.299367 0.261355i
\(372\) −32.5164 + 7.57822i −1.68590 + 0.392912i
\(373\) 9.46915i 0.490294i 0.969486 + 0.245147i \(0.0788362\pi\)
−0.969486 + 0.245147i \(0.921164\pi\)
\(374\) 3.84155 + 3.04920i 0.198642 + 0.157670i
\(375\) 22.1606i 1.14437i
\(376\) 5.34421 + 2.52864i 0.275607 + 0.130405i
\(377\) 6.62535i 0.341223i
\(378\) 16.1978 2.98391i 0.833127 0.153476i
\(379\) −29.3716 −1.50872 −0.754359 0.656462i \(-0.772052\pi\)
−0.754359 + 0.656462i \(0.772052\pi\)
\(380\) −4.62640 + 1.07822i −0.237329 + 0.0553115i
\(381\) −7.81822 −0.400540
\(382\) 15.0174 + 11.9199i 0.768355 + 0.609875i
\(383\) −23.8795 −1.22019 −0.610093 0.792330i \(-0.708868\pi\)
−0.610093 + 0.792330i \(0.708868\pi\)
\(384\) −0.348975 21.8087i −0.0178085 1.11292i
\(385\) 19.0097 21.7746i 0.968825 1.10973i
\(386\) 20.3473 25.6348i 1.03565 1.30477i
\(387\) 2.34668 0.119288
\(388\) 4.84562 1.12931i 0.245999 0.0573321i
\(389\) 24.2232i 1.22816i −0.789242 0.614082i \(-0.789526\pi\)
0.789242 0.614082i \(-0.210474\pi\)
\(390\) −4.62718 3.67278i −0.234306 0.185979i
\(391\) −2.61554 −0.132274
\(392\) 5.97504 18.8759i 0.301785 0.953376i
\(393\) −23.7670 −1.19889
\(394\) −0.896857 0.711872i −0.0451830 0.0358636i
\(395\) 1.67419i 0.0842375i
\(396\) −1.64044 7.03874i −0.0824351 0.353710i
\(397\) 24.1030 1.20969 0.604847 0.796342i \(-0.293234\pi\)
0.604847 + 0.796342i \(0.293234\pi\)
\(398\) −12.0694 + 15.2057i −0.604983 + 0.762192i
\(399\) −3.67714 + 4.21196i −0.184087 + 0.210862i
\(400\) 1.09419 0.539315i 0.0547097 0.0269658i
\(401\) −21.2274 −1.06004 −0.530022 0.847984i \(-0.677817\pi\)
−0.530022 + 0.847984i \(0.677817\pi\)
\(402\) −28.9483 22.9774i −1.44381 1.14601i
\(403\) −8.65921 −0.431346
\(404\) −7.81160 33.5178i −0.388642 1.66757i
\(405\) −23.0471 −1.14522
\(406\) 24.3796 4.49112i 1.20994 0.222890i
\(407\) 46.6388i 2.31180i
\(408\) −3.39031 1.60414i −0.167845 0.0794168i
\(409\) 15.1763i 0.750420i 0.926940 + 0.375210i \(0.122429\pi\)
−0.926940 + 0.375210i \(0.877571\pi\)
\(410\) 15.1412 + 12.0182i 0.747773 + 0.593538i
\(411\) 19.3578i 0.954849i
\(412\) −3.44113 14.7651i −0.169532 0.727425i
\(413\) 23.2159 + 20.2680i 1.14238 + 0.997325i
\(414\) 3.01885 + 2.39618i 0.148368 + 0.117766i
\(415\) 11.7413i 0.576356i
\(416\) 1.19566 5.52905i 0.0586219 0.271084i
\(417\) −43.5611 −2.13320
\(418\) −6.12213 4.85939i −0.299443 0.237680i
\(419\) 22.3917i 1.09391i 0.837163 + 0.546953i \(0.184212\pi\)
−0.837163 + 0.546953i \(0.815788\pi\)
\(420\) −10.3783 + 19.5165i −0.506408 + 0.952307i
\(421\) 6.95017i 0.338731i −0.985553 0.169365i \(-0.945828\pi\)
0.985553 0.169365i \(-0.0541718\pi\)
\(422\) −19.4492 + 24.5032i −0.946773 + 1.19280i
\(423\) −1.49814 −0.0728420
\(424\) −3.49982 + 7.39678i −0.169966 + 0.359219i
\(425\) 0.209770i 0.0101753i
\(426\) −8.59993 + 10.8347i −0.416668 + 0.524942i
\(427\) −3.41876 + 3.91599i −0.165445 + 0.189508i
\(428\) −1.61200 6.91671i −0.0779188 0.334332i
\(429\) 9.72042i 0.469306i
\(430\) 6.23770 7.85861i 0.300809 0.378976i
\(431\) 17.5920i 0.847378i −0.905808 0.423689i \(-0.860735\pi\)
0.905808 0.423689i \(-0.139265\pi\)
\(432\) −7.78437 15.7934i −0.374526 0.759860i
\(433\) 12.7562i 0.613025i 0.951867 + 0.306512i \(0.0991620\pi\)
−0.951867 + 0.306512i \(0.900838\pi\)
\(434\) 5.86981 + 31.8637i 0.281760 + 1.52951i
\(435\) −27.6763 −1.32698
\(436\) 16.4556 3.83511i 0.788079 0.183668i
\(437\) 4.16829 0.199396
\(438\) 3.53976 4.45960i 0.169136 0.213088i
\(439\) −39.8195 −1.90048 −0.950240 0.311518i \(-0.899162\pi\)
−0.950240 + 0.311518i \(0.899162\pi\)
\(440\) −27.9319 13.2161i −1.33160 0.630054i
\(441\) 0.677112 + 4.97109i 0.0322434 + 0.236718i
\(442\) −0.761906 0.604756i −0.0362402 0.0287653i
\(443\) −2.94265 −0.139810 −0.0699049 0.997554i \(-0.522270\pi\)
−0.0699049 + 0.997554i \(0.522270\pi\)
\(444\) 8.09526 + 34.7349i 0.384184 + 1.64845i
\(445\) 7.91557i 0.375234i
\(446\) −9.25172 + 11.6558i −0.438081 + 0.551920i
\(447\) −0.539443 −0.0255148
\(448\) −21.1560 0.651741i −0.999526 0.0307919i
\(449\) 12.7756 0.602918 0.301459 0.953479i \(-0.402526\pi\)
0.301459 + 0.953479i \(0.402526\pi\)
\(450\) −0.192177 + 0.242115i −0.00905931 + 0.0114134i
\(451\) 31.8075i 1.49776i
\(452\) 6.90825 + 29.6417i 0.324937 + 1.39423i
\(453\) −36.7378 −1.72609
\(454\) 17.6257 + 13.9902i 0.827215 + 0.656594i
\(455\) −3.77025 + 4.31861i −0.176752 + 0.202460i
\(456\) 5.40300 + 2.55646i 0.253019 + 0.119717i
\(457\) −6.05610 −0.283293 −0.141646 0.989917i \(-0.545240\pi\)
−0.141646 + 0.989917i \(0.545240\pi\)
\(458\) −9.03115 + 11.3780i −0.421998 + 0.531657i
\(459\) −3.02777 −0.141324
\(460\) 16.0488 3.74030i 0.748278 0.174392i
\(461\) −13.5455 −0.630878 −0.315439 0.948946i \(-0.602152\pi\)
−0.315439 + 0.948946i \(0.602152\pi\)
\(462\) −35.7686 + 6.58917i −1.66411 + 0.306556i
\(463\) 24.3379i 1.13108i −0.824721 0.565539i \(-0.808668\pi\)
0.824721 0.565539i \(-0.191332\pi\)
\(464\) −11.7164 23.7708i −0.543918 1.10353i
\(465\) 36.1724i 1.67745i
\(466\) 4.06710 5.12396i 0.188405 0.237363i
\(467\) 29.3776i 1.35943i −0.733476 0.679716i \(-0.762103\pi\)
0.733476 0.679716i \(-0.237897\pi\)
\(468\) 0.325352 + 1.39601i 0.0150394 + 0.0645308i
\(469\) −23.5872 + 27.0178i −1.08916 + 1.24757i
\(470\) −3.98220 + 5.01700i −0.183685 + 0.231417i
\(471\) 24.2831i 1.11891i
\(472\) 14.0909 29.7808i 0.648588 1.37077i
\(473\) 16.5088 0.759073
\(474\) 1.30967 1.64999i 0.0601550 0.0757867i
\(475\) 0.334302i 0.0153388i
\(476\) −1.70887 + 3.21356i −0.0783261 + 0.147293i
\(477\) 2.07353i 0.0949406i
\(478\) 6.43808 + 5.11017i 0.294471 + 0.233734i
\(479\) 2.86853 0.131066 0.0655332 0.997850i \(-0.479125\pi\)
0.0655332 + 0.997850i \(0.479125\pi\)
\(480\) 23.0967 + 4.99465i 1.05421 + 0.227974i
\(481\) 9.25001i 0.421764i
\(482\) −0.609825 0.484043i −0.0277768 0.0220476i
\(483\) 12.7558 14.6111i 0.580410 0.664828i
\(484\) −6.54691 28.0913i −0.297587 1.27688i
\(485\) 5.39044i 0.244767i
\(486\) 8.08624 + 6.41838i 0.366799 + 0.291144i
\(487\) 24.5884i 1.11421i −0.830443 0.557104i \(-0.811912\pi\)
0.830443 0.557104i \(-0.188088\pi\)
\(488\) 5.02335 + 2.37682i 0.227396 + 0.107594i
\(489\) 28.3792i 1.28335i
\(490\) 18.4471 + 10.9461i 0.833355 + 0.494494i
\(491\) 40.7235 1.83783 0.918913 0.394460i \(-0.129068\pi\)
0.918913 + 0.394460i \(0.129068\pi\)
\(492\) −5.52094 23.6891i −0.248903 1.06799i
\(493\) −4.55714 −0.205243
\(494\) 1.21422 + 0.963776i 0.0546303 + 0.0433623i
\(495\) 7.83014 0.351939
\(496\) 31.0680 15.3131i 1.39500 0.687577i
\(497\) 10.1122 + 8.82815i 0.453592 + 0.395997i
\(498\) −9.18485 + 11.5716i −0.411583 + 0.518536i
\(499\) −37.7172 −1.68845 −0.844226 0.535987i \(-0.819940\pi\)
−0.844226 + 0.535987i \(0.819940\pi\)
\(500\) 5.21808 + 22.3896i 0.233360 + 1.00129i
\(501\) 12.5640i 0.561318i
\(502\) −28.9089 22.9462i −1.29027 1.02414i
\(503\) 2.68750 0.119830 0.0599148 0.998203i \(-0.480917\pi\)
0.0599148 + 0.998203i \(0.480917\pi\)
\(504\) 4.91642 2.14353i 0.218995 0.0954803i
\(505\) 37.2864 1.65922
\(506\) 21.2374 + 16.8570i 0.944118 + 0.749385i
\(507\) 1.92788i 0.0856201i
\(508\) 7.89902 1.84093i 0.350462 0.0816781i
\(509\) 5.67996 0.251760 0.125880 0.992045i \(-0.459825\pi\)
0.125880 + 0.992045i \(0.459825\pi\)
\(510\) 2.52626 3.18273i 0.111865 0.140934i
\(511\) −4.16220 3.63370i −0.184125 0.160745i
\(512\) 5.48779 + 21.9519i 0.242528 + 0.970144i
\(513\) 4.82524 0.213040
\(514\) 26.2701 + 20.8517i 1.15873 + 0.919728i
\(515\) 16.4252 0.723782
\(516\) −12.2951 + 2.86548i −0.541263 + 0.126146i
\(517\) −10.5393 −0.463519
\(518\) 34.0376 6.27029i 1.49553 0.275501i
\(519\) 42.1279i 1.84921i
\(520\) 5.53982 + 2.62119i 0.242937 + 0.114947i
\(521\) 18.1395i 0.794706i −0.917666 0.397353i \(-0.869929\pi\)
0.917666 0.397353i \(-0.130071\pi\)
\(522\) 5.25983 + 4.17494i 0.230217 + 0.182732i
\(523\) 26.7276i 1.16872i −0.811496 0.584358i \(-0.801346\pi\)
0.811496 0.584358i \(-0.198654\pi\)
\(524\) 24.0126 5.59633i 1.04900 0.244477i
\(525\) 1.17183 + 1.02303i 0.0511428 + 0.0446489i
\(526\) −17.4243 13.8303i −0.759734 0.603032i
\(527\) 5.95610i 0.259452i
\(528\) 17.1897 + 34.8755i 0.748086 + 1.51776i
\(529\) 8.54040 0.371322
\(530\) −6.94390 5.51165i −0.301624 0.239411i
\(531\) 8.34845i 0.362292i
\(532\) 2.72336 5.12133i 0.118073 0.222038i
\(533\) 6.30848i 0.273250i
\(534\) 6.19212 7.80119i 0.267959 0.337590i
\(535\) 7.69439 0.332658
\(536\) 34.6579 + 16.3985i 1.49699 + 0.708309i
\(537\) 24.9222i 1.07547i
\(538\) 23.6556 29.8027i 1.01987 1.28489i
\(539\) 4.76344 + 34.9713i 0.205176 + 1.50632i
\(540\) 18.5782 4.32980i 0.799479 0.186325i
\(541\) 32.6687i 1.40454i 0.711912 + 0.702268i \(0.247829\pi\)
−0.711912 + 0.702268i \(0.752171\pi\)
\(542\) −20.8631 + 26.2845i −0.896145 + 1.12901i
\(543\) 19.0671i 0.818246i
\(544\) 3.80307 + 0.822414i 0.163055 + 0.0352607i
\(545\) 18.3058i 0.784132i
\(546\) 7.09409 1.30685i 0.303599 0.0559279i
\(547\) 33.9785 1.45281 0.726407 0.687265i \(-0.241189\pi\)
0.726407 + 0.687265i \(0.241189\pi\)
\(548\) 4.55811 + 19.5578i 0.194713 + 0.835469i
\(549\) −1.40819 −0.0601002
\(550\) −1.35195 + 1.70327i −0.0576475 + 0.0726276i
\(551\) 7.26253 0.309394
\(552\) −18.7428 8.86824i −0.797746 0.377457i
\(553\) −1.53996 1.34442i −0.0654858 0.0571707i
\(554\) −32.4923 25.7905i −1.38047 1.09573i
\(555\) −38.6403 −1.64019
\(556\) 44.0113 10.2572i 1.86649 0.435002i
\(557\) 12.1520i 0.514899i 0.966292 + 0.257449i \(0.0828821\pi\)
−0.966292 + 0.257449i \(0.917118\pi\)
\(558\) −5.45658 + 6.87451i −0.230995 + 0.291021i
\(559\) −3.27423 −0.138485
\(560\) 5.89004 22.1619i 0.248899 0.936512i
\(561\) 6.68603 0.282284
\(562\) −8.63404 + 10.8777i −0.364205 + 0.458846i
\(563\) 35.0006i 1.47510i −0.675293 0.737549i \(-0.735983\pi\)
0.675293 0.737549i \(-0.264017\pi\)
\(564\) 7.84930 1.82934i 0.330515 0.0770293i
\(565\) −32.9745 −1.38725
\(566\) −20.1846 16.0213i −0.848420 0.673426i
\(567\) 18.5075 21.1993i 0.777243 0.890288i
\(568\) 6.13759 12.9716i 0.257528 0.544278i
\(569\) 41.2142 1.72779 0.863894 0.503673i \(-0.168018\pi\)
0.863894 + 0.503673i \(0.168018\pi\)
\(570\) −4.02601 + 5.07219i −0.168631 + 0.212451i
\(571\) −19.0805 −0.798496 −0.399248 0.916843i \(-0.630729\pi\)
−0.399248 + 0.916843i \(0.630729\pi\)
\(572\) 2.28883 + 9.82087i 0.0957010 + 0.410631i
\(573\) 26.1370 1.09189
\(574\) −23.2136 + 4.27632i −0.968915 + 0.178490i
\(575\) 1.15968i 0.0483619i
\(576\) −3.63605 4.43334i −0.151502 0.184723i
\(577\) 14.5431i 0.605438i 0.953080 + 0.302719i \(0.0978944\pi\)
−0.953080 + 0.302719i \(0.902106\pi\)
\(578\) −14.5307 + 18.3067i −0.604399 + 0.761456i
\(579\) 44.6160i 1.85418i
\(580\) 27.9623 6.51684i 1.16107 0.270597i
\(581\) 10.7999 + 9.42860i 0.448057 + 0.391164i
\(582\) 4.21678 5.31254i 0.174791 0.220212i
\(583\) 14.5872i 0.604140i
\(584\) −2.52626 + 5.33918i −0.104537 + 0.220937i
\(585\) −1.55297 −0.0642076
\(586\) −8.82683 + 11.1205i −0.364633 + 0.459385i
\(587\) 21.4770i 0.886451i 0.896410 + 0.443226i \(0.146166\pi\)
−0.896410 + 0.443226i \(0.853834\pi\)
\(588\) −9.61772 25.2185i −0.396628 1.04000i
\(589\) 9.49200i 0.391111i
\(590\) 27.9574 + 22.1910i 1.15099 + 0.913588i
\(591\) −1.56093 −0.0642083
\(592\) −16.3578 33.1877i −0.672303 1.36401i
\(593\) 3.89623i 0.159999i 0.996795 + 0.0799994i \(0.0254919\pi\)
−0.996795 + 0.0799994i \(0.974508\pi\)
\(594\) 24.5846 + 19.5138i 1.00872 + 0.800661i
\(595\) −2.97049 2.59331i −0.121778 0.106315i
\(596\) 0.545017 0.127021i 0.0223248 0.00520297i
\(597\) 26.4647i 1.08313i
\(598\) −4.21208 3.34330i −0.172245 0.136718i
\(599\) 36.2640i 1.48171i −0.671667 0.740853i \(-0.734422\pi\)
0.671667 0.740853i \(-0.265578\pi\)
\(600\) 0.711244 1.50319i 0.0290364 0.0613677i
\(601\) 25.1481i 1.02581i −0.858445 0.512906i \(-0.828569\pi\)
0.858445 0.512906i \(-0.171431\pi\)
\(602\) 2.21950 + 12.0483i 0.0904599 + 0.491052i
\(603\) −9.71562 −0.395651
\(604\) 37.1175 8.65053i 1.51029 0.351985i
\(605\) 31.2498 1.27048
\(606\) −36.7475 29.1680i −1.49277 1.18487i
\(607\) −15.8233 −0.642247 −0.321123 0.947037i \(-0.604060\pi\)
−0.321123 + 0.947037i \(0.604060\pi\)
\(608\) −6.06080 1.31065i −0.245798 0.0531538i
\(609\) 22.2249 25.4574i 0.900598 1.03158i
\(610\) −3.74311 + 4.71579i −0.151554 + 0.190937i
\(611\) 2.09029 0.0845642
\(612\) −0.960225 + 0.223788i −0.0388148 + 0.00904611i
\(613\) 12.6133i 0.509447i 0.967014 + 0.254723i \(0.0819844\pi\)
−0.967014 + 0.254723i \(0.918016\pi\)
\(614\) 4.36980 + 3.46849i 0.176351 + 0.139977i
\(615\) 26.3526 1.06264
\(616\) 34.5867 15.0796i 1.39354 0.607574i
\(617\) 33.7479 1.35864 0.679319 0.733843i \(-0.262275\pi\)
0.679319 + 0.733843i \(0.262275\pi\)
\(618\) −16.1879 12.8490i −0.651172 0.516862i
\(619\) 47.3965i 1.90502i −0.304500 0.952512i \(-0.598489\pi\)
0.304500 0.952512i \(-0.401511\pi\)
\(620\) 8.51739 + 36.5462i 0.342067 + 1.46773i
\(621\) −16.7386 −0.671695
\(622\) 15.2360 19.1952i 0.610908 0.769657i
\(623\) −7.28095 6.35645i −0.291705 0.254666i
\(624\) −3.40928 6.91695i −0.136481 0.276900i
\(625\) −23.3821 −0.935285
\(626\) −11.2848 8.95724i −0.451033 0.358003i
\(627\) −10.6553 −0.425530
\(628\) 5.71786 + 24.5341i 0.228168 + 0.979016i
\(629\) −6.36247 −0.253688
\(630\) 1.05271 + 5.71454i 0.0419411 + 0.227673i
\(631\) 10.6781i 0.425088i 0.977151 + 0.212544i \(0.0681749\pi\)
−0.977151 + 0.212544i \(0.931825\pi\)
\(632\) −0.934683 + 1.97543i −0.0371797 + 0.0785783i
\(633\) 42.6467i 1.69505i
\(634\) 5.68191 + 4.50996i 0.225657 + 0.179113i
\(635\) 8.78714i 0.348707i
\(636\) 2.53195 + 10.8640i 0.100398 + 0.430786i
\(637\) −0.944747 6.93595i −0.0374322 0.274812i
\(638\) 37.0026 + 29.3705i 1.46495 + 1.16279i
\(639\) 3.63633i 0.143851i
\(640\) −24.5114 + 0.392224i −0.968899 + 0.0155040i
\(641\) 28.3033 1.11791 0.558956 0.829197i \(-0.311202\pi\)
0.558956 + 0.829197i \(0.311202\pi\)
\(642\) −7.58320 6.01910i −0.299285 0.237555i
\(643\) 13.4258i 0.529462i −0.964322 0.264731i \(-0.914717\pi\)
0.964322 0.264731i \(-0.0852831\pi\)
\(644\) −9.44723 + 17.7657i −0.372273 + 0.700065i
\(645\) 13.6775i 0.538552i
\(646\) −0.662917 + 0.835181i −0.0260821 + 0.0328598i
\(647\) −17.7213 −0.696698 −0.348349 0.937365i \(-0.613258\pi\)
−0.348349 + 0.937365i \(0.613258\pi\)
\(648\) −27.1940 12.8670i −1.06828 0.505463i
\(649\) 58.7308i 2.30539i
\(650\) 0.268137 0.337814i 0.0105172 0.0132501i
\(651\) 33.2723 + 29.0475i 1.30404 + 1.13846i
\(652\) −6.68237 28.6725i −0.261702 1.12290i
\(653\) 18.2377i 0.713695i −0.934163 0.356847i \(-0.883852\pi\)
0.934163 0.356847i \(-0.116148\pi\)
\(654\) 14.3201 18.0412i 0.559958 0.705468i
\(655\) 26.7125i 1.04374i
\(656\) 11.1560 + 22.6339i 0.435568 + 0.883706i
\(657\) 1.49673i 0.0583930i
\(658\) −1.41694 7.69173i −0.0552382 0.299855i
\(659\) 11.1172 0.433064 0.216532 0.976276i \(-0.430525\pi\)
0.216532 + 0.976276i \(0.430525\pi\)
\(660\) −41.0250 + 9.56121i −1.59690 + 0.372170i
\(661\) −10.0383 −0.390444 −0.195222 0.980759i \(-0.562543\pi\)
−0.195222 + 0.980759i \(0.562543\pi\)
\(662\) 9.35007 11.7798i 0.363401 0.457833i
\(663\) −1.32606 −0.0514999
\(664\) 6.55504 13.8539i 0.254385 0.537636i
\(665\) 4.73395 + 4.13285i 0.183575 + 0.160265i
\(666\) 7.34354 + 5.82887i 0.284556 + 0.225864i
\(667\) −25.1934 −0.975493
\(668\) −2.95841 12.6938i −0.114464 0.491140i
\(669\) 20.2864i 0.784318i
\(670\) −25.8250 + 32.5359i −0.997709 + 1.25697i
\(671\) −9.90655 −0.382438
\(672\) −23.1415 + 17.2341i −0.892704 + 0.664818i
\(673\) 18.9917 0.732077 0.366039 0.930600i \(-0.380714\pi\)
0.366039 + 0.930600i \(0.380714\pi\)
\(674\) 17.1057 21.5507i 0.658886 0.830102i
\(675\) 1.34245i 0.0516711i
\(676\) −0.453951 1.94780i −0.0174597 0.0749154i
\(677\) 11.8708 0.456231 0.228115 0.973634i \(-0.426744\pi\)
0.228115 + 0.973634i \(0.426744\pi\)
\(678\) 32.4980 + 25.7950i 1.24808 + 0.990650i
\(679\) −4.95826 4.32868i −0.190281 0.166120i
\(680\) −1.80294 + 3.81047i −0.0691397 + 0.146125i
\(681\) 30.6766 1.17553
\(682\) −38.3867 + 48.3617i −1.46990 + 1.85187i
\(683\) 24.1203 0.922937 0.461469 0.887156i \(-0.347323\pi\)
0.461469 + 0.887156i \(0.347323\pi\)
\(684\) 1.53027 0.356643i 0.0585115 0.0136366i
\(685\) −21.7568 −0.831285
\(686\) −24.8821 + 8.17809i −0.950003 + 0.312241i
\(687\) 19.8028i 0.755523i
\(688\) 11.7475 5.79018i 0.447868 0.220749i
\(689\) 2.89312i 0.110219i
\(690\) 13.9660 17.5952i 0.531678 0.669839i
\(691\) 15.6365i 0.594842i 0.954746 + 0.297421i \(0.0961265\pi\)
−0.954746 + 0.297421i \(0.903874\pi\)
\(692\) −9.91970 42.5632i −0.377091 1.61801i
\(693\) −6.28784 + 7.20237i −0.238855 + 0.273596i
\(694\) −24.1773 + 30.4599i −0.917757 + 1.15624i
\(695\) 48.9597i 1.85715i
\(696\) −32.6561 15.4514i −1.23783 0.585684i
\(697\) 4.33918 0.164358
\(698\) 20.2364 25.4949i 0.765957 0.964997i
\(699\) 8.91800i 0.337310i
\(700\) −1.42483 0.757680i −0.0538535 0.0286376i
\(701\) 6.05523i 0.228703i 0.993440 + 0.114351i \(0.0364790\pi\)
−0.993440 + 0.114351i \(0.963521\pi\)
\(702\) −4.87594 3.87023i −0.184030 0.146072i
\(703\) 10.1396 0.382423
\(704\) −25.5794 31.1883i −0.964058 1.17545i
\(705\) 8.73184i 0.328860i
\(706\) 36.1431 + 28.6883i 1.36027 + 1.07970i
\(707\) −29.9421 + 34.2970i −1.12609 + 1.28987i
\(708\) −10.1941 43.7406i −0.383118 1.64387i
\(709\) 10.6349i 0.399401i 0.979857 + 0.199701i \(0.0639969\pi\)
−0.979857 + 0.199701i \(0.936003\pi\)
\(710\) 12.1774 + 9.66572i 0.457011 + 0.362748i
\(711\) 0.553771i 0.0207680i
\(712\) −4.41919 + 9.33984i −0.165616 + 0.350025i
\(713\) 32.9273i 1.23314i
\(714\) 0.898894 + 4.87955i 0.0336403 + 0.182613i
\(715\) −10.9251 −0.408575
\(716\) −5.86834 25.1797i −0.219310 0.941010i
\(717\) 11.2052 0.418464
\(718\) −15.5718 12.3599i −0.581133 0.461269i
\(719\) −6.21956 −0.231950 −0.115975 0.993252i \(-0.536999\pi\)
−0.115975 + 0.993252i \(0.536999\pi\)
\(720\) 5.57185 2.74630i 0.207651 0.102349i
\(721\) −13.1900 + 15.1084i −0.491220 + 0.562665i
\(722\) −15.6487 + 19.7151i −0.582384 + 0.733720i
\(723\) −1.06137 −0.0394728
\(724\) −4.48966 19.2641i −0.166857 0.715945i
\(725\) 2.02054i 0.0750411i
\(726\) −30.7982 24.4458i −1.14303 0.907268i
\(727\) 26.7235 0.991118 0.495559 0.868574i \(-0.334963\pi\)
0.495559 + 0.868574i \(0.334963\pi\)
\(728\) −6.85968 + 2.99078i −0.254237 + 0.110845i
\(729\) −17.8357 −0.660581
\(730\) −5.01228 3.97845i −0.185513 0.147249i
\(731\) 2.25212i 0.0832978i
\(732\) 7.37804 1.71951i 0.272700 0.0635550i
\(733\) −21.9273 −0.809905 −0.404953 0.914338i \(-0.632712\pi\)
−0.404953 + 0.914338i \(0.632712\pi\)
\(734\) −12.2159 + 15.3904i −0.450899 + 0.568068i
\(735\) 28.9738 3.94652i 1.06871 0.145569i
\(736\) 21.0246 + 4.54658i 0.774979 + 0.167589i
\(737\) −68.3488 −2.51766
\(738\) −5.00827 3.97527i −0.184357 0.146332i
\(739\) −29.1929 −1.07388 −0.536938 0.843621i \(-0.680419\pi\)
−0.536938 + 0.843621i \(0.680419\pi\)
\(740\) 39.0397 9.09851i 1.43513 0.334468i
\(741\) 2.11329 0.0776336
\(742\) 10.6459 1.96115i 0.390824 0.0719962i
\(743\) 43.4204i 1.59294i 0.604678 + 0.796470i \(0.293302\pi\)
−0.604678 + 0.796470i \(0.706698\pi\)
\(744\) 20.1947 42.6810i 0.740374 1.56476i
\(745\) 0.606296i 0.0222130i
\(746\) −10.4889 8.32545i −0.384025 0.304816i
\(747\) 3.88366i 0.142096i
\(748\) −6.75513 + 1.57434i −0.246992 + 0.0575635i
\(749\) −6.17883 + 7.07751i −0.225770 + 0.258606i
\(750\) 24.5471 + 19.4840i 0.896332 + 0.711455i
\(751\) 11.5694i 0.422174i 0.977467 + 0.211087i \(0.0677003\pi\)
−0.977467 + 0.211087i \(0.932300\pi\)
\(752\) −7.49967 + 3.69650i −0.273485 + 0.134797i
\(753\) −50.3145 −1.83356
\(754\) −7.33883 5.82513i −0.267264 0.212139i
\(755\) 41.2908i 1.50273i
\(756\) −10.9362 + 20.5657i −0.397746 + 0.747967i
\(757\) 3.36324i 0.122239i 0.998130 + 0.0611196i \(0.0194671\pi\)
−0.998130 + 0.0611196i \(0.980533\pi\)
\(758\) 25.8241 32.5346i 0.937972 1.18171i
\(759\) 36.9627 1.34166
\(760\) 2.87328 6.07260i 0.104225 0.220276i
\(761\) 28.7317i 1.04152i 0.853702 + 0.520761i \(0.174352\pi\)
−0.853702 + 0.520761i \(0.825648\pi\)
\(762\) 6.87392 8.66016i 0.249016 0.313724i
\(763\) −16.8381 14.7001i −0.609581 0.532179i
\(764\) −26.4071 + 6.15439i −0.955374 + 0.222658i
\(765\) 1.06819i 0.0386204i
\(766\) 20.9953 26.4511i 0.758591 0.955716i
\(767\) 11.6482i 0.420594i
\(768\) 24.4640 + 18.7880i 0.882770 + 0.677954i
\(769\) 32.7273i 1.18018i −0.807338 0.590089i \(-0.799093\pi\)
0.807338 0.590089i \(-0.200907\pi\)
\(770\) 7.40577 + 40.2015i 0.266885 + 1.44876i
\(771\) 45.7218 1.64663
\(772\) 10.5056 + 45.0771i 0.378104 + 1.62236i
\(773\) −1.68151 −0.0604796 −0.0302398 0.999543i \(-0.509627\pi\)
−0.0302398 + 0.999543i \(0.509627\pi\)
\(774\) −2.06324 + 2.59939i −0.0741618 + 0.0934332i
\(775\) 2.64081 0.0948609
\(776\) −3.00943 + 6.36035i −0.108032 + 0.228323i
\(777\) 31.0294 35.5424i 1.11317 1.27508i
\(778\) 26.8318 + 21.2975i 0.961966 + 0.763551i
\(779\) −6.91518 −0.247762
\(780\) 8.13660 1.89630i 0.291337 0.0678985i
\(781\) 25.5814i 0.915374i
\(782\) 2.29963 2.89721i 0.0822346 0.103604i
\(783\) −29.1641 −1.04224
\(784\) 15.6552 + 23.2145i 0.559116 + 0.829090i
\(785\) −27.2925 −0.974113
\(786\) 20.8964 26.3264i 0.745349 0.939033i
\(787\) 5.75339i 0.205086i −0.994729 0.102543i \(-0.967302\pi\)
0.994729 0.102543i \(-0.0326979\pi\)
\(788\) 1.57707 0.367548i 0.0561806 0.0130934i
\(789\) −30.3260 −1.07964
\(790\) −1.85448 1.47198i −0.0659794 0.0523706i
\(791\) 26.4795 30.3308i 0.941504 1.07844i
\(792\) 9.23904 + 4.37150i 0.328295 + 0.155334i
\(793\) 1.96479 0.0697719
\(794\) −21.1918 + 26.6986i −0.752068 + 0.947499i
\(795\) −12.0855 −0.428629
\(796\) −6.23156 26.7382i −0.220872 0.947711i
\(797\) −0.563854 −0.0199727 −0.00998636 0.999950i \(-0.503179\pi\)
−0.00998636 + 0.999950i \(0.503179\pi\)
\(798\) −1.43253 7.77635i −0.0507111 0.275280i
\(799\) 1.43777i 0.0508648i
\(800\) −0.364642 + 1.68620i −0.0128920 + 0.0596163i
\(801\) 2.61823i 0.0925107i
\(802\) 18.6635 23.5133i 0.659031 0.830285i
\(803\) 10.5294i 0.371574i
\(804\) 50.9037 11.8635i 1.79524 0.418394i
\(805\) −16.4219 14.3367i −0.578794 0.505301i
\(806\) 7.61334 9.59172i 0.268168 0.337854i
\(807\) 51.8702i 1.82592i
\(808\) 43.9954 + 20.8166i 1.54775 + 0.732327i
\(809\) −40.0661 −1.40865 −0.704325 0.709878i \(-0.748750\pi\)
−0.704325 + 0.709878i \(0.748750\pi\)
\(810\) 20.2634 25.5290i 0.711984 0.896998i
\(811\) 10.3867i 0.364728i −0.983231 0.182364i \(-0.941625\pi\)
0.983231 0.182364i \(-0.0583749\pi\)
\(812\) −16.4602 + 30.9537i −0.577640 + 1.08626i
\(813\) 45.7468i 1.60441i
\(814\) 51.6613 + 41.0057i 1.81073 + 1.43725i
\(815\) 31.8963 1.11728
\(816\) 4.75771 2.34502i 0.166553 0.0820921i
\(817\) 3.58912i 0.125567i
\(818\) −16.8106 13.3433i −0.587770 0.466537i
\(819\) 1.24709 1.42847i 0.0435767 0.0499147i
\(820\) −26.6249 + 6.20515i −0.929782 + 0.216693i
\(821\) 25.9082i 0.904202i −0.891967 0.452101i \(-0.850675\pi\)
0.891967 0.452101i \(-0.149325\pi\)
\(822\) 21.4424 + 17.0197i 0.747890 + 0.593631i
\(823\) 32.7107i 1.14022i 0.821567 + 0.570112i \(0.193100\pi\)
−0.821567 + 0.570112i \(0.806900\pi\)
\(824\) 19.3807 + 9.17005i 0.675158 + 0.319454i
\(825\) 2.96445i 0.103209i
\(826\) −42.8625 + 7.89598i −1.49138 + 0.274736i
\(827\) −9.60694 −0.334066 −0.167033 0.985951i \(-0.553419\pi\)
−0.167033 + 0.985951i \(0.553419\pi\)
\(828\) −5.30845 + 1.23718i −0.184481 + 0.0429949i
\(829\) −55.6806 −1.93387 −0.966934 0.255027i \(-0.917916\pi\)
−0.966934 + 0.255027i \(0.917916\pi\)
\(830\) 13.0057 + 10.3231i 0.451434 + 0.358321i
\(831\) −56.5513 −1.96174
\(832\) 5.07323 + 6.18566i 0.175882 + 0.214449i
\(833\) 4.77078 0.649829i 0.165298 0.0225152i
\(834\) 38.2997 48.2522i 1.32621 1.67084i
\(835\) 14.1211 0.488680
\(836\) 10.7654 2.50896i 0.372328 0.0867742i
\(837\) 38.1170i 1.31752i
\(838\) −24.8031 19.6872i −0.856807 0.680083i
\(839\) −26.2179 −0.905142 −0.452571 0.891728i \(-0.649493\pi\)
−0.452571 + 0.891728i \(0.649493\pi\)
\(840\) −12.4934 28.6552i −0.431065 0.988697i
\(841\) −14.8953 −0.513630
\(842\) 7.69863 + 6.11072i 0.265312 + 0.210589i
\(843\) 18.9320i 0.652053i
\(844\) −10.0419 43.0874i −0.345655 1.48313i
\(845\) 2.16680 0.0745402
\(846\) 1.31719 1.65947i 0.0452860 0.0570538i
\(847\) −25.0945 + 28.7444i −0.862258 + 0.987668i
\(848\) −5.11622 10.3801i −0.175692 0.356454i
\(849\) −35.1302 −1.20567
\(850\) 0.232360 + 0.184433i 0.00796987 + 0.00632601i
\(851\) −35.1739 −1.20575
\(852\) −4.44025 19.0521i −0.152120 0.652714i
\(853\) 29.3901 1.00630 0.503149 0.864200i \(-0.332175\pi\)
0.503149 + 0.864200i \(0.332175\pi\)
\(854\) −1.33187 7.22993i −0.0455757 0.247403i
\(855\) 1.70233i 0.0582184i
\(856\) 9.07887 + 4.29571i 0.310309 + 0.146824i
\(857\) 22.3255i 0.762624i 0.924446 + 0.381312i \(0.124528\pi\)
−0.924446 + 0.381312i \(0.875472\pi\)
\(858\) 10.7672 + 8.54637i 0.367586 + 0.291768i
\(859\) 15.7351i 0.536873i −0.963297 0.268437i \(-0.913493\pi\)
0.963297 0.268437i \(-0.0865070\pi\)
\(860\) 3.22060 + 13.8189i 0.109822 + 0.471219i
\(861\) −21.1619 + 24.2398i −0.721196 + 0.826090i
\(862\) 19.4865 + 15.4672i 0.663712 + 0.526816i
\(863\) 31.8109i 1.08286i 0.840747 + 0.541428i \(0.182116\pi\)
−0.840747 + 0.541428i \(0.817884\pi\)
\(864\) 24.3383 + 5.26316i 0.828007 + 0.179056i
\(865\) 47.3488 1.60991
\(866\) −14.1299 11.2155i −0.480154 0.381118i
\(867\) 31.8618i 1.08208i
\(868\) −40.4559 21.5132i −1.37316 0.730205i
\(869\) 3.89574i 0.132154i
\(870\) 24.3335 30.6567i 0.824982 1.03936i
\(871\) 13.5558 0.459321
\(872\) −10.2199 + 21.5996i −0.346091 + 0.731453i
\(873\) 1.78299i 0.0603452i
\(874\) −3.66483 + 4.61717i −0.123965 + 0.156178i
\(875\) 20.0011 22.9101i 0.676160 0.774503i
\(876\) 1.82762 + 7.84191i 0.0617496 + 0.264954i
\(877\) 4.71862i 0.159337i −0.996821 0.0796683i \(-0.974614\pi\)
0.996821 0.0796683i \(-0.0253861\pi\)
\(878\) 35.0100 44.1076i 1.18153 1.48856i
\(879\) 19.3548i 0.652820i
\(880\) 39.1976 19.3200i 1.32135 0.651279i
\(881\) 34.3311i 1.15665i −0.815808 0.578323i \(-0.803707\pi\)
0.815808 0.578323i \(-0.196293\pi\)
\(882\) −6.10175 3.62064i −0.205457 0.121913i
\(883\) 13.7434 0.462503 0.231252 0.972894i \(-0.425718\pi\)
0.231252 + 0.972894i \(0.425718\pi\)
\(884\) 1.33976 0.312243i 0.0450611 0.0105019i
\(885\) 48.6585 1.63564
\(886\) 2.58723 3.25955i 0.0869199 0.109507i
\(887\) 23.5082 0.789328 0.394664 0.918825i \(-0.370861\pi\)
0.394664 + 0.918825i \(0.370861\pi\)
\(888\) −45.5930 21.5725i −1.53000 0.723927i
\(889\) −8.08264 7.05634i −0.271083 0.236662i
\(890\) −8.76799 6.95952i −0.293904 0.233283i
\(891\) 53.6294 1.79665
\(892\) −4.77677 20.4961i −0.159938 0.686259i
\(893\) 2.29132i 0.0766762i
\(894\) 0.474288 0.597535i 0.0158626 0.0199846i
\(895\) 28.0108 0.936297
\(896\) 19.3226 22.8612i 0.645524 0.763740i
\(897\) −7.33091 −0.244772
\(898\) −11.2325 + 14.1514i −0.374835 + 0.472238i
\(899\) 57.3703i 1.91341i
\(900\) −0.0992233 0.425745i −0.00330744 0.0141915i
\(901\) −1.98998 −0.0662960
\(902\) −35.2329 27.9658i −1.17313 0.931158i
\(903\) 12.5809 + 10.9835i 0.418668 + 0.365507i
\(904\) −38.9077 18.4094i −1.29405 0.612286i
\(905\) 21.4301 0.712359
\(906\) 32.3006 40.6941i 1.07311 1.35197i
\(907\) −36.4422 −1.21004 −0.605021 0.796209i \(-0.706835\pi\)
−0.605021 + 0.796209i \(0.706835\pi\)
\(908\) −30.9937 + 7.22333i −1.02856 + 0.239714i
\(909\) −12.3332 −0.409067
\(910\) −1.46881 7.97327i −0.0486905 0.264311i
\(911\) 9.46472i 0.313580i −0.987632 0.156790i \(-0.949885\pi\)
0.987632 0.156790i \(-0.0501146\pi\)
\(912\) −7.58218 + 3.73717i −0.251071 + 0.123750i
\(913\) 27.3213i 0.904203i
\(914\) 5.32464 6.70828i 0.176123 0.221890i
\(915\) 8.20759i 0.271335i
\(916\) −4.66289 20.0074i −0.154066 0.661063i
\(917\) −24.5708 21.4509i −0.811400 0.708372i
\(918\) 2.66207 3.35383i 0.0878615 0.110693i
\(919\) 43.3424i 1.42973i −0.699261 0.714867i \(-0.746487\pi\)
0.699261 0.714867i \(-0.253513\pi\)
\(920\) −9.96728 + 21.0656i −0.328612 + 0.694512i
\(921\) 7.60542 0.250607
\(922\) 11.9095 15.0042i 0.392217 0.494138i
\(923\) 5.07363i 0.167001i
\(924\) 24.1497 45.4138i 0.794466 1.49401i
\(925\) 2.82099i 0.0927536i
\(926\) 26.9588 + 21.3983i 0.885923 + 0.703193i
\(927\) −5.43297 −0.178442
\(928\) 36.6319 + 7.92165i 1.20250 + 0.260041i
\(929\) 39.0336i 1.28065i −0.768104 0.640325i \(-0.778799\pi\)
0.768104 0.640325i \(-0.221201\pi\)
\(930\) 40.0678 + 31.8034i 1.31387 + 1.04288i
\(931\) −7.60301 + 1.03561i −0.249179 + 0.0339406i
\(932\) 2.09989 + 9.01017i 0.0687843 + 0.295138i
\(933\) 33.4083i 1.09374i
\(934\) 32.5412 + 25.8293i 1.06478 + 0.845160i
\(935\) 7.51464i 0.245755i
\(936\) −1.83241 0.867011i −0.0598940 0.0283391i
\(937\) 53.0178i 1.73202i 0.500030 + 0.866008i \(0.333322\pi\)
−0.500030 + 0.866008i \(0.666678\pi\)
\(938\) −9.18905 49.8819i −0.300033 1.62870i
\(939\) −19.6407 −0.640950
\(940\) −2.05606 8.82207i −0.0670612 0.287744i
\(941\) 16.8743 0.550087 0.275044 0.961432i \(-0.411308\pi\)
0.275044 + 0.961432i \(0.411308\pi\)
\(942\) 26.8981 + 21.3502i 0.876389 + 0.695626i
\(943\) 23.9885 0.781172
\(944\) 20.5989 + 41.7922i 0.670437 + 1.36022i
\(945\) −19.0101 16.5963i −0.618398 0.539876i
\(946\) −14.5148 + 18.2866i −0.471917 + 0.594548i
\(947\) −8.43947 −0.274246 −0.137123 0.990554i \(-0.543786\pi\)
−0.137123 + 0.990554i \(0.543786\pi\)
\(948\) 0.676197 + 2.90141i 0.0219619 + 0.0942334i
\(949\) 2.08832i 0.0677899i
\(950\) −0.370302 0.293924i −0.0120142 0.00953616i
\(951\) 9.88907 0.320675
\(952\) −2.05716 4.71832i −0.0666728 0.152922i
\(953\) −18.5496 −0.600880 −0.300440 0.953801i \(-0.597134\pi\)
−0.300440 + 0.953801i \(0.597134\pi\)
\(954\) 2.29683 + 1.82309i 0.0743627 + 0.0590247i
\(955\) 29.3761i 0.950590i
\(956\) −11.3210 + 2.63844i −0.366146 + 0.0853333i
\(957\) 64.4012 2.08179
\(958\) −2.52206 + 3.17744i −0.0814841 + 0.102658i
\(959\) 17.4714 20.0125i 0.564180 0.646237i
\(960\) −25.8395 + 21.1925i −0.833967 + 0.683986i
\(961\) 43.9820 1.41877
\(962\) −10.2461 8.13278i −0.330349 0.262211i
\(963\) −2.54507 −0.0820138
\(964\) 1.07234 0.249917i 0.0345377 0.00804929i
\(965\) −50.1453 −1.61423
\(966\) 4.96939 + 26.9758i 0.159888 + 0.867933i
\(967\) 7.56789i 0.243367i 0.992569 + 0.121683i \(0.0388293\pi\)
−0.992569 + 0.121683i \(0.961171\pi\)
\(968\) 36.8726 + 17.4465i 1.18513 + 0.560750i
\(969\) 1.45359i 0.0466961i
\(970\) −5.97093 4.73937i −0.191715 0.152172i
\(971\) 4.56757i 0.146580i 0.997311 + 0.0732901i \(0.0233499\pi\)
−0.997311 + 0.0732901i \(0.976650\pi\)
\(972\) −14.2191 + 3.31389i −0.456079 + 0.106293i
\(973\) −45.0344 39.3161i −1.44374 1.26042i
\(974\) 27.2363 + 21.6186i 0.872709 + 0.692704i
\(975\) 0.587948i 0.0188294i
\(976\) −7.04940 + 3.47457i −0.225646 + 0.111218i
\(977\) 35.0513 1.12139 0.560696 0.828022i \(-0.310534\pi\)
0.560696 + 0.828022i \(0.310534\pi\)
\(978\) −31.4354 24.9515i −1.00519 0.797863i
\(979\) 18.4191i 0.588677i
\(980\) −28.3439 + 10.8097i −0.905413 + 0.345302i
\(981\) 6.05499i 0.193321i
\(982\) −35.8048 + 45.1090i −1.14258 + 1.43949i
\(983\) −17.4575 −0.556809 −0.278404 0.960464i \(-0.589805\pi\)
−0.278404 + 0.960464i \(0.589805\pi\)
\(984\) 31.0943 + 14.7124i 0.991249 + 0.469014i
\(985\) 1.75438i 0.0558993i
\(986\) 4.00672 5.04789i 0.127600 0.160758i
\(987\) −8.03178 7.01193i −0.255654 0.223192i
\(988\) −2.13513 + 0.497609i −0.0679275 + 0.0158311i
\(989\) 12.4505i 0.395903i
\(990\) −6.88440 + 8.67337i −0.218801 + 0.275658i
\(991\) 11.0252i 0.350227i 0.984548 + 0.175114i \(0.0560292\pi\)
−0.984548 + 0.175114i \(0.943971\pi\)
\(992\) −10.3535 + 47.8772i −0.328723 + 1.52010i
\(993\) 20.5021i 0.650614i
\(994\) −18.6696 + 3.43925i −0.592165 + 0.109086i
\(995\) 29.7445 0.942965
\(996\) −4.74225 20.3479i −0.150264 0.644749i
\(997\) 5.72166 0.181207 0.0906033 0.995887i \(-0.471120\pi\)
0.0906033 + 0.995887i \(0.471120\pi\)
\(998\) 33.1616 41.7789i 1.04971 1.32249i
\(999\) −40.7176 −1.28825
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.h.b.27.14 yes 48
4.3 odd 2 2912.2.h.b.2575.11 48
7.6 odd 2 728.2.h.a.27.14 yes 48
8.3 odd 2 728.2.h.a.27.13 48
8.5 even 2 2912.2.h.a.2575.11 48
28.27 even 2 2912.2.h.a.2575.38 48
56.13 odd 2 2912.2.h.b.2575.38 48
56.27 even 2 inner 728.2.h.b.27.13 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.13 48 8.3 odd 2
728.2.h.a.27.14 yes 48 7.6 odd 2
728.2.h.b.27.13 yes 48 56.27 even 2 inner
728.2.h.b.27.14 yes 48 1.1 even 1 trivial
2912.2.h.a.2575.11 48 8.5 even 2
2912.2.h.a.2575.38 48 28.27 even 2
2912.2.h.b.2575.11 48 4.3 odd 2
2912.2.h.b.2575.38 48 56.13 odd 2