Properties

Label 2912.2.h.b.2575.38
Level $2912$
Weight $2$
Character 2912.2575
Analytic conductor $23.252$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2912,2,Mod(2575,2912)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2912, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2912.2575"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 2912 = 2^{5} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2912.h (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [48,0,0,0,0,0,0,0,-48,0,4,0,48] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(23.2524370686\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: no (minimal twist has level 728)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2575.38
Character \(\chi\) \(=\) 2912.2575
Dual form 2912.2.h.b.2575.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.92788i q^{3} +2.16680 q^{5} +(1.74001 + 1.99308i) q^{7} -0.716713 q^{9} +5.04203 q^{11} +1.00000 q^{13} +4.17733i q^{15} -0.687834i q^{17} -1.09617i q^{19} +(-3.84242 + 3.35452i) q^{21} +3.80258i q^{23} -0.304972 q^{25} +4.40190i q^{27} -6.62535i q^{29} +8.65921 q^{31} +9.72042i q^{33} +(3.77025 + 4.31861i) q^{35} -9.25001i q^{37} +1.92788i q^{39} +6.30848i q^{41} +3.27423 q^{43} -1.55297 q^{45} -2.09029 q^{47} +(-0.944747 + 6.93595i) q^{49} +1.32606 q^{51} -2.89312i q^{53} +10.9251 q^{55} +2.11329 q^{57} -11.6482i q^{59} +1.96479 q^{61} +(-1.24709 - 1.42847i) q^{63} +2.16680 q^{65} -13.5558 q^{67} -7.33091 q^{69} -5.07363i q^{71} -2.08832i q^{73} -0.587948i q^{75} +(8.77317 + 10.0492i) q^{77} +0.772654i q^{79} -10.6365 q^{81} -5.41871i q^{83} -1.49040i q^{85} +12.7729 q^{87} -3.65311i q^{89} +(1.74001 + 1.99308i) q^{91} +16.6939i q^{93} -2.37519i q^{95} -2.48774i q^{97} -3.61369 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - 48 q^{9} + 4 q^{11} + 48 q^{13} + 48 q^{25} - 12 q^{35} + 4 q^{43} - 24 q^{45} + 40 q^{51} + 20 q^{63} + 4 q^{67} + 20 q^{77} + 64 q^{81} - 40 q^{87} - 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2912\mathbb{Z}\right)^\times\).

\(n\) \(1093\) \(1249\) \(2017\) \(2367\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.92788i 1.11306i 0.830827 + 0.556530i \(0.187868\pi\)
−0.830827 + 0.556530i \(0.812132\pi\)
\(4\) 0 0
\(5\) 2.16680 0.969023 0.484512 0.874785i \(-0.338997\pi\)
0.484512 + 0.874785i \(0.338997\pi\)
\(6\) 0 0
\(7\) 1.74001 + 1.99308i 0.657661 + 0.753314i
\(8\) 0 0
\(9\) −0.716713 −0.238904
\(10\) 0 0
\(11\) 5.04203 1.52023 0.760115 0.649789i \(-0.225143\pi\)
0.760115 + 0.649789i \(0.225143\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 4.17733i 1.07858i
\(16\) 0 0
\(17\) 0.687834i 0.166824i −0.996515 0.0834121i \(-0.973418\pi\)
0.996515 0.0834121i \(-0.0265818\pi\)
\(18\) 0 0
\(19\) 1.09617i 0.251479i −0.992063 0.125740i \(-0.959870\pi\)
0.992063 0.125740i \(-0.0401304\pi\)
\(20\) 0 0
\(21\) −3.84242 + 3.35452i −0.838484 + 0.732017i
\(22\) 0 0
\(23\) 3.80258i 0.792892i 0.918058 + 0.396446i \(0.129757\pi\)
−0.918058 + 0.396446i \(0.870243\pi\)
\(24\) 0 0
\(25\) −0.304972 −0.0609943
\(26\) 0 0
\(27\) 4.40190i 0.847146i
\(28\) 0 0
\(29\) 6.62535i 1.23030i −0.788411 0.615148i \(-0.789096\pi\)
0.788411 0.615148i \(-0.210904\pi\)
\(30\) 0 0
\(31\) 8.65921 1.55524 0.777620 0.628734i \(-0.216427\pi\)
0.777620 + 0.628734i \(0.216427\pi\)
\(32\) 0 0
\(33\) 9.72042i 1.69211i
\(34\) 0 0
\(35\) 3.77025 + 4.31861i 0.637289 + 0.729979i
\(36\) 0 0
\(37\) 9.25001i 1.52069i −0.649518 0.760346i \(-0.725029\pi\)
0.649518 0.760346i \(-0.274971\pi\)
\(38\) 0 0
\(39\) 1.92788i 0.308708i
\(40\) 0 0
\(41\) 6.30848i 0.985218i 0.870251 + 0.492609i \(0.163957\pi\)
−0.870251 + 0.492609i \(0.836043\pi\)
\(42\) 0 0
\(43\) 3.27423 0.499315 0.249657 0.968334i \(-0.419682\pi\)
0.249657 + 0.968334i \(0.419682\pi\)
\(44\) 0 0
\(45\) −1.55297 −0.231504
\(46\) 0 0
\(47\) −2.09029 −0.304900 −0.152450 0.988311i \(-0.548716\pi\)
−0.152450 + 0.988311i \(0.548716\pi\)
\(48\) 0 0
\(49\) −0.944747 + 6.93595i −0.134964 + 0.990851i
\(50\) 0 0
\(51\) 1.32606 0.185685
\(52\) 0 0
\(53\) 2.89312i 0.397400i −0.980060 0.198700i \(-0.936328\pi\)
0.980060 0.198700i \(-0.0636720\pi\)
\(54\) 0 0
\(55\) 10.9251 1.47314
\(56\) 0 0
\(57\) 2.11329 0.279912
\(58\) 0 0
\(59\) 11.6482i 1.51647i −0.651980 0.758236i \(-0.726061\pi\)
0.651980 0.758236i \(-0.273939\pi\)
\(60\) 0 0
\(61\) 1.96479 0.251566 0.125783 0.992058i \(-0.459856\pi\)
0.125783 + 0.992058i \(0.459856\pi\)
\(62\) 0 0
\(63\) −1.24709 1.42847i −0.157118 0.179970i
\(64\) 0 0
\(65\) 2.16680 0.268759
\(66\) 0 0
\(67\) −13.5558 −1.65611 −0.828053 0.560650i \(-0.810551\pi\)
−0.828053 + 0.560650i \(0.810551\pi\)
\(68\) 0 0
\(69\) −7.33091 −0.882537
\(70\) 0 0
\(71\) 5.07363i 0.602129i −0.953604 0.301064i \(-0.902658\pi\)
0.953604 0.301064i \(-0.0973419\pi\)
\(72\) 0 0
\(73\) 2.08832i 0.244420i −0.992504 0.122210i \(-0.961002\pi\)
0.992504 0.122210i \(-0.0389981\pi\)
\(74\) 0 0
\(75\) 0.587948i 0.0678904i
\(76\) 0 0
\(77\) 8.77317 + 10.0492i 0.999796 + 1.14521i
\(78\) 0 0
\(79\) 0.772654i 0.0869303i 0.999055 + 0.0434652i \(0.0138398\pi\)
−0.999055 + 0.0434652i \(0.986160\pi\)
\(80\) 0 0
\(81\) −10.6365 −1.18183
\(82\) 0 0
\(83\) 5.41871i 0.594781i −0.954756 0.297390i \(-0.903884\pi\)
0.954756 0.297390i \(-0.0961163\pi\)
\(84\) 0 0
\(85\) 1.49040i 0.161656i
\(86\) 0 0
\(87\) 12.7729 1.36939
\(88\) 0 0
\(89\) 3.65311i 0.387229i −0.981078 0.193615i \(-0.937979\pi\)
0.981078 0.193615i \(-0.0620212\pi\)
\(90\) 0 0
\(91\) 1.74001 + 1.99308i 0.182402 + 0.208932i
\(92\) 0 0
\(93\) 16.6939i 1.73108i
\(94\) 0 0
\(95\) 2.37519i 0.243689i
\(96\) 0 0
\(97\) 2.48774i 0.252592i −0.991993 0.126296i \(-0.959691\pi\)
0.991993 0.126296i \(-0.0403088\pi\)
\(98\) 0 0
\(99\) −3.61369 −0.363189
\(100\) 0 0
\(101\) 17.2080 1.71226 0.856131 0.516759i \(-0.172862\pi\)
0.856131 + 0.516759i \(0.172862\pi\)
\(102\) 0 0
\(103\) −7.58040 −0.746919 −0.373460 0.927646i \(-0.621829\pi\)
−0.373460 + 0.927646i \(0.621829\pi\)
\(104\) 0 0
\(105\) −8.32576 + 7.26858i −0.812511 + 0.709341i
\(106\) 0 0
\(107\) −3.55104 −0.343292 −0.171646 0.985159i \(-0.554908\pi\)
−0.171646 + 0.985159i \(0.554908\pi\)
\(108\) 0 0
\(109\) 8.44828i 0.809199i −0.914494 0.404599i \(-0.867411\pi\)
0.914494 0.404599i \(-0.132589\pi\)
\(110\) 0 0
\(111\) 17.8329 1.69262
\(112\) 0 0
\(113\) −15.2181 −1.43159 −0.715797 0.698308i \(-0.753936\pi\)
−0.715797 + 0.698308i \(0.753936\pi\)
\(114\) 0 0
\(115\) 8.23943i 0.768331i
\(116\) 0 0
\(117\) −0.716713 −0.0662601
\(118\) 0 0
\(119\) 1.37091 1.19684i 0.125671 0.109714i
\(120\) 0 0
\(121\) 14.4221 1.31110
\(122\) 0 0
\(123\) −12.1620 −1.09661
\(124\) 0 0
\(125\) −11.4948 −1.02813
\(126\) 0 0
\(127\) 4.05535i 0.359854i 0.983680 + 0.179927i \(0.0575862\pi\)
−0.983680 + 0.179927i \(0.942414\pi\)
\(128\) 0 0
\(129\) 6.31231i 0.555768i
\(130\) 0 0
\(131\) 12.3281i 1.07711i 0.842591 + 0.538554i \(0.181029\pi\)
−0.842591 + 0.538554i \(0.818971\pi\)
\(132\) 0 0
\(133\) 2.18476 1.90735i 0.189443 0.165388i
\(134\) 0 0
\(135\) 9.53804i 0.820904i
\(136\) 0 0
\(137\) −10.0410 −0.857859 −0.428929 0.903338i \(-0.641109\pi\)
−0.428929 + 0.903338i \(0.641109\pi\)
\(138\) 0 0
\(139\) 22.5954i 1.91651i 0.285909 + 0.958257i \(0.407705\pi\)
−0.285909 + 0.958257i \(0.592295\pi\)
\(140\) 0 0
\(141\) 4.02983i 0.339373i
\(142\) 0 0
\(143\) 5.04203 0.421636
\(144\) 0 0
\(145\) 14.3558i 1.19219i
\(146\) 0 0
\(147\) −13.3717 1.82136i −1.10288 0.150223i
\(148\) 0 0
\(149\) 0.279812i 0.0229231i −0.999934 0.0114615i \(-0.996352\pi\)
0.999934 0.0114615i \(-0.00364840\pi\)
\(150\) 0 0
\(151\) 19.0561i 1.55076i 0.631493 + 0.775382i \(0.282443\pi\)
−0.631493 + 0.775382i \(0.717557\pi\)
\(152\) 0 0
\(153\) 0.492979i 0.0398550i
\(154\) 0 0
\(155\) 18.7628 1.50706
\(156\) 0 0
\(157\) −12.5958 −1.00525 −0.502626 0.864504i \(-0.667633\pi\)
−0.502626 + 0.864504i \(0.667633\pi\)
\(158\) 0 0
\(159\) 5.57758 0.442331
\(160\) 0 0
\(161\) −7.57885 + 6.61652i −0.597297 + 0.521454i
\(162\) 0 0
\(163\) −14.7205 −1.15300 −0.576498 0.817099i \(-0.695581\pi\)
−0.576498 + 0.817099i \(0.695581\pi\)
\(164\) 0 0
\(165\) 21.0622i 1.63969i
\(166\) 0 0
\(167\) −6.51701 −0.504302 −0.252151 0.967688i \(-0.581138\pi\)
−0.252151 + 0.967688i \(0.581138\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0.785642i 0.0600795i
\(172\) 0 0
\(173\) 21.8519 1.66137 0.830686 0.556742i \(-0.187949\pi\)
0.830686 + 0.556742i \(0.187949\pi\)
\(174\) 0 0
\(175\) −0.530653 0.607833i −0.0401136 0.0459479i
\(176\) 0 0
\(177\) 22.4564 1.68793
\(178\) 0 0
\(179\) −12.9272 −0.966228 −0.483114 0.875557i \(-0.660494\pi\)
−0.483114 + 0.875557i \(0.660494\pi\)
\(180\) 0 0
\(181\) 9.89018 0.735132 0.367566 0.929998i \(-0.380191\pi\)
0.367566 + 0.929998i \(0.380191\pi\)
\(182\) 0 0
\(183\) 3.78788i 0.280008i
\(184\) 0 0
\(185\) 20.0429i 1.47359i
\(186\) 0 0
\(187\) 3.46808i 0.253611i
\(188\) 0 0
\(189\) −8.77334 + 7.65934i −0.638167 + 0.557135i
\(190\) 0 0
\(191\) 13.5574i 0.980978i −0.871448 0.490489i \(-0.836818\pi\)
0.871448 0.490489i \(-0.163182\pi\)
\(192\) 0 0
\(193\) −23.1425 −1.66584 −0.832919 0.553396i \(-0.813332\pi\)
−0.832919 + 0.553396i \(0.813332\pi\)
\(194\) 0 0
\(195\) 4.17733i 0.299145i
\(196\) 0 0
\(197\) 0.809664i 0.0576862i −0.999584 0.0288431i \(-0.990818\pi\)
0.999584 0.0288431i \(-0.00918232\pi\)
\(198\) 0 0
\(199\) −13.7274 −0.973109 −0.486554 0.873650i \(-0.661746\pi\)
−0.486554 + 0.873650i \(0.661746\pi\)
\(200\) 0 0
\(201\) 26.1339i 1.84335i
\(202\) 0 0
\(203\) 13.2049 11.5282i 0.926800 0.809118i
\(204\) 0 0
\(205\) 13.6692i 0.954699i
\(206\) 0 0
\(207\) 2.72536i 0.189425i
\(208\) 0 0
\(209\) 5.52694i 0.382306i
\(210\) 0 0
\(211\) −22.1210 −1.52288 −0.761438 0.648238i \(-0.775506\pi\)
−0.761438 + 0.648238i \(0.775506\pi\)
\(212\) 0 0
\(213\) 9.78134 0.670206
\(214\) 0 0
\(215\) 7.09460 0.483848
\(216\) 0 0
\(217\) 15.0671 + 17.2585i 1.02282 + 1.17158i
\(218\) 0 0
\(219\) 4.02603 0.272054
\(220\) 0 0
\(221\) 0.687834i 0.0462687i
\(222\) 0 0
\(223\) −10.5227 −0.704650 −0.352325 0.935878i \(-0.614609\pi\)
−0.352325 + 0.935878i \(0.614609\pi\)
\(224\) 0 0
\(225\) 0.218577 0.0145718
\(226\) 0 0
\(227\) 15.9121i 1.05612i −0.849206 0.528062i \(-0.822919\pi\)
0.849206 0.528062i \(-0.177081\pi\)
\(228\) 0 0
\(229\) 10.2718 0.678779 0.339390 0.940646i \(-0.389779\pi\)
0.339390 + 0.940646i \(0.389779\pi\)
\(230\) 0 0
\(231\) −19.3736 + 16.9136i −1.27469 + 1.11283i
\(232\) 0 0
\(233\) −4.62581 −0.303047 −0.151524 0.988454i \(-0.548418\pi\)
−0.151524 + 0.988454i \(0.548418\pi\)
\(234\) 0 0
\(235\) −4.52925 −0.295456
\(236\) 0 0
\(237\) −1.48958 −0.0967588
\(238\) 0 0
\(239\) 5.81217i 0.375958i −0.982173 0.187979i \(-0.939806\pi\)
0.982173 0.187979i \(-0.0601937\pi\)
\(240\) 0 0
\(241\) 0.550538i 0.0354633i −0.999843 0.0177316i \(-0.994356\pi\)
0.999843 0.0177316i \(-0.00564445\pi\)
\(242\) 0 0
\(243\) 7.30010i 0.468302i
\(244\) 0 0
\(245\) −2.04708 + 15.0288i −0.130783 + 0.960157i
\(246\) 0 0
\(247\) 1.09617i 0.0697479i
\(248\) 0 0
\(249\) 10.4466 0.662027
\(250\) 0 0
\(251\) 26.0984i 1.64731i 0.567088 + 0.823657i \(0.308070\pi\)
−0.567088 + 0.823657i \(0.691930\pi\)
\(252\) 0 0
\(253\) 19.1727i 1.20538i
\(254\) 0 0
\(255\) 2.87331 0.179933
\(256\) 0 0
\(257\) 23.7161i 1.47937i 0.672952 + 0.739686i \(0.265026\pi\)
−0.672952 + 0.739686i \(0.734974\pi\)
\(258\) 0 0
\(259\) 18.4360 16.0951i 1.14556 1.00010i
\(260\) 0 0
\(261\) 4.74847i 0.293923i
\(262\) 0 0
\(263\) 15.7303i 0.969970i 0.874522 + 0.484985i \(0.161175\pi\)
−0.874522 + 0.484985i \(0.838825\pi\)
\(264\) 0 0
\(265\) 6.26881i 0.385090i
\(266\) 0 0
\(267\) 7.04276 0.431010
\(268\) 0 0
\(269\) −26.9053 −1.64045 −0.820223 0.572043i \(-0.806151\pi\)
−0.820223 + 0.572043i \(0.806151\pi\)
\(270\) 0 0
\(271\) −23.7291 −1.44144 −0.720720 0.693226i \(-0.756189\pi\)
−0.720720 + 0.693226i \(0.756189\pi\)
\(272\) 0 0
\(273\) −3.84242 + 3.35452i −0.232554 + 0.203025i
\(274\) 0 0
\(275\) −1.53768 −0.0927254
\(276\) 0 0
\(277\) 29.3334i 1.76248i −0.472673 0.881238i \(-0.656711\pi\)
0.472673 0.881238i \(-0.343289\pi\)
\(278\) 0 0
\(279\) −6.20617 −0.371554
\(280\) 0 0
\(281\) 9.82013 0.585820 0.292910 0.956140i \(-0.405376\pi\)
0.292910 + 0.956140i \(0.405376\pi\)
\(282\) 0 0
\(283\) 18.2222i 1.08320i 0.840637 + 0.541599i \(0.182181\pi\)
−0.840637 + 0.541599i \(0.817819\pi\)
\(284\) 0 0
\(285\) 4.57908 0.271241
\(286\) 0 0
\(287\) −12.5733 + 10.9768i −0.742179 + 0.647940i
\(288\) 0 0
\(289\) 16.5269 0.972170
\(290\) 0 0
\(291\) 4.79606 0.281150
\(292\) 0 0
\(293\) 10.0394 0.586508 0.293254 0.956034i \(-0.405262\pi\)
0.293254 + 0.956034i \(0.405262\pi\)
\(294\) 0 0
\(295\) 25.2394i 1.46950i
\(296\) 0 0
\(297\) 22.1945i 1.28786i
\(298\) 0 0
\(299\) 3.80258i 0.219909i
\(300\) 0 0
\(301\) 5.69718 + 6.52580i 0.328380 + 0.376141i
\(302\) 0 0
\(303\) 33.1750i 1.90585i
\(304\) 0 0
\(305\) 4.25732 0.243773
\(306\) 0 0
\(307\) 3.94497i 0.225151i −0.993643 0.112576i \(-0.964090\pi\)
0.993643 0.112576i \(-0.0359101\pi\)
\(308\) 0 0
\(309\) 14.6141i 0.831367i
\(310\) 0 0
\(311\) 17.3290 0.982640 0.491320 0.870979i \(-0.336515\pi\)
0.491320 + 0.870979i \(0.336515\pi\)
\(312\) 0 0
\(313\) 10.1877i 0.575844i −0.957654 0.287922i \(-0.907036\pi\)
0.957654 0.287922i \(-0.0929645\pi\)
\(314\) 0 0
\(315\) −2.70219 3.09520i −0.152251 0.174395i
\(316\) 0 0
\(317\) 5.12951i 0.288102i 0.989570 + 0.144051i \(0.0460130\pi\)
−0.989570 + 0.144051i \(0.953987\pi\)
\(318\) 0 0
\(319\) 33.4052i 1.87033i
\(320\) 0 0
\(321\) 6.84596i 0.382105i
\(322\) 0 0
\(323\) −0.753985 −0.0419529
\(324\) 0 0
\(325\) −0.304972 −0.0169168
\(326\) 0 0
\(327\) 16.2873 0.900688
\(328\) 0 0
\(329\) −3.63712 4.16612i −0.200521 0.229686i
\(330\) 0 0
\(331\) 10.6345 0.584527 0.292263 0.956338i \(-0.405592\pi\)
0.292263 + 0.956338i \(0.405592\pi\)
\(332\) 0 0
\(333\) 6.62960i 0.363300i
\(334\) 0 0
\(335\) −29.3727 −1.60480
\(336\) 0 0
\(337\) −19.4556 −1.05981 −0.529906 0.848057i \(-0.677773\pi\)
−0.529906 + 0.848057i \(0.677773\pi\)
\(338\) 0 0
\(339\) 29.3386i 1.59345i
\(340\) 0 0
\(341\) 43.6600 2.36432
\(342\) 0 0
\(343\) −15.4678 + 10.1857i −0.835182 + 0.549974i
\(344\) 0 0
\(345\) −15.8846 −0.855199
\(346\) 0 0
\(347\) −27.4986 −1.47620 −0.738102 0.674690i \(-0.764277\pi\)
−0.738102 + 0.674690i \(0.764277\pi\)
\(348\) 0 0
\(349\) −23.0163 −1.23203 −0.616017 0.787733i \(-0.711255\pi\)
−0.616017 + 0.787733i \(0.711255\pi\)
\(350\) 0 0
\(351\) 4.40190i 0.234956i
\(352\) 0 0
\(353\) 32.6293i 1.73668i 0.495967 + 0.868342i \(0.334814\pi\)
−0.495967 + 0.868342i \(0.665186\pi\)
\(354\) 0 0
\(355\) 10.9935i 0.583477i
\(356\) 0 0
\(357\) 2.30735 + 2.64294i 0.122118 + 0.139879i
\(358\) 0 0
\(359\) 14.0579i 0.741947i 0.928643 + 0.370973i \(0.120976\pi\)
−0.928643 + 0.370973i \(0.879024\pi\)
\(360\) 0 0
\(361\) 17.7984 0.936758
\(362\) 0 0
\(363\) 27.8040i 1.45933i
\(364\) 0 0
\(365\) 4.52498i 0.236849i
\(366\) 0 0
\(367\) −13.8941 −0.725266 −0.362633 0.931932i \(-0.618122\pi\)
−0.362633 + 0.931932i \(0.618122\pi\)
\(368\) 0 0
\(369\) 4.52137i 0.235373i
\(370\) 0 0
\(371\) 5.76622 5.03405i 0.299367 0.261355i
\(372\) 0 0
\(373\) 9.46915i 0.490294i −0.969486 0.245147i \(-0.921164\pi\)
0.969486 0.245147i \(-0.0788362\pi\)
\(374\) 0 0
\(375\) 22.1606i 1.14437i
\(376\) 0 0
\(377\) 6.62535i 0.341223i
\(378\) 0 0
\(379\) 29.3716 1.50872 0.754359 0.656462i \(-0.227948\pi\)
0.754359 + 0.656462i \(0.227948\pi\)
\(380\) 0 0
\(381\) −7.81822 −0.400540
\(382\) 0 0
\(383\) 23.8795 1.22019 0.610093 0.792330i \(-0.291132\pi\)
0.610093 + 0.792330i \(0.291132\pi\)
\(384\) 0 0
\(385\) 19.0097 + 21.7746i 0.968825 + 1.10973i
\(386\) 0 0
\(387\) −2.34668 −0.119288
\(388\) 0 0
\(389\) 24.2232i 1.22816i 0.789242 + 0.614082i \(0.210474\pi\)
−0.789242 + 0.614082i \(0.789526\pi\)
\(390\) 0 0
\(391\) 2.61554 0.132274
\(392\) 0 0
\(393\) −23.7670 −1.19889
\(394\) 0 0
\(395\) 1.67419i 0.0842375i
\(396\) 0 0
\(397\) 24.1030 1.20969 0.604847 0.796342i \(-0.293234\pi\)
0.604847 + 0.796342i \(0.293234\pi\)
\(398\) 0 0
\(399\) 3.67714 + 4.21196i 0.184087 + 0.210862i
\(400\) 0 0
\(401\) −21.2274 −1.06004 −0.530022 0.847984i \(-0.677817\pi\)
−0.530022 + 0.847984i \(0.677817\pi\)
\(402\) 0 0
\(403\) 8.65921 0.431346
\(404\) 0 0
\(405\) −23.0471 −1.14522
\(406\) 0 0
\(407\) 46.6388i 2.31180i
\(408\) 0 0
\(409\) 15.1763i 0.750420i −0.926940 0.375210i \(-0.877571\pi\)
0.926940 0.375210i \(-0.122429\pi\)
\(410\) 0 0
\(411\) 19.3578i 0.954849i
\(412\) 0 0
\(413\) 23.2159 20.2680i 1.14238 0.997325i
\(414\) 0 0
\(415\) 11.7413i 0.576356i
\(416\) 0 0
\(417\) −43.5611 −2.13320
\(418\) 0 0
\(419\) 22.3917i 1.09391i 0.837163 + 0.546953i \(0.184212\pi\)
−0.837163 + 0.546953i \(0.815788\pi\)
\(420\) 0 0
\(421\) 6.95017i 0.338731i 0.985553 + 0.169365i \(0.0541718\pi\)
−0.985553 + 0.169365i \(0.945828\pi\)
\(422\) 0 0
\(423\) 1.49814 0.0728420
\(424\) 0 0
\(425\) 0.209770i 0.0101753i
\(426\) 0 0
\(427\) 3.41876 + 3.91599i 0.165445 + 0.189508i
\(428\) 0 0
\(429\) 9.72042i 0.469306i
\(430\) 0 0
\(431\) 17.5920i 0.847378i −0.905808 0.423689i \(-0.860735\pi\)
0.905808 0.423689i \(-0.139265\pi\)
\(432\) 0 0
\(433\) 12.7562i 0.613025i −0.951867 0.306512i \(-0.900838\pi\)
0.951867 0.306512i \(-0.0991620\pi\)
\(434\) 0 0
\(435\) 27.6763 1.32698
\(436\) 0 0
\(437\) 4.16829 0.199396
\(438\) 0 0
\(439\) 39.8195 1.90048 0.950240 0.311518i \(-0.100838\pi\)
0.950240 + 0.311518i \(0.100838\pi\)
\(440\) 0 0
\(441\) 0.677112 4.97109i 0.0322434 0.236718i
\(442\) 0 0
\(443\) 2.94265 0.139810 0.0699049 0.997554i \(-0.477730\pi\)
0.0699049 + 0.997554i \(0.477730\pi\)
\(444\) 0 0
\(445\) 7.91557i 0.375234i
\(446\) 0 0
\(447\) 0.539443 0.0255148
\(448\) 0 0
\(449\) 12.7756 0.602918 0.301459 0.953479i \(-0.402526\pi\)
0.301459 + 0.953479i \(0.402526\pi\)
\(450\) 0 0
\(451\) 31.8075i 1.49776i
\(452\) 0 0
\(453\) −36.7378 −1.72609
\(454\) 0 0
\(455\) 3.77025 + 4.31861i 0.176752 + 0.202460i
\(456\) 0 0
\(457\) −6.05610 −0.283293 −0.141646 0.989917i \(-0.545240\pi\)
−0.141646 + 0.989917i \(0.545240\pi\)
\(458\) 0 0
\(459\) 3.02777 0.141324
\(460\) 0 0
\(461\) −13.5455 −0.630878 −0.315439 0.948946i \(-0.602152\pi\)
−0.315439 + 0.948946i \(0.602152\pi\)
\(462\) 0 0
\(463\) 24.3379i 1.13108i −0.824721 0.565539i \(-0.808668\pi\)
0.824721 0.565539i \(-0.191332\pi\)
\(464\) 0 0
\(465\) 36.1724i 1.67745i
\(466\) 0 0
\(467\) 29.3776i 1.35943i −0.733476 0.679716i \(-0.762103\pi\)
0.733476 0.679716i \(-0.237897\pi\)
\(468\) 0 0
\(469\) −23.5872 27.0178i −1.08916 1.24757i
\(470\) 0 0
\(471\) 24.2831i 1.11891i
\(472\) 0 0
\(473\) 16.5088 0.759073
\(474\) 0 0
\(475\) 0.334302i 0.0153388i
\(476\) 0 0
\(477\) 2.07353i 0.0949406i
\(478\) 0 0
\(479\) −2.86853 −0.131066 −0.0655332 0.997850i \(-0.520875\pi\)
−0.0655332 + 0.997850i \(0.520875\pi\)
\(480\) 0 0
\(481\) 9.25001i 0.421764i
\(482\) 0 0
\(483\) −12.7558 14.6111i −0.580410 0.664828i
\(484\) 0 0
\(485\) 5.39044i 0.244767i
\(486\) 0 0
\(487\) 24.5884i 1.11421i −0.830443 0.557104i \(-0.811912\pi\)
0.830443 0.557104i \(-0.188088\pi\)
\(488\) 0 0
\(489\) 28.3792i 1.28335i
\(490\) 0 0
\(491\) −40.7235 −1.83783 −0.918913 0.394460i \(-0.870932\pi\)
−0.918913 + 0.394460i \(0.870932\pi\)
\(492\) 0 0
\(493\) −4.55714 −0.205243
\(494\) 0 0
\(495\) −7.83014 −0.351939
\(496\) 0 0
\(497\) 10.1122 8.82815i 0.453592 0.395997i
\(498\) 0 0
\(499\) 37.7172 1.68845 0.844226 0.535987i \(-0.180060\pi\)
0.844226 + 0.535987i \(0.180060\pi\)
\(500\) 0 0
\(501\) 12.5640i 0.561318i
\(502\) 0 0
\(503\) −2.68750 −0.119830 −0.0599148 0.998203i \(-0.519083\pi\)
−0.0599148 + 0.998203i \(0.519083\pi\)
\(504\) 0 0
\(505\) 37.2864 1.65922
\(506\) 0 0
\(507\) 1.92788i 0.0856201i
\(508\) 0 0
\(509\) 5.67996 0.251760 0.125880 0.992045i \(-0.459825\pi\)
0.125880 + 0.992045i \(0.459825\pi\)
\(510\) 0 0
\(511\) 4.16220 3.63370i 0.184125 0.160745i
\(512\) 0 0
\(513\) 4.82524 0.213040
\(514\) 0 0
\(515\) −16.4252 −0.723782
\(516\) 0 0
\(517\) −10.5393 −0.463519
\(518\) 0 0
\(519\) 42.1279i 1.84921i
\(520\) 0 0
\(521\) 18.1395i 0.794706i 0.917666 + 0.397353i \(0.130071\pi\)
−0.917666 + 0.397353i \(0.869929\pi\)
\(522\) 0 0
\(523\) 26.7276i 1.16872i −0.811496 0.584358i \(-0.801346\pi\)
0.811496 0.584358i \(-0.198654\pi\)
\(524\) 0 0
\(525\) 1.17183 1.02303i 0.0511428 0.0446489i
\(526\) 0 0
\(527\) 5.95610i 0.259452i
\(528\) 0 0
\(529\) 8.54040 0.371322
\(530\) 0 0
\(531\) 8.34845i 0.362292i
\(532\) 0 0
\(533\) 6.30848i 0.273250i
\(534\) 0 0
\(535\) −7.69439 −0.332658
\(536\) 0 0
\(537\) 24.9222i 1.07547i
\(538\) 0 0
\(539\) −4.76344 + 34.9713i −0.205176 + 1.50632i
\(540\) 0 0
\(541\) 32.6687i 1.40454i −0.711912 0.702268i \(-0.752171\pi\)
0.711912 0.702268i \(-0.247829\pi\)
\(542\) 0 0
\(543\) 19.0671i 0.818246i
\(544\) 0 0
\(545\) 18.3058i 0.784132i
\(546\) 0 0
\(547\) −33.9785 −1.45281 −0.726407 0.687265i \(-0.758811\pi\)
−0.726407 + 0.687265i \(0.758811\pi\)
\(548\) 0 0
\(549\) −1.40819 −0.0601002
\(550\) 0 0
\(551\) −7.26253 −0.309394
\(552\) 0 0
\(553\) −1.53996 + 1.34442i −0.0654858 + 0.0571707i
\(554\) 0 0
\(555\) 38.6403 1.64019
\(556\) 0 0
\(557\) 12.1520i 0.514899i −0.966292 0.257449i \(-0.917118\pi\)
0.966292 0.257449i \(-0.0828821\pi\)
\(558\) 0 0
\(559\) 3.27423 0.138485
\(560\) 0 0
\(561\) 6.68603 0.282284
\(562\) 0 0
\(563\) 35.0006i 1.47510i −0.675293 0.737549i \(-0.735983\pi\)
0.675293 0.737549i \(-0.264017\pi\)
\(564\) 0 0
\(565\) −32.9745 −1.38725
\(566\) 0 0
\(567\) −18.5075 21.1993i −0.777243 0.890288i
\(568\) 0 0
\(569\) 41.2142 1.72779 0.863894 0.503673i \(-0.168018\pi\)
0.863894 + 0.503673i \(0.168018\pi\)
\(570\) 0 0
\(571\) 19.0805 0.798496 0.399248 0.916843i \(-0.369271\pi\)
0.399248 + 0.916843i \(0.369271\pi\)
\(572\) 0 0
\(573\) 26.1370 1.09189
\(574\) 0 0
\(575\) 1.15968i 0.0483619i
\(576\) 0 0
\(577\) 14.5431i 0.605438i −0.953080 0.302719i \(-0.902106\pi\)
0.953080 0.302719i \(-0.0978944\pi\)
\(578\) 0 0
\(579\) 44.6160i 1.85418i
\(580\) 0 0
\(581\) 10.7999 9.42860i 0.448057 0.391164i
\(582\) 0 0
\(583\) 14.5872i 0.604140i
\(584\) 0 0
\(585\) −1.55297 −0.0642076
\(586\) 0 0
\(587\) 21.4770i 0.886451i 0.896410 + 0.443226i \(0.146166\pi\)
−0.896410 + 0.443226i \(0.853834\pi\)
\(588\) 0 0
\(589\) 9.49200i 0.391111i
\(590\) 0 0
\(591\) 1.56093 0.0642083
\(592\) 0 0
\(593\) 3.89623i 0.159999i −0.996795 0.0799994i \(-0.974508\pi\)
0.996795 0.0799994i \(-0.0254919\pi\)
\(594\) 0 0
\(595\) 2.97049 2.59331i 0.121778 0.106315i
\(596\) 0 0
\(597\) 26.4647i 1.08313i
\(598\) 0 0
\(599\) 36.2640i 1.48171i −0.671667 0.740853i \(-0.734422\pi\)
0.671667 0.740853i \(-0.265578\pi\)
\(600\) 0 0
\(601\) 25.1481i 1.02581i 0.858445 + 0.512906i \(0.171431\pi\)
−0.858445 + 0.512906i \(0.828569\pi\)
\(602\) 0 0
\(603\) 9.71562 0.395651
\(604\) 0 0
\(605\) 31.2498 1.27048
\(606\) 0 0
\(607\) 15.8233 0.642247 0.321123 0.947037i \(-0.395940\pi\)
0.321123 + 0.947037i \(0.395940\pi\)
\(608\) 0 0
\(609\) 22.2249 + 25.4574i 0.900598 + 1.03158i
\(610\) 0 0
\(611\) −2.09029 −0.0845642
\(612\) 0 0
\(613\) 12.6133i 0.509447i −0.967014 0.254723i \(-0.918016\pi\)
0.967014 0.254723i \(-0.0819844\pi\)
\(614\) 0 0
\(615\) −26.3526 −1.06264
\(616\) 0 0
\(617\) 33.7479 1.35864 0.679319 0.733843i \(-0.262275\pi\)
0.679319 + 0.733843i \(0.262275\pi\)
\(618\) 0 0
\(619\) 47.3965i 1.90502i −0.304500 0.952512i \(-0.598489\pi\)
0.304500 0.952512i \(-0.401511\pi\)
\(620\) 0 0
\(621\) −16.7386 −0.671695
\(622\) 0 0
\(623\) 7.28095 6.35645i 0.291705 0.254666i
\(624\) 0 0
\(625\) −23.3821 −0.935285
\(626\) 0 0
\(627\) 10.6553 0.425530
\(628\) 0 0
\(629\) −6.36247 −0.253688
\(630\) 0 0
\(631\) 10.6781i 0.425088i 0.977151 + 0.212544i \(0.0681749\pi\)
−0.977151 + 0.212544i \(0.931825\pi\)
\(632\) 0 0
\(633\) 42.6467i 1.69505i
\(634\) 0 0
\(635\) 8.78714i 0.348707i
\(636\) 0 0
\(637\) −0.944747 + 6.93595i −0.0374322 + 0.274812i
\(638\) 0 0
\(639\) 3.63633i 0.143851i
\(640\) 0 0
\(641\) 28.3033 1.11791 0.558956 0.829197i \(-0.311202\pi\)
0.558956 + 0.829197i \(0.311202\pi\)
\(642\) 0 0
\(643\) 13.4258i 0.529462i −0.964322 0.264731i \(-0.914717\pi\)
0.964322 0.264731i \(-0.0852831\pi\)
\(644\) 0 0
\(645\) 13.6775i 0.538552i
\(646\) 0 0
\(647\) 17.7213 0.696698 0.348349 0.937365i \(-0.386742\pi\)
0.348349 + 0.937365i \(0.386742\pi\)
\(648\) 0 0
\(649\) 58.7308i 2.30539i
\(650\) 0 0
\(651\) −33.2723 + 29.0475i −1.30404 + 1.13846i
\(652\) 0 0
\(653\) 18.2377i 0.713695i 0.934163 + 0.356847i \(0.116148\pi\)
−0.934163 + 0.356847i \(0.883852\pi\)
\(654\) 0 0
\(655\) 26.7125i 1.04374i
\(656\) 0 0
\(657\) 1.49673i 0.0583930i
\(658\) 0 0
\(659\) −11.1172 −0.433064 −0.216532 0.976276i \(-0.569475\pi\)
−0.216532 + 0.976276i \(0.569475\pi\)
\(660\) 0 0
\(661\) −10.0383 −0.390444 −0.195222 0.980759i \(-0.562543\pi\)
−0.195222 + 0.980759i \(0.562543\pi\)
\(662\) 0 0
\(663\) 1.32606 0.0514999
\(664\) 0 0
\(665\) 4.73395 4.13285i 0.183575 0.160265i
\(666\) 0 0
\(667\) 25.1934 0.975493
\(668\) 0 0
\(669\) 20.2864i 0.784318i
\(670\) 0 0
\(671\) 9.90655 0.382438
\(672\) 0 0
\(673\) 18.9917 0.732077 0.366039 0.930600i \(-0.380714\pi\)
0.366039 + 0.930600i \(0.380714\pi\)
\(674\) 0 0
\(675\) 1.34245i 0.0516711i
\(676\) 0 0
\(677\) 11.8708 0.456231 0.228115 0.973634i \(-0.426744\pi\)
0.228115 + 0.973634i \(0.426744\pi\)
\(678\) 0 0
\(679\) 4.95826 4.32868i 0.190281 0.166120i
\(680\) 0 0
\(681\) 30.6766 1.17553
\(682\) 0 0
\(683\) −24.1203 −0.922937 −0.461469 0.887156i \(-0.652677\pi\)
−0.461469 + 0.887156i \(0.652677\pi\)
\(684\) 0 0
\(685\) −21.7568 −0.831285
\(686\) 0 0
\(687\) 19.8028i 0.755523i
\(688\) 0 0
\(689\) 2.89312i 0.110219i
\(690\) 0 0
\(691\) 15.6365i 0.594842i 0.954746 + 0.297421i \(0.0961265\pi\)
−0.954746 + 0.297421i \(0.903874\pi\)
\(692\) 0 0
\(693\) −6.28784 7.20237i −0.238855 0.273596i
\(694\) 0 0
\(695\) 48.9597i 1.85715i
\(696\) 0 0
\(697\) 4.33918 0.164358
\(698\) 0 0
\(699\) 8.91800i 0.337310i
\(700\) 0 0
\(701\) 6.05523i 0.228703i −0.993440 0.114351i \(-0.963521\pi\)
0.993440 0.114351i \(-0.0364790\pi\)
\(702\) 0 0
\(703\) −10.1396 −0.382423
\(704\) 0 0
\(705\) 8.73184i 0.328860i
\(706\) 0 0
\(707\) 29.9421 + 34.2970i 1.12609 + 1.28987i
\(708\) 0 0
\(709\) 10.6349i 0.399401i −0.979857 0.199701i \(-0.936003\pi\)
0.979857 0.199701i \(-0.0639969\pi\)
\(710\) 0 0
\(711\) 0.553771i 0.0207680i
\(712\) 0 0
\(713\) 32.9273i 1.23314i
\(714\) 0 0
\(715\) 10.9251 0.408575
\(716\) 0 0
\(717\) 11.2052 0.418464
\(718\) 0 0
\(719\) 6.21956 0.231950 0.115975 0.993252i \(-0.463001\pi\)
0.115975 + 0.993252i \(0.463001\pi\)
\(720\) 0 0
\(721\) −13.1900 15.1084i −0.491220 0.562665i
\(722\) 0 0
\(723\) 1.06137 0.0394728
\(724\) 0 0
\(725\) 2.02054i 0.0750411i
\(726\) 0 0
\(727\) −26.7235 −0.991118 −0.495559 0.868574i \(-0.665037\pi\)
−0.495559 + 0.868574i \(0.665037\pi\)
\(728\) 0 0
\(729\) −17.8357 −0.660581
\(730\) 0 0
\(731\) 2.25212i 0.0832978i
\(732\) 0 0
\(733\) −21.9273 −0.809905 −0.404953 0.914338i \(-0.632712\pi\)
−0.404953 + 0.914338i \(0.632712\pi\)
\(734\) 0 0
\(735\) −28.9738 3.94652i −1.06871 0.145569i
\(736\) 0 0
\(737\) −68.3488 −2.51766
\(738\) 0 0
\(739\) 29.1929 1.07388 0.536938 0.843621i \(-0.319581\pi\)
0.536938 + 0.843621i \(0.319581\pi\)
\(740\) 0 0
\(741\) 2.11329 0.0776336
\(742\) 0 0
\(743\) 43.4204i 1.59294i 0.604678 + 0.796470i \(0.293302\pi\)
−0.604678 + 0.796470i \(0.706698\pi\)
\(744\) 0 0
\(745\) 0.606296i 0.0222130i
\(746\) 0 0
\(747\) 3.88366i 0.142096i
\(748\) 0 0
\(749\) −6.17883 7.07751i −0.225770 0.258606i
\(750\) 0 0
\(751\) 11.5694i 0.422174i 0.977467 + 0.211087i \(0.0677003\pi\)
−0.977467 + 0.211087i \(0.932300\pi\)
\(752\) 0 0
\(753\) −50.3145 −1.83356
\(754\) 0 0
\(755\) 41.2908i 1.50273i
\(756\) 0 0
\(757\) 3.36324i 0.122239i −0.998130 0.0611196i \(-0.980533\pi\)
0.998130 0.0611196i \(-0.0194671\pi\)
\(758\) 0 0
\(759\) −36.9627 −1.34166
\(760\) 0 0
\(761\) 28.7317i 1.04152i −0.853702 0.520761i \(-0.825648\pi\)
0.853702 0.520761i \(-0.174352\pi\)
\(762\) 0 0
\(763\) 16.8381 14.7001i 0.609581 0.532179i
\(764\) 0 0
\(765\) 1.06819i 0.0386204i
\(766\) 0 0
\(767\) 11.6482i 0.420594i
\(768\) 0 0
\(769\) 32.7273i 1.18018i 0.807338 + 0.590089i \(0.200907\pi\)
−0.807338 + 0.590089i \(0.799093\pi\)
\(770\) 0 0
\(771\) −45.7218 −1.64663
\(772\) 0 0
\(773\) −1.68151 −0.0604796 −0.0302398 0.999543i \(-0.509627\pi\)
−0.0302398 + 0.999543i \(0.509627\pi\)
\(774\) 0 0
\(775\) −2.64081 −0.0948609
\(776\) 0 0
\(777\) 31.0294 + 35.5424i 1.11317 + 1.27508i
\(778\) 0 0
\(779\) 6.91518 0.247762
\(780\) 0 0
\(781\) 25.5814i 0.915374i
\(782\) 0 0
\(783\) 29.1641 1.04224
\(784\) 0 0
\(785\) −27.2925 −0.974113
\(786\) 0 0
\(787\) 5.75339i 0.205086i −0.994729 0.102543i \(-0.967302\pi\)
0.994729 0.102543i \(-0.0326979\pi\)
\(788\) 0 0
\(789\) −30.3260 −1.07964
\(790\) 0 0
\(791\) −26.4795 30.3308i −0.941504 1.07844i
\(792\) 0 0
\(793\) 1.96479 0.0697719
\(794\) 0 0
\(795\) 12.0855 0.428629
\(796\) 0 0
\(797\) −0.563854 −0.0199727 −0.00998636 0.999950i \(-0.503179\pi\)
−0.00998636 + 0.999950i \(0.503179\pi\)
\(798\) 0 0
\(799\) 1.43777i 0.0508648i
\(800\) 0 0
\(801\) 2.61823i 0.0925107i
\(802\) 0 0
\(803\) 10.5294i 0.371574i
\(804\) 0 0
\(805\) −16.4219 + 14.3367i −0.578794 + 0.505301i
\(806\) 0 0
\(807\) 51.8702i 1.82592i
\(808\) 0 0
\(809\) −40.0661 −1.40865 −0.704325 0.709878i \(-0.748750\pi\)
−0.704325 + 0.709878i \(0.748750\pi\)
\(810\) 0 0
\(811\) 10.3867i 0.364728i −0.983231 0.182364i \(-0.941625\pi\)
0.983231 0.182364i \(-0.0583749\pi\)
\(812\) 0 0
\(813\) 45.7468i 1.60441i
\(814\) 0 0
\(815\) −31.8963 −1.11728
\(816\) 0 0
\(817\) 3.58912i 0.125567i
\(818\) 0 0
\(819\) −1.24709 1.42847i −0.0435767 0.0499147i
\(820\) 0 0
\(821\) 25.9082i 0.904202i 0.891967 + 0.452101i \(0.149325\pi\)
−0.891967 + 0.452101i \(0.850675\pi\)
\(822\) 0 0
\(823\) 32.7107i 1.14022i 0.821567 + 0.570112i \(0.193100\pi\)
−0.821567 + 0.570112i \(0.806900\pi\)
\(824\) 0 0
\(825\) 2.96445i 0.103209i
\(826\) 0 0
\(827\) 9.60694 0.334066 0.167033 0.985951i \(-0.446581\pi\)
0.167033 + 0.985951i \(0.446581\pi\)
\(828\) 0 0
\(829\) −55.6806 −1.93387 −0.966934 0.255027i \(-0.917916\pi\)
−0.966934 + 0.255027i \(0.917916\pi\)
\(830\) 0 0
\(831\) 56.5513 1.96174
\(832\) 0 0
\(833\) 4.77078 + 0.649829i 0.165298 + 0.0225152i
\(834\) 0 0
\(835\) −14.1211 −0.488680
\(836\) 0 0
\(837\) 38.1170i 1.31752i
\(838\) 0 0
\(839\) 26.2179 0.905142 0.452571 0.891728i \(-0.350507\pi\)
0.452571 + 0.891728i \(0.350507\pi\)
\(840\) 0 0
\(841\) −14.8953 −0.513630
\(842\) 0 0
\(843\) 18.9320i 0.652053i
\(844\) 0 0
\(845\) 2.16680 0.0745402
\(846\) 0 0
\(847\) 25.0945 + 28.7444i 0.862258 + 0.987668i
\(848\) 0 0
\(849\) −35.1302 −1.20567
\(850\) 0 0
\(851\) 35.1739 1.20575
\(852\) 0 0
\(853\) 29.3901 1.00630 0.503149 0.864200i \(-0.332175\pi\)
0.503149 + 0.864200i \(0.332175\pi\)
\(854\) 0 0
\(855\) 1.70233i 0.0582184i
\(856\) 0 0
\(857\) 22.3255i 0.762624i −0.924446 0.381312i \(-0.875472\pi\)
0.924446 0.381312i \(-0.124528\pi\)
\(858\) 0 0
\(859\) 15.7351i 0.536873i −0.963297 0.268437i \(-0.913493\pi\)
0.963297 0.268437i \(-0.0865070\pi\)
\(860\) 0 0
\(861\) −21.1619 24.2398i −0.721196 0.826090i
\(862\) 0 0
\(863\) 31.8109i 1.08286i 0.840747 + 0.541428i \(0.182116\pi\)
−0.840747 + 0.541428i \(0.817884\pi\)
\(864\) 0 0
\(865\) 47.3488 1.60991
\(866\) 0 0
\(867\) 31.8618i 1.08208i
\(868\) 0 0
\(869\) 3.89574i 0.132154i
\(870\) 0 0
\(871\) −13.5558 −0.459321
\(872\) 0 0
\(873\) 1.78299i 0.0603452i
\(874\) 0 0
\(875\) −20.0011 22.9101i −0.676160 0.774503i
\(876\) 0 0
\(877\) 4.71862i 0.159337i 0.996821 + 0.0796683i \(0.0253861\pi\)
−0.996821 + 0.0796683i \(0.974614\pi\)
\(878\) 0 0
\(879\) 19.3548i 0.652820i
\(880\) 0 0
\(881\) 34.3311i 1.15665i 0.815808 + 0.578323i \(0.196293\pi\)
−0.815808 + 0.578323i \(0.803707\pi\)
\(882\) 0 0
\(883\) −13.7434 −0.462503 −0.231252 0.972894i \(-0.574282\pi\)
−0.231252 + 0.972894i \(0.574282\pi\)
\(884\) 0 0
\(885\) 48.6585 1.63564
\(886\) 0 0
\(887\) −23.5082 −0.789328 −0.394664 0.918825i \(-0.629139\pi\)
−0.394664 + 0.918825i \(0.629139\pi\)
\(888\) 0 0
\(889\) −8.08264 + 7.05634i −0.271083 + 0.236662i
\(890\) 0 0
\(891\) −53.6294 −1.79665
\(892\) 0 0
\(893\) 2.29132i 0.0766762i
\(894\) 0 0
\(895\) −28.0108 −0.936297
\(896\) 0 0
\(897\) −7.33091 −0.244772
\(898\) 0 0
\(899\) 57.3703i 1.91341i
\(900\) 0 0
\(901\) −1.98998 −0.0662960
\(902\) 0 0
\(903\) −12.5809 + 10.9835i −0.418668 + 0.365507i
\(904\) 0 0
\(905\) 21.4301 0.712359
\(906\) 0 0
\(907\) 36.4422 1.21004 0.605021 0.796209i \(-0.293165\pi\)
0.605021 + 0.796209i \(0.293165\pi\)
\(908\) 0 0
\(909\) −12.3332 −0.409067
\(910\) 0 0
\(911\) 9.46472i 0.313580i −0.987632 0.156790i \(-0.949885\pi\)
0.987632 0.156790i \(-0.0501146\pi\)
\(912\) 0 0
\(913\) 27.3213i 0.904203i
\(914\) 0 0
\(915\) 8.20759i 0.271335i
\(916\) 0 0
\(917\) −24.5708 + 21.4509i −0.811400 + 0.708372i
\(918\) 0 0
\(919\) 43.3424i 1.42973i −0.699261 0.714867i \(-0.746487\pi\)
0.699261 0.714867i \(-0.253513\pi\)
\(920\) 0 0
\(921\) 7.60542 0.250607
\(922\) 0 0
\(923\) 5.07363i 0.167001i
\(924\) 0 0
\(925\) 2.82099i 0.0927536i
\(926\) 0 0
\(927\) 5.43297 0.178442
\(928\) 0 0
\(929\) 39.0336i 1.28065i 0.768104 + 0.640325i \(0.221201\pi\)
−0.768104 + 0.640325i \(0.778799\pi\)
\(930\) 0 0
\(931\) 7.60301 + 1.03561i 0.249179 + 0.0339406i
\(932\) 0 0
\(933\) 33.4083i 1.09374i
\(934\) 0 0
\(935\) 7.51464i 0.245755i
\(936\) 0 0
\(937\) 53.0178i 1.73202i −0.500030 0.866008i \(-0.666678\pi\)
0.500030 0.866008i \(-0.333322\pi\)
\(938\) 0 0
\(939\) 19.6407 0.640950
\(940\) 0 0
\(941\) 16.8743 0.550087 0.275044 0.961432i \(-0.411308\pi\)
0.275044 + 0.961432i \(0.411308\pi\)
\(942\) 0 0
\(943\) −23.9885 −0.781172
\(944\) 0 0
\(945\) −19.0101 + 16.5963i −0.618398 + 0.539876i
\(946\) 0 0
\(947\) 8.43947 0.274246 0.137123 0.990554i \(-0.456214\pi\)
0.137123 + 0.990554i \(0.456214\pi\)
\(948\) 0 0
\(949\) 2.08832i 0.0677899i
\(950\) 0 0
\(951\) −9.88907 −0.320675
\(952\) 0 0
\(953\) −18.5496 −0.600880 −0.300440 0.953801i \(-0.597134\pi\)
−0.300440 + 0.953801i \(0.597134\pi\)
\(954\) 0 0
\(955\) 29.3761i 0.950590i
\(956\) 0 0
\(957\) 64.4012 2.08179
\(958\) 0 0
\(959\) −17.4714 20.0125i −0.564180 0.646237i
\(960\) 0 0
\(961\) 43.9820 1.41877
\(962\) 0 0
\(963\) 2.54507 0.0820138
\(964\) 0 0
\(965\) −50.1453 −1.61423
\(966\) 0 0
\(967\) 7.56789i 0.243367i 0.992569 + 0.121683i \(0.0388293\pi\)
−0.992569 + 0.121683i \(0.961171\pi\)
\(968\) 0 0
\(969\) 1.45359i 0.0466961i
\(970\) 0 0
\(971\) 4.56757i 0.146580i 0.997311 + 0.0732901i \(0.0233499\pi\)
−0.997311 + 0.0732901i \(0.976650\pi\)
\(972\) 0 0
\(973\) −45.0344 + 39.3161i −1.44374 + 1.26042i
\(974\) 0 0
\(975\) 0.587948i 0.0188294i
\(976\) 0 0
\(977\) 35.0513 1.12139 0.560696 0.828022i \(-0.310534\pi\)
0.560696 + 0.828022i \(0.310534\pi\)
\(978\) 0 0
\(979\) 18.4191i 0.588677i
\(980\) 0 0
\(981\) 6.05499i 0.193321i
\(982\) 0 0
\(983\) 17.4575 0.556809 0.278404 0.960464i \(-0.410195\pi\)
0.278404 + 0.960464i \(0.410195\pi\)
\(984\) 0 0
\(985\) 1.75438i 0.0558993i
\(986\) 0 0
\(987\) 8.03178 7.01193i 0.255654 0.223192i
\(988\) 0 0
\(989\) 12.4505i 0.395903i
\(990\) 0 0
\(991\) 11.0252i 0.350227i 0.984548 + 0.175114i \(0.0560292\pi\)
−0.984548 + 0.175114i \(0.943971\pi\)
\(992\) 0 0
\(993\) 20.5021i 0.650614i
\(994\) 0 0
\(995\) −29.7445 −0.942965
\(996\) 0 0
\(997\) 5.72166 0.181207 0.0906033 0.995887i \(-0.471120\pi\)
0.0906033 + 0.995887i \(0.471120\pi\)
\(998\) 0 0
\(999\) 40.7176 1.28825
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2912.2.h.b.2575.38 48
4.3 odd 2 728.2.h.b.27.13 yes 48
7.6 odd 2 2912.2.h.a.2575.11 48
8.3 odd 2 2912.2.h.a.2575.38 48
8.5 even 2 728.2.h.a.27.14 yes 48
28.27 even 2 728.2.h.a.27.13 48
56.13 odd 2 728.2.h.b.27.14 yes 48
56.27 even 2 inner 2912.2.h.b.2575.11 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.13 48 28.27 even 2
728.2.h.a.27.14 yes 48 8.5 even 2
728.2.h.b.27.13 yes 48 4.3 odd 2
728.2.h.b.27.14 yes 48 56.13 odd 2
2912.2.h.a.2575.11 48 7.6 odd 2
2912.2.h.a.2575.38 48 8.3 odd 2
2912.2.h.b.2575.11 48 56.27 even 2 inner
2912.2.h.b.2575.38 48 1.1 even 1 trivial