Properties

Label 728.2.c.b.365.14
Level $728$
Weight $2$
Character 728.365
Analytic conductor $5.813$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(365,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.365"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 365.14
Character \(\chi\) \(=\) 728.365
Dual form 728.2.c.b.365.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.716045 + 1.21954i) q^{2} -0.472093i q^{3} +(-0.974560 - 1.74649i) q^{4} -4.35100i q^{5} +(0.575736 + 0.338039i) q^{6} +1.00000 q^{7} +(2.82775 + 0.0620491i) q^{8} +2.77713 q^{9} +(5.30622 + 3.11551i) q^{10} -5.41704i q^{11} +(-0.824505 + 0.460083i) q^{12} +1.00000i q^{13} +(-0.716045 + 1.21954i) q^{14} -2.05407 q^{15} +(-2.10046 + 3.40412i) q^{16} -6.30026 q^{17} +(-1.98855 + 3.38682i) q^{18} +2.90969i q^{19} +(-7.59898 + 4.24031i) q^{20} -0.472093i q^{21} +(6.60630 + 3.87884i) q^{22} +1.16816 q^{23} +(0.0292929 - 1.33496i) q^{24} -13.9312 q^{25} +(-1.21954 - 0.716045i) q^{26} -2.72734i q^{27} +(-0.974560 - 1.74649i) q^{28} -0.400654i q^{29} +(1.47081 - 2.50503i) q^{30} +8.74485 q^{31} +(-2.64744 - 4.99911i) q^{32} -2.55734 q^{33} +(4.51127 - 7.68343i) q^{34} -4.35100i q^{35} +(-2.70648 - 4.85023i) q^{36} -0.159884i q^{37} +(-3.54849 - 2.08347i) q^{38} +0.472093 q^{39} +(0.269975 - 12.3035i) q^{40} -0.297993 q^{41} +(0.575736 + 0.338039i) q^{42} +3.74805i q^{43} +(-9.46082 + 5.27924i) q^{44} -12.0833i q^{45} +(-0.836453 + 1.42462i) q^{46} -3.08775 q^{47} +(1.60706 + 0.991613i) q^{48} +1.00000 q^{49} +(9.97533 - 16.9896i) q^{50} +2.97431i q^{51} +(1.74649 - 0.974560i) q^{52} -2.19197i q^{53} +(3.32610 + 1.95290i) q^{54} -23.5695 q^{55} +(2.82775 + 0.0620491i) q^{56} +1.37364 q^{57} +(0.488614 + 0.286886i) q^{58} +3.99383i q^{59} +(2.00182 + 3.58742i) q^{60} +3.08877i q^{61} +(-6.26170 + 10.6647i) q^{62} +2.77713 q^{63} +(7.99230 + 0.350918i) q^{64} +4.35100 q^{65} +(1.83117 - 3.11879i) q^{66} -13.4949i q^{67} +(6.13998 + 11.0033i) q^{68} -0.551479i q^{69} +(5.30622 + 3.11551i) q^{70} +12.0190 q^{71} +(7.85302 + 0.172318i) q^{72} -14.9363 q^{73} +(0.194985 + 0.114484i) q^{74} +6.57680i q^{75} +(5.08175 - 2.83567i) q^{76} -5.41704i q^{77} +(-0.338039 + 0.575736i) q^{78} +10.8497 q^{79} +(14.8113 + 9.13911i) q^{80} +7.04383 q^{81} +(0.213376 - 0.363414i) q^{82} +2.84395i q^{83} +(-0.824505 + 0.460083i) q^{84} +27.4124i q^{85} +(-4.57090 - 2.68377i) q^{86} -0.189146 q^{87} +(0.336122 - 15.3180i) q^{88} -12.0820 q^{89} +(14.7360 + 8.65216i) q^{90} +1.00000i q^{91} +(-1.13844 - 2.04018i) q^{92} -4.12838i q^{93} +(2.21096 - 3.76563i) q^{94} +12.6600 q^{95} +(-2.36004 + 1.24984i) q^{96} +4.12596 q^{97} +(-0.716045 + 1.21954i) q^{98} -15.0438i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 8 q^{4} + 14 q^{6} + 38 q^{7} - 6 q^{8} - 46 q^{9} - 4 q^{12} - 8 q^{15} - 4 q^{16} + 20 q^{17} + 4 q^{18} - 24 q^{20} + 10 q^{22} + 12 q^{23} + 10 q^{24} - 50 q^{25} + 8 q^{28} + 4 q^{30} + 16 q^{31}+ \cdots + 82 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.716045 + 1.21954i −0.506320 + 0.862346i
\(3\) 0.472093i 0.272563i −0.990670 0.136281i \(-0.956485\pi\)
0.990670 0.136281i \(-0.0435151\pi\)
\(4\) −0.974560 1.74649i −0.487280 0.873246i
\(5\) 4.35100i 1.94582i −0.231175 0.972912i \(-0.574257\pi\)
0.231175 0.972912i \(-0.425743\pi\)
\(6\) 0.575736 + 0.338039i 0.235043 + 0.138004i
\(7\) 1.00000 0.377964
\(8\) 2.82775 + 0.0620491i 0.999759 + 0.0219377i
\(9\) 2.77713 0.925710
\(10\) 5.30622 + 3.11551i 1.67797 + 0.985210i
\(11\) 5.41704i 1.63330i −0.577133 0.816650i \(-0.695829\pi\)
0.577133 0.816650i \(-0.304171\pi\)
\(12\) −0.824505 + 0.460083i −0.238014 + 0.132814i
\(13\) 1.00000i 0.277350i
\(14\) −0.716045 + 1.21954i −0.191371 + 0.325936i
\(15\) −2.05407 −0.530359
\(16\) −2.10046 + 3.40412i −0.525116 + 0.851031i
\(17\) −6.30026 −1.52804 −0.764019 0.645194i \(-0.776777\pi\)
−0.764019 + 0.645194i \(0.776777\pi\)
\(18\) −1.98855 + 3.38682i −0.468705 + 0.798282i
\(19\) 2.90969i 0.667529i 0.942657 + 0.333764i \(0.108319\pi\)
−0.942657 + 0.333764i \(0.891681\pi\)
\(20\) −7.59898 + 4.24031i −1.69918 + 0.948162i
\(21\) 0.472093i 0.103019i
\(22\) 6.60630 + 3.87884i 1.40847 + 0.826972i
\(23\) 1.16816 0.243578 0.121789 0.992556i \(-0.461137\pi\)
0.121789 + 0.992556i \(0.461137\pi\)
\(24\) 0.0292929 1.33496i 0.00597939 0.272497i
\(25\) −13.9312 −2.78623
\(26\) −1.21954 0.716045i −0.239172 0.140428i
\(27\) 2.72734i 0.524877i
\(28\) −0.974560 1.74649i −0.184175 0.330056i
\(29\) 0.400654i 0.0743996i −0.999308 0.0371998i \(-0.988156\pi\)
0.999308 0.0371998i \(-0.0118438\pi\)
\(30\) 1.47081 2.50503i 0.268531 0.457353i
\(31\) 8.74485 1.57062 0.785310 0.619102i \(-0.212503\pi\)
0.785310 + 0.619102i \(0.212503\pi\)
\(32\) −2.64744 4.99911i −0.468006 0.883725i
\(33\) −2.55734 −0.445177
\(34\) 4.51127 7.68343i 0.773676 1.31770i
\(35\) 4.35100i 0.735453i
\(36\) −2.70648 4.85023i −0.451080 0.808372i
\(37\) 0.159884i 0.0262848i −0.999914 0.0131424i \(-0.995817\pi\)
0.999914 0.0131424i \(-0.00418348\pi\)
\(38\) −3.54849 2.08347i −0.575640 0.337983i
\(39\) 0.472093 0.0755953
\(40\) 0.269975 12.3035i 0.0426868 1.94536i
\(41\) −0.297993 −0.0465386 −0.0232693 0.999729i \(-0.507408\pi\)
−0.0232693 + 0.999729i \(0.507408\pi\)
\(42\) 0.575736 + 0.338039i 0.0888380 + 0.0521606i
\(43\) 3.74805i 0.571573i 0.958293 + 0.285786i \(0.0922548\pi\)
−0.958293 + 0.285786i \(0.907745\pi\)
\(44\) −9.46082 + 5.27924i −1.42627 + 0.795875i
\(45\) 12.0833i 1.80127i
\(46\) −0.836453 + 1.42462i −0.123328 + 0.210048i
\(47\) −3.08775 −0.450394 −0.225197 0.974313i \(-0.572303\pi\)
−0.225197 + 0.974313i \(0.572303\pi\)
\(48\) 1.60706 + 0.991613i 0.231959 + 0.143127i
\(49\) 1.00000 0.142857
\(50\) 9.97533 16.9896i 1.41073 2.40270i
\(51\) 2.97431i 0.416486i
\(52\) 1.74649 0.974560i 0.242195 0.135147i
\(53\) 2.19197i 0.301090i −0.988603 0.150545i \(-0.951897\pi\)
0.988603 0.150545i \(-0.0481028\pi\)
\(54\) 3.32610 + 1.95290i 0.452625 + 0.265756i
\(55\) −23.5695 −3.17811
\(56\) 2.82775 + 0.0620491i 0.377874 + 0.00829166i
\(57\) 1.37364 0.181943
\(58\) 0.488614 + 0.286886i 0.0641582 + 0.0376700i
\(59\) 3.99383i 0.519953i 0.965615 + 0.259976i \(0.0837147\pi\)
−0.965615 + 0.259976i \(0.916285\pi\)
\(60\) 2.00182 + 3.58742i 0.258434 + 0.463134i
\(61\) 3.08877i 0.395476i 0.980255 + 0.197738i \(0.0633595\pi\)
−0.980255 + 0.197738i \(0.936640\pi\)
\(62\) −6.26170 + 10.6647i −0.795236 + 1.35442i
\(63\) 2.77713 0.349885
\(64\) 7.99230 + 0.350918i 0.999037 + 0.0438648i
\(65\) 4.35100 0.539675
\(66\) 1.83117 3.11879i 0.225402 0.383896i
\(67\) 13.4949i 1.64866i −0.566108 0.824331i \(-0.691551\pi\)
0.566108 0.824331i \(-0.308449\pi\)
\(68\) 6.13998 + 11.0033i 0.744582 + 1.33435i
\(69\) 0.551479i 0.0663902i
\(70\) 5.30622 + 3.11551i 0.634214 + 0.372374i
\(71\) 12.0190 1.42639 0.713194 0.700966i \(-0.247248\pi\)
0.713194 + 0.700966i \(0.247248\pi\)
\(72\) 7.85302 + 0.172318i 0.925487 + 0.0203079i
\(73\) −14.9363 −1.74817 −0.874083 0.485777i \(-0.838537\pi\)
−0.874083 + 0.485777i \(0.838537\pi\)
\(74\) 0.194985 + 0.114484i 0.0226666 + 0.0133085i
\(75\) 6.57680i 0.759423i
\(76\) 5.08175 2.83567i 0.582916 0.325274i
\(77\) 5.41704i 0.617329i
\(78\) −0.338039 + 0.575736i −0.0382754 + 0.0651893i
\(79\) 10.8497 1.22069 0.610344 0.792136i \(-0.291031\pi\)
0.610344 + 0.792136i \(0.291031\pi\)
\(80\) 14.8113 + 9.13911i 1.65596 + 1.02178i
\(81\) 7.04383 0.782648
\(82\) 0.213376 0.363414i 0.0235634 0.0401324i
\(83\) 2.84395i 0.312164i 0.987744 + 0.156082i \(0.0498864\pi\)
−0.987744 + 0.156082i \(0.950114\pi\)
\(84\) −0.824505 + 0.460083i −0.0899609 + 0.0501991i
\(85\) 27.4124i 2.97329i
\(86\) −4.57090 2.68377i −0.492893 0.289399i
\(87\) −0.189146 −0.0202786
\(88\) 0.336122 15.3180i 0.0358308 1.63291i
\(89\) −12.0820 −1.28069 −0.640344 0.768089i \(-0.721208\pi\)
−0.640344 + 0.768089i \(0.721208\pi\)
\(90\) 14.7360 + 8.65216i 1.55332 + 0.912018i
\(91\) 1.00000i 0.104828i
\(92\) −1.13844 2.04018i −0.118691 0.212703i
\(93\) 4.12838i 0.428093i
\(94\) 2.21096 3.76563i 0.228044 0.388396i
\(95\) 12.6600 1.29889
\(96\) −2.36004 + 1.24984i −0.240871 + 0.127561i
\(97\) 4.12596 0.418928 0.209464 0.977816i \(-0.432828\pi\)
0.209464 + 0.977816i \(0.432828\pi\)
\(98\) −0.716045 + 1.21954i −0.0723314 + 0.123192i
\(99\) 15.0438i 1.51196i
\(100\) 13.5768 + 24.3307i 1.35768 + 2.43307i
\(101\) 12.4823i 1.24203i −0.783798 0.621016i \(-0.786720\pi\)
0.783798 0.621016i \(-0.213280\pi\)
\(102\) −3.62729 2.12974i −0.359155 0.210875i
\(103\) −6.86512 −0.676441 −0.338220 0.941067i \(-0.609825\pi\)
−0.338220 + 0.941067i \(0.609825\pi\)
\(104\) −0.0620491 + 2.82775i −0.00608441 + 0.277283i
\(105\) −2.05407 −0.200457
\(106\) 2.67319 + 1.56955i 0.259643 + 0.152448i
\(107\) 11.9949i 1.15959i −0.814761 0.579797i \(-0.803132\pi\)
0.814761 0.579797i \(-0.196868\pi\)
\(108\) −4.76327 + 2.65796i −0.458346 + 0.255762i
\(109\) 8.48497i 0.812713i 0.913715 + 0.406357i \(0.133201\pi\)
−0.913715 + 0.406357i \(0.866799\pi\)
\(110\) 16.8768 28.7440i 1.60914 2.74063i
\(111\) −0.0754802 −0.00716426
\(112\) −2.10046 + 3.40412i −0.198475 + 0.321659i
\(113\) 4.48473 0.421888 0.210944 0.977498i \(-0.432346\pi\)
0.210944 + 0.977498i \(0.432346\pi\)
\(114\) −0.983589 + 1.67521i −0.0921216 + 0.156898i
\(115\) 5.08265i 0.473960i
\(116\) −0.699739 + 0.390462i −0.0649691 + 0.0362535i
\(117\) 2.77713i 0.256746i
\(118\) −4.87064 2.85976i −0.448379 0.263262i
\(119\) −6.30026 −0.577544
\(120\) −5.80840 0.127453i −0.530232 0.0116348i
\(121\) −18.3443 −1.66767
\(122\) −3.76688 2.21169i −0.341037 0.200237i
\(123\) 0.140680i 0.0126847i
\(124\) −8.52238 15.2728i −0.765332 1.37154i
\(125\) 38.8595i 3.47570i
\(126\) −1.98855 + 3.38682i −0.177154 + 0.301722i
\(127\) −12.3978 −1.10013 −0.550064 0.835123i \(-0.685397\pi\)
−0.550064 + 0.835123i \(0.685397\pi\)
\(128\) −6.15080 + 9.49566i −0.543659 + 0.839306i
\(129\) 1.76943 0.155789
\(130\) −3.11551 + 5.30622i −0.273248 + 0.465386i
\(131\) 9.57331i 0.836424i −0.908349 0.418212i \(-0.862657\pi\)
0.908349 0.418212i \(-0.137343\pi\)
\(132\) 2.49229 + 4.46638i 0.216926 + 0.388749i
\(133\) 2.90969i 0.252302i
\(134\) 16.4576 + 9.66294i 1.42172 + 0.834751i
\(135\) −11.8666 −1.02132
\(136\) −17.8155 0.390925i −1.52767 0.0335216i
\(137\) 18.9891 1.62235 0.811173 0.584806i \(-0.198830\pi\)
0.811173 + 0.584806i \(0.198830\pi\)
\(138\) 0.672551 + 0.394883i 0.0572513 + 0.0336147i
\(139\) 3.06890i 0.260300i 0.991494 + 0.130150i \(0.0415459\pi\)
−0.991494 + 0.130150i \(0.958454\pi\)
\(140\) −7.59898 + 4.24031i −0.642231 + 0.358371i
\(141\) 1.45770i 0.122761i
\(142\) −8.60611 + 14.6576i −0.722209 + 1.23004i
\(143\) 5.41704 0.452996
\(144\) −5.83326 + 9.45369i −0.486105 + 0.787807i
\(145\) −1.74324 −0.144769
\(146\) 10.6951 18.2155i 0.885131 1.50752i
\(147\) 0.472093i 0.0389375i
\(148\) −0.279237 + 0.155817i −0.0229531 + 0.0128081i
\(149\) 21.2507i 1.74092i 0.492238 + 0.870461i \(0.336179\pi\)
−0.492238 + 0.870461i \(0.663821\pi\)
\(150\) −8.02068 4.70928i −0.654885 0.384511i
\(151\) 20.7829 1.69129 0.845644 0.533748i \(-0.179217\pi\)
0.845644 + 0.533748i \(0.179217\pi\)
\(152\) −0.180544 + 8.22786i −0.0146440 + 0.667368i
\(153\) −17.4966 −1.41452
\(154\) 6.60630 + 3.87884i 0.532351 + 0.312566i
\(155\) 38.0488i 3.05615i
\(156\) −0.460083 0.824505i −0.0368361 0.0660133i
\(157\) 22.4296i 1.79007i −0.445992 0.895037i \(-0.647149\pi\)
0.445992 0.895037i \(-0.352851\pi\)
\(158\) −7.76888 + 13.2317i −0.618059 + 1.05266i
\(159\) −1.03481 −0.0820658
\(160\) −21.7511 + 11.5190i −1.71957 + 0.910658i
\(161\) 1.16816 0.0920637
\(162\) −5.04370 + 8.59024i −0.396270 + 0.674913i
\(163\) 4.96229i 0.388676i 0.980935 + 0.194338i \(0.0622559\pi\)
−0.980935 + 0.194338i \(0.937744\pi\)
\(164\) 0.290412 + 0.520442i 0.0226774 + 0.0406397i
\(165\) 11.1270i 0.866236i
\(166\) −3.46832 2.03640i −0.269193 0.158055i
\(167\) 14.1209 1.09271 0.546354 0.837554i \(-0.316015\pi\)
0.546354 + 0.837554i \(0.316015\pi\)
\(168\) 0.0292929 1.33496i 0.00226000 0.102994i
\(169\) −1.00000 −0.0769231
\(170\) −33.4306 19.6285i −2.56401 1.50544i
\(171\) 8.08058i 0.617938i
\(172\) 6.54594 3.65270i 0.499123 0.278516i
\(173\) 12.3799i 0.941225i 0.882340 + 0.470613i \(0.155967\pi\)
−0.882340 + 0.470613i \(0.844033\pi\)
\(174\) 0.135437 0.230671i 0.0102674 0.0174871i
\(175\) −13.9312 −1.05310
\(176\) 18.4403 + 11.3783i 1.38999 + 0.857672i
\(177\) 1.88546 0.141720
\(178\) 8.65124 14.7345i 0.648438 1.10440i
\(179\) 2.72223i 0.203469i −0.994812 0.101735i \(-0.967561\pi\)
0.994812 0.101735i \(-0.0324393\pi\)
\(180\) −21.1033 + 11.7759i −1.57295 + 0.877722i
\(181\) 8.86877i 0.659210i −0.944119 0.329605i \(-0.893084\pi\)
0.944119 0.329605i \(-0.106916\pi\)
\(182\) −1.21954 0.716045i −0.0903984 0.0530768i
\(183\) 1.45818 0.107792
\(184\) 3.30325 + 0.0724831i 0.243519 + 0.00534353i
\(185\) −0.695656 −0.0511456
\(186\) 5.03472 + 2.95610i 0.369164 + 0.216752i
\(187\) 34.1288i 2.49574i
\(188\) 3.00920 + 5.39272i 0.219468 + 0.393305i
\(189\) 2.72734i 0.198385i
\(190\) −9.06516 + 15.4394i −0.657656 + 1.12010i
\(191\) 12.7496 0.922526 0.461263 0.887264i \(-0.347397\pi\)
0.461263 + 0.887264i \(0.347397\pi\)
\(192\) 0.165666 3.77310i 0.0119559 0.272300i
\(193\) 6.80859 0.490093 0.245047 0.969511i \(-0.421197\pi\)
0.245047 + 0.969511i \(0.421197\pi\)
\(194\) −2.95437 + 5.03178i −0.212112 + 0.361261i
\(195\) 2.05407i 0.147095i
\(196\) −0.974560 1.74649i −0.0696115 0.124749i
\(197\) 14.9703i 1.06659i −0.845929 0.533295i \(-0.820954\pi\)
0.845929 0.533295i \(-0.179046\pi\)
\(198\) 18.3466 + 10.7720i 1.30383 + 0.765536i
\(199\) 3.95895 0.280643 0.140321 0.990106i \(-0.455186\pi\)
0.140321 + 0.990106i \(0.455186\pi\)
\(200\) −39.3938 0.864416i −2.78556 0.0611234i
\(201\) −6.37083 −0.449364
\(202\) 15.2226 + 8.93786i 1.07106 + 0.628865i
\(203\) 0.400654i 0.0281204i
\(204\) 5.19460 2.89864i 0.363695 0.202945i
\(205\) 1.29656i 0.0905560i
\(206\) 4.91573 8.37230i 0.342495 0.583326i
\(207\) 3.24412 0.225482
\(208\) −3.40412 2.10046i −0.236033 0.145641i
\(209\) 15.7619 1.09027
\(210\) 1.47081 2.50503i 0.101495 0.172863i
\(211\) 14.8313i 1.02103i 0.859870 + 0.510514i \(0.170545\pi\)
−0.859870 + 0.510514i \(0.829455\pi\)
\(212\) −3.82825 + 2.13620i −0.262925 + 0.146715i
\(213\) 5.67406i 0.388780i
\(214\) 14.6283 + 8.58890i 0.999970 + 0.587125i
\(215\) 16.3078 1.11218
\(216\) 0.169229 7.71222i 0.0115146 0.524750i
\(217\) 8.74485 0.593639
\(218\) −10.3478 6.07562i −0.700840 0.411493i
\(219\) 7.05133i 0.476485i
\(220\) 22.9699 + 41.1640i 1.54863 + 2.77527i
\(221\) 6.30026i 0.423801i
\(222\) 0.0540472 0.0920512i 0.00362741 0.00617807i
\(223\) −7.89772 −0.528871 −0.264435 0.964403i \(-0.585186\pi\)
−0.264435 + 0.964403i \(0.585186\pi\)
\(224\) −2.64744 4.99911i −0.176890 0.334017i
\(225\) −38.6886 −2.57924
\(226\) −3.21126 + 5.46931i −0.213610 + 0.363813i
\(227\) 1.72809i 0.114697i −0.998354 0.0573486i \(-0.981735\pi\)
0.998354 0.0573486i \(-0.0182647\pi\)
\(228\) −1.33870 2.39906i −0.0886574 0.158881i
\(229\) 7.57367i 0.500482i 0.968184 + 0.250241i \(0.0805098\pi\)
−0.968184 + 0.250241i \(0.919490\pi\)
\(230\) 6.19850 + 3.63940i 0.408717 + 0.239975i
\(231\) −2.55734 −0.168261
\(232\) 0.0248602 1.13295i 0.00163215 0.0743817i
\(233\) −18.9238 −1.23974 −0.619869 0.784705i \(-0.712814\pi\)
−0.619869 + 0.784705i \(0.712814\pi\)
\(234\) −3.38682 1.98855i −0.221403 0.129995i
\(235\) 13.4348i 0.876388i
\(236\) 6.97519 3.89223i 0.454046 0.253363i
\(237\) 5.12207i 0.332714i
\(238\) 4.51127 7.68343i 0.292422 0.498042i
\(239\) 8.20643 0.530830 0.265415 0.964134i \(-0.414491\pi\)
0.265415 + 0.964134i \(0.414491\pi\)
\(240\) 4.31450 6.99232i 0.278500 0.451352i
\(241\) 2.28939 0.147473 0.0737364 0.997278i \(-0.476508\pi\)
0.0737364 + 0.997278i \(0.476508\pi\)
\(242\) 13.1354 22.3717i 0.844373 1.43811i
\(243\) 11.5074i 0.738197i
\(244\) 5.39450 3.01019i 0.345348 0.192708i
\(245\) 4.35100i 0.277975i
\(246\) −0.171565 0.100733i −0.0109386 0.00642251i
\(247\) −2.90969 −0.185139
\(248\) 24.7282 + 0.542610i 1.57024 + 0.0344557i
\(249\) 1.34261 0.0850843
\(250\) −47.3907 27.8251i −2.99725 1.75981i
\(251\) 17.3722i 1.09652i −0.836307 0.548261i \(-0.815290\pi\)
0.836307 0.548261i \(-0.184710\pi\)
\(252\) −2.70648 4.85023i −0.170492 0.305536i
\(253\) 6.32796i 0.397835i
\(254\) 8.87738 15.1196i 0.557017 0.948690i
\(255\) 12.9412 0.810409
\(256\) −7.17610 14.3005i −0.448507 0.893780i
\(257\) 22.3274 1.39274 0.696371 0.717682i \(-0.254797\pi\)
0.696371 + 0.717682i \(0.254797\pi\)
\(258\) −1.26699 + 2.15789i −0.0788793 + 0.134344i
\(259\) 0.159884i 0.00993473i
\(260\) −4.24031 7.59898i −0.262973 0.471269i
\(261\) 1.11267i 0.0688724i
\(262\) 11.6750 + 6.85492i 0.721287 + 0.423498i
\(263\) −4.59398 −0.283277 −0.141638 0.989918i \(-0.545237\pi\)
−0.141638 + 0.989918i \(0.545237\pi\)
\(264\) −7.23152 0.158681i −0.445069 0.00976613i
\(265\) −9.53723 −0.585868
\(266\) −3.54849 2.08347i −0.217572 0.127746i
\(267\) 5.70381i 0.349068i
\(268\) −23.5687 + 13.1516i −1.43969 + 0.803361i
\(269\) 13.6099i 0.829811i 0.909864 + 0.414906i \(0.136185\pi\)
−0.909864 + 0.414906i \(0.863815\pi\)
\(270\) 8.49704 14.4719i 0.517114 0.880729i
\(271\) 5.67078 0.344475 0.172238 0.985055i \(-0.444900\pi\)
0.172238 + 0.985055i \(0.444900\pi\)
\(272\) 13.2335 21.4469i 0.802397 1.30041i
\(273\) 0.472093 0.0285723
\(274\) −13.5970 + 23.1580i −0.821426 + 1.39902i
\(275\) 75.4657i 4.55075i
\(276\) −0.963152 + 0.537449i −0.0579750 + 0.0323506i
\(277\) 8.84466i 0.531424i 0.964052 + 0.265712i \(0.0856070\pi\)
−0.964052 + 0.265712i \(0.914393\pi\)
\(278\) −3.74264 2.19747i −0.224469 0.131795i
\(279\) 24.2856 1.45394
\(280\) 0.269975 12.3035i 0.0161341 0.735276i
\(281\) −7.44480 −0.444120 −0.222060 0.975033i \(-0.571278\pi\)
−0.222060 + 0.975033i \(0.571278\pi\)
\(282\) −1.77773 1.04378i −0.105862 0.0621562i
\(283\) 20.0551i 1.19215i 0.802928 + 0.596076i \(0.203274\pi\)
−0.802928 + 0.596076i \(0.796726\pi\)
\(284\) −11.7132 20.9910i −0.695051 1.24559i
\(285\) 5.97671i 0.354030i
\(286\) −3.87884 + 6.60630i −0.229361 + 0.390639i
\(287\) −0.297993 −0.0175899
\(288\) −7.35229 13.8832i −0.433238 0.818073i
\(289\) 22.6933 1.33490
\(290\) 1.24824 2.12596i 0.0732992 0.124841i
\(291\) 1.94784i 0.114184i
\(292\) 14.5564 + 26.0862i 0.851847 + 1.52658i
\(293\) 10.5540i 0.616571i −0.951294 0.308286i \(-0.900245\pi\)
0.951294 0.308286i \(-0.0997553\pi\)
\(294\) 0.575736 + 0.338039i 0.0335776 + 0.0197148i
\(295\) 17.3771 1.01174
\(296\) 0.00992067 0.452112i 0.000576627 0.0262785i
\(297\) −14.7741 −0.857281
\(298\) −25.9160 15.2164i −1.50128 0.881463i
\(299\) 1.16816i 0.0675563i
\(300\) 11.4863 6.40949i 0.663163 0.370052i
\(301\) 3.74805i 0.216034i
\(302\) −14.8815 + 25.3456i −0.856332 + 1.45847i
\(303\) −5.89278 −0.338532
\(304\) −9.90494 6.11170i −0.568087 0.350530i
\(305\) 13.4392 0.769527
\(306\) 12.5284 21.3379i 0.716199 1.21980i
\(307\) 30.5275i 1.74230i 0.491019 + 0.871149i \(0.336625\pi\)
−0.491019 + 0.871149i \(0.663375\pi\)
\(308\) −9.46082 + 5.27924i −0.539080 + 0.300812i
\(309\) 3.24097i 0.184373i
\(310\) 46.4021 + 27.2446i 2.63546 + 1.54739i
\(311\) −6.79005 −0.385028 −0.192514 0.981294i \(-0.561664\pi\)
−0.192514 + 0.981294i \(0.561664\pi\)
\(312\) 1.33496 + 0.0292929i 0.0755771 + 0.00165838i
\(313\) 13.1789 0.744916 0.372458 0.928049i \(-0.378515\pi\)
0.372458 + 0.928049i \(0.378515\pi\)
\(314\) 27.3538 + 16.0606i 1.54366 + 0.906350i
\(315\) 12.0833i 0.680815i
\(316\) −10.5737 18.9489i −0.594817 1.06596i
\(317\) 0.546150i 0.0306748i −0.999882 0.0153374i \(-0.995118\pi\)
0.999882 0.0153374i \(-0.00488224\pi\)
\(318\) 0.740971 1.26199i 0.0415516 0.0707691i
\(319\) −2.17036 −0.121517
\(320\) 1.52684 34.7745i 0.0853531 1.94395i
\(321\) −5.66271 −0.316062
\(322\) −0.836453 + 1.42462i −0.0466137 + 0.0793908i
\(323\) 18.3318i 1.02001i
\(324\) −6.86464 12.3020i −0.381369 0.683444i
\(325\) 13.9312i 0.772762i
\(326\) −6.05171 3.55322i −0.335173 0.196795i
\(327\) 4.00569 0.221515
\(328\) −0.842648 0.0184902i −0.0465274 0.00102095i
\(329\) −3.08775 −0.170233
\(330\) −13.5698 7.96743i −0.746995 0.438592i
\(331\) 7.11055i 0.390831i −0.980721 0.195416i \(-0.937394\pi\)
0.980721 0.195416i \(-0.0626056\pi\)
\(332\) 4.96694 2.77160i 0.272596 0.152111i
\(333\) 0.444019i 0.0243321i
\(334\) −10.1112 + 17.2210i −0.553260 + 0.942293i
\(335\) −58.7162 −3.20801
\(336\) 1.60706 + 0.991613i 0.0876724 + 0.0540969i
\(337\) 26.3087 1.43313 0.716563 0.697522i \(-0.245714\pi\)
0.716563 + 0.697522i \(0.245714\pi\)
\(338\) 0.716045 1.21954i 0.0389477 0.0663343i
\(339\) 2.11721i 0.114991i
\(340\) 47.8755 26.7150i 2.59641 1.44883i
\(341\) 47.3712i 2.56529i
\(342\) −9.85460 5.78606i −0.532876 0.312874i
\(343\) 1.00000 0.0539949
\(344\) −0.232563 + 10.5985i −0.0125390 + 0.571435i
\(345\) −2.39948 −0.129184
\(346\) −15.0978 8.86455i −0.811662 0.476561i
\(347\) 1.49493i 0.0802522i 0.999195 + 0.0401261i \(0.0127760\pi\)
−0.999195 + 0.0401261i \(0.987224\pi\)
\(348\) 0.184334 + 0.330342i 0.00988134 + 0.0177082i
\(349\) 18.6568i 0.998676i −0.866407 0.499338i \(-0.833577\pi\)
0.866407 0.499338i \(-0.166423\pi\)
\(350\) 9.97533 16.9896i 0.533204 0.908134i
\(351\) 2.72734 0.145575
\(352\) −27.0804 + 14.3413i −1.44339 + 0.764394i
\(353\) −10.9878 −0.584819 −0.292410 0.956293i \(-0.594457\pi\)
−0.292410 + 0.956293i \(0.594457\pi\)
\(354\) −1.35007 + 2.29939i −0.0717555 + 0.122211i
\(355\) 52.2945i 2.77550i
\(356\) 11.7746 + 21.1011i 0.624054 + 1.11835i
\(357\) 2.97431i 0.157417i
\(358\) 3.31988 + 1.94924i 0.175461 + 0.103021i
\(359\) 21.7824 1.14963 0.574816 0.818283i \(-0.305074\pi\)
0.574816 + 0.818283i \(0.305074\pi\)
\(360\) 0.749756 34.1684i 0.0395156 1.80083i
\(361\) 10.5337 0.554406
\(362\) 10.8158 + 6.35043i 0.568467 + 0.333771i
\(363\) 8.66023i 0.454544i
\(364\) 1.74649 0.974560i 0.0915410 0.0510808i
\(365\) 64.9879i 3.40162i
\(366\) −1.04412 + 1.77831i −0.0545772 + 0.0929540i
\(367\) 4.69959 0.245317 0.122658 0.992449i \(-0.460858\pi\)
0.122658 + 0.992449i \(0.460858\pi\)
\(368\) −2.45367 + 3.97655i −0.127907 + 0.207292i
\(369\) −0.827564 −0.0430813
\(370\) 0.498121 0.848381i 0.0258961 0.0441052i
\(371\) 2.19197i 0.113801i
\(372\) −7.21017 + 4.02335i −0.373830 + 0.208601i
\(373\) 21.5919i 1.11798i −0.829173 0.558992i \(-0.811188\pi\)
0.829173 0.558992i \(-0.188812\pi\)
\(374\) −41.6214 24.4377i −2.15219 1.26364i
\(375\) 18.3453 0.947345
\(376\) −8.73137 0.191592i −0.450286 0.00988060i
\(377\) 0.400654 0.0206347
\(378\) 3.32610 + 1.95290i 0.171076 + 0.100446i
\(379\) 9.62845i 0.494580i −0.968941 0.247290i \(-0.920460\pi\)
0.968941 0.247290i \(-0.0795401\pi\)
\(380\) −12.3380 22.1107i −0.632925 1.13425i
\(381\) 5.85291i 0.299854i
\(382\) −9.12925 + 15.5486i −0.467093 + 0.795536i
\(383\) 22.1615 1.13240 0.566200 0.824268i \(-0.308413\pi\)
0.566200 + 0.824268i \(0.308413\pi\)
\(384\) 4.48283 + 2.90375i 0.228764 + 0.148181i
\(385\) −23.5695 −1.20121
\(386\) −4.87525 + 8.30336i −0.248144 + 0.422630i
\(387\) 10.4088i 0.529110i
\(388\) −4.02100 7.20596i −0.204135 0.365827i
\(389\) 3.73770i 0.189509i 0.995501 + 0.0947544i \(0.0302066\pi\)
−0.995501 + 0.0947544i \(0.969793\pi\)
\(390\) 2.50503 + 1.47081i 0.126847 + 0.0744772i
\(391\) −7.35970 −0.372196
\(392\) 2.82775 + 0.0620491i 0.142823 + 0.00313395i
\(393\) −4.51949 −0.227978
\(394\) 18.2569 + 10.7194i 0.919769 + 0.540036i
\(395\) 47.2071i 2.37524i
\(396\) −26.2739 + 14.6611i −1.32031 + 0.736749i
\(397\) 1.99523i 0.100138i −0.998746 0.0500689i \(-0.984056\pi\)
0.998746 0.0500689i \(-0.0159441\pi\)
\(398\) −2.83479 + 4.82810i −0.142095 + 0.242011i
\(399\) 1.37364 0.0687682
\(400\) 29.2619 47.4234i 1.46310 2.37117i
\(401\) 21.5512 1.07622 0.538108 0.842876i \(-0.319139\pi\)
0.538108 + 0.842876i \(0.319139\pi\)
\(402\) 4.56180 7.76949i 0.227522 0.387507i
\(403\) 8.74485i 0.435612i
\(404\) −21.8002 + 12.1647i −1.08460 + 0.605218i
\(405\) 30.6477i 1.52290i
\(406\) 0.488614 + 0.286886i 0.0242495 + 0.0142379i
\(407\) −0.866100 −0.0429310
\(408\) −0.184553 + 8.41058i −0.00913673 + 0.416386i
\(409\) 2.57866 0.127507 0.0637533 0.997966i \(-0.479693\pi\)
0.0637533 + 0.997966i \(0.479693\pi\)
\(410\) −1.58121 0.928398i −0.0780906 0.0458503i
\(411\) 8.96460i 0.442191i
\(412\) 6.69048 + 11.9899i 0.329616 + 0.590699i
\(413\) 3.99383i 0.196524i
\(414\) −2.32294 + 3.95634i −0.114166 + 0.194444i
\(415\) 12.3740 0.607417
\(416\) 4.99911 2.64744i 0.245101 0.129802i
\(417\) 1.44880 0.0709482
\(418\) −11.2862 + 19.2223i −0.552028 + 0.940193i
\(419\) 19.4601i 0.950687i −0.879800 0.475344i \(-0.842324\pi\)
0.879800 0.475344i \(-0.157676\pi\)
\(420\) 2.00182 + 3.58742i 0.0976787 + 0.175048i
\(421\) 29.1474i 1.42056i −0.703921 0.710278i \(-0.748569\pi\)
0.703921 0.710278i \(-0.251431\pi\)
\(422\) −18.0874 10.6199i −0.880479 0.516967i
\(423\) −8.57507 −0.416934
\(424\) 0.136009 6.19832i 0.00660520 0.301017i
\(425\) 87.7700 4.25747
\(426\) 6.91975 + 4.06288i 0.335263 + 0.196847i
\(427\) 3.08877i 0.149476i
\(428\) −20.9490 + 11.6898i −1.01261 + 0.565047i
\(429\) 2.55734i 0.123470i
\(430\) −11.6771 + 19.8880i −0.563119 + 0.959084i
\(431\) −2.14758 −0.103445 −0.0517227 0.998661i \(-0.516471\pi\)
−0.0517227 + 0.998661i \(0.516471\pi\)
\(432\) 9.28420 + 5.72868i 0.446686 + 0.275621i
\(433\) 5.29651 0.254534 0.127267 0.991869i \(-0.459380\pi\)
0.127267 + 0.991869i \(0.459380\pi\)
\(434\) −6.26170 + 10.6647i −0.300571 + 0.511922i
\(435\) 0.822973i 0.0394585i
\(436\) 14.8189 8.26912i 0.709698 0.396019i
\(437\) 3.39898i 0.162595i
\(438\) −8.59939 5.04907i −0.410895 0.241254i
\(439\) 10.7736 0.514195 0.257097 0.966386i \(-0.417234\pi\)
0.257097 + 0.966386i \(0.417234\pi\)
\(440\) −66.6486 1.46247i −3.17735 0.0697204i
\(441\) 2.77713 0.132244
\(442\) 7.68343 + 4.51127i 0.365463 + 0.214579i
\(443\) 17.6054i 0.836456i 0.908342 + 0.418228i \(0.137349\pi\)
−0.908342 + 0.418228i \(0.862651\pi\)
\(444\) 0.0735600 + 0.131825i 0.00349100 + 0.00625616i
\(445\) 52.5686i 2.49199i
\(446\) 5.65512 9.63160i 0.267778 0.456069i
\(447\) 10.0323 0.474510
\(448\) 7.99230 + 0.350918i 0.377601 + 0.0165793i
\(449\) −3.03371 −0.143170 −0.0715848 0.997435i \(-0.522806\pi\)
−0.0715848 + 0.997435i \(0.522806\pi\)
\(450\) 27.7028 47.1824i 1.30592 2.22420i
\(451\) 1.61424i 0.0760115i
\(452\) −4.37064 7.83253i −0.205577 0.368411i
\(453\) 9.81144i 0.460982i
\(454\) 2.10748 + 1.23739i 0.0989087 + 0.0580735i
\(455\) 4.35100 0.203978
\(456\) 3.88431 + 0.0852333i 0.181900 + 0.00399141i
\(457\) 12.3629 0.578314 0.289157 0.957282i \(-0.406625\pi\)
0.289157 + 0.957282i \(0.406625\pi\)
\(458\) −9.23640 5.42308i −0.431588 0.253404i
\(459\) 17.1829i 0.802031i
\(460\) −8.87680 + 4.95335i −0.413883 + 0.230951i
\(461\) 12.3695i 0.576105i 0.957615 + 0.288053i \(0.0930078\pi\)
−0.957615 + 0.288053i \(0.906992\pi\)
\(462\) 1.83117 3.11879i 0.0851939 0.145099i
\(463\) −10.5401 −0.489842 −0.244921 0.969543i \(-0.578762\pi\)
−0.244921 + 0.969543i \(0.578762\pi\)
\(464\) 1.36388 + 0.841560i 0.0633164 + 0.0390684i
\(465\) −17.9625 −0.832993
\(466\) 13.5503 23.0783i 0.627704 1.06908i
\(467\) 24.0562i 1.11319i −0.830785 0.556593i \(-0.812108\pi\)
0.830785 0.556593i \(-0.187892\pi\)
\(468\) 4.85023 2.70648i 0.224202 0.125107i
\(469\) 13.4949i 0.623136i
\(470\) −16.3843 9.61990i −0.755750 0.443733i
\(471\) −10.5888 −0.487907
\(472\) −0.247814 + 11.2935i −0.0114065 + 0.519827i
\(473\) 20.3034 0.933549
\(474\) 6.24657 + 3.66763i 0.286915 + 0.168460i
\(475\) 40.5354i 1.85989i
\(476\) 6.13998 + 11.0033i 0.281426 + 0.504338i
\(477\) 6.08737i 0.278722i
\(478\) −5.87617 + 10.0081i −0.268770 + 0.457759i
\(479\) 27.9128 1.27537 0.637684 0.770298i \(-0.279893\pi\)
0.637684 + 0.770298i \(0.279893\pi\)
\(480\) 5.43804 + 10.2685i 0.248211 + 0.468692i
\(481\) 0.159884 0.00729010
\(482\) −1.63931 + 2.79201i −0.0746685 + 0.127173i
\(483\) 0.551479i 0.0250931i
\(484\) 17.8777 + 32.0382i 0.812622 + 1.45628i
\(485\) 17.9520i 0.815160i
\(486\) 14.0337 + 8.23978i 0.636581 + 0.373764i
\(487\) 16.7547 0.759228 0.379614 0.925145i \(-0.376057\pi\)
0.379614 + 0.925145i \(0.376057\pi\)
\(488\) −0.191655 + 8.73424i −0.00867582 + 0.395381i
\(489\) 2.34266 0.105939
\(490\) 5.30622 + 3.11551i 0.239710 + 0.140744i
\(491\) 20.4381i 0.922358i 0.887307 + 0.461179i \(0.152573\pi\)
−0.887307 + 0.461179i \(0.847427\pi\)
\(492\) 0.245697 0.137101i 0.0110769 0.00618100i
\(493\) 2.52423i 0.113685i
\(494\) 2.08347 3.54849i 0.0937396 0.159654i
\(495\) −65.4556 −2.94201
\(496\) −18.3682 + 29.7685i −0.824758 + 1.33665i
\(497\) 12.0190 0.539124
\(498\) −0.961367 + 1.63737i −0.0430799 + 0.0733721i
\(499\) 7.68749i 0.344140i −0.985085 0.172070i \(-0.944955\pi\)
0.985085 0.172070i \(-0.0550454\pi\)
\(500\) 67.8677 37.8709i 3.03514 1.69364i
\(501\) 6.66637i 0.297832i
\(502\) 21.1861 + 12.4392i 0.945581 + 0.555191i
\(503\) −8.82850 −0.393643 −0.196822 0.980439i \(-0.563062\pi\)
−0.196822 + 0.980439i \(0.563062\pi\)
\(504\) 7.85302 + 0.172318i 0.349801 + 0.00767567i
\(505\) −54.3103 −2.41678
\(506\) 7.71721 + 4.53110i 0.343072 + 0.201432i
\(507\) 0.472093i 0.0209664i
\(508\) 12.0824 + 21.6527i 0.536071 + 0.960682i
\(509\) 32.5689i 1.44359i 0.692107 + 0.721795i \(0.256683\pi\)
−0.692107 + 0.721795i \(0.743317\pi\)
\(510\) −9.26647 + 15.7823i −0.410326 + 0.698853i
\(511\) −14.9363 −0.660745
\(512\) 22.5784 + 1.48822i 0.997835 + 0.0657708i
\(513\) 7.93571 0.350370
\(514\) −15.9874 + 27.2291i −0.705173 + 1.20103i
\(515\) 29.8701i 1.31624i
\(516\) −1.72441 3.09029i −0.0759131 0.136042i
\(517\) 16.7265i 0.735629i
\(518\) 0.194985 + 0.114484i 0.00856717 + 0.00503015i
\(519\) 5.84445 0.256543
\(520\) 12.3035 + 0.269975i 0.539545 + 0.0118392i
\(521\) −45.4292 −1.99029 −0.995145 0.0984169i \(-0.968622\pi\)
−0.995145 + 0.0984169i \(0.968622\pi\)
\(522\) 1.35694 + 0.796720i 0.0593919 + 0.0348715i
\(523\) 30.9751i 1.35445i 0.735778 + 0.677223i \(0.236817\pi\)
−0.735778 + 0.677223i \(0.763183\pi\)
\(524\) −16.7197 + 9.32977i −0.730404 + 0.407573i
\(525\) 6.57680i 0.287035i
\(526\) 3.28949 5.60254i 0.143429 0.244282i
\(527\) −55.0948 −2.39997
\(528\) 5.37161 8.70552i 0.233769 0.378859i
\(529\) −21.6354 −0.940670
\(530\) 6.82908 11.6310i 0.296636 0.505220i
\(531\) 11.0914i 0.481325i
\(532\) 5.08175 2.83567i 0.220322 0.122942i
\(533\) 0.297993i 0.0129075i
\(534\) −6.95603 4.08418i −0.301017 0.176740i
\(535\) −52.1899 −2.25636
\(536\) 0.837345 38.1601i 0.0361678 1.64827i
\(537\) −1.28515 −0.0554582
\(538\) −16.5978 9.74530i −0.715584 0.420150i
\(539\) 5.41704i 0.233329i
\(540\) 11.5648 + 20.7250i 0.497668 + 0.891861i
\(541\) 6.42309i 0.276150i −0.990422 0.138075i \(-0.955908\pi\)
0.990422 0.138075i \(-0.0440915\pi\)
\(542\) −4.06053 + 6.91574i −0.174415 + 0.297057i
\(543\) −4.18688 −0.179676
\(544\) 16.6796 + 31.4957i 0.715131 + 1.35037i
\(545\) 36.9181 1.58140
\(546\) −0.338039 + 0.575736i −0.0144667 + 0.0246392i
\(547\) 20.2300i 0.864973i 0.901640 + 0.432487i \(0.142364\pi\)
−0.901640 + 0.432487i \(0.857636\pi\)
\(548\) −18.5060 33.1642i −0.790537 1.41671i
\(549\) 8.57790i 0.366096i
\(550\) −92.0335 54.0368i −3.92432 2.30414i
\(551\) 1.16578 0.0496639
\(552\) 0.0342187 1.55944i 0.00145645 0.0663742i
\(553\) 10.8497 0.461377
\(554\) −10.7864 6.33317i −0.458271 0.269070i
\(555\) 0.328414i 0.0139404i
\(556\) 5.35980 2.99082i 0.227306 0.126839i
\(557\) 16.0202i 0.678797i −0.940643 0.339398i \(-0.889777\pi\)
0.940643 0.339398i \(-0.110223\pi\)
\(558\) −17.3895 + 29.6172i −0.736158 + 1.25380i
\(559\) −3.74805 −0.158526
\(560\) 14.8113 + 9.13911i 0.625893 + 0.386198i
\(561\) 16.1119 0.680247
\(562\) 5.33081 9.07924i 0.224867 0.382985i
\(563\) 22.9794i 0.968466i −0.874939 0.484233i \(-0.839099\pi\)
0.874939 0.484233i \(-0.160901\pi\)
\(564\) 2.54586 1.42062i 0.107200 0.0598189i
\(565\) 19.5130i 0.820919i
\(566\) −24.4580 14.3604i −1.02805 0.603611i
\(567\) 7.04383 0.295813
\(568\) 33.9866 + 0.745766i 1.42605 + 0.0312916i
\(569\) −14.7944 −0.620214 −0.310107 0.950702i \(-0.600365\pi\)
−0.310107 + 0.950702i \(0.600365\pi\)
\(570\) 7.28885 + 4.27959i 0.305296 + 0.179252i
\(571\) 20.6522i 0.864270i −0.901809 0.432135i \(-0.857760\pi\)
0.901809 0.432135i \(-0.142240\pi\)
\(572\) −5.27924 9.46082i −0.220736 0.395577i
\(573\) 6.01897i 0.251446i
\(574\) 0.213376 0.363414i 0.00890614 0.0151686i
\(575\) −16.2738 −0.678664
\(576\) 22.1956 + 0.974545i 0.924819 + 0.0406060i
\(577\) −21.2585 −0.885004 −0.442502 0.896768i \(-0.645909\pi\)
−0.442502 + 0.896768i \(0.645909\pi\)
\(578\) −16.2494 + 27.6754i −0.675886 + 1.15114i
\(579\) 3.21429i 0.133581i
\(580\) 1.69890 + 3.04456i 0.0705429 + 0.126419i
\(581\) 2.84395i 0.117987i
\(582\) 2.37547 + 1.39474i 0.0984662 + 0.0578137i
\(583\) −11.8740 −0.491770
\(584\) −42.2362 0.926786i −1.74774 0.0383507i
\(585\) 12.0833 0.499582
\(586\) 12.8710 + 7.55714i 0.531698 + 0.312182i
\(587\) 31.7469i 1.31033i 0.755484 + 0.655167i \(0.227402\pi\)
−0.755484 + 0.655167i \(0.772598\pi\)
\(588\) −0.824505 + 0.460083i −0.0340020 + 0.0189735i
\(589\) 25.4448i 1.04843i
\(590\) −12.4428 + 21.1921i −0.512262 + 0.872467i
\(591\) −7.06737 −0.290713
\(592\) 0.544266 + 0.335831i 0.0223692 + 0.0138026i
\(593\) 20.3172 0.834327 0.417163 0.908832i \(-0.363024\pi\)
0.417163 + 0.908832i \(0.363024\pi\)
\(594\) 10.5789 18.0176i 0.434058 0.739272i
\(595\) 27.4124i 1.12380i
\(596\) 37.1141 20.7100i 1.52025 0.848316i
\(597\) 1.86899i 0.0764927i
\(598\) −1.42462 0.836453i −0.0582569 0.0342051i
\(599\) −38.4170 −1.56968 −0.784838 0.619701i \(-0.787254\pi\)
−0.784838 + 0.619701i \(0.787254\pi\)
\(600\) −0.408084 + 18.5975i −0.0166600 + 0.759241i
\(601\) 1.51894 0.0619589 0.0309795 0.999520i \(-0.490137\pi\)
0.0309795 + 0.999520i \(0.490137\pi\)
\(602\) −4.57090 2.68377i −0.186296 0.109382i
\(603\) 37.4770i 1.52618i
\(604\) −20.2542 36.2971i −0.824131 1.47691i
\(605\) 79.8162i 3.24499i
\(606\) 4.21950 7.18649i 0.171405 0.291931i
\(607\) 0.377734 0.0153317 0.00766587 0.999971i \(-0.497560\pi\)
0.00766587 + 0.999971i \(0.497560\pi\)
\(608\) 14.5458 7.70323i 0.589912 0.312407i
\(609\) −0.189146 −0.00766458
\(610\) −9.62307 + 16.3897i −0.389627 + 0.663598i
\(611\) 3.08775i 0.124917i
\(612\) 17.0515 + 30.5577i 0.689267 + 1.23522i
\(613\) 8.90194i 0.359546i 0.983708 + 0.179773i \(0.0575363\pi\)
−0.983708 + 0.179773i \(0.942464\pi\)
\(614\) −37.2296 21.8591i −1.50246 0.882160i
\(615\) 0.612098 0.0246822
\(616\) 0.336122 15.3180i 0.0135428 0.617181i
\(617\) −34.3539 −1.38304 −0.691518 0.722359i \(-0.743058\pi\)
−0.691518 + 0.722359i \(0.743058\pi\)
\(618\) −3.95250 2.32068i −0.158993 0.0933515i
\(619\) 21.8310i 0.877462i −0.898618 0.438731i \(-0.855428\pi\)
0.898618 0.438731i \(-0.144572\pi\)
\(620\) −66.4519 + 37.0808i −2.66877 + 1.48920i
\(621\) 3.18596i 0.127848i
\(622\) 4.86198 8.28075i 0.194948 0.332028i
\(623\) −12.0820 −0.484054
\(624\) −0.991613 + 1.60706i −0.0396963 + 0.0643339i
\(625\) 99.4215 3.97686
\(626\) −9.43669 + 16.0722i −0.377166 + 0.642375i
\(627\) 7.44108i 0.297168i
\(628\) −39.1730 + 21.8590i −1.56317 + 0.872268i
\(629\) 1.00731i 0.0401642i
\(630\) 14.7360 + 8.65216i 0.587098 + 0.344710i
\(631\) 6.11176 0.243305 0.121653 0.992573i \(-0.461181\pi\)
0.121653 + 0.992573i \(0.461181\pi\)
\(632\) 30.6802 + 0.673215i 1.22039 + 0.0267790i
\(633\) 7.00174 0.278294
\(634\) 0.666052 + 0.391068i 0.0264523 + 0.0155313i
\(635\) 53.9428i 2.14066i
\(636\) 1.00849 + 1.80729i 0.0399891 + 0.0716636i
\(637\) 1.00000i 0.0396214i
\(638\) 1.55407 2.64684i 0.0615264 0.104790i
\(639\) 33.3782 1.32042
\(640\) 41.3156 + 26.7621i 1.63314 + 1.05787i
\(641\) −31.4315 −1.24147 −0.620735 0.784021i \(-0.713166\pi\)
−0.620735 + 0.784021i \(0.713166\pi\)
\(642\) 4.05476 6.90591i 0.160028 0.272555i
\(643\) 39.7488i 1.56754i 0.621051 + 0.783770i \(0.286706\pi\)
−0.621051 + 0.783770i \(0.713294\pi\)
\(644\) −1.13844 2.04018i −0.0448608 0.0803943i
\(645\) 7.69877i 0.303139i
\(646\) 22.3564 + 13.1264i 0.879600 + 0.516451i
\(647\) −35.5007 −1.39568 −0.697838 0.716256i \(-0.745854\pi\)
−0.697838 + 0.716256i \(0.745854\pi\)
\(648\) 19.9182 + 0.437063i 0.782459 + 0.0171695i
\(649\) 21.6348 0.849238
\(650\) 16.9896 + 9.97533i 0.666388 + 0.391265i
\(651\) 4.12838i 0.161804i
\(652\) 8.66659 4.83605i 0.339410 0.189394i
\(653\) 32.5153i 1.27242i 0.771514 + 0.636212i \(0.219500\pi\)
−0.771514 + 0.636212i \(0.780500\pi\)
\(654\) −2.86825 + 4.88511i −0.112158 + 0.191023i
\(655\) −41.6534 −1.62753
\(656\) 0.625923 1.01440i 0.0244382 0.0396058i
\(657\) −41.4801 −1.61829
\(658\) 2.21096 3.76563i 0.0861924 0.146800i
\(659\) 0.733823i 0.0285857i 0.999898 + 0.0142928i \(0.00454971\pi\)
−0.999898 + 0.0142928i \(0.995450\pi\)
\(660\) 19.4332 10.8439i 0.756436 0.422099i
\(661\) 1.48742i 0.0578538i 0.999582 + 0.0289269i \(0.00920900\pi\)
−0.999582 + 0.0289269i \(0.990791\pi\)
\(662\) 8.67161 + 5.09147i 0.337032 + 0.197886i
\(663\) −2.97431 −0.115512
\(664\) −0.176465 + 8.04197i −0.00684815 + 0.312089i
\(665\) 12.6600 0.490936
\(666\) 0.541500 + 0.317938i 0.0209827 + 0.0123198i
\(667\) 0.468027i 0.0181221i
\(668\) −13.7617 24.6620i −0.532455 0.954203i
\(669\) 3.72846i 0.144150i
\(670\) 42.0434 71.6068i 1.62428 2.76641i
\(671\) 16.7320 0.645931
\(672\) −2.36004 + 1.24984i −0.0910405 + 0.0482135i
\(673\) −18.8007 −0.724715 −0.362358 0.932039i \(-0.618028\pi\)
−0.362358 + 0.932039i \(0.618028\pi\)
\(674\) −18.8382 + 32.0846i −0.725621 + 1.23585i
\(675\) 37.9950i 1.46243i
\(676\) 0.974560 + 1.74649i 0.0374831 + 0.0671727i
\(677\) 20.9488i 0.805127i −0.915392 0.402563i \(-0.868119\pi\)
0.915392 0.402563i \(-0.131881\pi\)
\(678\) 2.58202 + 1.51601i 0.0991618 + 0.0582221i
\(679\) 4.12596 0.158340
\(680\) −1.70091 + 77.5153i −0.0652271 + 2.97258i
\(681\) −0.815818 −0.0312622
\(682\) 57.7711 + 33.9199i 2.21217 + 1.29886i
\(683\) 18.0106i 0.689158i 0.938757 + 0.344579i \(0.111978\pi\)
−0.938757 + 0.344579i \(0.888022\pi\)
\(684\) 14.1127 7.87502i 0.539611 0.301109i
\(685\) 82.6214i 3.15680i
\(686\) −0.716045 + 1.21954i −0.0273387 + 0.0465623i
\(687\) 3.57547 0.136413
\(688\) −12.7588 7.87265i −0.486426 0.300142i
\(689\) 2.19197 0.0835072
\(690\) 1.71814 2.92627i 0.0654083 0.111401i
\(691\) 28.0918i 1.06866i −0.845275 0.534332i \(-0.820563\pi\)
0.845275 0.534332i \(-0.179437\pi\)
\(692\) 21.6214 12.0649i 0.821921 0.458641i
\(693\) 15.0438i 0.571468i
\(694\) −1.82313 1.07044i −0.0692051 0.0406333i
\(695\) 13.3528 0.506499
\(696\) −0.534857 0.0117363i −0.0202737 0.000444864i
\(697\) 1.87743 0.0711128
\(698\) 22.7528 + 13.3591i 0.861204 + 0.505650i
\(699\) 8.93378i 0.337907i
\(700\) 13.5768 + 24.3307i 0.513153 + 0.919612i
\(701\) 37.4275i 1.41362i −0.707406 0.706808i \(-0.750135\pi\)
0.707406 0.706808i \(-0.249865\pi\)
\(702\) −1.95290 + 3.32610i −0.0737073 + 0.125536i
\(703\) 0.465214 0.0175459
\(704\) 1.90094 43.2946i 0.0716443 1.63173i
\(705\) 6.34246 0.238871
\(706\) 7.86772 13.4000i 0.296106 0.504316i
\(707\) 12.4823i 0.469444i
\(708\) −1.83749 3.29294i −0.0690572 0.123756i
\(709\) 20.2798i 0.761625i −0.924652 0.380813i \(-0.875644\pi\)
0.924652 0.380813i \(-0.124356\pi\)
\(710\) 63.7752 + 37.4452i 2.39344 + 1.40529i
\(711\) 30.1310 1.13000
\(712\) −34.1648 0.749676i −1.28038 0.0280953i
\(713\) 10.2154 0.382568
\(714\) −3.62729 2.12974i −0.135748 0.0797033i
\(715\) 23.5695i 0.881450i
\(716\) −4.75436 + 2.65298i −0.177679 + 0.0991466i
\(717\) 3.87419i 0.144684i
\(718\) −15.5972 + 26.5645i −0.582081 + 0.991380i
\(719\) 28.1784 1.05088 0.525439 0.850831i \(-0.323901\pi\)
0.525439 + 0.850831i \(0.323901\pi\)
\(720\) 41.1330 + 25.3805i 1.53293 + 0.945875i
\(721\) −6.86512 −0.255671
\(722\) −7.54260 + 12.8463i −0.280707 + 0.478089i
\(723\) 1.08081i 0.0401956i
\(724\) −15.4892 + 8.64315i −0.575652 + 0.321220i
\(725\) 5.58158i 0.207295i
\(726\) −10.5615 6.20111i −0.391974 0.230145i
\(727\) −33.5453 −1.24413 −0.622063 0.782967i \(-0.713705\pi\)
−0.622063 + 0.782967i \(0.713705\pi\)
\(728\) −0.0620491 + 2.82775i −0.00229969 + 0.104803i
\(729\) 15.6990 0.581443
\(730\) −79.2554 46.5343i −2.93338 1.72231i
\(731\) 23.6137i 0.873384i
\(732\) −1.42109 2.54670i −0.0525249 0.0941289i
\(733\) 18.3299i 0.677029i −0.940961 0.338514i \(-0.890076\pi\)
0.940961 0.338514i \(-0.109924\pi\)
\(734\) −3.36512 + 5.73135i −0.124209 + 0.211548i
\(735\) −2.05407 −0.0757656
\(736\) −3.09263 5.83974i −0.113996 0.215256i
\(737\) −73.1023 −2.69276
\(738\) 0.592573 1.00925i 0.0218129 0.0371509i
\(739\) 24.5294i 0.902329i 0.892441 + 0.451165i \(0.148991\pi\)
−0.892441 + 0.451165i \(0.851009\pi\)
\(740\) 0.677959 + 1.21496i 0.0249223 + 0.0446627i
\(741\) 1.37364i 0.0504620i
\(742\) 2.67319 + 1.56955i 0.0981360 + 0.0576198i
\(743\) 30.2539 1.10991 0.554953 0.831882i \(-0.312736\pi\)
0.554953 + 0.831882i \(0.312736\pi\)
\(744\) 0.256162 11.6740i 0.00939135 0.427990i
\(745\) 92.4615 3.38753
\(746\) 26.3322 + 15.4607i 0.964089 + 0.566058i
\(747\) 7.89802i 0.288973i
\(748\) 59.6056 33.2606i 2.17940 1.21613i
\(749\) 11.9949i 0.438285i
\(750\) −13.1360 + 22.3728i −0.479660 + 0.816939i
\(751\) −8.36978 −0.305418 −0.152709 0.988271i \(-0.548800\pi\)
−0.152709 + 0.988271i \(0.548800\pi\)
\(752\) 6.48570 10.5111i 0.236509 0.383299i
\(753\) −8.20127 −0.298871
\(754\) −0.286886 + 0.488614i −0.0104478 + 0.0177943i
\(755\) 90.4262i 3.29095i
\(756\) −4.76327 + 2.65796i −0.173239 + 0.0966690i
\(757\) 36.9792i 1.34403i 0.740537 + 0.672016i \(0.234571\pi\)
−0.740537 + 0.672016i \(0.765429\pi\)
\(758\) 11.7423 + 6.89440i 0.426499 + 0.250416i
\(759\) −2.98738 −0.108435
\(760\) 35.7994 + 0.785544i 1.29858 + 0.0284947i
\(761\) 38.2877 1.38793 0.693963 0.720011i \(-0.255863\pi\)
0.693963 + 0.720011i \(0.255863\pi\)
\(762\) −7.13787 4.19095i −0.258578 0.151822i
\(763\) 8.48497i 0.307177i
\(764\) −12.4252 22.2670i −0.449529 0.805592i
\(765\) 76.1278i 2.75241i
\(766\) −15.8686 + 27.0269i −0.573357 + 0.976521i
\(767\) −3.99383 −0.144209
\(768\) −6.75115 + 3.38778i −0.243611 + 0.122246i
\(769\) 31.9613 1.15255 0.576276 0.817255i \(-0.304505\pi\)
0.576276 + 0.817255i \(0.304505\pi\)
\(770\) 16.8768 28.7440i 0.608199 1.03586i
\(771\) 10.5406i 0.379610i
\(772\) −6.63538 11.8911i −0.238813 0.427972i
\(773\) 19.8905i 0.715410i 0.933835 + 0.357705i \(0.116441\pi\)
−0.933835 + 0.357705i \(0.883559\pi\)
\(774\) −12.6940 7.45318i −0.456276 0.267899i
\(775\) −121.826 −4.37611
\(776\) 11.6672 + 0.256012i 0.418827 + 0.00919030i
\(777\) −0.0754802 −0.00270784
\(778\) −4.55827 2.67636i −0.163422 0.0959521i
\(779\) 0.867066i 0.0310659i
\(780\) −3.58742 + 2.00182i −0.128450 + 0.0716766i
\(781\) 65.1072i 2.32972i
\(782\) 5.26987 8.97545i 0.188450 0.320962i
\(783\) −1.09272 −0.0390506
\(784\) −2.10046 + 3.40412i −0.0750166 + 0.121576i
\(785\) −97.5909 −3.48317
\(786\) 3.23615 5.51170i 0.115430 0.196596i
\(787\) 19.5677i 0.697512i 0.937214 + 0.348756i \(0.113396\pi\)
−0.937214 + 0.348756i \(0.886604\pi\)
\(788\) −26.1455 + 14.5895i −0.931395 + 0.519728i
\(789\) 2.16878i 0.0772107i
\(790\) 57.5709 + 33.8024i 2.04828 + 1.20263i
\(791\) 4.48473 0.159458
\(792\) 0.933455 42.5401i 0.0331689 1.51160i
\(793\) −3.08877 −0.109685
\(794\) 2.43326 + 1.42867i 0.0863533 + 0.0507017i
\(795\) 4.50246i 0.159686i
\(796\) −3.85824 6.91427i −0.136752 0.245070i
\(797\) 17.4036i 0.616467i 0.951311 + 0.308234i \(0.0997378\pi\)
−0.951311 + 0.308234i \(0.900262\pi\)
\(798\) −0.983589 + 1.67521i −0.0348187 + 0.0593019i
\(799\) 19.4536 0.688219
\(800\) 36.8819 + 69.6434i 1.30397 + 2.46226i
\(801\) −33.5532 −1.18554
\(802\) −15.4316 + 26.2826i −0.544909 + 0.928070i
\(803\) 80.9108i 2.85528i
\(804\) 6.20876 + 11.1266i 0.218966 + 0.392405i
\(805\) 5.08265i 0.179140i
\(806\) −10.6647 6.26170i −0.375648 0.220559i
\(807\) 6.42514 0.226176
\(808\) 0.774513 35.2967i 0.0272473 1.24173i
\(809\) −11.1003 −0.390264 −0.195132 0.980777i \(-0.562514\pi\)
−0.195132 + 0.980777i \(0.562514\pi\)
\(810\) 37.3761 + 21.9451i 1.31326 + 0.771072i
\(811\) 25.3764i 0.891087i 0.895260 + 0.445544i \(0.146990\pi\)
−0.895260 + 0.445544i \(0.853010\pi\)
\(812\) −0.699739 + 0.390462i −0.0245560 + 0.0137025i
\(813\) 2.67713i 0.0938911i
\(814\) 0.620166 1.05624i 0.0217368 0.0370213i
\(815\) 21.5909 0.756296
\(816\) −10.1249 6.24742i −0.354442 0.218703i
\(817\) −10.9057 −0.381541
\(818\) −1.84644 + 3.14478i −0.0645592 + 0.109955i
\(819\) 2.77713i 0.0970407i
\(820\) 2.26444 1.26358i 0.0790776 0.0441262i
\(821\) 12.7401i 0.444631i −0.974975 0.222316i \(-0.928638\pi\)
0.974975 0.222316i \(-0.0713615\pi\)
\(822\) 10.9327 + 6.41905i 0.381322 + 0.223890i
\(823\) 10.7265 0.373903 0.186952 0.982369i \(-0.440139\pi\)
0.186952 + 0.982369i \(0.440139\pi\)
\(824\) −19.4128 0.425975i −0.676278 0.0148395i
\(825\) 35.6268 1.24037
\(826\) −4.87064 2.85976i −0.169471 0.0995038i
\(827\) 31.1260i 1.08236i 0.840907 + 0.541179i \(0.182022\pi\)
−0.840907 + 0.541179i \(0.817978\pi\)
\(828\) −3.16160 5.66584i −0.109873 0.196901i
\(829\) 34.4962i 1.19810i −0.800711 0.599050i \(-0.795545\pi\)
0.800711 0.599050i \(-0.204455\pi\)
\(830\) −8.86035 + 15.0906i −0.307547 + 0.523803i
\(831\) 4.17550 0.144846
\(832\) −0.350918 + 7.99230i −0.0121659 + 0.277083i
\(833\) −6.30026 −0.218291
\(834\) −1.03741 + 1.76687i −0.0359225 + 0.0611818i
\(835\) 61.4400i 2.12622i
\(836\) −15.3609 27.5280i −0.531269 0.952077i
\(837\) 23.8502i 0.824382i
\(838\) 23.7324 + 13.9343i 0.819821 + 0.481352i
\(839\) −31.7211 −1.09513 −0.547566 0.836762i \(-0.684446\pi\)
−0.547566 + 0.836762i \(0.684446\pi\)
\(840\) −5.80840 0.127453i −0.200409 0.00439756i
\(841\) 28.8395 0.994465
\(842\) 35.5464 + 20.8708i 1.22501 + 0.719256i
\(843\) 3.51464i 0.121050i
\(844\) 25.9027 14.4540i 0.891608 0.497527i
\(845\) 4.35100i 0.149679i
\(846\) 6.14013 10.4577i 0.211102 0.359541i
\(847\) −18.3443 −0.630319
\(848\) 7.46172 + 4.60414i 0.256237 + 0.158107i
\(849\) 9.46787 0.324936
\(850\) −62.8472 + 107.039i −2.15564 + 3.67141i
\(851\) 0.186770i 0.00640240i
\(852\) −9.90970 + 5.52972i −0.339501 + 0.189445i
\(853\) 19.2111i 0.657775i −0.944369 0.328887i \(-0.893326\pi\)
0.944369 0.328887i \(-0.106674\pi\)
\(854\) −3.76688 2.21169i −0.128900 0.0756826i
\(855\) 35.1586 1.20240
\(856\) 0.744274 33.9186i 0.0254388 1.15931i
\(857\) −2.34960 −0.0802610 −0.0401305 0.999194i \(-0.512777\pi\)
−0.0401305 + 0.999194i \(0.512777\pi\)
\(858\) 3.11879 + 1.83117i 0.106474 + 0.0625152i
\(859\) 19.8276i 0.676510i −0.941054 0.338255i \(-0.890163\pi\)
0.941054 0.338255i \(-0.109837\pi\)
\(860\) −15.8929 28.4814i −0.541943 0.971206i
\(861\) 0.140680i 0.00479436i
\(862\) 1.53777 2.61907i 0.0523765 0.0892058i
\(863\) −9.18962 −0.312818 −0.156409 0.987692i \(-0.549992\pi\)
−0.156409 + 0.987692i \(0.549992\pi\)
\(864\) −13.6343 + 7.22047i −0.463847 + 0.245645i
\(865\) 53.8648 1.83146
\(866\) −3.79253 + 6.45931i −0.128876 + 0.219496i
\(867\) 10.7133i 0.363844i
\(868\) −8.52238 15.2728i −0.289268 0.518392i
\(869\) 58.7733i 1.99375i
\(870\) −1.00365 0.589285i −0.0340269 0.0199786i
\(871\) 13.4949 0.457257
\(872\) −0.526485 + 23.9934i −0.0178290 + 0.812518i
\(873\) 11.4583 0.387806
\(874\) −4.14519 2.43382i −0.140213 0.0823251i
\(875\) 38.8595i 1.31369i
\(876\) 12.3151 6.87195i 0.416088 0.232182i
\(877\) 18.3706i 0.620332i −0.950682 0.310166i \(-0.899615\pi\)
0.950682 0.310166i \(-0.100385\pi\)
\(878\) −7.71436 + 13.1388i −0.260347 + 0.443414i
\(879\) −4.98247 −0.168054
\(880\) 49.5069 80.2336i 1.66888 2.70467i
\(881\) −4.99860 −0.168407 −0.0842035 0.996449i \(-0.526835\pi\)
−0.0842035 + 0.996449i \(0.526835\pi\)
\(882\) −1.98855 + 3.38682i −0.0669579 + 0.114040i
\(883\) 33.9889i 1.14382i 0.820317 + 0.571908i \(0.193797\pi\)
−0.820317 + 0.571908i \(0.806203\pi\)
\(884\) −11.0033 + 6.13998i −0.370083 + 0.206510i
\(885\) 8.20362i 0.275762i
\(886\) −21.4705 12.6062i −0.721314 0.423514i
\(887\) −15.9377 −0.535134 −0.267567 0.963539i \(-0.586220\pi\)
−0.267567 + 0.963539i \(0.586220\pi\)
\(888\) −0.213439 0.00468348i −0.00716254 0.000157167i
\(889\) −12.3978 −0.415809
\(890\) −64.1096 37.6415i −2.14896 1.26175i
\(891\) 38.1567i 1.27830i
\(892\) 7.69681 + 13.7933i 0.257708 + 0.461834i
\(893\) 8.98439i 0.300651i
\(894\) −7.18355 + 12.2348i −0.240254 + 0.409192i
\(895\) −11.8444 −0.395916
\(896\) −6.15080 + 9.49566i −0.205484 + 0.317228i
\(897\) 0.551479 0.0184133
\(898\) 2.17227 3.69973i 0.0724896 0.123462i
\(899\) 3.50366i 0.116854i
\(900\) 37.7044 + 67.5694i 1.25681 + 2.25231i
\(901\) 13.8100i 0.460076i
\(902\) −1.96863 1.15587i −0.0655482 0.0384862i
\(903\) 1.76943 0.0588829
\(904\) 12.6817 + 0.278273i 0.421786 + 0.00925523i
\(905\) −38.5880 −1.28271
\(906\) 11.9655 + 7.02543i 0.397526 + 0.233404i
\(907\) 33.7784i 1.12159i 0.827954 + 0.560796i \(0.189505\pi\)
−0.827954 + 0.560796i \(0.810495\pi\)
\(908\) −3.01809 + 1.68413i −0.100159 + 0.0558897i
\(909\) 34.6649i 1.14976i
\(910\) −3.11551 + 5.30622i −0.103278 + 0.175899i
\(911\) −4.38521 −0.145288 −0.0726442 0.997358i \(-0.523144\pi\)
−0.0726442 + 0.997358i \(0.523144\pi\)
\(912\) −2.88529 + 4.67605i −0.0955414 + 0.154839i
\(913\) 15.4058 0.509858
\(914\) −8.85242 + 15.0771i −0.292812 + 0.498707i
\(915\) 6.34455i 0.209744i
\(916\) 13.2273 7.38100i 0.437044 0.243875i
\(917\) 9.57331i 0.316139i
\(918\) −20.9553 12.3038i −0.691628 0.406084i
\(919\) −48.7802 −1.60911 −0.804555 0.593878i \(-0.797596\pi\)
−0.804555 + 0.593878i \(0.797596\pi\)
\(920\) 0.315374 14.3724i 0.0103976 0.473845i
\(921\) 14.4118 0.474886
\(922\) −15.0851 8.85712i −0.496802 0.291694i
\(923\) 12.0190i 0.395609i
\(924\) 2.49229 + 4.46638i 0.0819902 + 0.146933i
\(925\) 2.22737i 0.0732356i
\(926\) 7.54721 12.8541i 0.248017 0.422413i
\(927\) −19.0653 −0.626188
\(928\) −2.00291 + 1.06071i −0.0657488 + 0.0348195i
\(929\) −51.9099 −1.70311 −0.851554 0.524267i \(-0.824339\pi\)
−0.851554 + 0.524267i \(0.824339\pi\)
\(930\) 12.8620 21.9061i 0.421761 0.718328i
\(931\) 2.90969i 0.0953612i
\(932\) 18.4424 + 33.0502i 0.604100 + 1.08260i
\(933\) 3.20553i 0.104944i
\(934\) 29.3375 + 17.2253i 0.959951 + 0.563628i
\(935\) 148.494 4.85628
\(936\) −0.172318 + 7.85302i −0.00563240 + 0.256684i
\(937\) −37.1826 −1.21470 −0.607351 0.794434i \(-0.707768\pi\)
−0.607351 + 0.794434i \(0.707768\pi\)
\(938\) 16.4576 + 9.66294i 0.537358 + 0.315506i
\(939\) 6.22166i 0.203036i
\(940\) 23.4637 13.0930i 0.765302 0.427047i
\(941\) 11.2287i 0.366044i −0.983109 0.183022i \(-0.941412\pi\)
0.983109 0.183022i \(-0.0585880\pi\)
\(942\) 7.58207 12.9135i 0.247037 0.420745i
\(943\) −0.348102 −0.0113358
\(944\) −13.5955 8.38890i −0.442496 0.273035i
\(945\) −11.8666 −0.386022
\(946\) −14.5381 + 24.7608i −0.472675 + 0.805042i
\(947\) 54.3921i 1.76751i −0.467955 0.883753i \(-0.655009\pi\)
0.467955 0.883753i \(-0.344991\pi\)
\(948\) −8.94565 + 4.99177i −0.290541 + 0.162125i
\(949\) 14.9363i 0.484854i
\(950\) 49.4345 + 29.0251i 1.60387 + 0.941700i
\(951\) −0.257833 −0.00836081
\(952\) −17.8155 0.390925i −0.577405 0.0126700i
\(953\) 25.8510 0.837397 0.418698 0.908125i \(-0.362486\pi\)
0.418698 + 0.908125i \(0.362486\pi\)
\(954\) 7.42380 + 4.35883i 0.240354 + 0.141122i
\(955\) 55.4733i 1.79507i
\(956\) −7.99766 14.3325i −0.258663 0.463545i
\(957\) 1.02461i 0.0331210i
\(958\) −19.9868 + 34.0408i −0.645744 + 1.09981i
\(959\) 18.9891 0.613189
\(960\) −16.4168 0.720811i −0.529849 0.0232641i
\(961\) 45.4723 1.46685
\(962\) −0.114484 + 0.194985i −0.00369112 + 0.00628658i
\(963\) 33.3115i 1.07345i
\(964\) −2.23115 3.99841i −0.0718606 0.128780i
\(965\) 29.6242i 0.953635i
\(966\) 0.672551 + 0.394883i 0.0216390 + 0.0127052i
\(967\) 53.4063 1.71743 0.858715 0.512454i \(-0.171263\pi\)
0.858715 + 0.512454i \(0.171263\pi\)
\(968\) −51.8732 1.13825i −1.66727 0.0365847i
\(969\) −8.65431 −0.278016
\(970\) 21.8933 + 12.8545i 0.702950 + 0.412732i
\(971\) 54.3422i 1.74393i 0.489572 + 0.871963i \(0.337153\pi\)
−0.489572 + 0.871963i \(0.662847\pi\)
\(972\) −20.0975 + 11.2146i −0.644628 + 0.359709i
\(973\) 3.06890i 0.0983843i
\(974\) −11.9971 + 20.4330i −0.384412 + 0.654717i
\(975\) −6.57680 −0.210626
\(976\) −10.5145 6.48784i −0.336562 0.207671i
\(977\) −40.8656 −1.30741 −0.653703 0.756751i \(-0.726785\pi\)
−0.653703 + 0.756751i \(0.726785\pi\)
\(978\) −1.67745 + 2.85697i −0.0536389 + 0.0913558i
\(979\) 65.4486i 2.09175i
\(980\) −7.59898 + 4.24031i −0.242740 + 0.135452i
\(981\) 23.5639i 0.752336i
\(982\) −24.9251 14.6346i −0.795392 0.467008i
\(983\) −3.87342 −0.123543 −0.0617715 0.998090i \(-0.519675\pi\)
−0.0617715 + 0.998090i \(0.519675\pi\)
\(984\) −0.00872907 + 0.397808i −0.000278273 + 0.0126816i
\(985\) −65.1357 −2.07540
\(986\) −3.07840 1.80746i −0.0980361 0.0575612i
\(987\) 1.45770i 0.0463992i
\(988\) 2.83567 + 5.08175i 0.0902146 + 0.161672i
\(989\) 4.37832i 0.139222i
\(990\) 46.8691 79.8258i 1.48960 2.53703i
\(991\) 44.9706 1.42854 0.714269 0.699871i \(-0.246759\pi\)
0.714269 + 0.699871i \(0.246759\pi\)
\(992\) −23.1515 43.7164i −0.735060 1.38800i
\(993\) −3.35684 −0.106526
\(994\) −8.60611 + 14.6576i −0.272969 + 0.464911i
\(995\) 17.2254i 0.546081i
\(996\) −1.30845 2.34485i −0.0414599 0.0742995i
\(997\) 11.0142i 0.348824i 0.984673 + 0.174412i \(0.0558024\pi\)
−0.984673 + 0.174412i \(0.944198\pi\)
\(998\) 9.37521 + 5.50459i 0.296767 + 0.174245i
\(999\) −0.436059 −0.0137963
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.c.b.365.14 yes 38
4.3 odd 2 2912.2.c.b.1457.22 38
8.3 odd 2 2912.2.c.b.1457.17 38
8.5 even 2 inner 728.2.c.b.365.13 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.b.365.13 38 8.5 even 2 inner
728.2.c.b.365.14 yes 38 1.1 even 1 trivial
2912.2.c.b.1457.17 38 8.3 odd 2
2912.2.c.b.1457.22 38 4.3 odd 2