Properties

Label 728.2.c.b.365.19
Level $728$
Weight $2$
Character 728.365
Analytic conductor $5.813$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(365,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.365"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 365.19
Character \(\chi\) \(=\) 728.365
Dual form 728.2.c.b.365.20

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.242210 - 1.39332i) q^{2} +1.67830i q^{3} +(-1.88267 - 0.674950i) q^{4} +0.0254406i q^{5} +(2.33840 + 0.406500i) q^{6} +1.00000 q^{7} +(-1.39642 + 2.45968i) q^{8} +0.183319 q^{9} +(0.0354469 + 0.00616197i) q^{10} -3.21140i q^{11} +(1.13277 - 3.15968i) q^{12} -1.00000i q^{13} +(0.242210 - 1.39332i) q^{14} -0.0426969 q^{15} +(3.08889 + 2.54141i) q^{16} -0.473318 q^{17} +(0.0444017 - 0.255422i) q^{18} +3.69649i q^{19} +(0.0171712 - 0.0478963i) q^{20} +1.67830i q^{21} +(-4.47451 - 0.777832i) q^{22} +8.57943 q^{23} +(-4.12807 - 2.34361i) q^{24} +4.99935 q^{25} +(-1.39332 - 0.242210i) q^{26} +5.34256i q^{27} +(-1.88267 - 0.674950i) q^{28} -0.111981i q^{29} +(-0.0103416 + 0.0594904i) q^{30} +10.1148 q^{31} +(4.28915 - 3.68825i) q^{32} +5.38969 q^{33} +(-0.114642 + 0.659482i) q^{34} +0.0254406i q^{35} +(-0.345130 - 0.123731i) q^{36} +3.46435i q^{37} +(5.15038 + 0.895325i) q^{38} +1.67830 q^{39} +(-0.0625758 - 0.0355258i) q^{40} -5.45411 q^{41} +(2.33840 + 0.406500i) q^{42} -3.24219i q^{43} +(-2.16754 + 6.04601i) q^{44} +0.00466376i q^{45} +(2.07802 - 11.9539i) q^{46} -2.96799 q^{47} +(-4.26525 + 5.18407i) q^{48} +1.00000 q^{49} +(1.21089 - 6.96569i) q^{50} -0.794368i q^{51} +(-0.674950 + 1.88267i) q^{52} -13.1311i q^{53} +(7.44388 + 1.29402i) q^{54} +0.0817001 q^{55} +(-1.39642 + 2.45968i) q^{56} -6.20380 q^{57} +(-0.156025 - 0.0271229i) q^{58} +7.78767i q^{59} +(0.0803842 + 0.0288183i) q^{60} -6.75418i q^{61} +(2.44990 - 14.0931i) q^{62} +0.183319 q^{63} +(-4.10002 - 6.86948i) q^{64} +0.0254406 q^{65} +(1.30543 - 7.50955i) q^{66} +0.435241i q^{67} +(0.891101 + 0.319466i) q^{68} +14.3988i q^{69} +(0.0354469 + 0.00616197i) q^{70} +13.7539 q^{71} +(-0.255991 + 0.450906i) q^{72} -5.15501 q^{73} +(4.82695 + 0.839099i) q^{74} +8.39040i q^{75} +(2.49494 - 6.95926i) q^{76} -3.21140i q^{77} +(0.406500 - 2.33840i) q^{78} -9.86060 q^{79} +(-0.0646552 + 0.0785832i) q^{80} -8.41644 q^{81} +(-1.32104 + 7.59930i) q^{82} +12.9619i q^{83} +(1.13277 - 3.15968i) q^{84} -0.0120415i q^{85} +(-4.51740 - 0.785289i) q^{86} +0.187937 q^{87} +(7.89902 + 4.48447i) q^{88} -0.369066 q^{89} +(0.00649810 + 0.00112961i) q^{90} -1.00000i q^{91} +(-16.1522 - 5.79069i) q^{92} +16.9756i q^{93} +(-0.718876 + 4.13535i) q^{94} -0.0940410 q^{95} +(6.18997 + 7.19848i) q^{96} -10.3643 q^{97} +(0.242210 - 1.39332i) q^{98} -0.588712i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 8 q^{4} + 14 q^{6} + 38 q^{7} - 6 q^{8} - 46 q^{9} - 4 q^{12} - 8 q^{15} - 4 q^{16} + 20 q^{17} + 4 q^{18} - 24 q^{20} + 10 q^{22} + 12 q^{23} + 10 q^{24} - 50 q^{25} + 8 q^{28} + 4 q^{30} + 16 q^{31}+ \cdots + 82 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.242210 1.39332i 0.171268 0.985224i
\(3\) 1.67830i 0.968965i 0.874801 + 0.484483i \(0.160992\pi\)
−0.874801 + 0.484483i \(0.839008\pi\)
\(4\) −1.88267 0.674950i −0.941335 0.337475i
\(5\) 0.0254406i 0.0113774i 0.999984 + 0.00568870i \(0.00181078\pi\)
−0.999984 + 0.00568870i \(0.998189\pi\)
\(6\) 2.33840 + 0.406500i 0.954648 + 0.165953i
\(7\) 1.00000 0.377964
\(8\) −1.39642 + 2.45968i −0.493709 + 0.869627i
\(9\) 0.183319 0.0611065
\(10\) 0.0354469 + 0.00616197i 0.0112093 + 0.00194858i
\(11\) 3.21140i 0.968275i −0.874992 0.484137i \(-0.839134\pi\)
0.874992 0.484137i \(-0.160866\pi\)
\(12\) 1.13277 3.15968i 0.327001 0.912120i
\(13\) 1.00000i 0.277350i
\(14\) 0.242210 1.39332i 0.0647332 0.372380i
\(15\) −0.0426969 −0.0110243
\(16\) 3.08889 + 2.54141i 0.772221 + 0.635353i
\(17\) −0.473318 −0.114796 −0.0573982 0.998351i \(-0.518280\pi\)
−0.0573982 + 0.998351i \(0.518280\pi\)
\(18\) 0.0444017 0.255422i 0.0104656 0.0602036i
\(19\) 3.69649i 0.848032i 0.905655 + 0.424016i \(0.139380\pi\)
−0.905655 + 0.424016i \(0.860620\pi\)
\(20\) 0.0171712 0.0478963i 0.00383959 0.0107099i
\(21\) 1.67830i 0.366234i
\(22\) −4.47451 0.777832i −0.953968 0.165834i
\(23\) 8.57943 1.78894 0.894468 0.447132i \(-0.147555\pi\)
0.894468 + 0.447132i \(0.147555\pi\)
\(24\) −4.12807 2.34361i −0.842638 0.478387i
\(25\) 4.99935 0.999871
\(26\) −1.39332 0.242210i −0.273252 0.0475012i
\(27\) 5.34256i 1.02818i
\(28\) −1.88267 0.674950i −0.355791 0.127554i
\(29\) 0.111981i 0.0207944i −0.999946 0.0103972i \(-0.996690\pi\)
0.999946 0.0103972i \(-0.00330958\pi\)
\(30\) −0.0103416 + 0.0594904i −0.00188811 + 0.0108614i
\(31\) 10.1148 1.81667 0.908335 0.418244i \(-0.137354\pi\)
0.908335 + 0.418244i \(0.137354\pi\)
\(32\) 4.28915 3.68825i 0.758223 0.651996i
\(33\) 5.38969 0.938224
\(34\) −0.114642 + 0.659482i −0.0196610 + 0.113100i
\(35\) 0.0254406i 0.00430025i
\(36\) −0.345130 0.123731i −0.0575216 0.0206219i
\(37\) 3.46435i 0.569536i 0.958596 + 0.284768i \(0.0919166\pi\)
−0.958596 + 0.284768i \(0.908083\pi\)
\(38\) 5.15038 + 0.895325i 0.835502 + 0.145241i
\(39\) 1.67830 0.268743
\(40\) −0.0625758 0.0355258i −0.00989410 0.00561712i
\(41\) −5.45411 −0.851788 −0.425894 0.904773i \(-0.640040\pi\)
−0.425894 + 0.904773i \(0.640040\pi\)
\(42\) 2.33840 + 0.406500i 0.360823 + 0.0627242i
\(43\) 3.24219i 0.494429i −0.968961 0.247215i \(-0.920485\pi\)
0.968961 0.247215i \(-0.0795152\pi\)
\(44\) −2.16754 + 6.04601i −0.326768 + 0.911470i
\(45\) 0.00466376i 0.000695233i
\(46\) 2.07802 11.9539i 0.306387 1.76250i
\(47\) −2.96799 −0.432926 −0.216463 0.976291i \(-0.569452\pi\)
−0.216463 + 0.976291i \(0.569452\pi\)
\(48\) −4.26525 + 5.18407i −0.615635 + 0.748256i
\(49\) 1.00000 0.142857
\(50\) 1.21089 6.96569i 0.171246 0.985097i
\(51\) 0.794368i 0.111234i
\(52\) −0.674950 + 1.88267i −0.0935987 + 0.261079i
\(53\) 13.1311i 1.80369i −0.432057 0.901846i \(-0.642212\pi\)
0.432057 0.901846i \(-0.357788\pi\)
\(54\) 7.44388 + 1.29402i 1.01298 + 0.176094i
\(55\) 0.0817001 0.0110164
\(56\) −1.39642 + 2.45968i −0.186604 + 0.328688i
\(57\) −6.20380 −0.821714
\(58\) −0.156025 0.0271229i −0.0204871 0.00356141i
\(59\) 7.78767i 1.01387i 0.861985 + 0.506934i \(0.169221\pi\)
−0.861985 + 0.506934i \(0.830779\pi\)
\(60\) 0.0803842 + 0.0288183i 0.0103776 + 0.00372043i
\(61\) 6.75418i 0.864784i −0.901686 0.432392i \(-0.857670\pi\)
0.901686 0.432392i \(-0.142330\pi\)
\(62\) 2.44990 14.0931i 0.311137 1.78983i
\(63\) 0.183319 0.0230961
\(64\) −4.10002 6.86948i −0.512503 0.858685i
\(65\) 0.0254406 0.00315552
\(66\) 1.30543 7.50955i 0.160688 0.924362i
\(67\) 0.435241i 0.0531732i 0.999647 + 0.0265866i \(0.00846377\pi\)
−0.999647 + 0.0265866i \(0.991536\pi\)
\(68\) 0.891101 + 0.319466i 0.108062 + 0.0387409i
\(69\) 14.3988i 1.73342i
\(70\) 0.0354469 + 0.00616197i 0.00423671 + 0.000736496i
\(71\) 13.7539 1.63229 0.816144 0.577849i \(-0.196108\pi\)
0.816144 + 0.577849i \(0.196108\pi\)
\(72\) −0.255991 + 0.450906i −0.0301688 + 0.0531398i
\(73\) −5.15501 −0.603349 −0.301674 0.953411i \(-0.597546\pi\)
−0.301674 + 0.953411i \(0.597546\pi\)
\(74\) 4.82695 + 0.839099i 0.561121 + 0.0975433i
\(75\) 8.39040i 0.968840i
\(76\) 2.49494 6.95926i 0.286190 0.798282i
\(77\) 3.21140i 0.365973i
\(78\) 0.406500 2.33840i 0.0460270 0.264772i
\(79\) −9.86060 −1.10940 −0.554702 0.832049i \(-0.687168\pi\)
−0.554702 + 0.832049i \(0.687168\pi\)
\(80\) −0.0646552 + 0.0785832i −0.00722867 + 0.00878587i
\(81\) −8.41644 −0.935160
\(82\) −1.32104 + 7.59930i −0.145884 + 0.839203i
\(83\) 12.9619i 1.42276i 0.702810 + 0.711378i \(0.251928\pi\)
−0.702810 + 0.711378i \(0.748072\pi\)
\(84\) 1.13277 3.15968i 0.123595 0.344749i
\(85\) 0.0120415i 0.00130608i
\(86\) −4.51740 0.785289i −0.487124 0.0846799i
\(87\) 0.187937 0.0201490
\(88\) 7.89902 + 4.48447i 0.842038 + 0.478046i
\(89\) −0.369066 −0.0391210 −0.0195605 0.999809i \(-0.506227\pi\)
−0.0195605 + 0.999809i \(0.506227\pi\)
\(90\) 0.00649810 + 0.00112961i 0.000684960 + 0.000119071i
\(91\) 1.00000i 0.104828i
\(92\) −16.1522 5.79069i −1.68399 0.603721i
\(93\) 16.9756i 1.76029i
\(94\) −0.718876 + 4.13535i −0.0741464 + 0.426529i
\(95\) −0.0940410 −0.00964840
\(96\) 6.18997 + 7.19848i 0.631761 + 0.734691i
\(97\) −10.3643 −1.05234 −0.526169 0.850380i \(-0.676372\pi\)
−0.526169 + 0.850380i \(0.676372\pi\)
\(98\) 0.242210 1.39332i 0.0244669 0.140746i
\(99\) 0.588712i 0.0591678i
\(100\) −9.41213 3.37431i −0.941213 0.337431i
\(101\) 2.45098i 0.243881i −0.992537 0.121941i \(-0.961088\pi\)
0.992537 0.121941i \(-0.0389117\pi\)
\(102\) −1.10681 0.192403i −0.109590 0.0190508i
\(103\) 15.4665 1.52396 0.761980 0.647601i \(-0.224228\pi\)
0.761980 + 0.647601i \(0.224228\pi\)
\(104\) 2.45968 + 1.39642i 0.241191 + 0.136930i
\(105\) −0.0426969 −0.00416680
\(106\) −18.2958 3.18047i −1.77704 0.308915i
\(107\) 9.14887i 0.884454i −0.896903 0.442227i \(-0.854189\pi\)
0.896903 0.442227i \(-0.145811\pi\)
\(108\) 3.60596 10.0583i 0.346983 0.967857i
\(109\) 10.9192i 1.04587i 0.852372 + 0.522936i \(0.175163\pi\)
−0.852372 + 0.522936i \(0.824837\pi\)
\(110\) 0.0197886 0.113834i 0.00188676 0.0108537i
\(111\) −5.81421 −0.551861
\(112\) 3.08889 + 2.54141i 0.291872 + 0.240141i
\(113\) −16.9502 −1.59454 −0.797271 0.603622i \(-0.793724\pi\)
−0.797271 + 0.603622i \(0.793724\pi\)
\(114\) −1.50262 + 8.64387i −0.140733 + 0.809573i
\(115\) 0.218266i 0.0203534i
\(116\) −0.0755816 + 0.210823i −0.00701757 + 0.0195744i
\(117\) 0.183319i 0.0169479i
\(118\) 10.8507 + 1.88625i 0.998888 + 0.173643i
\(119\) −0.473318 −0.0433890
\(120\) 0.0596229 0.105021i 0.00544280 0.00958703i
\(121\) 0.686889 0.0624445
\(122\) −9.41072 1.63593i −0.852006 0.148110i
\(123\) 9.15361i 0.825353i
\(124\) −19.0428 6.82697i −1.71009 0.613080i
\(125\) 0.254390i 0.0227533i
\(126\) 0.0444017 0.255422i 0.00395562 0.0227548i
\(127\) −14.1685 −1.25725 −0.628625 0.777709i \(-0.716382\pi\)
−0.628625 + 0.777709i \(0.716382\pi\)
\(128\) −10.5644 + 4.04878i −0.933773 + 0.357865i
\(129\) 5.44135 0.479085
\(130\) 0.00616197 0.0354469i 0.000540440 0.00310890i
\(131\) 4.22954i 0.369537i −0.982782 0.184768i \(-0.940847\pi\)
0.982782 0.184768i \(-0.0591535\pi\)
\(132\) −10.1470 3.63777i −0.883183 0.316627i
\(133\) 3.69649i 0.320526i
\(134\) 0.606429 + 0.105420i 0.0523875 + 0.00910686i
\(135\) −0.135918 −0.0116980
\(136\) 0.660950 1.16421i 0.0566760 0.0998301i
\(137\) −20.6399 −1.76339 −0.881693 0.471824i \(-0.843596\pi\)
−0.881693 + 0.471824i \(0.843596\pi\)
\(138\) 20.0622 + 3.48754i 1.70780 + 0.296879i
\(139\) 10.1855i 0.863925i −0.901892 0.431962i \(-0.857821\pi\)
0.901892 0.431962i \(-0.142179\pi\)
\(140\) 0.0171712 0.0478963i 0.00145123 0.00404798i
\(141\) 4.98117i 0.419490i
\(142\) 3.33133 19.1636i 0.279559 1.60817i
\(143\) −3.21140 −0.268551
\(144\) 0.566253 + 0.465890i 0.0471877 + 0.0388242i
\(145\) 0.00284887 0.000236586
\(146\) −1.24859 + 7.18257i −0.103334 + 0.594434i
\(147\) 1.67830i 0.138424i
\(148\) 2.33826 6.52223i 0.192204 0.536124i
\(149\) 0.613709i 0.0502770i −0.999684 0.0251385i \(-0.991997\pi\)
0.999684 0.0251385i \(-0.00800267\pi\)
\(150\) 11.6905 + 2.03223i 0.954525 + 0.165931i
\(151\) 3.27672 0.266656 0.133328 0.991072i \(-0.457434\pi\)
0.133328 + 0.991072i \(0.457434\pi\)
\(152\) −9.09217 5.16185i −0.737472 0.418681i
\(153\) −0.0867683 −0.00701480
\(154\) −4.47451 0.777832i −0.360566 0.0626795i
\(155\) 0.257327i 0.0206690i
\(156\) −3.15968 1.13277i −0.252977 0.0906939i
\(157\) 16.0154i 1.27817i 0.769135 + 0.639086i \(0.220687\pi\)
−0.769135 + 0.639086i \(0.779313\pi\)
\(158\) −2.38833 + 13.7389i −0.190005 + 1.09301i
\(159\) 22.0378 1.74772
\(160\) 0.0938313 + 0.109119i 0.00741802 + 0.00862660i
\(161\) 8.57943 0.676154
\(162\) −2.03854 + 11.7268i −0.160163 + 0.921342i
\(163\) 18.4365i 1.44406i 0.691861 + 0.722031i \(0.256791\pi\)
−0.691861 + 0.722031i \(0.743209\pi\)
\(164\) 10.2683 + 3.68125i 0.801818 + 0.287457i
\(165\) 0.137117i 0.0106746i
\(166\) 18.0601 + 3.13950i 1.40173 + 0.243672i
\(167\) −3.65572 −0.282888 −0.141444 0.989946i \(-0.545175\pi\)
−0.141444 + 0.989946i \(0.545175\pi\)
\(168\) −4.12807 2.34361i −0.318487 0.180813i
\(169\) −1.00000 −0.0769231
\(170\) −0.0167776 0.00291657i −0.00128679 0.000223691i
\(171\) 0.677638i 0.0518203i
\(172\) −2.18831 + 6.10397i −0.166857 + 0.465423i
\(173\) 22.4379i 1.70592i −0.521973 0.852962i \(-0.674804\pi\)
0.521973 0.852962i \(-0.325196\pi\)
\(174\) 0.0455202 0.261857i 0.00345088 0.0198513i
\(175\) 4.99935 0.377916
\(176\) 8.16150 9.91966i 0.615197 0.747722i
\(177\) −13.0700 −0.982403
\(178\) −0.0893914 + 0.514227i −0.00670017 + 0.0385429i
\(179\) 21.6521i 1.61836i −0.587563 0.809179i \(-0.699912\pi\)
0.587563 0.809179i \(-0.300088\pi\)
\(180\) 0.00314780 0.00878032i 0.000234623 0.000654446i
\(181\) 17.0547i 1.26766i 0.773471 + 0.633831i \(0.218519\pi\)
−0.773471 + 0.633831i \(0.781481\pi\)
\(182\) −1.39332 0.242210i −0.103280 0.0179538i
\(183\) 11.3355 0.837946
\(184\) −11.9805 + 21.1026i −0.883214 + 1.55571i
\(185\) −0.0881354 −0.00647984
\(186\) 23.6524 + 4.11166i 1.73428 + 0.301481i
\(187\) 1.52001i 0.111154i
\(188\) 5.58775 + 2.00324i 0.407528 + 0.146102i
\(189\) 5.34256i 0.388614i
\(190\) −0.0227776 + 0.131029i −0.00165246 + 0.00950584i
\(191\) −17.6395 −1.27635 −0.638174 0.769893i \(-0.720310\pi\)
−0.638174 + 0.769893i \(0.720310\pi\)
\(192\) 11.5290 6.88106i 0.832036 0.496597i
\(193\) 7.72383 0.555973 0.277987 0.960585i \(-0.410333\pi\)
0.277987 + 0.960585i \(0.410333\pi\)
\(194\) −2.51034 + 14.4408i −0.180232 + 1.03679i
\(195\) 0.0426969i 0.00305759i
\(196\) −1.88267 0.674950i −0.134476 0.0482107i
\(197\) 6.32271i 0.450474i 0.974304 + 0.225237i \(0.0723157\pi\)
−0.974304 + 0.225237i \(0.927684\pi\)
\(198\) −0.820263 0.142592i −0.0582936 0.0101336i
\(199\) 2.46570 0.174789 0.0873943 0.996174i \(-0.472146\pi\)
0.0873943 + 0.996174i \(0.472146\pi\)
\(200\) −6.98120 + 12.2968i −0.493645 + 0.869515i
\(201\) −0.730464 −0.0515230
\(202\) −3.41499 0.593650i −0.240278 0.0417690i
\(203\) 0.111981i 0.00785953i
\(204\) −0.536158 + 1.49553i −0.0375386 + 0.104708i
\(205\) 0.138756i 0.00969114i
\(206\) 3.74613 21.5497i 0.261005 1.50144i
\(207\) 1.57278 0.109316
\(208\) 2.54141 3.08889i 0.176215 0.214176i
\(209\) 11.8709 0.821128
\(210\) −0.0103416 + 0.0594904i −0.000713639 + 0.00410523i
\(211\) 9.46999i 0.651941i 0.945380 + 0.325971i \(0.105691\pi\)
−0.945380 + 0.325971i \(0.894309\pi\)
\(212\) −8.86282 + 24.7215i −0.608701 + 1.69788i
\(213\) 23.0831i 1.58163i
\(214\) −12.7473 2.21594i −0.871386 0.151479i
\(215\) 0.0824833 0.00562532
\(216\) −13.1410 7.46045i −0.894129 0.507619i
\(217\) 10.1148 0.686636
\(218\) 15.2140 + 2.64474i 1.03042 + 0.179124i
\(219\) 8.65164i 0.584624i
\(220\) −0.153814 0.0551435i −0.0103702 0.00371777i
\(221\) 0.473318i 0.0318388i
\(222\) −1.40826 + 8.10105i −0.0945161 + 0.543707i
\(223\) −15.0991 −1.01111 −0.505556 0.862794i \(-0.668713\pi\)
−0.505556 + 0.862794i \(0.668713\pi\)
\(224\) 4.28915 3.68825i 0.286581 0.246431i
\(225\) 0.916478 0.0610985
\(226\) −4.10550 + 23.6170i −0.273094 + 1.57098i
\(227\) 29.9838i 1.99009i −0.0994043 0.995047i \(-0.531694\pi\)
0.0994043 0.995047i \(-0.468306\pi\)
\(228\) 11.6797 + 4.18726i 0.773508 + 0.277308i
\(229\) 4.28268i 0.283007i 0.989938 + 0.141504i \(0.0451937\pi\)
−0.989938 + 0.141504i \(0.954806\pi\)
\(230\) 0.304114 + 0.0528662i 0.0200527 + 0.00348589i
\(231\) 5.38969 0.354615
\(232\) 0.275437 + 0.156373i 0.0180833 + 0.0102664i
\(233\) 14.3460 0.939837 0.469918 0.882710i \(-0.344283\pi\)
0.469918 + 0.882710i \(0.344283\pi\)
\(234\) −0.255422 0.0444017i −0.0166975 0.00290263i
\(235\) 0.0755076i 0.00492557i
\(236\) 5.25629 14.6616i 0.342155 0.954389i
\(237\) 16.5490i 1.07497i
\(238\) −0.114642 + 0.659482i −0.00743114 + 0.0427479i
\(239\) 24.2083 1.56591 0.782953 0.622080i \(-0.213712\pi\)
0.782953 + 0.622080i \(0.213712\pi\)
\(240\) −0.131886 0.108511i −0.00851320 0.00700433i
\(241\) −17.3212 −1.11576 −0.557878 0.829923i \(-0.688384\pi\)
−0.557878 + 0.829923i \(0.688384\pi\)
\(242\) 0.166371 0.957055i 0.0106947 0.0615218i
\(243\) 1.90239i 0.122038i
\(244\) −4.55873 + 12.7159i −0.291843 + 0.814051i
\(245\) 0.0254406i 0.00162534i
\(246\) −12.7539 2.21709i −0.813158 0.141357i
\(247\) 3.69649 0.235202
\(248\) −14.1245 + 24.8791i −0.896906 + 1.57983i
\(249\) −21.7539 −1.37860
\(250\) 0.354446 + 0.0616157i 0.0224171 + 0.00389692i
\(251\) 17.7576i 1.12085i 0.828205 + 0.560425i \(0.189362\pi\)
−0.828205 + 0.560425i \(0.810638\pi\)
\(252\) −0.345130 0.123731i −0.0217411 0.00779434i
\(253\) 27.5520i 1.73218i
\(254\) −3.43174 + 19.7412i −0.215327 + 1.23867i
\(255\) 0.0202092 0.00126555
\(256\) 3.08243 + 15.7003i 0.192652 + 0.981267i
\(257\) 1.93207 0.120519 0.0602596 0.998183i \(-0.480807\pi\)
0.0602596 + 0.998183i \(0.480807\pi\)
\(258\) 1.31795 7.58154i 0.0820519 0.472006i
\(259\) 3.46435i 0.215264i
\(260\) −0.0478963 0.0171712i −0.00297040 0.00106491i
\(261\) 0.0205283i 0.00127067i
\(262\) −5.89309 1.02443i −0.364076 0.0632898i
\(263\) −8.88251 −0.547719 −0.273859 0.961770i \(-0.588300\pi\)
−0.273859 + 0.961770i \(0.588300\pi\)
\(264\) −7.52627 + 13.2569i −0.463210 + 0.815905i
\(265\) 0.334063 0.0205213
\(266\) 5.15038 + 0.895325i 0.315790 + 0.0548959i
\(267\) 0.619403i 0.0379068i
\(268\) 0.293766 0.819415i 0.0179446 0.0500538i
\(269\) 14.9431i 0.911096i −0.890211 0.455548i \(-0.849443\pi\)
0.890211 0.455548i \(-0.150557\pi\)
\(270\) −0.0329206 + 0.189377i −0.00200349 + 0.0115251i
\(271\) −11.2237 −0.681793 −0.340897 0.940101i \(-0.610731\pi\)
−0.340897 + 0.940101i \(0.610731\pi\)
\(272\) −1.46202 1.20290i −0.0886483 0.0729363i
\(273\) 1.67830 0.101575
\(274\) −4.99918 + 28.7579i −0.302011 + 1.73733i
\(275\) 16.0549i 0.968149i
\(276\) 9.71849 27.1082i 0.584984 1.63172i
\(277\) 4.26984i 0.256550i −0.991739 0.128275i \(-0.959056\pi\)
0.991739 0.128275i \(-0.0409440\pi\)
\(278\) −14.1917 2.46703i −0.851160 0.147963i
\(279\) 1.85424 0.111010
\(280\) −0.0625758 0.0355258i −0.00373962 0.00212307i
\(281\) −3.39952 −0.202798 −0.101399 0.994846i \(-0.532332\pi\)
−0.101399 + 0.994846i \(0.532332\pi\)
\(282\) −6.94035 1.20649i −0.413292 0.0718453i
\(283\) 5.78761i 0.344038i 0.985094 + 0.172019i \(0.0550290\pi\)
−0.985094 + 0.172019i \(0.944971\pi\)
\(284\) −25.8940 9.28319i −1.53653 0.550856i
\(285\) 0.157829i 0.00934897i
\(286\) −0.777832 + 4.47451i −0.0459942 + 0.264583i
\(287\) −5.45411 −0.321946
\(288\) 0.786285 0.676127i 0.0463323 0.0398412i
\(289\) −16.7760 −0.986822
\(290\) 0.000690023 0.00396938i 4.05196e−5 0.000233090i
\(291\) 17.3944i 1.01968i
\(292\) 9.70519 + 3.47938i 0.567953 + 0.203615i
\(293\) 2.35823i 0.137769i −0.997625 0.0688845i \(-0.978056\pi\)
0.997625 0.0688845i \(-0.0219440\pi\)
\(294\) 2.33840 + 0.406500i 0.136378 + 0.0237075i
\(295\) −0.198123 −0.0115352
\(296\) −8.52119 4.83769i −0.495284 0.281185i
\(297\) 17.1571 0.995556
\(298\) −0.855091 0.148646i −0.0495341 0.00861083i
\(299\) 8.57943i 0.496161i
\(300\) 5.66310 15.7963i 0.326959 0.912002i
\(301\) 3.24219i 0.186877i
\(302\) 0.793652 4.56551i 0.0456696 0.262716i
\(303\) 4.11347 0.236312
\(304\) −9.39431 + 11.4180i −0.538800 + 0.654869i
\(305\) 0.171831 0.00983899
\(306\) −0.0210161 + 0.120896i −0.00120141 + 0.00691116i
\(307\) 24.2868i 1.38612i 0.720879 + 0.693061i \(0.243738\pi\)
−0.720879 + 0.693061i \(0.756262\pi\)
\(308\) −2.16754 + 6.04601i −0.123507 + 0.344503i
\(309\) 25.9574i 1.47666i
\(310\) 0.358538 + 0.0623270i 0.0203636 + 0.00353993i
\(311\) 32.8787 1.86438 0.932191 0.361966i \(-0.117894\pi\)
0.932191 + 0.361966i \(0.117894\pi\)
\(312\) −2.34361 + 4.12807i −0.132681 + 0.233706i
\(313\) 19.9027 1.12497 0.562483 0.826809i \(-0.309846\pi\)
0.562483 + 0.826809i \(0.309846\pi\)
\(314\) 22.3146 + 3.87909i 1.25929 + 0.218910i
\(315\) 0.00466376i 0.000262773i
\(316\) 18.5642 + 6.65541i 1.04432 + 0.374396i
\(317\) 1.54451i 0.0867486i −0.999059 0.0433743i \(-0.986189\pi\)
0.999059 0.0433743i \(-0.0138108\pi\)
\(318\) 5.33778 30.7057i 0.299328 1.72189i
\(319\) −0.359616 −0.0201346
\(320\) 0.174764 0.104307i 0.00976961 0.00583095i
\(321\) 15.3545 0.857005
\(322\) 2.07802 11.9539i 0.115804 0.666164i
\(323\) 1.74961i 0.0973511i
\(324\) 15.8454 + 5.68067i 0.880298 + 0.315593i
\(325\) 4.99935i 0.277314i
\(326\) 25.6880 + 4.46551i 1.42272 + 0.247321i
\(327\) −18.3257 −1.01341
\(328\) 7.61622 13.4153i 0.420536 0.740738i
\(329\) −2.96799 −0.163631
\(330\) 0.191048 + 0.0332111i 0.0105168 + 0.00182821i
\(331\) 25.2516i 1.38795i −0.719998 0.693977i \(-0.755857\pi\)
0.719998 0.693977i \(-0.244143\pi\)
\(332\) 8.74864 24.4030i 0.480144 1.33929i
\(333\) 0.635083i 0.0348023i
\(334\) −0.885451 + 5.09358i −0.0484497 + 0.278709i
\(335\) −0.0110728 −0.000604973
\(336\) −4.26525 + 5.18407i −0.232688 + 0.282814i
\(337\) −23.9779 −1.30616 −0.653079 0.757290i \(-0.726523\pi\)
−0.653079 + 0.757290i \(0.726523\pi\)
\(338\) −0.242210 + 1.39332i −0.0131745 + 0.0757865i
\(339\) 28.4475i 1.54506i
\(340\) −0.00812741 + 0.0226702i −0.000440771 + 0.00122946i
\(341\) 32.4827i 1.75903i
\(342\) 0.944165 + 0.164130i 0.0510546 + 0.00887515i
\(343\) 1.00000 0.0539949
\(344\) 7.97474 + 4.52746i 0.429969 + 0.244104i
\(345\) −0.366316 −0.0197218
\(346\) −31.2632 5.43468i −1.68072 0.292170i
\(347\) 11.1925i 0.600843i −0.953807 0.300421i \(-0.902873\pi\)
0.953807 0.300421i \(-0.0971273\pi\)
\(348\) −0.353824 0.126848i −0.0189670 0.00679978i
\(349\) 1.36047i 0.0728244i −0.999337 0.0364122i \(-0.988407\pi\)
0.999337 0.0364122i \(-0.0115929\pi\)
\(350\) 1.21089 6.96569i 0.0647248 0.372332i
\(351\) 5.34256 0.285164
\(352\) −11.8444 13.7742i −0.631311 0.734168i
\(353\) 4.61895 0.245842 0.122921 0.992416i \(-0.460774\pi\)
0.122921 + 0.992416i \(0.460774\pi\)
\(354\) −3.16568 + 18.2107i −0.168254 + 0.967888i
\(355\) 0.349908i 0.0185712i
\(356\) 0.694830 + 0.249101i 0.0368259 + 0.0132023i
\(357\) 0.794368i 0.0420424i
\(358\) −30.1683 5.24436i −1.59445 0.277173i
\(359\) −9.92596 −0.523872 −0.261936 0.965085i \(-0.584361\pi\)
−0.261936 + 0.965085i \(0.584361\pi\)
\(360\) −0.0114713 0.00651257i −0.000604593 0.000343243i
\(361\) 5.33598 0.280841
\(362\) 23.7626 + 4.13080i 1.24893 + 0.217110i
\(363\) 1.15280i 0.0605065i
\(364\) −0.674950 + 1.88267i −0.0353770 + 0.0986787i
\(365\) 0.131147i 0.00686454i
\(366\) 2.74557 15.7940i 0.143513 0.825564i
\(367\) 2.48590 0.129763 0.0648815 0.997893i \(-0.479333\pi\)
0.0648815 + 0.997893i \(0.479333\pi\)
\(368\) 26.5009 + 21.8039i 1.38145 + 1.13661i
\(369\) −0.999843 −0.0520498
\(370\) −0.0213472 + 0.122801i −0.00110979 + 0.00638410i
\(371\) 13.1311i 0.681732i
\(372\) 11.4577 31.9595i 0.594053 1.65702i
\(373\) 11.9080i 0.616574i −0.951293 0.308287i \(-0.900244\pi\)
0.951293 0.308287i \(-0.0997557\pi\)
\(374\) 2.11786 + 0.368162i 0.109512 + 0.0190372i
\(375\) −0.426942 −0.0220472
\(376\) 4.14456 7.30030i 0.213739 0.376484i
\(377\) −0.111981 −0.00576732
\(378\) 7.44388 + 1.29402i 0.382872 + 0.0665571i
\(379\) 20.1421i 1.03463i 0.855795 + 0.517315i \(0.173069\pi\)
−0.855795 + 0.517315i \(0.826931\pi\)
\(380\) 0.177048 + 0.0634730i 0.00908238 + 0.00325609i
\(381\) 23.7789i 1.21823i
\(382\) −4.27245 + 24.5774i −0.218597 + 1.25749i
\(383\) −31.3164 −1.60019 −0.800096 0.599873i \(-0.795218\pi\)
−0.800096 + 0.599873i \(0.795218\pi\)
\(384\) −6.79506 17.7303i −0.346759 0.904794i
\(385\) 0.0817001 0.00416383
\(386\) 1.87078 10.7617i 0.0952204 0.547759i
\(387\) 0.594356i 0.0302128i
\(388\) 19.5126 + 6.99540i 0.990603 + 0.355138i
\(389\) 20.7175i 1.05042i −0.850973 0.525209i \(-0.823987\pi\)
0.850973 0.525209i \(-0.176013\pi\)
\(390\) 0.0594904 + 0.0103416i 0.00301241 + 0.000523668i
\(391\) −4.06080 −0.205363
\(392\) −1.39642 + 2.45968i −0.0705299 + 0.124232i
\(393\) 7.09842 0.358068
\(394\) 8.80954 + 1.53142i 0.443818 + 0.0771518i
\(395\) 0.250860i 0.0126221i
\(396\) −0.397351 + 1.10835i −0.0199677 + 0.0556967i
\(397\) 26.2541i 1.31766i −0.752294 0.658828i \(-0.771053\pi\)
0.752294 0.658828i \(-0.228947\pi\)
\(398\) 0.597215 3.43550i 0.0299357 0.172206i
\(399\) −6.20380 −0.310579
\(400\) 15.4424 + 12.7054i 0.772121 + 0.635271i
\(401\) 3.65950 0.182747 0.0913735 0.995817i \(-0.470874\pi\)
0.0913735 + 0.995817i \(0.470874\pi\)
\(402\) −0.176925 + 1.01777i −0.00882423 + 0.0507617i
\(403\) 10.1148i 0.503853i
\(404\) −1.65429 + 4.61438i −0.0823038 + 0.229574i
\(405\) 0.214120i 0.0106397i
\(406\) −0.156025 0.0271229i −0.00774340 0.00134609i
\(407\) 11.1254 0.551467
\(408\) 1.95389 + 1.10927i 0.0967319 + 0.0549171i
\(409\) −20.5818 −1.01770 −0.508851 0.860855i \(-0.669930\pi\)
−0.508851 + 0.860855i \(0.669930\pi\)
\(410\) −0.193331 0.0336080i −0.00954794 0.00165978i
\(411\) 34.6399i 1.70866i
\(412\) −29.1183 10.4391i −1.43456 0.514298i
\(413\) 7.78767i 0.383206i
\(414\) 0.380941 2.19138i 0.0187222 0.107700i
\(415\) −0.329759 −0.0161873
\(416\) −3.68825 4.28915i −0.180831 0.210293i
\(417\) 17.0943 0.837113
\(418\) 2.87525 16.5400i 0.140633 0.808996i
\(419\) 14.9371i 0.729727i −0.931061 0.364863i \(-0.881116\pi\)
0.931061 0.364863i \(-0.118884\pi\)
\(420\) 0.0803842 + 0.0288183i 0.00392235 + 0.00140619i
\(421\) 8.76725i 0.427290i 0.976911 + 0.213645i \(0.0685336\pi\)
−0.976911 + 0.213645i \(0.931466\pi\)
\(422\) 13.1947 + 2.29372i 0.642309 + 0.111657i
\(423\) −0.544090 −0.0264546
\(424\) 32.2982 + 18.3365i 1.56854 + 0.890499i
\(425\) −2.36628 −0.114782
\(426\) 32.1621 + 5.59095i 1.55826 + 0.270883i
\(427\) 6.75418i 0.326858i
\(428\) −6.17502 + 17.2243i −0.298481 + 0.832567i
\(429\) 5.38969i 0.260217i
\(430\) 0.0199783 0.114926i 0.000963437 0.00554220i
\(431\) 10.7638 0.518474 0.259237 0.965814i \(-0.416529\pi\)
0.259237 + 0.965814i \(0.416529\pi\)
\(432\) −13.5776 + 16.5025i −0.653255 + 0.793979i
\(433\) 10.0405 0.482518 0.241259 0.970461i \(-0.422440\pi\)
0.241259 + 0.970461i \(0.422440\pi\)
\(434\) 2.44990 14.0931i 0.117599 0.676491i
\(435\) 0.00478125i 0.000229243i
\(436\) 7.36993 20.5573i 0.352956 0.984516i
\(437\) 31.7138i 1.51708i
\(438\) −12.0545 2.09551i −0.575986 0.100127i
\(439\) −26.4204 −1.26098 −0.630489 0.776198i \(-0.717146\pi\)
−0.630489 + 0.776198i \(0.717146\pi\)
\(440\) −0.114088 + 0.200956i −0.00543892 + 0.00958020i
\(441\) 0.183319 0.00872949
\(442\) 0.659482 + 0.114642i 0.0313684 + 0.00545297i
\(443\) 34.4318i 1.63590i 0.575286 + 0.817952i \(0.304891\pi\)
−0.575286 + 0.817952i \(0.695109\pi\)
\(444\) 10.9462 + 3.92430i 0.519486 + 0.186239i
\(445\) 0.00938928i 0.000445095i
\(446\) −3.65715 + 21.0379i −0.173171 + 0.996173i
\(447\) 1.02999 0.0487166
\(448\) −4.10002 6.86948i −0.193708 0.324553i
\(449\) 3.82597 0.180559 0.0902794 0.995916i \(-0.471224\pi\)
0.0902794 + 0.995916i \(0.471224\pi\)
\(450\) 0.221980 1.27695i 0.0104642 0.0601958i
\(451\) 17.5153i 0.824765i
\(452\) 31.9116 + 11.4405i 1.50100 + 0.538118i
\(453\) 5.49931i 0.258380i
\(454\) −41.7770 7.26236i −1.96069 0.340839i
\(455\) 0.0254406 0.00119268
\(456\) 8.66311 15.2594i 0.405688 0.714585i
\(457\) 7.56905 0.354065 0.177033 0.984205i \(-0.443350\pi\)
0.177033 + 0.984205i \(0.443350\pi\)
\(458\) 5.96713 + 1.03731i 0.278826 + 0.0484701i
\(459\) 2.52873i 0.118031i
\(460\) 0.147319 0.410923i 0.00686877 0.0191594i
\(461\) 10.7042i 0.498546i 0.968433 + 0.249273i \(0.0801917\pi\)
−0.968433 + 0.249273i \(0.919808\pi\)
\(462\) 1.30543 7.50955i 0.0607343 0.349376i
\(463\) −0.485129 −0.0225459 −0.0112729 0.999936i \(-0.503588\pi\)
−0.0112729 + 0.999936i \(0.503588\pi\)
\(464\) 0.284590 0.345897i 0.0132118 0.0160578i
\(465\) −0.431871 −0.0200275
\(466\) 3.47474 19.9885i 0.160964 0.925950i
\(467\) 20.7652i 0.960901i 0.877022 + 0.480450i \(0.159527\pi\)
−0.877022 + 0.480450i \(0.840473\pi\)
\(468\) −0.123731 + 0.345130i −0.00571948 + 0.0159536i
\(469\) 0.435241i 0.0200976i
\(470\) −0.105206 0.0182887i −0.00485279 0.000843593i
\(471\) −26.8787 −1.23850
\(472\) −19.1552 10.8749i −0.881687 0.500556i
\(473\) −10.4120 −0.478743
\(474\) −23.0580 4.00833i −1.05909 0.184109i
\(475\) 18.4800i 0.847923i
\(476\) 0.891101 + 0.319466i 0.0408435 + 0.0146427i
\(477\) 2.40718i 0.110217i
\(478\) 5.86349 33.7299i 0.268190 1.54277i
\(479\) 9.52657 0.435280 0.217640 0.976029i \(-0.430164\pi\)
0.217640 + 0.976029i \(0.430164\pi\)
\(480\) −0.183134 + 0.157477i −0.00835888 + 0.00718780i
\(481\) 3.46435 0.157961
\(482\) −4.19536 + 24.1339i −0.191093 + 1.09927i
\(483\) 14.3988i 0.655170i
\(484\) −1.29319 0.463616i −0.0587811 0.0210734i
\(485\) 0.263675i 0.0119729i
\(486\) 2.65063 + 0.460776i 0.120235 + 0.0209012i
\(487\) −13.6932 −0.620496 −0.310248 0.950656i \(-0.600412\pi\)
−0.310248 + 0.950656i \(0.600412\pi\)
\(488\) 16.6131 + 9.43167i 0.752040 + 0.426952i
\(489\) −30.9420 −1.39925
\(490\) 0.0354469 + 0.00616197i 0.00160133 + 0.000278369i
\(491\) 12.7290i 0.574454i 0.957863 + 0.287227i \(0.0927333\pi\)
−0.957863 + 0.287227i \(0.907267\pi\)
\(492\) −6.17823 + 17.2332i −0.278536 + 0.776934i
\(493\) 0.0530026i 0.00238712i
\(494\) 0.895325 5.15038i 0.0402826 0.231727i
\(495\) 0.0149772 0.000673176
\(496\) 31.2434 + 25.7059i 1.40287 + 1.15423i
\(497\) 13.7539 0.616947
\(498\) −5.26901 + 30.3102i −0.236110 + 1.35823i
\(499\) 12.5821i 0.563252i 0.959524 + 0.281626i \(0.0908737\pi\)
−0.959524 + 0.281626i \(0.909126\pi\)
\(500\) 0.171700 0.478932i 0.00767868 0.0214185i
\(501\) 6.13539i 0.274109i
\(502\) 24.7420 + 4.30106i 1.10429 + 0.191966i
\(503\) 5.10421 0.227586 0.113793 0.993505i \(-0.463700\pi\)
0.113793 + 0.993505i \(0.463700\pi\)
\(504\) −0.255991 + 0.450906i −0.0114027 + 0.0200850i
\(505\) 0.0623544 0.00277473
\(506\) −38.3887 6.67336i −1.70659 0.296667i
\(507\) 1.67830i 0.0745358i
\(508\) 26.6746 + 9.56302i 1.18349 + 0.424290i
\(509\) 37.8248i 1.67655i −0.545244 0.838277i \(-0.683563\pi\)
0.545244 0.838277i \(-0.316437\pi\)
\(510\) 0.00489487 0.0281579i 0.000216748 0.00124685i
\(511\) −5.15501 −0.228044
\(512\) 22.6221 0.492050i 0.999764 0.0217458i
\(513\) −19.7487 −0.871926
\(514\) 0.467965 2.69199i 0.0206411 0.118738i
\(515\) 0.393478i 0.0173387i
\(516\) −10.2443 3.67264i −0.450979 0.161679i
\(517\) 9.53142i 0.419191i
\(518\) 4.82695 + 0.839099i 0.212084 + 0.0368679i
\(519\) 37.6575 1.65298
\(520\) −0.0355258 + 0.0625758i −0.00155791 + 0.00274413i
\(521\) 14.1160 0.618431 0.309216 0.950992i \(-0.399934\pi\)
0.309216 + 0.950992i \(0.399934\pi\)
\(522\) −0.0286024 0.00497215i −0.00125189 0.000217625i
\(523\) 37.7582i 1.65105i 0.564364 + 0.825526i \(0.309121\pi\)
−0.564364 + 0.825526i \(0.690879\pi\)
\(524\) −2.85473 + 7.96282i −0.124709 + 0.347858i
\(525\) 8.39040i 0.366187i
\(526\) −2.15143 + 12.3762i −0.0938067 + 0.539626i
\(527\) −4.78751 −0.208547
\(528\) 16.6481 + 13.6974i 0.724517 + 0.596104i
\(529\) 50.6067 2.20029
\(530\) 0.0809132 0.465456i 0.00351465 0.0202181i
\(531\) 1.42763i 0.0619539i
\(532\) 2.49494 6.95926i 0.108170 0.301722i
\(533\) 5.45411i 0.236244i
\(534\) −0.863025 0.150025i −0.0373468 0.00649223i
\(535\) 0.232753 0.0100628
\(536\) −1.07055 0.607779i −0.0462408 0.0262521i
\(537\) 36.3387 1.56813
\(538\) −20.8205 3.61936i −0.897634 0.156042i
\(539\) 3.21140i 0.138325i
\(540\) 0.255889 + 0.0917378i 0.0110117 + 0.00394777i
\(541\) 15.8058i 0.679543i −0.940508 0.339771i \(-0.889650\pi\)
0.940508 0.339771i \(-0.110350\pi\)
\(542\) −2.71849 + 15.6382i −0.116769 + 0.671719i
\(543\) −28.6228 −1.22832
\(544\) −2.03013 + 1.74571i −0.0870412 + 0.0748468i
\(545\) −0.277792 −0.0118993
\(546\) 0.406500 2.33840i 0.0173966 0.100074i
\(547\) 44.2018i 1.88993i 0.327165 + 0.944967i \(0.393907\pi\)
−0.327165 + 0.944967i \(0.606093\pi\)
\(548\) 38.8581 + 13.9309i 1.65994 + 0.595098i
\(549\) 1.23817i 0.0528439i
\(550\) −22.3696 3.88866i −0.953844 0.165813i
\(551\) 0.413937 0.0176343
\(552\) −35.4165 20.1068i −1.50743 0.855803i
\(553\) −9.86060 −0.419315
\(554\) −5.94924 1.03420i −0.252759 0.0439387i
\(555\) 0.147917i 0.00627874i
\(556\) −6.87472 + 19.1760i −0.291553 + 0.813242i
\(557\) 5.80491i 0.245962i 0.992409 + 0.122981i \(0.0392454\pi\)
−0.992409 + 0.122981i \(0.960755\pi\)
\(558\) 0.449114 2.58354i 0.0190125 0.109370i
\(559\) −3.24219 −0.137130
\(560\) −0.0646552 + 0.0785832i −0.00273218 + 0.00332075i
\(561\) −2.55104 −0.107705
\(562\) −0.823397 + 4.73661i −0.0347329 + 0.199802i
\(563\) 19.2053i 0.809406i 0.914448 + 0.404703i \(0.132625\pi\)
−0.914448 + 0.404703i \(0.867375\pi\)
\(564\) −3.36204 + 9.37790i −0.141567 + 0.394881i
\(565\) 0.431224i 0.0181417i
\(566\) 8.06399 + 1.40182i 0.338955 + 0.0589227i
\(567\) −8.41644 −0.353457
\(568\) −19.2062 + 33.8302i −0.805875 + 1.41948i
\(569\) −6.60326 −0.276823 −0.138411 0.990375i \(-0.544200\pi\)
−0.138411 + 0.990375i \(0.544200\pi\)
\(570\) −0.219906 0.0382276i −0.00921083 0.00160118i
\(571\) 31.1734i 1.30457i −0.757975 0.652284i \(-0.773811\pi\)
0.757975 0.652284i \(-0.226189\pi\)
\(572\) 6.04601 + 2.16754i 0.252796 + 0.0906292i
\(573\) 29.6043i 1.23674i
\(574\) −1.32104 + 7.59930i −0.0551390 + 0.317189i
\(575\) 42.8916 1.78870
\(576\) −0.751614 1.25931i −0.0313172 0.0524712i
\(577\) 35.2397 1.46705 0.733524 0.679664i \(-0.237874\pi\)
0.733524 + 0.679664i \(0.237874\pi\)
\(578\) −4.06330 + 23.3743i −0.169011 + 0.972241i
\(579\) 12.9629i 0.538719i
\(580\) −0.00536348 0.00192284i −0.000222706 7.98417e-5i
\(581\) 12.9619i 0.537751i
\(582\) −24.2360 4.21310i −1.00461 0.174638i
\(583\) −42.1692 −1.74647
\(584\) 7.19856 12.6797i 0.297879 0.524688i
\(585\) 0.00466376 0.000192823
\(586\) −3.28576 0.571185i −0.135733 0.0235954i
\(587\) 19.0104i 0.784644i −0.919828 0.392322i \(-0.871672\pi\)
0.919828 0.392322i \(-0.128328\pi\)
\(588\) 1.13277 3.15968i 0.0467145 0.130303i
\(589\) 37.3892i 1.54059i
\(590\) −0.0479874 + 0.276049i −0.00197561 + 0.0113647i
\(591\) −10.6114 −0.436494
\(592\) −8.80436 + 10.7010i −0.361857 + 0.439808i
\(593\) −36.6864 −1.50653 −0.753264 0.657718i \(-0.771522\pi\)
−0.753264 + 0.657718i \(0.771522\pi\)
\(594\) 4.15561 23.9053i 0.170507 0.980846i
\(595\) 0.0120415i 0.000493654i
\(596\) −0.414222 + 1.15541i −0.0169672 + 0.0473274i
\(597\) 4.13817i 0.169364i
\(598\) −11.9539 2.07802i −0.488830 0.0849766i
\(599\) 21.1337 0.863501 0.431750 0.901993i \(-0.357896\pi\)
0.431750 + 0.901993i \(0.357896\pi\)
\(600\) −20.6377 11.7165i −0.842529 0.478325i
\(601\) 31.5295 1.28612 0.643058 0.765817i \(-0.277665\pi\)
0.643058 + 0.765817i \(0.277665\pi\)
\(602\) −4.51740 0.785289i −0.184115 0.0320060i
\(603\) 0.0797881i 0.00324922i
\(604\) −6.16898 2.21162i −0.251012 0.0899895i
\(605\) 0.0174749i 0.000710456i
\(606\) 0.996320 5.73136i 0.0404728 0.232821i
\(607\) −19.4145 −0.788010 −0.394005 0.919108i \(-0.628911\pi\)
−0.394005 + 0.919108i \(0.628911\pi\)
\(608\) 13.6336 + 15.8548i 0.552914 + 0.642997i
\(609\) 0.187937 0.00761561
\(610\) 0.0416190 0.239415i 0.00168510 0.00969362i
\(611\) 2.96799i 0.120072i
\(612\) 0.163356 + 0.0585642i 0.00660328 + 0.00236732i
\(613\) 2.22681i 0.0899399i 0.998988 + 0.0449700i \(0.0143192\pi\)
−0.998988 + 0.0449700i \(0.985681\pi\)
\(614\) 33.8392 + 5.88250i 1.36564 + 0.237398i
\(615\) 0.232874 0.00939037
\(616\) 7.89902 + 4.48447i 0.318260 + 0.180684i
\(617\) −18.2019 −0.732781 −0.366391 0.930461i \(-0.619407\pi\)
−0.366391 + 0.930461i \(0.619407\pi\)
\(618\) 36.1669 + 6.28712i 1.45485 + 0.252905i
\(619\) 19.2357i 0.773148i 0.922258 + 0.386574i \(0.126342\pi\)
−0.922258 + 0.386574i \(0.873658\pi\)
\(620\) 0.173683 0.484461i 0.00697526 0.0194564i
\(621\) 45.8361i 1.83934i
\(622\) 7.96354 45.8105i 0.319309 1.83684i
\(623\) −0.369066 −0.0147863
\(624\) 5.18407 + 4.26525i 0.207529 + 0.170747i
\(625\) 24.9903 0.999612
\(626\) 4.82062 27.7308i 0.192671 1.10834i
\(627\) 19.9229i 0.795645i
\(628\) 10.8096 30.1518i 0.431351 1.20319i
\(629\) 1.63974i 0.0653807i
\(630\) 0.00649810 + 0.00112961i 0.000258891 + 4.50046e-5i
\(631\) −14.0857 −0.560742 −0.280371 0.959892i \(-0.590458\pi\)
−0.280371 + 0.959892i \(0.590458\pi\)
\(632\) 13.7695 24.2539i 0.547723 0.964768i
\(633\) −15.8935 −0.631708
\(634\) −2.15200 0.374096i −0.0854668 0.0148573i
\(635\) 0.360455i 0.0143042i
\(636\) −41.4900 14.8744i −1.64518 0.589810i
\(637\) 1.00000i 0.0396214i
\(638\) −0.0871025 + 0.501060i −0.00344842 + 0.0198371i
\(639\) 2.52136 0.0997433
\(640\) −0.103004 0.268766i −0.00407157 0.0106239i
\(641\) −8.12462 −0.320903 −0.160452 0.987044i \(-0.551295\pi\)
−0.160452 + 0.987044i \(0.551295\pi\)
\(642\) 3.71901 21.3937i 0.146778 0.844343i
\(643\) 37.7361i 1.48817i 0.668087 + 0.744083i \(0.267113\pi\)
−0.668087 + 0.744083i \(0.732887\pi\)
\(644\) −16.1522 5.79069i −0.636487 0.228185i
\(645\) 0.138432i 0.00545074i
\(646\) −2.43777 0.423773i −0.0959127 0.0166731i
\(647\) −1.19852 −0.0471188 −0.0235594 0.999722i \(-0.507500\pi\)
−0.0235594 + 0.999722i \(0.507500\pi\)
\(648\) 11.7529 20.7017i 0.461697 0.813240i
\(649\) 25.0093 0.981703
\(650\) −6.96569 1.21089i −0.273217 0.0474950i
\(651\) 16.9756i 0.665327i
\(652\) 12.4437 34.7099i 0.487334 1.35934i
\(653\) 27.8915i 1.09148i −0.837956 0.545738i \(-0.816249\pi\)
0.837956 0.545738i \(-0.183751\pi\)
\(654\) −4.43866 + 25.5335i −0.173565 + 0.998440i
\(655\) 0.107602 0.00420436
\(656\) −16.8471 13.8611i −0.657769 0.541187i
\(657\) −0.945014 −0.0368685
\(658\) −0.718876 + 4.13535i −0.0280247 + 0.161213i
\(659\) 29.0688i 1.13236i −0.824282 0.566179i \(-0.808421\pi\)
0.824282 0.566179i \(-0.191579\pi\)
\(660\) 0.0925472 0.258146i 0.00360239 0.0100483i
\(661\) 31.5724i 1.22803i 0.789296 + 0.614013i \(0.210446\pi\)
−0.789296 + 0.614013i \(0.789554\pi\)
\(662\) −35.1835 6.11618i −1.36745 0.237712i
\(663\) −0.794368 −0.0308507
\(664\) −31.8821 18.1003i −1.23727 0.702427i
\(665\) −0.0940410 −0.00364675
\(666\) 0.884873 + 0.153823i 0.0342881 + 0.00596053i
\(667\) 0.960734i 0.0371998i
\(668\) 6.88252 + 2.46743i 0.266293 + 0.0954677i
\(669\) 25.3408i 0.979733i
\(670\) −0.00268194 + 0.0154280i −0.000103612 + 0.000596034i
\(671\) −21.6904 −0.837348
\(672\) 6.18997 + 7.19848i 0.238783 + 0.277687i
\(673\) −27.2491 −1.05037 −0.525187 0.850987i \(-0.676005\pi\)
−0.525187 + 0.850987i \(0.676005\pi\)
\(674\) −5.80767 + 33.4088i −0.223703 + 1.28686i
\(675\) 26.7093i 1.02804i
\(676\) 1.88267 + 0.674950i 0.0724103 + 0.0259596i
\(677\) 2.48444i 0.0954849i 0.998860 + 0.0477425i \(0.0152027\pi\)
−0.998860 + 0.0477425i \(0.984797\pi\)
\(678\) −39.6364 6.89025i −1.52223 0.264619i
\(679\) −10.3643 −0.397747
\(680\) 0.0296182 + 0.0168150i 0.00113581 + 0.000644826i
\(681\) 50.3217 1.92833
\(682\) −45.2587 7.86761i −1.73304 0.301266i
\(683\) 0.0289502i 0.00110775i 1.00000 0.000553875i \(0.000176304\pi\)
−1.00000 0.000553875i \(0.999824\pi\)
\(684\) 0.457371 1.27577i 0.0174880 0.0487802i
\(685\) 0.525092i 0.0200627i
\(686\) 0.242210 1.39332i 0.00924760 0.0531971i
\(687\) −7.18761 −0.274224
\(688\) 8.23974 10.0147i 0.314137 0.381809i
\(689\) −13.1311 −0.500254
\(690\) −0.0887251 + 0.510394i −0.00337771 + 0.0194304i
\(691\) 44.9205i 1.70885i −0.519571 0.854427i \(-0.673908\pi\)
0.519571 0.854427i \(-0.326092\pi\)
\(692\) −15.1445 + 42.2432i −0.575706 + 1.60584i
\(693\) 0.588712i 0.0223633i
\(694\) −15.5947 2.71092i −0.591965 0.102905i
\(695\) 0.259126 0.00982922
\(696\) −0.262440 + 0.462265i −0.00994775 + 0.0175221i
\(697\) 2.58153 0.0977823
\(698\) −1.89557 0.329519i −0.0717483 0.0124725i
\(699\) 24.0768i 0.910669i
\(700\) −9.41213 3.37431i −0.355745 0.127537i
\(701\) 5.95075i 0.224757i −0.993665 0.112378i \(-0.964153\pi\)
0.993665 0.112378i \(-0.0358469\pi\)
\(702\) 1.29402 7.44388i 0.0488396 0.280951i
\(703\) −12.8059 −0.482985
\(704\) −22.0607 + 13.1668i −0.831443 + 0.496244i
\(705\) 0.126724 0.00477271
\(706\) 1.11875 6.43567i 0.0421049 0.242209i
\(707\) 2.45098i 0.0921784i
\(708\) 24.6065 + 8.82161i 0.924770 + 0.331536i
\(709\) 16.9951i 0.638263i −0.947710 0.319131i \(-0.896609\pi\)
0.947710 0.319131i \(-0.103391\pi\)
\(710\) 0.487533 + 0.0847511i 0.0182968 + 0.00318065i
\(711\) −1.80764 −0.0677918
\(712\) 0.515372 0.907784i 0.0193144 0.0340206i
\(713\) 86.7791 3.24990
\(714\) −1.10681 0.192403i −0.0414212 0.00720052i
\(715\) 0.0817001i 0.00305541i
\(716\) −14.6141 + 40.7638i −0.546155 + 1.52342i
\(717\) 40.6288i 1.51731i
\(718\) −2.40416 + 13.8300i −0.0897225 + 0.516132i
\(719\) −36.9721 −1.37883 −0.689413 0.724369i \(-0.742131\pi\)
−0.689413 + 0.724369i \(0.742131\pi\)
\(720\) −0.0118525 + 0.0144058i −0.000441718 + 0.000536873i
\(721\) 15.4665 0.576003
\(722\) 1.29242 7.43471i 0.0480991 0.276691i
\(723\) 29.0701i 1.08113i
\(724\) 11.5110 32.1083i 0.427804 1.19329i
\(725\) 0.559833i 0.0207917i
\(726\) 1.60622 + 0.279220i 0.0596125 + 0.0103628i
\(727\) −29.1839 −1.08237 −0.541185 0.840904i \(-0.682024\pi\)
−0.541185 + 0.840904i \(0.682024\pi\)
\(728\) 2.45968 + 1.39642i 0.0911617 + 0.0517548i
\(729\) −28.4421 −1.05341
\(730\) −0.182729 0.0317650i −0.00676311 0.00117568i
\(731\) 1.53459i 0.0567587i
\(732\) −21.3410 7.65090i −0.788787 0.282786i
\(733\) 18.7002i 0.690707i −0.938473 0.345354i \(-0.887759\pi\)
0.938473 0.345354i \(-0.112241\pi\)
\(734\) 0.602109 3.46365i 0.0222243 0.127846i
\(735\) −0.0426969 −0.00157490
\(736\) 36.7985 31.6431i 1.35641 1.16638i
\(737\) 1.39774 0.0514862
\(738\) −0.242172 + 1.39310i −0.00891446 + 0.0512807i
\(739\) 50.7654i 1.86743i −0.358011 0.933717i \(-0.616545\pi\)
0.358011 0.933717i \(-0.383455\pi\)
\(740\) 0.165930 + 0.0594869i 0.00609970 + 0.00218678i
\(741\) 6.20380i 0.227902i
\(742\) −18.2958 3.18047i −0.671659 0.116759i
\(743\) −5.84406 −0.214398 −0.107199 0.994238i \(-0.534188\pi\)
−0.107199 + 0.994238i \(0.534188\pi\)
\(744\) −41.7545 23.7051i −1.53080 0.869071i
\(745\) 0.0156131 0.000572021
\(746\) −16.5917 2.88424i −0.607464 0.105599i
\(747\) 2.37617i 0.0869395i
\(748\) 1.02593 2.86168i 0.0375118 0.104634i
\(749\) 9.14887i 0.334292i
\(750\) −0.103409 + 0.594866i −0.00377598 + 0.0217214i
\(751\) −53.4369 −1.94994 −0.974971 0.222333i \(-0.928633\pi\)
−0.974971 + 0.222333i \(0.928633\pi\)
\(752\) −9.16779 7.54289i −0.334315 0.275061i
\(753\) −29.8025 −1.08606
\(754\) −0.0271229 + 0.156025i −0.000987757 + 0.00568210i
\(755\) 0.0833618i 0.00303385i
\(756\) 3.60596 10.0583i 0.131147 0.365816i
\(757\) 16.6601i 0.605520i 0.953067 + 0.302760i \(0.0979081\pi\)
−0.953067 + 0.302760i \(0.902092\pi\)
\(758\) 28.0644 + 4.87861i 1.01934 + 0.177199i
\(759\) 46.2405 1.67842
\(760\) 0.131321 0.231311i 0.00476350 0.00839051i
\(761\) −15.7023 −0.569208 −0.284604 0.958645i \(-0.591862\pi\)
−0.284604 + 0.958645i \(0.591862\pi\)
\(762\) −33.1316 5.75948i −1.20023 0.208644i
\(763\) 10.9192i 0.395303i
\(764\) 33.2093 + 11.9058i 1.20147 + 0.430735i
\(765\) 0.00220744i 7.98102e-5i
\(766\) −7.58512 + 43.6336i −0.274062 + 1.57655i
\(767\) 7.78767 0.281196
\(768\) −26.3497 + 5.17323i −0.950814 + 0.186673i
\(769\) 25.6291 0.924210 0.462105 0.886825i \(-0.347094\pi\)
0.462105 + 0.886825i \(0.347094\pi\)
\(770\) 0.0197886 0.113834i 0.000713130 0.00410230i
\(771\) 3.24258i 0.116779i
\(772\) −14.5414 5.21320i −0.523357 0.187627i
\(773\) 14.3154i 0.514889i 0.966293 + 0.257445i \(0.0828805\pi\)
−0.966293 + 0.257445i \(0.917120\pi\)
\(774\) −0.828127 0.143959i −0.0297664 0.00517449i
\(775\) 50.5674 1.81643
\(776\) 14.4730 25.4929i 0.519549 0.915142i
\(777\) −5.81421 −0.208584
\(778\) −28.8660 5.01797i −1.03490 0.179903i
\(779\) 20.1610i 0.722344i
\(780\) 0.0288183 0.0803842i 0.00103186 0.00287822i
\(781\) 44.1693i 1.58050i
\(782\) −0.983564 + 5.65798i −0.0351722 + 0.202329i
\(783\) 0.598265 0.0213802
\(784\) 3.08889 + 2.54141i 0.110317 + 0.0907648i
\(785\) −0.407443 −0.0145423
\(786\) 1.71931 9.89036i 0.0613256 0.352777i
\(787\) 43.8734i 1.56392i 0.623330 + 0.781959i \(0.285779\pi\)
−0.623330 + 0.781959i \(0.714221\pi\)
\(788\) 4.26751 11.9036i 0.152024 0.424047i
\(789\) 14.9075i 0.530720i
\(790\) −0.349528 0.0607607i −0.0124356 0.00216177i
\(791\) −16.9502 −0.602680
\(792\) 1.44804 + 0.822090i 0.0514539 + 0.0292117i
\(793\) −6.75418 −0.239848
\(794\) −36.5803 6.35899i −1.29819 0.225672i
\(795\) 0.560657i 0.0198845i
\(796\) −4.64209 1.66422i −0.164535 0.0589868i
\(797\) 22.6850i 0.803545i 0.915739 + 0.401773i \(0.131606\pi\)
−0.915739 + 0.401773i \(0.868394\pi\)
\(798\) −1.50262 + 8.64387i −0.0531922 + 0.305990i
\(799\) 1.40480 0.0496984
\(800\) 21.4430 18.4388i 0.758124 0.651911i
\(801\) −0.0676570 −0.00239054
\(802\) 0.886367 5.09885i 0.0312987 0.180047i
\(803\) 16.5548i 0.584207i
\(804\) 1.37522 + 0.493026i 0.0485003 + 0.0173877i
\(805\) 0.218266i 0.00769288i
\(806\) −14.0931 2.44990i −0.496409 0.0862940i
\(807\) 25.0789 0.882820
\(808\) 6.02861 + 3.42259i 0.212086 + 0.120406i
\(809\) −16.2297 −0.570606 −0.285303 0.958437i \(-0.592094\pi\)
−0.285303 + 0.958437i \(0.592094\pi\)
\(810\) −0.298337 0.0518618i −0.0104825 0.00182224i
\(811\) 38.2364i 1.34266i −0.741157 0.671331i \(-0.765723\pi\)
0.741157 0.671331i \(-0.234277\pi\)
\(812\) −0.0755816 + 0.210823i −0.00265239 + 0.00739845i
\(813\) 18.8368i 0.660634i
\(814\) 2.69469 15.5013i 0.0944487 0.543319i
\(815\) −0.469037 −0.0164297
\(816\) 2.01882 2.45371i 0.0706727 0.0858971i
\(817\) 11.9847 0.419292
\(818\) −4.98510 + 28.6769i −0.174300 + 1.00267i
\(819\) 0.183319i 0.00640570i
\(820\) −0.0936533 + 0.261232i −0.00327051 + 0.00912260i
\(821\) 47.4481i 1.65595i 0.560766 + 0.827974i \(0.310507\pi\)
−0.560766 + 0.827974i \(0.689493\pi\)
\(822\) −48.2644 8.39011i −1.68341 0.292639i
\(823\) 37.4132 1.30414 0.652072 0.758157i \(-0.273900\pi\)
0.652072 + 0.758157i \(0.273900\pi\)
\(824\) −21.5977 + 38.0426i −0.752392 + 1.32528i
\(825\) 26.9450 0.938103
\(826\) 10.8507 + 1.88625i 0.377544 + 0.0656310i
\(827\) 1.68923i 0.0587402i −0.999569 0.0293701i \(-0.990650\pi\)
0.999569 0.0293701i \(-0.00935013\pi\)
\(828\) −2.96102 1.06154i −0.102902 0.0368912i
\(829\) 14.1339i 0.490892i −0.969410 0.245446i \(-0.921066\pi\)
0.969410 0.245446i \(-0.0789344\pi\)
\(830\) −0.0798709 + 0.459460i −0.00277236 + 0.0159481i
\(831\) 7.16605 0.248588
\(832\) −6.86948 + 4.10002i −0.238157 + 0.142143i
\(833\) −0.473318 −0.0163995
\(834\) 4.14041 23.8178i 0.143371 0.824744i
\(835\) 0.0930039i 0.00321853i
\(836\) −22.3490 8.01227i −0.772956 0.277110i
\(837\) 54.0388i 1.86785i
\(838\) −20.8122 3.61792i −0.718945 0.124979i
\(839\) −3.03087 −0.104637 −0.0523187 0.998630i \(-0.516661\pi\)
−0.0523187 + 0.998630i \(0.516661\pi\)
\(840\) 0.0596229 0.105021i 0.00205718 0.00362356i
\(841\) 28.9875 0.999568
\(842\) 12.2156 + 2.12351i 0.420976 + 0.0731811i
\(843\) 5.70541i 0.196505i
\(844\) 6.39177 17.8289i 0.220014 0.613695i
\(845\) 0.0254406i 0.000875185i
\(846\) −0.131784 + 0.758091i −0.00453082 + 0.0260637i
\(847\) 0.686889 0.0236018
\(848\) 33.3715 40.5604i 1.14598 1.39285i
\(849\) −9.71334 −0.333361
\(850\) −0.573136 + 3.29698i −0.0196584 + 0.113086i
\(851\) 29.7222i 1.01886i
\(852\) 15.5800 43.4579i 0.533760 1.48884i
\(853\) 20.1050i 0.688381i 0.938900 + 0.344191i \(0.111847\pi\)
−0.938900 + 0.344191i \(0.888153\pi\)
\(854\) −9.41072 1.63593i −0.322028 0.0559802i
\(855\) −0.0172395 −0.000589580
\(856\) 22.5033 + 12.7757i 0.769145 + 0.436663i
\(857\) −49.1410 −1.67862 −0.839312 0.543650i \(-0.817042\pi\)
−0.839312 + 0.543650i \(0.817042\pi\)
\(858\) −7.50955 1.30543i −0.256372 0.0445668i
\(859\) 0.0725355i 0.00247488i −0.999999 0.00123744i \(-0.999606\pi\)
0.999999 0.00123744i \(-0.000393889\pi\)
\(860\) −0.155289 0.0556721i −0.00529531 0.00189840i
\(861\) 9.15361i 0.311954i
\(862\) 2.60710 14.9974i 0.0887981 0.510814i
\(863\) 30.5044 1.03838 0.519192 0.854658i \(-0.326233\pi\)
0.519192 + 0.854658i \(0.326233\pi\)
\(864\) 19.7047 + 22.9150i 0.670366 + 0.779586i
\(865\) 0.570835 0.0194090
\(866\) 2.43192 13.9897i 0.0826399 0.475389i
\(867\) 28.1551i 0.956196i
\(868\) −19.0428 6.82697i −0.646355 0.231723i
\(869\) 31.6664i 1.07421i
\(870\) 0.00666180 + 0.00115806i 0.000225856 + 3.92620e-5i
\(871\) 0.435241 0.0147476
\(872\) −26.8578 15.2478i −0.909519 0.516356i
\(873\) −1.89998 −0.0643047
\(874\) 44.1874 + 7.68138i 1.49466 + 0.259826i
\(875\) 0.254390i 0.00859995i
\(876\) −5.83942 + 16.2882i −0.197296 + 0.550327i
\(877\) 20.3212i 0.686198i 0.939299 + 0.343099i \(0.111477\pi\)
−0.939299 + 0.343099i \(0.888523\pi\)
\(878\) −6.39928 + 36.8120i −0.215965 + 1.24235i
\(879\) 3.95780 0.133493
\(880\) 0.252362 + 0.207634i 0.00850714 + 0.00699934i
\(881\) −25.7497 −0.867530 −0.433765 0.901026i \(-0.642815\pi\)
−0.433765 + 0.901026i \(0.642815\pi\)
\(882\) 0.0444017 0.255422i 0.00149508 0.00860051i
\(883\) 43.1211i 1.45114i −0.688147 0.725571i \(-0.741576\pi\)
0.688147 0.725571i \(-0.258424\pi\)
\(884\) 0.319466 0.891101i 0.0107448 0.0299710i
\(885\) 0.332510i 0.0111772i
\(886\) 47.9744 + 8.33971i 1.61173 + 0.280178i
\(887\) −43.8945 −1.47383 −0.736916 0.675984i \(-0.763719\pi\)
−0.736916 + 0.675984i \(0.763719\pi\)
\(888\) 8.11908 14.3011i 0.272459 0.479913i
\(889\) −14.1685 −0.475196
\(890\) −0.0130823 0.00227417i −0.000438518 7.62305e-5i
\(891\) 27.0286i 0.905491i
\(892\) 28.4267 + 10.1912i 0.951795 + 0.341225i
\(893\) 10.9711i 0.367135i
\(894\) 0.249472 1.43510i 0.00834360 0.0479968i
\(895\) 0.550844 0.0184127
\(896\) −10.5644 + 4.04878i −0.352933 + 0.135260i
\(897\) 14.3988 0.480763
\(898\) 0.926687 5.33080i 0.0309240 0.177891i
\(899\) 1.13266i 0.0377765i
\(900\) −1.72543 0.618577i −0.0575142 0.0206192i
\(901\) 6.21517i 0.207057i
\(902\) 24.4044 + 4.24238i 0.812579 + 0.141256i
\(903\) 5.44135 0.181077
\(904\) 23.6696 41.6920i 0.787239 1.38666i
\(905\) −0.433881 −0.0144227
\(906\) 7.66228 + 1.33198i 0.254562 + 0.0442522i
\(907\) 10.8586i 0.360555i 0.983616 + 0.180278i \(0.0576996\pi\)
−0.983616 + 0.180278i \(0.942300\pi\)
\(908\) −20.2376 + 56.4496i −0.671607 + 1.87334i
\(909\) 0.449311i 0.0149027i
\(910\) 0.00616197 0.0354469i 0.000204267 0.00117505i
\(911\) −21.8057 −0.722454 −0.361227 0.932478i \(-0.617642\pi\)
−0.361227 + 0.932478i \(0.617642\pi\)
\(912\) −19.1628 15.7664i −0.634545 0.522079i
\(913\) 41.6259 1.37762
\(914\) 1.83330 10.5461i 0.0606401 0.348834i
\(915\) 0.288383i 0.00953364i
\(916\) 2.89059 8.06287i 0.0955079 0.266405i
\(917\) 4.22954i 0.139672i
\(918\) −3.52332 0.612482i −0.116287 0.0202149i
\(919\) 2.98773 0.0985560 0.0492780 0.998785i \(-0.484308\pi\)
0.0492780 + 0.998785i \(0.484308\pi\)
\(920\) −0.536865 0.304791i −0.0176999 0.0100487i
\(921\) −40.7605 −1.34310
\(922\) 14.9144 + 2.59267i 0.491180 + 0.0853850i
\(923\) 13.7539i 0.452715i
\(924\) −10.1470 3.63777i −0.333812 0.119674i
\(925\) 17.3195i 0.569462i
\(926\) −0.117503 + 0.675940i −0.00386139 + 0.0222128i
\(927\) 2.83531 0.0931238
\(928\) −0.413014 0.480304i −0.0135578 0.0157668i
\(929\) 19.5957 0.642913 0.321456 0.946924i \(-0.395828\pi\)
0.321456 + 0.946924i \(0.395828\pi\)
\(930\) −0.104603 + 0.601733i −0.00343007 + 0.0197316i
\(931\) 3.69649i 0.121147i
\(932\) −27.0087 9.68282i −0.884701 0.317171i
\(933\) 55.1803i 1.80652i
\(934\) 28.9326 + 5.02954i 0.946703 + 0.164572i
\(935\) −0.0386701 −0.00126465
\(936\) 0.450906 + 0.255991i 0.0147383 + 0.00836732i
\(937\) 21.4830 0.701818 0.350909 0.936409i \(-0.385873\pi\)
0.350909 + 0.936409i \(0.385873\pi\)
\(938\) 0.606429 + 0.105420i 0.0198006 + 0.00344207i
\(939\) 33.4026i 1.09005i
\(940\) −0.0509638 + 0.142156i −0.00166226 + 0.00463661i
\(941\) 6.60152i 0.215204i −0.994194 0.107602i \(-0.965683\pi\)
0.994194 0.107602i \(-0.0343171\pi\)
\(942\) −6.51027 + 37.4505i −0.212116 + 1.22020i
\(943\) −46.7931 −1.52379
\(944\) −19.7917 + 24.0552i −0.644165 + 0.782931i
\(945\) −0.135918 −0.00442141
\(946\) −2.52188 + 14.5072i −0.0819934 + 0.471669i
\(947\) 3.95598i 0.128552i −0.997932 0.0642760i \(-0.979526\pi\)
0.997932 0.0642760i \(-0.0204738\pi\)
\(948\) −11.1698 + 31.1563i −0.362777 + 1.01191i
\(949\) 5.15501i 0.167339i
\(950\) 25.7486 + 4.47604i 0.835394 + 0.145222i
\(951\) 2.59215 0.0840564
\(952\) 0.660950 1.16421i 0.0214215 0.0377322i
\(953\) −24.4978 −0.793562 −0.396781 0.917913i \(-0.629873\pi\)
−0.396781 + 0.917913i \(0.629873\pi\)
\(954\) −3.35397 0.583042i −0.108589 0.0188767i
\(955\) 0.448759i 0.0145215i
\(956\) −45.5763 16.3394i −1.47404 0.528454i
\(957\) 0.603543i 0.0195098i
\(958\) 2.30743 13.2735i 0.0745496 0.428849i
\(959\) −20.6399 −0.666497
\(960\) 0.175058 + 0.293306i 0.00564999 + 0.00946641i
\(961\) 71.3089 2.30029
\(962\) 0.839099 4.82695i 0.0270537 0.155627i
\(963\) 1.67716i 0.0540459i
\(964\) 32.6101 + 11.6909i 1.05030 + 0.376540i
\(965\) 0.196499i 0.00632553i
\(966\) 20.0622 + 3.48754i 0.645489 + 0.112210i
\(967\) −13.3675 −0.429870 −0.214935 0.976628i \(-0.568954\pi\)
−0.214935 + 0.976628i \(0.568954\pi\)
\(968\) −0.959186 + 1.68953i −0.0308294 + 0.0543034i
\(969\) 2.93637 0.0943298
\(970\) −0.367383 0.0638647i −0.0117960 0.00205057i
\(971\) 25.6105i 0.821880i −0.911662 0.410940i \(-0.865201\pi\)
0.911662 0.410940i \(-0.134799\pi\)
\(972\) 1.28402 3.58156i 0.0411848 0.114879i
\(973\) 10.1855i 0.326533i
\(974\) −3.31661 + 19.0789i −0.106271 + 0.611328i
\(975\) 8.39040 0.268708
\(976\) 17.1652 20.8629i 0.549443 0.667805i
\(977\) 10.8736 0.347878 0.173939 0.984756i \(-0.444350\pi\)
0.173939 + 0.984756i \(0.444350\pi\)
\(978\) −7.49444 + 43.1120i −0.239646 + 1.37857i
\(979\) 1.18522i 0.0378798i
\(980\) 0.0171712 0.0478963i 0.000548512 0.00152999i
\(981\) 2.00171i 0.0639095i
\(982\) 17.7356 + 3.08309i 0.565966 + 0.0983855i
\(983\) −40.8856 −1.30405 −0.652024 0.758198i \(-0.726080\pi\)
−0.652024 + 0.758198i \(0.726080\pi\)
\(984\) 22.5149 + 12.7823i 0.717750 + 0.407484i
\(985\) −0.160854 −0.00512523
\(986\) 0.0738495 + 0.0128377i 0.00235185 + 0.000408837i
\(987\) 4.98117i 0.158552i
\(988\) −6.95926 2.49494i −0.221404 0.0793747i
\(989\) 27.8161i 0.884502i
\(990\) 0.00362763 0.0208680i 0.000115293 0.000663229i
\(991\) −20.0515 −0.636958 −0.318479 0.947930i \(-0.603172\pi\)
−0.318479 + 0.947930i \(0.603172\pi\)
\(992\) 43.3839 37.3058i 1.37744 1.18446i
\(993\) 42.3797 1.34488
\(994\) 3.33133 19.1636i 0.105663 0.607831i
\(995\) 0.0627289i 0.00198864i
\(996\) 40.9555 + 14.6828i 1.29772 + 0.465243i
\(997\) 9.20059i 0.291386i −0.989330 0.145693i \(-0.953459\pi\)
0.989330 0.145693i \(-0.0465411\pi\)
\(998\) 17.5308 + 3.04750i 0.554929 + 0.0964670i
\(999\) −18.5085 −0.585583
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.c.b.365.19 38
4.3 odd 2 2912.2.c.b.1457.11 38
8.3 odd 2 2912.2.c.b.1457.28 38
8.5 even 2 inner 728.2.c.b.365.20 yes 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.b.365.19 38 1.1 even 1 trivial
728.2.c.b.365.20 yes 38 8.5 even 2 inner
2912.2.c.b.1457.11 38 4.3 odd 2
2912.2.c.b.1457.28 38 8.3 odd 2