Properties

Label 728.2.h.a.27.13
Level $728$
Weight $2$
Character 728.27
Analytic conductor $5.813$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(27,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.27"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,1,0,1,0,-10] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 27.13
Character \(\chi\) \(=\) 728.27
Dual form 728.2.h.a.27.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.879218 - 1.10769i) q^{2} +1.92788i q^{3} +(-0.453951 + 1.94780i) q^{4} -2.16680 q^{5} +(2.13549 - 1.69503i) q^{6} +(1.74001 - 1.99308i) q^{7} +(2.55668 - 1.20971i) q^{8} -0.716713 q^{9} +(1.90509 + 2.40014i) q^{10} -5.04203 q^{11} +(-3.75512 - 0.875162i) q^{12} -1.00000 q^{13} +(-3.73756 - 0.175035i) q^{14} -4.17733i q^{15} +(-3.58786 - 1.76841i) q^{16} +0.687834i q^{17} +(0.630147 + 0.793895i) q^{18} -1.09617i q^{19} +(0.983622 - 4.22050i) q^{20} +(3.84242 + 3.35452i) q^{21} +(4.43304 + 5.58500i) q^{22} -3.80258i q^{23} +(2.33216 + 4.92897i) q^{24} -0.304972 q^{25} +(0.879218 + 1.10769i) q^{26} +4.40190i q^{27} +(3.09225 + 4.29395i) q^{28} -6.62535i q^{29} +(-4.62718 + 3.67278i) q^{30} +8.65921 q^{31} +(1.19566 + 5.52905i) q^{32} -9.72042i q^{33} +(0.761906 - 0.604756i) q^{34} +(-3.77025 + 4.31861i) q^{35} +(0.325352 - 1.39601i) q^{36} -9.25001i q^{37} +(-1.21422 + 0.963776i) q^{38} -1.92788i q^{39} +(-5.53982 + 2.62119i) q^{40} -6.30848i q^{41} +(0.337445 - 7.20556i) q^{42} -3.27423 q^{43} +(2.28883 - 9.82087i) q^{44} +1.55297 q^{45} +(-4.21208 + 3.34330i) q^{46} -2.09029 q^{47} +(3.40928 - 6.91695i) q^{48} +(-0.944747 - 6.93595i) q^{49} +(0.268137 + 0.337814i) q^{50} -1.32606 q^{51} +(0.453951 - 1.94780i) q^{52} -2.89312i q^{53} +(4.87594 - 3.87023i) q^{54} +10.9251 q^{55} +(2.03760 - 7.20057i) q^{56} +2.11329 q^{57} +(-7.33883 + 5.82513i) q^{58} -11.6482i q^{59} +(8.13660 + 1.89630i) q^{60} -1.96479 q^{61} +(-7.61334 - 9.59172i) q^{62} +(-1.24709 + 1.42847i) q^{63} +(5.07323 - 6.18566i) q^{64} +2.16680 q^{65} +(-10.7672 + 8.54637i) q^{66} +13.5558 q^{67} +(-1.33976 - 0.312243i) q^{68} +7.33091 q^{69} +(8.09855 + 0.379265i) q^{70} +5.07363i q^{71} +(-1.83241 + 0.867011i) q^{72} +2.08832i q^{73} +(-10.2461 + 8.13278i) q^{74} -0.587948i q^{75} +(2.13513 + 0.497609i) q^{76} +(-8.77317 + 10.0492i) q^{77} +(-2.13549 + 1.69503i) q^{78} -0.772654i q^{79} +(7.77417 + 3.83180i) q^{80} -10.6365 q^{81} +(-6.98783 + 5.54653i) q^{82} -5.41871i q^{83} +(-8.27821 + 5.96148i) q^{84} -1.49040i q^{85} +(2.87876 + 3.62683i) q^{86} +12.7729 q^{87} +(-12.8909 + 6.09937i) q^{88} +3.65311i q^{89} +(-1.36540 - 1.72021i) q^{90} +(-1.74001 + 1.99308i) q^{91} +(7.40667 + 1.72618i) q^{92} +16.6939i q^{93} +(1.83782 + 2.31539i) q^{94} +2.37519i q^{95} +(-10.6593 + 2.30508i) q^{96} +2.48774i q^{97} +(-6.85224 + 7.14470i) q^{98} +3.61369 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + q^{4} - 10 q^{6} - 5 q^{8} - 48 q^{9} - 4 q^{11} + 10 q^{12} - 48 q^{13} + 10 q^{14} + 5 q^{16} - 15 q^{18} - 22 q^{20} - 6 q^{22} + 48 q^{25} - q^{26} + 4 q^{28} - 26 q^{30} - 19 q^{32}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.879218 1.10769i −0.621701 0.783255i
\(3\) 1.92788i 1.11306i 0.830827 + 0.556530i \(0.187868\pi\)
−0.830827 + 0.556530i \(0.812132\pi\)
\(4\) −0.453951 + 1.94780i −0.226975 + 0.973900i
\(5\) −2.16680 −0.969023 −0.484512 0.874785i \(-0.661003\pi\)
−0.484512 + 0.874785i \(0.661003\pi\)
\(6\) 2.13549 1.69503i 0.871810 0.691991i
\(7\) 1.74001 1.99308i 0.657661 0.753314i
\(8\) 2.55668 1.20971i 0.903923 0.427695i
\(9\) −0.716713 −0.238904
\(10\) 1.90509 + 2.40014i 0.602443 + 0.758992i
\(11\) −5.04203 −1.52023 −0.760115 0.649789i \(-0.774857\pi\)
−0.760115 + 0.649789i \(0.774857\pi\)
\(12\) −3.75512 0.875162i −1.08401 0.252638i
\(13\) −1.00000 −0.277350
\(14\) −3.73756 0.175035i −0.998905 0.0467799i
\(15\) 4.17733i 1.07858i
\(16\) −3.58786 1.76841i −0.896964 0.442103i
\(17\) 0.687834i 0.166824i 0.996515 + 0.0834121i \(0.0265818\pi\)
−0.996515 + 0.0834121i \(0.973418\pi\)
\(18\) 0.630147 + 0.793895i 0.148527 + 0.187123i
\(19\) 1.09617i 0.251479i −0.992063 0.125740i \(-0.959870\pi\)
0.992063 0.125740i \(-0.0401304\pi\)
\(20\) 0.983622 4.22050i 0.219944 0.943732i
\(21\) 3.84242 + 3.35452i 0.838484 + 0.732017i
\(22\) 4.43304 + 5.58500i 0.945128 + 1.19073i
\(23\) 3.80258i 0.792892i −0.918058 0.396446i \(-0.870243\pi\)
0.918058 0.396446i \(-0.129757\pi\)
\(24\) 2.33216 + 4.92897i 0.476051 + 1.00612i
\(25\) −0.304972 −0.0609943
\(26\) 0.879218 + 1.10769i 0.172429 + 0.217236i
\(27\) 4.40190i 0.847146i
\(28\) 3.09225 + 4.29395i 0.584380 + 0.811480i
\(29\) 6.62535i 1.23030i −0.788411 0.615148i \(-0.789096\pi\)
0.788411 0.615148i \(-0.210904\pi\)
\(30\) −4.62718 + 3.67278i −0.844804 + 0.670555i
\(31\) 8.65921 1.55524 0.777620 0.628734i \(-0.216427\pi\)
0.777620 + 0.628734i \(0.216427\pi\)
\(32\) 1.19566 + 5.52905i 0.211364 + 0.977407i
\(33\) 9.72042i 1.69211i
\(34\) 0.761906 0.604756i 0.130666 0.103715i
\(35\) −3.77025 + 4.31861i −0.637289 + 0.729979i
\(36\) 0.325352 1.39601i 0.0542254 0.232669i
\(37\) 9.25001i 1.52069i −0.649518 0.760346i \(-0.725029\pi\)
0.649518 0.760346i \(-0.274971\pi\)
\(38\) −1.21422 + 0.963776i −0.196972 + 0.156345i
\(39\) 1.92788i 0.308708i
\(40\) −5.53982 + 2.62119i −0.875922 + 0.414447i
\(41\) 6.30848i 0.985218i −0.870251 0.492609i \(-0.836043\pi\)
0.870251 0.492609i \(-0.163957\pi\)
\(42\) 0.337445 7.20556i 0.0520689 1.11184i
\(43\) −3.27423 −0.499315 −0.249657 0.968334i \(-0.580318\pi\)
−0.249657 + 0.968334i \(0.580318\pi\)
\(44\) 2.28883 9.82087i 0.345055 1.48055i
\(45\) 1.55297 0.231504
\(46\) −4.21208 + 3.34330i −0.621037 + 0.492942i
\(47\) −2.09029 −0.304900 −0.152450 0.988311i \(-0.548716\pi\)
−0.152450 + 0.988311i \(0.548716\pi\)
\(48\) 3.40928 6.91695i 0.492088 0.998376i
\(49\) −0.944747 6.93595i −0.134964 0.990851i
\(50\) 0.268137 + 0.337814i 0.0379202 + 0.0477741i
\(51\) −1.32606 −0.185685
\(52\) 0.453951 1.94780i 0.0629517 0.270111i
\(53\) 2.89312i 0.397400i −0.980060 0.198700i \(-0.936328\pi\)
0.980060 0.198700i \(-0.0636720\pi\)
\(54\) 4.87594 3.87023i 0.663531 0.526671i
\(55\) 10.9251 1.47314
\(56\) 2.03760 7.20057i 0.272286 0.962216i
\(57\) 2.11329 0.279912
\(58\) −7.33883 + 5.82513i −0.963635 + 0.764877i
\(59\) 11.6482i 1.51647i −0.651980 0.758236i \(-0.726061\pi\)
0.651980 0.758236i \(-0.273939\pi\)
\(60\) 8.13660 + 1.89630i 1.05043 + 0.244812i
\(61\) −1.96479 −0.251566 −0.125783 0.992058i \(-0.540144\pi\)
−0.125783 + 0.992058i \(0.540144\pi\)
\(62\) −7.61334 9.59172i −0.966895 1.21815i
\(63\) −1.24709 + 1.42847i −0.157118 + 0.179970i
\(64\) 5.07323 6.18566i 0.634153 0.773207i
\(65\) 2.16680 0.268759
\(66\) −10.7672 + 8.54637i −1.32535 + 1.05199i
\(67\) 13.5558 1.65611 0.828053 0.560650i \(-0.189449\pi\)
0.828053 + 0.560650i \(0.189449\pi\)
\(68\) −1.33976 0.312243i −0.162470 0.0378650i
\(69\) 7.33091 0.882537
\(70\) 8.09855 + 0.379265i 0.967962 + 0.0453308i
\(71\) 5.07363i 0.602129i 0.953604 + 0.301064i \(0.0973419\pi\)
−0.953604 + 0.301064i \(0.902658\pi\)
\(72\) −1.83241 + 0.867011i −0.215951 + 0.102178i
\(73\) 2.08832i 0.244420i 0.992504 + 0.122210i \(0.0389981\pi\)
−0.992504 + 0.122210i \(0.961002\pi\)
\(74\) −10.2461 + 8.13278i −1.19109 + 0.945416i
\(75\) 0.587948i 0.0678904i
\(76\) 2.13513 + 0.497609i 0.244916 + 0.0570797i
\(77\) −8.77317 + 10.0492i −0.999796 + 1.14521i
\(78\) −2.13549 + 1.69503i −0.241797 + 0.191924i
\(79\) 0.772654i 0.0869303i −0.999055 0.0434652i \(-0.986160\pi\)
0.999055 0.0434652i \(-0.0138398\pi\)
\(80\) 7.77417 + 3.83180i 0.869179 + 0.428408i
\(81\) −10.6365 −1.18183
\(82\) −6.98783 + 5.54653i −0.771677 + 0.612511i
\(83\) 5.41871i 0.594781i −0.954756 0.297390i \(-0.903884\pi\)
0.954756 0.297390i \(-0.0961163\pi\)
\(84\) −8.27821 + 5.96148i −0.903227 + 0.650450i
\(85\) 1.49040i 0.161656i
\(86\) 2.87876 + 3.62683i 0.310425 + 0.391091i
\(87\) 12.7729 1.36939
\(88\) −12.8909 + 6.09937i −1.37417 + 0.650195i
\(89\) 3.65311i 0.387229i 0.981078 + 0.193615i \(0.0620212\pi\)
−0.981078 + 0.193615i \(0.937979\pi\)
\(90\) −1.36540 1.72021i −0.143926 0.181326i
\(91\) −1.74001 + 1.99308i −0.182402 + 0.208932i
\(92\) 7.40667 + 1.72618i 0.772198 + 0.179967i
\(93\) 16.6939i 1.73108i
\(94\) 1.83782 + 2.31539i 0.189557 + 0.238815i
\(95\) 2.37519i 0.243689i
\(96\) −10.6593 + 2.30508i −1.08791 + 0.235261i
\(97\) 2.48774i 0.252592i 0.991993 + 0.126296i \(0.0403088\pi\)
−0.991993 + 0.126296i \(0.959691\pi\)
\(98\) −6.85224 + 7.14470i −0.692181 + 0.721724i
\(99\) 3.61369 0.363189
\(100\) 0.138442 0.594024i 0.0138442 0.0594024i
\(101\) −17.2080 −1.71226 −0.856131 0.516759i \(-0.827138\pi\)
−0.856131 + 0.516759i \(0.827138\pi\)
\(102\) 1.16590 + 1.46886i 0.115441 + 0.145439i
\(103\) −7.58040 −0.746919 −0.373460 0.927646i \(-0.621829\pi\)
−0.373460 + 0.927646i \(0.621829\pi\)
\(104\) −2.55668 + 1.20971i −0.250703 + 0.118621i
\(105\) −8.32576 7.26858i −0.812511 0.709341i
\(106\) −3.20468 + 2.54368i −0.311266 + 0.247064i
\(107\) 3.55104 0.343292 0.171646 0.985159i \(-0.445092\pi\)
0.171646 + 0.985159i \(0.445092\pi\)
\(108\) −8.57402 1.99825i −0.825036 0.192281i
\(109\) 8.44828i 0.809199i −0.914494 0.404599i \(-0.867411\pi\)
0.914494 0.404599i \(-0.132589\pi\)
\(110\) −9.60553 12.1016i −0.915851 1.15384i
\(111\) 17.8329 1.69262
\(112\) −9.76749 + 4.07384i −0.922941 + 0.384942i
\(113\) −15.2181 −1.43159 −0.715797 0.698308i \(-0.753936\pi\)
−0.715797 + 0.698308i \(0.753936\pi\)
\(114\) −1.85804 2.34087i −0.174022 0.219242i
\(115\) 8.23943i 0.768331i
\(116\) 12.9049 + 3.00758i 1.19819 + 0.279247i
\(117\) 0.716713 0.0662601
\(118\) −12.9026 + 10.2413i −1.18778 + 0.942793i
\(119\) 1.37091 + 1.19684i 0.125671 + 0.109714i
\(120\) −5.05334 10.6801i −0.461304 0.974955i
\(121\) 14.4221 1.31110
\(122\) 1.72748 + 2.17638i 0.156399 + 0.197040i
\(123\) 12.1620 1.09661
\(124\) −3.93086 + 16.8664i −0.353002 + 1.51465i
\(125\) 11.4948 1.02813
\(126\) 2.67876 + 0.125449i 0.238643 + 0.0111759i
\(127\) 4.05535i 0.359854i −0.983680 0.179927i \(-0.942414\pi\)
0.983680 0.179927i \(-0.0575862\pi\)
\(128\) −11.3123 0.181015i −0.999872 0.0159996i
\(129\) 6.31231i 0.555768i
\(130\) −1.90509 2.40014i −0.167088 0.210506i
\(131\) 12.3281i 1.07711i 0.842591 + 0.538554i \(0.181029\pi\)
−0.842591 + 0.538554i \(0.818971\pi\)
\(132\) 18.9334 + 4.41259i 1.64794 + 0.384067i
\(133\) −2.18476 1.90735i −0.189443 0.165388i
\(134\) −11.9185 15.0156i −1.02960 1.29715i
\(135\) 9.53804i 0.820904i
\(136\) 0.832076 + 1.75857i 0.0713499 + 0.150796i
\(137\) −10.0410 −0.857859 −0.428929 0.903338i \(-0.641109\pi\)
−0.428929 + 0.903338i \(0.641109\pi\)
\(138\) −6.44547 8.12037i −0.548674 0.691251i
\(139\) 22.5954i 1.91651i 0.285909 + 0.958257i \(0.407705\pi\)
−0.285909 + 0.958257i \(0.592295\pi\)
\(140\) −6.70029 9.30414i −0.566278 0.786343i
\(141\) 4.02983i 0.339373i
\(142\) 5.62000 4.46083i 0.471620 0.374344i
\(143\) 5.04203 0.421636
\(144\) 2.57146 + 1.26744i 0.214289 + 0.105620i
\(145\) 14.3558i 1.19219i
\(146\) 2.31321 1.83609i 0.191443 0.151956i
\(147\) 13.3717 1.82136i 1.10288 0.150223i
\(148\) 18.0172 + 4.19905i 1.48100 + 0.345160i
\(149\) 0.279812i 0.0229231i −0.999934 0.0114615i \(-0.996352\pi\)
0.999934 0.0114615i \(-0.00364840\pi\)
\(150\) −0.651264 + 0.516934i −0.0531755 + 0.0422075i
\(151\) 19.0561i 1.55076i −0.631493 0.775382i \(-0.717557\pi\)
0.631493 0.775382i \(-0.282443\pi\)
\(152\) −1.32605 2.80257i −0.107557 0.227318i
\(153\) 0.492979i 0.0398550i
\(154\) 18.8449 + 0.882529i 1.51857 + 0.0711163i
\(155\) −18.7628 −1.50706
\(156\) 3.75512 + 0.875162i 0.300650 + 0.0700690i
\(157\) 12.5958 1.00525 0.502626 0.864504i \(-0.332367\pi\)
0.502626 + 0.864504i \(0.332367\pi\)
\(158\) −0.855860 + 0.679331i −0.0680886 + 0.0540447i
\(159\) 5.57758 0.442331
\(160\) −2.59075 11.9804i −0.204817 0.947130i
\(161\) −7.57885 6.61652i −0.597297 0.521454i
\(162\) 9.35177 + 11.7819i 0.734744 + 0.925673i
\(163\) 14.7205 1.15300 0.576498 0.817099i \(-0.304419\pi\)
0.576498 + 0.817099i \(0.304419\pi\)
\(164\) 12.2877 + 2.86374i 0.959505 + 0.223620i
\(165\) 21.0622i 1.63969i
\(166\) −6.00225 + 4.76423i −0.465865 + 0.369776i
\(167\) −6.51701 −0.504302 −0.252151 0.967688i \(-0.581138\pi\)
−0.252151 + 0.967688i \(0.581138\pi\)
\(168\) 13.8818 + 3.92825i 1.07101 + 0.303071i
\(169\) 1.00000 0.0769231
\(170\) −1.65090 + 1.31039i −0.126618 + 0.100502i
\(171\) 0.785642i 0.0600795i
\(172\) 1.48634 6.37754i 0.113332 0.486283i
\(173\) −21.8519 −1.66137 −0.830686 0.556742i \(-0.812051\pi\)
−0.830686 + 0.556742i \(0.812051\pi\)
\(174\) −11.2301 14.1484i −0.851354 1.07258i
\(175\) −0.530653 + 0.607833i −0.0401136 + 0.0459479i
\(176\) 18.0901 + 8.91639i 1.36359 + 0.672098i
\(177\) 22.4564 1.68793
\(178\) 4.04652 3.21188i 0.303299 0.240741i
\(179\) 12.9272 0.966228 0.483114 0.875557i \(-0.339506\pi\)
0.483114 + 0.875557i \(0.339506\pi\)
\(180\) −0.704974 + 3.02488i −0.0525457 + 0.225462i
\(181\) −9.89018 −0.735132 −0.367566 0.929998i \(-0.619809\pi\)
−0.367566 + 0.929998i \(0.619809\pi\)
\(182\) 3.73756 + 0.175035i 0.277046 + 0.0129744i
\(183\) 3.78788i 0.280008i
\(184\) −4.60000 9.72198i −0.339116 0.716714i
\(185\) 20.0429i 1.47359i
\(186\) 18.4917 14.6776i 1.35587 1.07621i
\(187\) 3.46808i 0.253611i
\(188\) 0.948890 4.07147i 0.0692049 0.296943i
\(189\) 8.77334 + 7.65934i 0.638167 + 0.557135i
\(190\) 2.63097 2.08831i 0.190871 0.151502i
\(191\) 13.5574i 0.980978i 0.871448 + 0.490489i \(0.163182\pi\)
−0.871448 + 0.490489i \(0.836818\pi\)
\(192\) 11.9252 + 9.78056i 0.860627 + 0.705851i
\(193\) −23.1425 −1.66584 −0.832919 0.553396i \(-0.813332\pi\)
−0.832919 + 0.553396i \(0.813332\pi\)
\(194\) 2.75564 2.18726i 0.197843 0.157036i
\(195\) 4.17733i 0.299145i
\(196\) 13.9387 + 1.30840i 0.995623 + 0.0934575i
\(197\) 0.809664i 0.0576862i −0.999584 0.0288431i \(-0.990818\pi\)
0.999584 0.0288431i \(-0.00918232\pi\)
\(198\) −3.17722 4.00284i −0.225795 0.284470i
\(199\) −13.7274 −0.973109 −0.486554 0.873650i \(-0.661746\pi\)
−0.486554 + 0.873650i \(0.661746\pi\)
\(200\) −0.779715 + 0.368926i −0.0551342 + 0.0260870i
\(201\) 26.1339i 1.84335i
\(202\) 15.1296 + 19.0611i 1.06452 + 1.34114i
\(203\) −13.2049 11.5282i −0.926800 0.809118i
\(204\) 0.601966 2.58290i 0.0421460 0.180839i
\(205\) 13.6692i 0.954699i
\(206\) 6.66483 + 8.39673i 0.464361 + 0.585028i
\(207\) 2.72536i 0.189425i
\(208\) 3.58786 + 1.76841i 0.248773 + 0.122617i
\(209\) 5.52694i 0.382306i
\(210\) −0.731177 + 15.6130i −0.0504560 + 1.07740i
\(211\) 22.1210 1.52288 0.761438 0.648238i \(-0.224494\pi\)
0.761438 + 0.648238i \(0.224494\pi\)
\(212\) 5.63522 + 1.31333i 0.387028 + 0.0902001i
\(213\) −9.78134 −0.670206
\(214\) −3.12214 3.93345i −0.213425 0.268885i
\(215\) 7.09460 0.483848
\(216\) 5.32500 + 11.2542i 0.362320 + 0.765755i
\(217\) 15.0671 17.2585i 1.02282 1.17158i
\(218\) −9.35807 + 7.42789i −0.633809 + 0.503080i
\(219\) −4.02603 −0.272054
\(220\) −4.95945 + 21.2799i −0.334366 + 1.43469i
\(221\) 0.687834i 0.0462687i
\(222\) −15.6790 19.7533i −1.05231 1.32575i
\(223\) −10.5227 −0.704650 −0.352325 0.935878i \(-0.614609\pi\)
−0.352325 + 0.935878i \(0.614609\pi\)
\(224\) 13.1003 + 7.23755i 0.875301 + 0.483579i
\(225\) 0.218577 0.0145718
\(226\) 13.3800 + 16.8569i 0.890024 + 1.12130i
\(227\) 15.9121i 1.05612i −0.849206 0.528062i \(-0.822919\pi\)
0.849206 0.528062i \(-0.177081\pi\)
\(228\) −0.959329 + 4.11627i −0.0635331 + 0.272606i
\(229\) −10.2718 −0.678779 −0.339390 0.940646i \(-0.610221\pi\)
−0.339390 + 0.940646i \(0.610221\pi\)
\(230\) 9.12673 7.24426i 0.601799 0.477672i
\(231\) −19.3736 16.9136i −1.27469 1.11283i
\(232\) −8.01472 16.9389i −0.526192 1.11209i
\(233\) −4.62581 −0.303047 −0.151524 0.988454i \(-0.548418\pi\)
−0.151524 + 0.988454i \(0.548418\pi\)
\(234\) −0.630147 0.793895i −0.0411940 0.0518985i
\(235\) 4.52925 0.295456
\(236\) 22.6885 + 5.28773i 1.47689 + 0.344202i
\(237\) 1.48958 0.0967588
\(238\) 0.120395 2.57082i 0.00780403 0.166642i
\(239\) 5.81217i 0.375958i 0.982173 + 0.187979i \(0.0601937\pi\)
−0.982173 + 0.187979i \(0.939806\pi\)
\(240\) −7.38724 + 14.9877i −0.476844 + 0.967449i
\(241\) 0.550538i 0.0354633i 0.999843 + 0.0177316i \(0.00564445\pi\)
−0.999843 + 0.0177316i \(0.994356\pi\)
\(242\) −12.6801 15.9752i −0.815111 1.02692i
\(243\) 7.30010i 0.468302i
\(244\) 0.891920 3.82703i 0.0570993 0.245000i
\(245\) 2.04708 + 15.0288i 0.130783 + 0.960157i
\(246\) −10.6930 13.4717i −0.681762 0.858923i
\(247\) 1.09617i 0.0697479i
\(248\) 22.1388 10.4751i 1.40582 0.665169i
\(249\) 10.4466 0.662027
\(250\) −10.1065 12.7327i −0.639188 0.805286i
\(251\) 26.0984i 1.64731i 0.567088 + 0.823657i \(0.308070\pi\)
−0.567088 + 0.823657i \(0.691930\pi\)
\(252\) −2.21625 3.07753i −0.139611 0.193866i
\(253\) 19.1727i 1.20538i
\(254\) −4.49207 + 3.56554i −0.281857 + 0.223722i
\(255\) 2.87331 0.179933
\(256\) 9.74544 + 12.6896i 0.609090 + 0.793101i
\(257\) 23.7161i 1.47937i −0.672952 0.739686i \(-0.734974\pi\)
0.672952 0.739686i \(-0.265026\pi\)
\(258\) −6.99208 + 5.54990i −0.435308 + 0.345521i
\(259\) −18.4360 16.0951i −1.14556 1.00010i
\(260\) −0.983622 + 4.22050i −0.0610016 + 0.261744i
\(261\) 4.74847i 0.293923i
\(262\) 13.6557 10.8391i 0.843649 0.669639i
\(263\) 15.7303i 0.969970i −0.874522 0.484985i \(-0.838825\pi\)
0.874522 0.484985i \(-0.161175\pi\)
\(264\) −11.7588 24.8520i −0.723707 1.52953i
\(265\) 6.26881i 0.385090i
\(266\) −0.191868 + 4.09702i −0.0117642 + 0.251204i
\(267\) −7.04276 −0.431010
\(268\) −6.15367 + 26.4040i −0.375895 + 1.61288i
\(269\) 26.9053 1.64045 0.820223 0.572043i \(-0.193849\pi\)
0.820223 + 0.572043i \(0.193849\pi\)
\(270\) −10.5652 + 8.38602i −0.642977 + 0.510357i
\(271\) −23.7291 −1.44144 −0.720720 0.693226i \(-0.756189\pi\)
−0.720720 + 0.693226i \(0.756189\pi\)
\(272\) 1.21637 2.46785i 0.0737535 0.149635i
\(273\) −3.84242 3.35452i −0.232554 0.203025i
\(274\) 8.82821 + 11.1223i 0.533332 + 0.671922i
\(275\) 1.53768 0.0927254
\(276\) −3.32787 + 14.2791i −0.200314 + 0.859504i
\(277\) 29.3334i 1.76248i −0.472673 0.881238i \(-0.656711\pi\)
0.472673 0.881238i \(-0.343289\pi\)
\(278\) 25.0286 19.8663i 1.50112 1.19150i
\(279\) −6.20617 −0.371554
\(280\) −4.41508 + 15.6022i −0.263851 + 0.932410i
\(281\) 9.82013 0.585820 0.292910 0.956140i \(-0.405376\pi\)
0.292910 + 0.956140i \(0.405376\pi\)
\(282\) −4.46380 + 3.54310i −0.265815 + 0.210988i
\(283\) 18.2222i 1.08320i 0.840637 + 0.541599i \(0.182181\pi\)
−0.840637 + 0.541599i \(0.817819\pi\)
\(284\) −9.88242 2.30318i −0.586414 0.136669i
\(285\) −4.57908 −0.271241
\(286\) −4.43304 5.58500i −0.262131 0.330248i
\(287\) −12.5733 10.9768i −0.742179 0.647940i
\(288\) −0.856943 3.96274i −0.0504959 0.233507i
\(289\) 16.5269 0.972170
\(290\) 15.9018 12.6219i 0.933785 0.741183i
\(291\) −4.79606 −0.281150
\(292\) −4.06764 0.947997i −0.238041 0.0554773i
\(293\) −10.0394 −0.586508 −0.293254 0.956034i \(-0.594738\pi\)
−0.293254 + 0.956034i \(0.594738\pi\)
\(294\) −13.7741 13.2103i −0.803323 0.770440i
\(295\) 25.2394i 1.46950i
\(296\) −11.1898 23.6493i −0.650393 1.37459i
\(297\) 22.1945i 1.28786i
\(298\) −0.309944 + 0.246015i −0.0179546 + 0.0142513i
\(299\) 3.80258i 0.219909i
\(300\) 1.14521 + 0.266900i 0.0661185 + 0.0154095i
\(301\) −5.69718 + 6.52580i −0.328380 + 0.376141i
\(302\) −21.1082 + 16.7545i −1.21464 + 0.964111i
\(303\) 33.1750i 1.90585i
\(304\) −1.93849 + 3.93291i −0.111180 + 0.225568i
\(305\) 4.25732 0.243773
\(306\) −0.546068 + 0.433436i −0.0312166 + 0.0247779i
\(307\) 3.94497i 0.225151i −0.993643 0.112576i \(-0.964090\pi\)
0.993643 0.112576i \(-0.0359101\pi\)
\(308\) −15.5912 21.6502i −0.888391 1.23364i
\(309\) 14.6141i 0.831367i
\(310\) 16.4966 + 20.7834i 0.936944 + 1.18042i
\(311\) 17.3290 0.982640 0.491320 0.870979i \(-0.336515\pi\)
0.491320 + 0.870979i \(0.336515\pi\)
\(312\) −2.33216 4.92897i −0.132033 0.279048i
\(313\) 10.1877i 0.575844i 0.957654 + 0.287922i \(0.0929645\pi\)
−0.957654 + 0.287922i \(0.907036\pi\)
\(314\) −11.0744 13.9522i −0.624966 0.787368i
\(315\) 2.70219 3.09520i 0.152251 0.174395i
\(316\) 1.50498 + 0.350747i 0.0846615 + 0.0197311i
\(317\) 5.12951i 0.288102i 0.989570 + 0.144051i \(0.0460130\pi\)
−0.989570 + 0.144051i \(0.953987\pi\)
\(318\) −4.90391 6.17822i −0.274997 0.346458i
\(319\) 33.4052i 1.87033i
\(320\) −10.9927 + 13.4031i −0.614509 + 0.749256i
\(321\) 6.84596i 0.382105i
\(322\) −0.665583 + 14.2124i −0.0370915 + 0.792024i
\(323\) 0.753985 0.0419529
\(324\) 4.82843 20.7177i 0.268246 1.15098i
\(325\) 0.304972 0.0169168
\(326\) −12.9425 16.3057i −0.716818 0.903089i
\(327\) 16.2873 0.900688
\(328\) −7.63140 16.1288i −0.421373 0.890562i
\(329\) −3.63712 + 4.16612i −0.200521 + 0.229686i
\(330\) 23.3304 18.5183i 1.28430 1.01940i
\(331\) −10.6345 −0.584527 −0.292263 0.956338i \(-0.594408\pi\)
−0.292263 + 0.956338i \(0.594408\pi\)
\(332\) 10.5546 + 2.45983i 0.579257 + 0.135001i
\(333\) 6.62960i 0.363300i
\(334\) 5.72988 + 7.21883i 0.313525 + 0.394997i
\(335\) −29.3727 −1.60480
\(336\) −7.85387 18.8305i −0.428463 1.02729i
\(337\) −19.4556 −1.05981 −0.529906 0.848057i \(-0.677773\pi\)
−0.529906 + 0.848057i \(0.677773\pi\)
\(338\) −0.879218 1.10769i −0.0478232 0.0602504i
\(339\) 29.3386i 1.59345i
\(340\) 2.90300 + 0.676568i 0.157437 + 0.0366921i
\(341\) −43.6600 −2.36432
\(342\) 0.870247 0.690750i 0.0470576 0.0373515i
\(343\) −15.4678 10.1857i −0.835182 0.549974i
\(344\) −8.37115 + 3.96085i −0.451342 + 0.213555i
\(345\) −15.8846 −0.855199
\(346\) 19.2126 + 24.2051i 1.03288 + 1.30128i
\(347\) 27.4986 1.47620 0.738102 0.674690i \(-0.235723\pi\)
0.738102 + 0.674690i \(0.235723\pi\)
\(348\) −5.79825 + 24.8790i −0.310819 + 1.33365i
\(349\) 23.0163 1.23203 0.616017 0.787733i \(-0.288745\pi\)
0.616017 + 0.787733i \(0.288745\pi\)
\(350\) 1.13985 + 0.0533806i 0.0609275 + 0.00285331i
\(351\) 4.40190i 0.234956i
\(352\) −6.02854 27.8776i −0.321322 1.48588i
\(353\) 32.6293i 1.73668i −0.495967 0.868342i \(-0.665186\pi\)
0.495967 0.868342i \(-0.334814\pi\)
\(354\) −19.7441 24.8747i −1.04939 1.32208i
\(355\) 10.9935i 0.583477i
\(356\) −7.11554 1.65833i −0.377123 0.0878916i
\(357\) −2.30735 + 2.64294i −0.122118 + 0.139879i
\(358\) −11.3659 14.3194i −0.600705 0.756802i
\(359\) 14.0579i 0.741947i −0.928643 0.370973i \(-0.879024\pi\)
0.928643 0.370973i \(-0.120976\pi\)
\(360\) 3.97046 1.87864i 0.209262 0.0990131i
\(361\) 17.7984 0.936758
\(362\) 8.69563 + 10.9553i 0.457032 + 0.575795i
\(363\) 27.8040i 1.45933i
\(364\) −3.09225 4.29395i −0.162078 0.225064i
\(365\) 4.52498i 0.236849i
\(366\) −4.19580 + 3.33037i −0.219318 + 0.174081i
\(367\) −13.8941 −0.725266 −0.362633 0.931932i \(-0.618122\pi\)
−0.362633 + 0.931932i \(0.618122\pi\)
\(368\) −6.72453 + 13.6431i −0.350540 + 0.711196i
\(369\) 4.52137i 0.235373i
\(370\) 22.2013 17.6221i 1.15419 0.916130i
\(371\) −5.76622 5.03405i −0.299367 0.261355i
\(372\) −32.5164 7.57822i −1.68590 0.392912i
\(373\) 9.46915i 0.490294i −0.969486 0.245147i \(-0.921164\pi\)
0.969486 0.245147i \(-0.0788362\pi\)
\(374\) −3.84155 + 3.04920i −0.198642 + 0.157670i
\(375\) 22.1606i 1.14437i
\(376\) −5.34421 + 2.52864i −0.275607 + 0.130405i
\(377\) 6.62535i 0.341223i
\(378\) 0.770484 16.4524i 0.0396294 0.846218i
\(379\) −29.3716 −1.50872 −0.754359 0.656462i \(-0.772052\pi\)
−0.754359 + 0.656462i \(0.772052\pi\)
\(380\) −4.62640 1.07822i −0.237329 0.0553115i
\(381\) 7.81822 0.400540
\(382\) 15.0174 11.9199i 0.768355 0.609875i
\(383\) 23.8795 1.22019 0.610093 0.792330i \(-0.291132\pi\)
0.610093 + 0.792330i \(0.291132\pi\)
\(384\) 0.348975 21.8087i 0.0178085 1.11292i
\(385\) 19.0097 21.7746i 0.968825 1.10973i
\(386\) 20.3473 + 25.6348i 1.03565 + 1.30477i
\(387\) 2.34668 0.119288
\(388\) −4.84562 1.12931i −0.245999 0.0573321i
\(389\) 24.2232i 1.22816i 0.789242 + 0.614082i \(0.210474\pi\)
−0.789242 + 0.614082i \(0.789526\pi\)
\(390\) 4.62718 3.67278i 0.234306 0.185979i
\(391\) 2.61554 0.132274
\(392\) −10.8059 16.5901i −0.545779 0.837929i
\(393\) −23.7670 −1.19889
\(394\) −0.896857 + 0.711872i −0.0451830 + 0.0358636i
\(395\) 1.67419i 0.0842375i
\(396\) −1.64044 + 7.03874i −0.0824351 + 0.353710i
\(397\) −24.1030 −1.20969 −0.604847 0.796342i \(-0.706766\pi\)
−0.604847 + 0.796342i \(0.706766\pi\)
\(398\) 12.0694 + 15.2057i 0.604983 + 0.762192i
\(399\) 3.67714 4.21196i 0.184087 0.210862i
\(400\) 1.09419 + 0.539315i 0.0547097 + 0.0269658i
\(401\) −21.2274 −1.06004 −0.530022 0.847984i \(-0.677817\pi\)
−0.530022 + 0.847984i \(0.677817\pi\)
\(402\) 28.9483 22.9774i 1.44381 1.14601i
\(403\) −8.65921 −0.431346
\(404\) 7.81160 33.5178i 0.388642 1.66757i
\(405\) 23.0471 1.14522
\(406\) −1.15967 + 24.7627i −0.0575532 + 1.22895i
\(407\) 46.6388i 2.31180i
\(408\) −3.39031 + 1.60414i −0.167845 + 0.0794168i
\(409\) 15.1763i 0.750420i 0.926940 + 0.375210i \(0.122429\pi\)
−0.926940 + 0.375210i \(0.877571\pi\)
\(410\) 15.1412 12.0182i 0.747773 0.593538i
\(411\) 19.3578i 0.954849i
\(412\) 3.44113 14.7651i 0.169532 0.727425i
\(413\) −23.2159 20.2680i −1.14238 0.997325i
\(414\) 3.01885 2.39618i 0.148368 0.117766i
\(415\) 11.7413i 0.576356i
\(416\) −1.19566 5.52905i −0.0586219 0.271084i
\(417\) −43.5611 −2.13320
\(418\) 6.12213 4.85939i 0.299443 0.237680i
\(419\) 22.3917i 1.09391i 0.837163 + 0.546953i \(0.184212\pi\)
−0.837163 + 0.546953i \(0.815788\pi\)
\(420\) 17.9372 12.9173i 0.875248 0.630301i
\(421\) 6.95017i 0.338731i 0.985553 + 0.169365i \(0.0541718\pi\)
−0.985553 + 0.169365i \(0.945828\pi\)
\(422\) −19.4492 24.5032i −0.946773 1.19280i
\(423\) 1.49814 0.0728420
\(424\) −3.49982 7.39678i −0.169966 0.359219i
\(425\) 0.209770i 0.0101753i
\(426\) 8.59993 + 10.8347i 0.416668 + 0.524942i
\(427\) −3.41876 + 3.91599i −0.165445 + 0.189508i
\(428\) −1.61200 + 6.91671i −0.0779188 + 0.334332i
\(429\) 9.72042i 0.469306i
\(430\) −6.23770 7.85861i −0.300809 0.378976i
\(431\) 17.5920i 0.847378i 0.905808 + 0.423689i \(0.139265\pi\)
−0.905808 + 0.423689i \(0.860735\pi\)
\(432\) 7.78437 15.7934i 0.374526 0.759860i
\(433\) 12.7562i 0.613025i 0.951867 + 0.306512i \(0.0991620\pi\)
−0.951867 + 0.306512i \(0.900838\pi\)
\(434\) −32.3643 1.51566i −1.55354 0.0727541i
\(435\) −27.6763 −1.32698
\(436\) 16.4556 + 3.83511i 0.788079 + 0.183668i
\(437\) −4.16829 −0.199396
\(438\) 3.53976 + 4.45960i 0.169136 + 0.213088i
\(439\) 39.8195 1.90048 0.950240 0.311518i \(-0.100838\pi\)
0.950240 + 0.311518i \(0.100838\pi\)
\(440\) 27.9319 13.2161i 1.33160 0.630054i
\(441\) 0.677112 + 4.97109i 0.0322434 + 0.236718i
\(442\) −0.761906 + 0.604756i −0.0362402 + 0.0287653i
\(443\) −2.94265 −0.139810 −0.0699049 0.997554i \(-0.522270\pi\)
−0.0699049 + 0.997554i \(0.522270\pi\)
\(444\) −8.09526 + 34.7349i −0.384184 + 1.64845i
\(445\) 7.91557i 0.375234i
\(446\) 9.25172 + 11.6558i 0.438081 + 0.551920i
\(447\) 0.539443 0.0255148
\(448\) −3.50107 20.8744i −0.165410 0.986225i
\(449\) 12.7756 0.602918 0.301459 0.953479i \(-0.402526\pi\)
0.301459 + 0.953479i \(0.402526\pi\)
\(450\) −0.192177 0.242115i −0.00905931 0.0114134i
\(451\) 31.8075i 1.49776i
\(452\) 6.90825 29.6417i 0.324937 1.39423i
\(453\) 36.7378 1.72609
\(454\) −17.6257 + 13.9902i −0.827215 + 0.656594i
\(455\) 3.77025 4.31861i 0.176752 0.202460i
\(456\) 5.40300 2.55646i 0.253019 0.119717i
\(457\) −6.05610 −0.283293 −0.141646 0.989917i \(-0.545240\pi\)
−0.141646 + 0.989917i \(0.545240\pi\)
\(458\) 9.03115 + 11.3780i 0.421998 + 0.531657i
\(459\) −3.02777 −0.141324
\(460\) −16.0488 3.74030i −0.748278 0.174392i
\(461\) 13.5455 0.630878 0.315439 0.948946i \(-0.397848\pi\)
0.315439 + 0.948946i \(0.397848\pi\)
\(462\) −1.70141 + 36.3307i −0.0791567 + 1.69026i
\(463\) 24.3379i 1.13108i 0.824721 + 0.565539i \(0.191332\pi\)
−0.824721 + 0.565539i \(0.808668\pi\)
\(464\) −11.7164 + 23.7708i −0.543918 + 1.10353i
\(465\) 36.1724i 1.67745i
\(466\) 4.06710 + 5.12396i 0.188405 + 0.237363i
\(467\) 29.3776i 1.35943i −0.733476 0.679716i \(-0.762103\pi\)
0.733476 0.679716i \(-0.237897\pi\)
\(468\) −0.325352 + 1.39601i −0.0150394 + 0.0645308i
\(469\) 23.5872 27.0178i 1.08916 1.24757i
\(470\) −3.98220 5.01700i −0.183685 0.231417i
\(471\) 24.2831i 1.11891i
\(472\) −14.0909 29.7808i −0.648588 1.37077i
\(473\) 16.5088 0.759073
\(474\) −1.30967 1.64999i −0.0601550 0.0757867i
\(475\) 0.334302i 0.0153388i
\(476\) −2.95352 + 2.12695i −0.135375 + 0.0974887i
\(477\) 2.07353i 0.0949406i
\(478\) 6.43808 5.11017i 0.294471 0.233734i
\(479\) −2.86853 −0.131066 −0.0655332 0.997850i \(-0.520875\pi\)
−0.0655332 + 0.997850i \(0.520875\pi\)
\(480\) 23.0967 4.99465i 1.05421 0.227974i
\(481\) 9.25001i 0.421764i
\(482\) 0.609825 0.484043i 0.0277768 0.0220476i
\(483\) 12.7558 14.6111i 0.580410 0.664828i
\(484\) −6.54691 + 28.0913i −0.297587 + 1.27688i
\(485\) 5.39044i 0.244767i
\(486\) −8.08624 + 6.41838i −0.366799 + 0.291144i
\(487\) 24.5884i 1.11421i 0.830443 + 0.557104i \(0.188088\pi\)
−0.830443 + 0.557104i \(0.811912\pi\)
\(488\) −5.02335 + 2.37682i −0.227396 + 0.107594i
\(489\) 28.3792i 1.28335i
\(490\) 14.8474 15.4812i 0.670739 0.699367i
\(491\) 40.7235 1.83783 0.918913 0.394460i \(-0.129068\pi\)
0.918913 + 0.394460i \(0.129068\pi\)
\(492\) −5.52094 + 23.6891i −0.248903 + 1.06799i
\(493\) 4.55714 0.205243
\(494\) 1.21422 0.963776i 0.0546303 0.0433623i
\(495\) −7.83014 −0.351939
\(496\) −31.0680 15.3131i −1.39500 0.687577i
\(497\) 10.1122 + 8.82815i 0.453592 + 0.395997i
\(498\) −9.18485 11.5716i −0.411583 0.518536i
\(499\) −37.7172 −1.68845 −0.844226 0.535987i \(-0.819940\pi\)
−0.844226 + 0.535987i \(0.819940\pi\)
\(500\) −5.21808 + 22.3896i −0.233360 + 1.00129i
\(501\) 12.5640i 0.561318i
\(502\) 28.9089 22.9462i 1.29027 1.02414i
\(503\) −2.68750 −0.119830 −0.0599148 0.998203i \(-0.519083\pi\)
−0.0599148 + 0.998203i \(0.519083\pi\)
\(504\) −1.46038 + 5.16074i −0.0650503 + 0.229878i
\(505\) 37.2864 1.65922
\(506\) 21.2374 16.8570i 0.944118 0.749385i
\(507\) 1.92788i 0.0856201i
\(508\) 7.89902 + 1.84093i 0.350462 + 0.0816781i
\(509\) −5.67996 −0.251760 −0.125880 0.992045i \(-0.540175\pi\)
−0.125880 + 0.992045i \(0.540175\pi\)
\(510\) −2.52626 3.18273i −0.111865 0.140934i
\(511\) 4.16220 + 3.63370i 0.184125 + 0.160745i
\(512\) 5.48779 21.9519i 0.242528 0.970144i
\(513\) 4.82524 0.213040
\(514\) −26.2701 + 20.8517i −1.15873 + 0.919728i
\(515\) 16.4252 0.723782
\(516\) 12.2951 + 2.86548i 0.541263 + 0.126146i
\(517\) 10.5393 0.463519
\(518\) −1.61907 + 34.5725i −0.0711379 + 1.51903i
\(519\) 42.1279i 1.84921i
\(520\) 5.53982 2.62119i 0.242937 0.114947i
\(521\) 18.1395i 0.794706i −0.917666 0.397353i \(-0.869929\pi\)
0.917666 0.397353i \(-0.130071\pi\)
\(522\) 5.25983 4.17494i 0.230217 0.182732i
\(523\) 26.7276i 1.16872i −0.811496 0.584358i \(-0.801346\pi\)
0.811496 0.584358i \(-0.198654\pi\)
\(524\) −24.0126 5.59633i −1.04900 0.244477i
\(525\) −1.17183 1.02303i −0.0511428 0.0446489i
\(526\) −17.4243 + 13.8303i −0.759734 + 0.603032i
\(527\) 5.95610i 0.259452i
\(528\) −17.1897 + 34.8755i −0.748086 + 1.51776i
\(529\) 8.54040 0.371322
\(530\) 6.94390 5.51165i 0.301624 0.239411i
\(531\) 8.34845i 0.362292i
\(532\) 4.70691 3.38964i 0.204071 0.146960i
\(533\) 6.30848i 0.273250i
\(534\) 6.19212 + 7.80119i 0.267959 + 0.337590i
\(535\) −7.69439 −0.332658
\(536\) 34.6579 16.3985i 1.49699 0.708309i
\(537\) 24.9222i 1.07547i
\(538\) −23.6556 29.8027i −1.01987 1.28489i
\(539\) 4.76344 + 34.9713i 0.205176 + 1.50632i
\(540\) 18.5782 + 4.32980i 0.799479 + 0.186325i
\(541\) 32.6687i 1.40454i −0.711912 0.702268i \(-0.752171\pi\)
0.711912 0.702268i \(-0.247829\pi\)
\(542\) 20.8631 + 26.2845i 0.896145 + 1.12901i
\(543\) 19.0671i 0.818246i
\(544\) −3.80307 + 0.822414i −0.163055 + 0.0352607i
\(545\) 18.3058i 0.784132i
\(546\) −0.337445 + 7.20556i −0.0144413 + 0.308370i
\(547\) 33.9785 1.45281 0.726407 0.687265i \(-0.241189\pi\)
0.726407 + 0.687265i \(0.241189\pi\)
\(548\) 4.55811 19.5578i 0.194713 0.835469i
\(549\) 1.40819 0.0601002
\(550\) −1.35195 1.70327i −0.0576475 0.0726276i
\(551\) −7.26253 −0.309394
\(552\) 18.7428 8.86824i 0.797746 0.377457i
\(553\) −1.53996 1.34442i −0.0654858 0.0571707i
\(554\) −32.4923 + 25.7905i −1.38047 + 1.09573i
\(555\) −38.6403 −1.64019
\(556\) −44.0113 10.2572i −1.86649 0.435002i
\(557\) 12.1520i 0.514899i −0.966292 0.257449i \(-0.917118\pi\)
0.966292 0.257449i \(-0.0828821\pi\)
\(558\) 5.45658 + 6.87451i 0.230995 + 0.291021i
\(559\) 3.27423 0.138485
\(560\) 21.1642 8.82720i 0.894351 0.373017i
\(561\) 6.68603 0.282284
\(562\) −8.63404 10.8777i −0.364205 0.458846i
\(563\) 35.0006i 1.47510i −0.675293 0.737549i \(-0.735983\pi\)
0.675293 0.737549i \(-0.264017\pi\)
\(564\) 7.84930 + 1.82934i 0.330515 + 0.0770293i
\(565\) 32.9745 1.38725
\(566\) 20.1846 16.0213i 0.848420 0.673426i
\(567\) −18.5075 + 21.1993i −0.777243 + 0.890288i
\(568\) 6.13759 + 12.9716i 0.257528 + 0.544278i
\(569\) 41.2142 1.72779 0.863894 0.503673i \(-0.168018\pi\)
0.863894 + 0.503673i \(0.168018\pi\)
\(570\) 4.02601 + 5.07219i 0.168631 + 0.212451i
\(571\) −19.0805 −0.798496 −0.399248 0.916843i \(-0.630729\pi\)
−0.399248 + 0.916843i \(0.630729\pi\)
\(572\) −2.28883 + 9.82087i −0.0957010 + 0.410631i
\(573\) −26.1370 −1.09189
\(574\) −1.10420 + 23.5783i −0.0460885 + 0.984140i
\(575\) 1.15968i 0.0483619i
\(576\) −3.63605 + 4.43334i −0.151502 + 0.184723i
\(577\) 14.5431i 0.605438i 0.953080 + 0.302719i \(0.0978944\pi\)
−0.953080 + 0.302719i \(0.902106\pi\)
\(578\) −14.5307 18.3067i −0.604399 0.761456i
\(579\) 44.6160i 1.85418i
\(580\) −27.9623 6.51684i −1.16107 0.270597i
\(581\) −10.7999 9.42860i −0.448057 0.391164i
\(582\) 4.21678 + 5.31254i 0.174791 + 0.220212i
\(583\) 14.5872i 0.604140i
\(584\) 2.52626 + 5.33918i 0.104537 + 0.220937i
\(585\) −1.55297 −0.0642076
\(586\) 8.82683 + 11.1205i 0.364633 + 0.459385i
\(587\) 21.4770i 0.886451i 0.896410 + 0.443226i \(0.146166\pi\)
−0.896410 + 0.443226i \(0.853834\pi\)
\(588\) −2.52244 + 26.8722i −0.104024 + 1.10819i
\(589\) 9.49200i 0.391111i
\(590\) 27.9574 22.1910i 1.15099 0.913588i
\(591\) 1.56093 0.0642083
\(592\) −16.3578 + 33.1877i −0.672303 + 1.36401i
\(593\) 3.89623i 0.159999i 0.996795 + 0.0799994i \(0.0254919\pi\)
−0.996795 + 0.0799994i \(0.974508\pi\)
\(594\) −24.5846 + 19.5138i −1.00872 + 0.800661i
\(595\) −2.97049 2.59331i −0.121778 0.106315i
\(596\) 0.545017 + 0.127021i 0.0223248 + 0.00520297i
\(597\) 26.4647i 1.08313i
\(598\) 4.21208 3.34330i 0.172245 0.136718i
\(599\) 36.2640i 1.48171i 0.671667 + 0.740853i \(0.265578\pi\)
−0.671667 + 0.740853i \(0.734422\pi\)
\(600\) −0.711244 1.50319i −0.0290364 0.0613677i
\(601\) 25.1481i 1.02581i −0.858445 0.512906i \(-0.828569\pi\)
0.858445 0.512906i \(-0.171431\pi\)
\(602\) 12.2376 + 0.573103i 0.498768 + 0.0233579i
\(603\) −9.71562 −0.395651
\(604\) 37.1175 + 8.65053i 1.51029 + 0.351985i
\(605\) −31.2498 −1.27048
\(606\) −36.7475 + 29.1680i −1.49277 + 1.18487i
\(607\) 15.8233 0.642247 0.321123 0.947037i \(-0.395940\pi\)
0.321123 + 0.947037i \(0.395940\pi\)
\(608\) 6.06080 1.31065i 0.245798 0.0531538i
\(609\) 22.2249 25.4574i 0.900598 1.03158i
\(610\) −3.74311 4.71579i −0.151554 0.190937i
\(611\) 2.09029 0.0845642
\(612\) 0.960225 + 0.223788i 0.0388148 + 0.00904611i
\(613\) 12.6133i 0.509447i −0.967014 0.254723i \(-0.918016\pi\)
0.967014 0.254723i \(-0.0819844\pi\)
\(614\) −4.36980 + 3.46849i −0.176351 + 0.139977i
\(615\) −26.3526 −1.06264
\(616\) −10.2737 + 36.3055i −0.413937 + 1.46279i
\(617\) 33.7479 1.35864 0.679319 0.733843i \(-0.262275\pi\)
0.679319 + 0.733843i \(0.262275\pi\)
\(618\) −16.1879 + 12.8490i −0.651172 + 0.516862i
\(619\) 47.3965i 1.90502i −0.304500 0.952512i \(-0.598489\pi\)
0.304500 0.952512i \(-0.401511\pi\)
\(620\) 8.51739 36.5462i 0.342067 1.46773i
\(621\) 16.7386 0.671695
\(622\) −15.2360 19.1952i −0.610908 0.769657i
\(623\) 7.28095 + 6.35645i 0.291705 + 0.254666i
\(624\) −3.40928 + 6.91695i −0.136481 + 0.276900i
\(625\) −23.3821 −0.935285
\(626\) 11.2848 8.95724i 0.451033 0.358003i
\(627\) −10.6553 −0.425530
\(628\) −5.71786 + 24.5341i −0.228168 + 0.979016i
\(629\) 6.36247 0.253688
\(630\) −5.80434 0.271824i −0.231250 0.0108297i
\(631\) 10.6781i 0.425088i −0.977151 0.212544i \(-0.931825\pi\)
0.977151 0.212544i \(-0.0681749\pi\)
\(632\) −0.934683 1.97543i −0.0371797 0.0785783i
\(633\) 42.6467i 1.69505i
\(634\) 5.68191 4.50996i 0.225657 0.179113i
\(635\) 8.78714i 0.348707i
\(636\) −2.53195 + 10.8640i −0.100398 + 0.430786i
\(637\) 0.944747 + 6.93595i 0.0374322 + 0.274812i
\(638\) 37.0026 29.3705i 1.46495 1.16279i
\(639\) 3.63633i 0.143851i
\(640\) 24.5114 + 0.392224i 0.968899 + 0.0155040i
\(641\) 28.3033 1.11791 0.558956 0.829197i \(-0.311202\pi\)
0.558956 + 0.829197i \(0.311202\pi\)
\(642\) 7.58320 6.01910i 0.299285 0.237555i
\(643\) 13.4258i 0.529462i −0.964322 0.264731i \(-0.914717\pi\)
0.964322 0.264731i \(-0.0852831\pi\)
\(644\) 16.3281 11.7585i 0.643416 0.463350i
\(645\) 13.6775i 0.538552i
\(646\) −0.662917 0.835181i −0.0260821 0.0328598i
\(647\) 17.7213 0.696698 0.348349 0.937365i \(-0.386742\pi\)
0.348349 + 0.937365i \(0.386742\pi\)
\(648\) −27.1940 + 12.8670i −1.06828 + 0.505463i
\(649\) 58.7308i 2.30539i
\(650\) −0.268137 0.337814i −0.0105172 0.0132501i
\(651\) 33.2723 + 29.0475i 1.30404 + 1.13846i
\(652\) −6.68237 + 28.6725i −0.261702 + 1.12290i
\(653\) 18.2377i 0.713695i 0.934163 + 0.356847i \(0.116148\pi\)
−0.934163 + 0.356847i \(0.883852\pi\)
\(654\) −14.3201 18.0412i −0.559958 0.705468i
\(655\) 26.7125i 1.04374i
\(656\) −11.1560 + 22.6339i −0.435568 + 0.883706i
\(657\) 1.49673i 0.0583930i
\(658\) 7.81260 + 0.365873i 0.304567 + 0.0142632i
\(659\) 11.1172 0.433064 0.216532 0.976276i \(-0.430525\pi\)
0.216532 + 0.976276i \(0.430525\pi\)
\(660\) −41.0250 9.56121i −1.59690 0.372170i
\(661\) 10.0383 0.390444 0.195222 0.980759i \(-0.437457\pi\)
0.195222 + 0.980759i \(0.437457\pi\)
\(662\) 9.35007 + 11.7798i 0.363401 + 0.457833i
\(663\) 1.32606 0.0514999
\(664\) −6.55504 13.8539i −0.254385 0.537636i
\(665\) 4.73395 + 4.13285i 0.183575 + 0.160265i
\(666\) 7.34354 5.82887i 0.284556 0.225864i
\(667\) −25.1934 −0.975493
\(668\) 2.95841 12.6938i 0.114464 0.491140i
\(669\) 20.2864i 0.784318i
\(670\) 25.8250 + 32.5359i 0.997709 + 1.25697i
\(671\) 9.90655 0.382438
\(672\) −13.9531 + 25.2558i −0.538253 + 0.974263i
\(673\) 18.9917 0.732077 0.366039 0.930600i \(-0.380714\pi\)
0.366039 + 0.930600i \(0.380714\pi\)
\(674\) 17.1057 + 21.5507i 0.658886 + 0.830102i
\(675\) 1.34245i 0.0516711i
\(676\) −0.453951 + 1.94780i −0.0174597 + 0.0749154i
\(677\) −11.8708 −0.456231 −0.228115 0.973634i \(-0.573256\pi\)
−0.228115 + 0.973634i \(0.573256\pi\)
\(678\) −32.4980 + 25.7950i −1.24808 + 0.990650i
\(679\) 4.95826 + 4.32868i 0.190281 + 0.166120i
\(680\) −1.80294 3.81047i −0.0691397 0.146125i
\(681\) 30.6766 1.17553
\(682\) 38.3867 + 48.3617i 1.46990 + 1.85187i
\(683\) 24.1203 0.922937 0.461469 0.887156i \(-0.347323\pi\)
0.461469 + 0.887156i \(0.347323\pi\)
\(684\) −1.53027 0.356643i −0.0585115 0.0136366i
\(685\) 21.7568 0.831285
\(686\) 2.31702 + 26.0889i 0.0884641 + 0.996079i
\(687\) 19.8028i 0.755523i
\(688\) 11.7475 + 5.79018i 0.447868 + 0.220749i
\(689\) 2.89312i 0.110219i
\(690\) 13.9660 + 17.5952i 0.531678 + 0.669839i
\(691\) 15.6365i 0.594842i 0.954746 + 0.297421i \(0.0961265\pi\)
−0.954746 + 0.297421i \(0.903874\pi\)
\(692\) 9.91970 42.5632i 0.377091 1.61801i
\(693\) 6.28784 7.20237i 0.238855 0.273596i
\(694\) −24.1773 30.4599i −0.917757 1.15624i
\(695\) 48.9597i 1.85715i
\(696\) 32.6561 15.4514i 1.23783 0.585684i
\(697\) 4.33918 0.164358
\(698\) −20.2364 25.4949i −0.765957 0.964997i
\(699\) 8.91800i 0.337310i
\(700\) −0.943048 1.30953i −0.0356439 0.0494957i
\(701\) 6.05523i 0.228703i −0.993440 0.114351i \(-0.963521\pi\)
0.993440 0.114351i \(-0.0364790\pi\)
\(702\) −4.87594 + 3.87023i −0.184030 + 0.146072i
\(703\) −10.1396 −0.382423
\(704\) −25.5794 + 31.1883i −0.964058 + 1.17545i
\(705\) 8.73184i 0.328860i
\(706\) −36.1431 + 28.6883i −1.36027 + 1.07970i
\(707\) −29.9421 + 34.2970i −1.12609 + 1.28987i
\(708\) −10.1941 + 43.7406i −0.383118 + 1.64387i
\(709\) 10.6349i 0.399401i −0.979857 0.199701i \(-0.936003\pi\)
0.979857 0.199701i \(-0.0639969\pi\)
\(710\) −12.1774 + 9.66572i −0.457011 + 0.362748i
\(711\) 0.553771i 0.0207680i
\(712\) 4.41919 + 9.33984i 0.165616 + 0.350025i
\(713\) 32.9273i 1.23314i
\(714\) 4.95623 + 0.232106i 0.185482 + 0.00868636i
\(715\) −10.9251 −0.408575
\(716\) −5.86834 + 25.1797i −0.219310 + 0.941010i
\(717\) −11.2052 −0.418464
\(718\) −15.5718 + 12.3599i −0.581133 + 0.461269i
\(719\) 6.21956 0.231950 0.115975 0.993252i \(-0.463001\pi\)
0.115975 + 0.993252i \(0.463001\pi\)
\(720\) −5.57185 2.74630i −0.207651 0.102349i
\(721\) −13.1900 + 15.1084i −0.491220 + 0.562665i
\(722\) −15.6487 19.7151i −0.582384 0.733720i
\(723\) −1.06137 −0.0394728
\(724\) 4.48966 19.2641i 0.166857 0.715945i
\(725\) 2.02054i 0.0750411i
\(726\) 30.7982 24.4458i 1.14303 0.907268i
\(727\) −26.7235 −0.991118 −0.495559 0.868574i \(-0.665037\pi\)
−0.495559 + 0.868574i \(0.665037\pi\)
\(728\) −2.03760 + 7.20057i −0.0755186 + 0.266871i
\(729\) −17.8357 −0.660581
\(730\) −5.01228 + 3.97845i −0.185513 + 0.147249i
\(731\) 2.25212i 0.0832978i
\(732\) 7.37804 + 1.71951i 0.272700 + 0.0635550i
\(733\) 21.9273 0.809905 0.404953 0.914338i \(-0.367288\pi\)
0.404953 + 0.914338i \(0.367288\pi\)
\(734\) 12.2159 + 15.3904i 0.450899 + 0.568068i
\(735\) −28.9738 + 3.94652i −1.06871 + 0.145569i
\(736\) 21.0246 4.54658i 0.774979 0.167589i
\(737\) −68.3488 −2.51766
\(738\) 5.00827 3.97527i 0.184357 0.146332i
\(739\) −29.1929 −1.07388 −0.536938 0.843621i \(-0.680419\pi\)
−0.536938 + 0.843621i \(0.680419\pi\)
\(740\) −39.0397 9.09851i −1.43513 0.334468i
\(741\) −2.11329 −0.0776336
\(742\) −0.506396 + 10.8132i −0.0185904 + 0.396965i
\(743\) 43.4204i 1.59294i −0.604678 0.796470i \(-0.706698\pi\)
0.604678 0.796470i \(-0.293302\pi\)
\(744\) 20.1947 + 42.6810i 0.740374 + 1.56476i
\(745\) 0.606296i 0.0222130i
\(746\) −10.4889 + 8.32545i −0.384025 + 0.304816i
\(747\) 3.88366i 0.142096i
\(748\) 6.75513 + 1.57434i 0.246992 + 0.0575635i
\(749\) 6.17883 7.07751i 0.225770 0.258606i
\(750\) 24.5471 19.4840i 0.896332 0.711455i
\(751\) 11.5694i 0.422174i −0.977467 0.211087i \(-0.932300\pi\)
0.977467 0.211087i \(-0.0677003\pi\)
\(752\) 7.49967 + 3.69650i 0.273485 + 0.134797i
\(753\) −50.3145 −1.83356
\(754\) 7.33883 5.82513i 0.267264 0.212139i
\(755\) 41.2908i 1.50273i
\(756\) −18.9015 + 13.6118i −0.687442 + 0.495055i
\(757\) 3.36324i 0.122239i −0.998130 0.0611196i \(-0.980533\pi\)
0.998130 0.0611196i \(-0.0194671\pi\)
\(758\) 25.8241 + 32.5346i 0.937972 + 1.18171i
\(759\) −36.9627 −1.34166
\(760\) 2.87328 + 6.07260i 0.104225 + 0.220276i
\(761\) 28.7317i 1.04152i 0.853702 + 0.520761i \(0.174352\pi\)
−0.853702 + 0.520761i \(0.825648\pi\)
\(762\) −6.87392 8.66016i −0.249016 0.313724i
\(763\) −16.8381 14.7001i −0.609581 0.532179i
\(764\) −26.4071 6.15439i −0.955374 0.222658i
\(765\) 1.06819i 0.0386204i
\(766\) −20.9953 26.4511i −0.758591 0.955716i
\(767\) 11.6482i 0.420594i
\(768\) −24.4640 + 18.7880i −0.882770 + 0.677954i
\(769\) 32.7273i 1.18018i −0.807338 0.590089i \(-0.799093\pi\)
0.807338 0.590089i \(-0.200907\pi\)
\(770\) −40.8331 1.91227i −1.47152 0.0689133i
\(771\) 45.7218 1.64663
\(772\) 10.5056 45.0771i 0.378104 1.62236i
\(773\) 1.68151 0.0604796 0.0302398 0.999543i \(-0.490373\pi\)
0.0302398 + 0.999543i \(0.490373\pi\)
\(774\) −2.06324 2.59939i −0.0741618 0.0934332i
\(775\) −2.64081 −0.0948609
\(776\) 3.00943 + 6.36035i 0.108032 + 0.228323i
\(777\) 31.0294 35.5424i 1.11317 1.27508i
\(778\) 26.8318 21.2975i 0.961966 0.763551i
\(779\) −6.91518 −0.247762
\(780\) −8.13660 1.89630i −0.291337 0.0678985i
\(781\) 25.5814i 0.915374i
\(782\) −2.29963 2.89721i −0.0822346 0.103604i
\(783\) 29.1641 1.04224
\(784\) −8.87601 + 26.5559i −0.317000 + 0.948425i
\(785\) −27.2925 −0.974113
\(786\) 20.8964 + 26.3264i 0.745349 + 0.939033i
\(787\) 5.75339i 0.205086i −0.994729 0.102543i \(-0.967302\pi\)
0.994729 0.102543i \(-0.0326979\pi\)
\(788\) 1.57707 + 0.367548i 0.0561806 + 0.0130934i
\(789\) 30.3260 1.07964
\(790\) 1.85448 1.47198i 0.0659794 0.0523706i
\(791\) −26.4795 + 30.3308i −0.941504 + 1.07844i
\(792\) 9.23904 4.37150i 0.328295 0.155334i
\(793\) 1.96479 0.0697719
\(794\) 21.1918 + 26.6986i 0.752068 + 0.947499i
\(795\) −12.0855 −0.428629
\(796\) 6.23156 26.7382i 0.220872 0.947711i
\(797\) 0.563854 0.0199727 0.00998636 0.999950i \(-0.496821\pi\)
0.00998636 + 0.999950i \(0.496821\pi\)
\(798\) −7.89855 0.369899i −0.279605 0.0130943i
\(799\) 1.43777i 0.0508648i
\(800\) −0.364642 1.68620i −0.0128920 0.0596163i
\(801\) 2.61823i 0.0925107i
\(802\) 18.6635 + 23.5133i 0.659031 + 0.830285i
\(803\) 10.5294i 0.371574i
\(804\) −50.9037 11.8635i −1.79524 0.418394i
\(805\) 16.4219 + 14.3367i 0.578794 + 0.505301i
\(806\) 7.61334 + 9.59172i 0.268168 + 0.337854i
\(807\) 51.8702i 1.82592i
\(808\) −43.9954 + 20.8166i −1.54775 + 0.732327i
\(809\) −40.0661 −1.40865 −0.704325 0.709878i \(-0.748750\pi\)
−0.704325 + 0.709878i \(0.748750\pi\)
\(810\) −20.2634 25.5290i −0.711984 0.896998i
\(811\) 10.3867i 0.364728i −0.983231 0.182364i \(-0.941625\pi\)
0.983231 0.182364i \(-0.0583749\pi\)
\(812\) 28.4489 20.4872i 0.998361 0.718961i
\(813\) 45.7468i 1.60441i
\(814\) 51.6613 41.0057i 1.81073 1.43725i
\(815\) −31.8963 −1.11728
\(816\) 4.75771 + 2.34502i 0.166553 + 0.0820921i
\(817\) 3.58912i 0.125567i
\(818\) 16.8106 13.3433i 0.587770 0.466537i
\(819\) 1.24709 1.42847i 0.0435767 0.0499147i
\(820\) −26.6249 6.20515i −0.929782 0.216693i
\(821\) 25.9082i 0.904202i 0.891967 + 0.452101i \(0.149325\pi\)
−0.891967 + 0.452101i \(0.850675\pi\)
\(822\) −21.4424 + 17.0197i −0.747890 + 0.593631i
\(823\) 32.7107i 1.14022i −0.821567 0.570112i \(-0.806900\pi\)
0.821567 0.570112i \(-0.193100\pi\)
\(824\) −19.3807 + 9.17005i −0.675158 + 0.319454i
\(825\) 2.96445i 0.103209i
\(826\) −2.03885 + 43.5360i −0.0709405 + 1.51481i
\(827\) −9.60694 −0.334066 −0.167033 0.985951i \(-0.553419\pi\)
−0.167033 + 0.985951i \(0.553419\pi\)
\(828\) −5.30845 1.23718i −0.184481 0.0429949i
\(829\) 55.6806 1.93387 0.966934 0.255027i \(-0.0820843\pi\)
0.966934 + 0.255027i \(0.0820843\pi\)
\(830\) 13.0057 10.3231i 0.451434 0.358321i
\(831\) 56.5513 1.96174
\(832\) −5.07323 + 6.18566i −0.175882 + 0.214449i
\(833\) 4.77078 0.649829i 0.165298 0.0225152i
\(834\) 38.2997 + 48.2522i 1.32621 + 1.67084i
\(835\) 14.1211 0.488680
\(836\) −10.7654 2.50896i −0.372328 0.0867742i
\(837\) 38.1170i 1.31752i
\(838\) 24.8031 19.6872i 0.856807 0.680083i
\(839\) 26.2179 0.905142 0.452571 0.891728i \(-0.350507\pi\)
0.452571 + 0.891728i \(0.350507\pi\)
\(840\) −30.0791 8.51173i −1.03783 0.293683i
\(841\) −14.8953 −0.513630
\(842\) 7.69863 6.11072i 0.265312 0.210589i
\(843\) 18.9320i 0.652053i
\(844\) −10.0419 + 43.0874i −0.345655 + 1.48313i
\(845\) −2.16680 −0.0745402
\(846\) −1.31719 1.65947i −0.0452860 0.0570538i
\(847\) 25.0945 28.7444i 0.862258 0.987668i
\(848\) −5.11622 + 10.3801i −0.175692 + 0.356454i
\(849\) −35.1302 −1.20567
\(850\) −0.232360 + 0.184433i −0.00796987 + 0.00632601i
\(851\) −35.1739 −1.20575
\(852\) 4.44025 19.0521i 0.152120 0.652714i
\(853\) −29.3901 −1.00630 −0.503149 0.864200i \(-0.667825\pi\)
−0.503149 + 0.864200i \(0.667825\pi\)
\(854\) 7.34354 + 0.343907i 0.251291 + 0.0117682i
\(855\) 1.70233i 0.0582184i
\(856\) 9.07887 4.29571i 0.310309 0.146824i
\(857\) 22.3255i 0.762624i 0.924446 + 0.381312i \(0.124528\pi\)
−0.924446 + 0.381312i \(0.875472\pi\)
\(858\) 10.7672 8.54637i 0.367586 0.291768i
\(859\) 15.7351i 0.536873i −0.963297 0.268437i \(-0.913493\pi\)
0.963297 0.268437i \(-0.0865070\pi\)
\(860\) −3.22060 + 13.8189i −0.109822 + 0.471219i
\(861\) 21.1619 24.2398i 0.721196 0.826090i
\(862\) 19.4865 15.4672i 0.663712 0.526816i
\(863\) 31.8109i 1.08286i −0.840747 0.541428i \(-0.817884\pi\)
0.840747 0.541428i \(-0.182116\pi\)
\(864\) −24.3383 + 5.26316i −0.828007 + 0.179056i
\(865\) 47.3488 1.60991
\(866\) 14.1299 11.2155i 0.480154 0.381118i
\(867\) 31.8618i 1.08208i
\(868\) 26.7764 + 37.1822i 0.908851 + 1.26205i
\(869\) 3.89574i 0.132154i
\(870\) 24.3335 + 30.6567i 0.824982 + 1.03936i
\(871\) −13.5558 −0.459321
\(872\) −10.2199 21.5996i −0.346091 0.731453i
\(873\) 1.78299i 0.0603452i
\(874\) 3.66483 + 4.61717i 0.123965 + 0.156178i
\(875\) 20.0011 22.9101i 0.676160 0.774503i
\(876\) 1.82762 7.84191i 0.0617496 0.264954i
\(877\) 4.71862i 0.159337i 0.996821 + 0.0796683i \(0.0253861\pi\)
−0.996821 + 0.0796683i \(0.974614\pi\)
\(878\) −35.0100 44.1076i −1.18153 1.48856i
\(879\) 19.3548i 0.652820i
\(880\) −39.1976 19.3200i −1.32135 0.651279i
\(881\) 34.3311i 1.15665i −0.815808 0.578323i \(-0.803707\pi\)
0.815808 0.578323i \(-0.196293\pi\)
\(882\) 4.91109 5.12070i 0.165365 0.172423i
\(883\) 13.7434 0.462503 0.231252 0.972894i \(-0.425718\pi\)
0.231252 + 0.972894i \(0.425718\pi\)
\(884\) 1.33976 + 0.312243i 0.0450611 + 0.0105019i
\(885\) −48.6585 −1.63564
\(886\) 2.58723 + 3.25955i 0.0869199 + 0.109507i
\(887\) −23.5082 −0.789328 −0.394664 0.918825i \(-0.629139\pi\)
−0.394664 + 0.918825i \(0.629139\pi\)
\(888\) 45.5930 21.5725i 1.53000 0.723927i
\(889\) −8.08264 7.05634i −0.271083 0.236662i
\(890\) −8.76799 + 6.95952i −0.293904 + 0.233283i
\(891\) 53.6294 1.79665
\(892\) 4.77677 20.4961i 0.159938 0.686259i
\(893\) 2.29132i 0.0766762i
\(894\) −0.474288 0.597535i −0.0158626 0.0199846i
\(895\) −28.0108 −0.936297
\(896\) −20.0442 + 22.2313i −0.669630 + 0.742695i
\(897\) −7.33091 −0.244772
\(898\) −11.2325 14.1514i −0.374835 0.472238i
\(899\) 57.3703i 1.91341i
\(900\) −0.0992233 + 0.425745i −0.00330744 + 0.0141915i
\(901\) 1.98998 0.0662960
\(902\) 35.2329 27.9658i 1.17313 0.931158i
\(903\) −12.5809 10.9835i −0.418668 0.365507i
\(904\) −38.9077 + 18.4094i −1.29405 + 0.612286i
\(905\) 21.4301 0.712359
\(906\) −32.3006 40.6941i −1.07311 1.35197i
\(907\) −36.4422 −1.21004 −0.605021 0.796209i \(-0.706835\pi\)
−0.605021 + 0.796209i \(0.706835\pi\)
\(908\) 30.9937 + 7.22333i 1.02856 + 0.239714i
\(909\) 12.3332 0.409067
\(910\) −8.09855 0.379265i −0.268464 0.0125725i
\(911\) 9.46472i 0.313580i 0.987632 + 0.156790i \(0.0501146\pi\)
−0.987632 + 0.156790i \(0.949885\pi\)
\(912\) −7.58218 3.73717i −0.251071 0.123750i
\(913\) 27.3213i 0.904203i
\(914\) 5.32464 + 6.70828i 0.176123 + 0.221890i
\(915\) 8.20759i 0.271335i
\(916\) 4.66289 20.0074i 0.154066 0.661063i
\(917\) 24.5708 + 21.4509i 0.811400 + 0.708372i
\(918\) 2.66207 + 3.35383i 0.0878615 + 0.110693i
\(919\) 43.3424i 1.42973i 0.699261 + 0.714867i \(0.253513\pi\)
−0.699261 + 0.714867i \(0.746487\pi\)
\(920\) 9.96728 + 21.0656i 0.328612 + 0.694512i
\(921\) 7.60542 0.250607
\(922\) −11.9095 15.0042i −0.392217 0.494138i
\(923\) 5.07363i 0.167001i
\(924\) 41.7390 30.0579i 1.37311 0.988834i
\(925\) 2.82099i 0.0927536i
\(926\) 26.9588 21.3983i 0.885923 0.703193i
\(927\) 5.43297 0.178442
\(928\) 36.6319 7.92165i 1.20250 0.260041i
\(929\) 39.0336i 1.28065i −0.768104 0.640325i \(-0.778799\pi\)
0.768104 0.640325i \(-0.221201\pi\)
\(930\) −40.0678 + 31.8034i −1.31387 + 1.04288i
\(931\) −7.60301 + 1.03561i −0.249179 + 0.0339406i
\(932\) 2.09989 9.01017i 0.0687843 0.295138i
\(933\) 33.4083i 1.09374i
\(934\) −32.5412 + 25.8293i −1.06478 + 0.845160i
\(935\) 7.51464i 0.245755i
\(936\) 1.83241 0.867011i 0.0598940 0.0283391i
\(937\) 53.0178i 1.73202i 0.500030 + 0.866008i \(0.333322\pi\)
−0.500030 + 0.866008i \(0.666678\pi\)
\(938\) −50.6657 2.37273i −1.65429 0.0774725i
\(939\) −19.6407 −0.640950
\(940\) −2.05606 + 8.82207i −0.0670612 + 0.287744i
\(941\) −16.8743 −0.550087 −0.275044 0.961432i \(-0.588692\pi\)
−0.275044 + 0.961432i \(0.588692\pi\)
\(942\) 26.8981 21.3502i 0.876389 0.695626i
\(943\) −23.9885 −0.781172
\(944\) −20.5989 + 41.7922i −0.670437 + 1.36022i
\(945\) −19.0101 16.5963i −0.618398 0.539876i
\(946\) −14.5148 18.2866i −0.471917 0.594548i
\(947\) −8.43947 −0.274246 −0.137123 0.990554i \(-0.543786\pi\)
−0.137123 + 0.990554i \(0.543786\pi\)
\(948\) −0.676197 + 2.90141i −0.0219619 + 0.0942334i
\(949\) 2.08832i 0.0677899i
\(950\) 0.370302 0.293924i 0.0120142 0.00953616i
\(951\) −9.88907 −0.320675
\(952\) 4.95279 + 1.40153i 0.160521 + 0.0454239i
\(953\) −18.5496 −0.600880 −0.300440 0.953801i \(-0.597134\pi\)
−0.300440 + 0.953801i \(0.597134\pi\)
\(954\) 2.29683 1.82309i 0.0743627 0.0590247i
\(955\) 29.3761i 0.950590i
\(956\) −11.3210 2.63844i −0.366146 0.0853333i
\(957\) −64.4012 −2.08179
\(958\) 2.52206 + 3.17744i 0.0814841 + 0.102658i
\(959\) −17.4714 + 20.0125i −0.564180 + 0.646237i
\(960\) −25.8395 21.1925i −0.833967 0.683986i
\(961\) 43.9820 1.41877
\(962\) 10.2461 8.13278i 0.330349 0.262211i
\(963\) −2.54507 −0.0820138
\(964\) −1.07234 0.249917i −0.0345377 0.00804929i
\(965\) 50.1453 1.61423
\(966\) −27.3997 1.28316i −0.881571 0.0412851i
\(967\) 7.56789i 0.243367i −0.992569 0.121683i \(-0.961171\pi\)
0.992569 0.121683i \(-0.0388293\pi\)
\(968\) 36.8726 17.4465i 1.18513 0.560750i
\(969\) 1.45359i 0.0466961i
\(970\) −5.97093 + 4.73937i −0.191715 + 0.152172i
\(971\) 4.56757i 0.146580i 0.997311 + 0.0732901i \(0.0233499\pi\)
−0.997311 + 0.0732901i \(0.976650\pi\)
\(972\) 14.2191 + 3.31389i 0.456079 + 0.106293i
\(973\) 45.0344 + 39.3161i 1.44374 + 1.26042i
\(974\) 27.2363 21.6186i 0.872709 0.692704i
\(975\) 0.587948i 0.0188294i
\(976\) 7.04940 + 3.47457i 0.225646 + 0.111218i
\(977\) 35.0513 1.12139 0.560696 0.828022i \(-0.310534\pi\)
0.560696 + 0.828022i \(0.310534\pi\)
\(978\) 31.4354 24.9515i 1.00519 0.797863i
\(979\) 18.4191i 0.588677i
\(980\) −30.2025 2.83505i −0.964782 0.0905624i
\(981\) 6.05499i 0.193321i
\(982\) −35.8048 45.1090i −1.14258 1.43949i
\(983\) 17.4575 0.556809 0.278404 0.960464i \(-0.410195\pi\)
0.278404 + 0.960464i \(0.410195\pi\)
\(984\) 31.0943 14.7124i 0.991249 0.469014i
\(985\) 1.75438i 0.0558993i
\(986\) −4.00672 5.04789i −0.127600 0.160758i
\(987\) −8.03178 7.01193i −0.255654 0.223192i
\(988\) −2.13513 0.497609i −0.0679275 0.0158311i
\(989\) 12.4505i 0.395903i
\(990\) 6.88440 + 8.67337i 0.218801 + 0.275658i
\(991\) 11.0252i 0.350227i −0.984548 0.175114i \(-0.943971\pi\)
0.984548 0.175114i \(-0.0560292\pi\)
\(992\) 10.3535 + 47.8772i 0.328723 + 1.52010i
\(993\) 20.5021i 0.650614i
\(994\) 0.888060 18.9630i 0.0281676 0.601470i
\(995\) 29.7445 0.942965
\(996\) −4.74225 + 20.3479i −0.150264 + 0.644749i
\(997\) −5.72166 −0.181207 −0.0906033 0.995887i \(-0.528880\pi\)
−0.0906033 + 0.995887i \(0.528880\pi\)
\(998\) 33.1616 + 41.7789i 1.04971 + 1.32249i
\(999\) 40.7176 1.28825
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.h.a.27.13 48
4.3 odd 2 2912.2.h.a.2575.11 48
7.6 odd 2 728.2.h.b.27.13 yes 48
8.3 odd 2 728.2.h.b.27.14 yes 48
8.5 even 2 2912.2.h.b.2575.11 48
28.27 even 2 2912.2.h.b.2575.38 48
56.13 odd 2 2912.2.h.a.2575.38 48
56.27 even 2 inner 728.2.h.a.27.14 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.13 48 1.1 even 1 trivial
728.2.h.a.27.14 yes 48 56.27 even 2 inner
728.2.h.b.27.13 yes 48 7.6 odd 2
728.2.h.b.27.14 yes 48 8.3 odd 2
2912.2.h.a.2575.11 48 4.3 odd 2
2912.2.h.a.2575.38 48 56.13 odd 2
2912.2.h.b.2575.11 48 8.5 even 2
2912.2.h.b.2575.38 48 28.27 even 2