Properties

Label 728.2.c.b.365.12
Level $728$
Weight $2$
Character 728.365
Analytic conductor $5.813$
Analytic rank $0$
Dimension $38$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [728,2,Mod(365,728)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(728, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("728.365"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.c (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [38] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(38\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 365.12
Character \(\chi\) \(=\) 728.365
Dual form 728.2.c.b.365.11

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.06885 + 0.926043i) q^{2} +2.33171i q^{3} +(0.284890 - 1.97961i) q^{4} -0.889625i q^{5} +(-2.15926 - 2.49225i) q^{6} +1.00000 q^{7} +(1.52869 + 2.37973i) q^{8} -2.43685 q^{9} +(0.823831 + 0.950878i) q^{10} -5.19158i q^{11} +(4.61586 + 0.664280i) q^{12} -1.00000i q^{13} +(-1.06885 + 0.926043i) q^{14} +2.07434 q^{15} +(-3.83768 - 1.12794i) q^{16} +3.21826 q^{17} +(2.60463 - 2.25663i) q^{18} -7.04246i q^{19} +(-1.76111 - 0.253446i) q^{20} +2.33171i q^{21} +(4.80762 + 5.54903i) q^{22} +1.95543 q^{23} +(-5.54882 + 3.56446i) q^{24} +4.20857 q^{25} +(0.926043 + 1.06885i) q^{26} +1.31310i q^{27} +(0.284890 - 1.97961i) q^{28} -3.33778i q^{29} +(-2.21717 + 1.92093i) q^{30} -4.20796 q^{31} +(5.14643 - 2.34825i) q^{32} +12.1052 q^{33} +(-3.43984 + 2.98024i) q^{34} -0.889625i q^{35} +(-0.694235 + 4.82400i) q^{36} -4.89196i q^{37} +(6.52162 + 7.52735i) q^{38} +2.33171 q^{39} +(2.11706 - 1.35996i) q^{40} +7.53924 q^{41} +(-2.15926 - 2.49225i) q^{42} -7.93240i q^{43} +(-10.2773 - 1.47903i) q^{44} +2.16788i q^{45} +(-2.09007 + 1.81082i) q^{46} -5.87744 q^{47} +(2.63003 - 8.94833i) q^{48} +1.00000 q^{49} +(-4.49834 + 3.89731i) q^{50} +7.50403i q^{51} +(-1.97961 - 0.284890i) q^{52} +12.5689i q^{53} +(-1.21599 - 1.40351i) q^{54} -4.61856 q^{55} +(1.52869 + 2.37973i) q^{56} +16.4210 q^{57} +(3.09092 + 3.56759i) q^{58} +10.6544i q^{59} +(0.590960 - 4.10638i) q^{60} -0.855217i q^{61} +(4.49769 - 3.89675i) q^{62} -2.43685 q^{63} +(-3.32619 + 7.27574i) q^{64} -0.889625 q^{65} +(-12.9387 + 11.2100i) q^{66} +0.692832i q^{67} +(0.916850 - 6.37088i) q^{68} +4.55950i q^{69} +(0.823831 + 0.950878i) q^{70} -3.83030 q^{71} +(-3.72519 - 5.79903i) q^{72} +0.715881 q^{73} +(4.53016 + 5.22878i) q^{74} +9.81314i q^{75} +(-13.9413 - 2.00633i) q^{76} -5.19158i q^{77} +(-2.49225 + 2.15926i) q^{78} -1.11892 q^{79} +(-1.00344 + 3.41409i) q^{80} -10.3723 q^{81} +(-8.05833 + 6.98166i) q^{82} +11.4825i q^{83} +(4.61586 + 0.664280i) q^{84} -2.86304i q^{85} +(7.34574 + 8.47856i) q^{86} +7.78271 q^{87} +(12.3545 - 7.93633i) q^{88} -2.19918 q^{89} +(-2.00755 - 2.31715i) q^{90} -1.00000i q^{91} +(0.557084 - 3.87099i) q^{92} -9.81173i q^{93} +(6.28211 - 5.44276i) q^{94} -6.26515 q^{95} +(5.47542 + 12.0000i) q^{96} +14.7605 q^{97} +(-1.06885 + 0.926043i) q^{98} +12.6511i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 38 q + 8 q^{4} + 14 q^{6} + 38 q^{7} - 6 q^{8} - 46 q^{9} - 4 q^{12} - 8 q^{15} - 4 q^{16} + 20 q^{17} + 4 q^{18} - 24 q^{20} + 10 q^{22} + 12 q^{23} + 10 q^{24} - 50 q^{25} + 8 q^{28} + 4 q^{30} + 16 q^{31}+ \cdots + 82 q^{96}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.06885 + 0.926043i −0.755793 + 0.654811i
\(3\) 2.33171i 1.34621i 0.739547 + 0.673105i \(0.235040\pi\)
−0.739547 + 0.673105i \(0.764960\pi\)
\(4\) 0.284890 1.97961i 0.142445 0.989803i
\(5\) 0.889625i 0.397853i −0.980014 0.198926i \(-0.936255\pi\)
0.980014 0.198926i \(-0.0637454\pi\)
\(6\) −2.15926 2.49225i −0.881514 1.01746i
\(7\) 1.00000 0.377964
\(8\) 1.52869 + 2.37973i 0.540475 + 0.841360i
\(9\) −2.43685 −0.812283
\(10\) 0.823831 + 0.950878i 0.260518 + 0.300694i
\(11\) 5.19158i 1.56532i −0.622450 0.782660i \(-0.713863\pi\)
0.622450 0.782660i \(-0.286137\pi\)
\(12\) 4.61586 + 0.664280i 1.33248 + 0.191761i
\(13\) 1.00000i 0.277350i
\(14\) −1.06885 + 0.926043i −0.285663 + 0.247495i
\(15\) 2.07434 0.535593
\(16\) −3.83768 1.12794i −0.959419 0.281985i
\(17\) 3.21826 0.780542 0.390271 0.920700i \(-0.372381\pi\)
0.390271 + 0.920700i \(0.372381\pi\)
\(18\) 2.60463 2.25663i 0.613918 0.531892i
\(19\) 7.04246i 1.61565i −0.589421 0.807826i \(-0.700644\pi\)
0.589421 0.807826i \(-0.299356\pi\)
\(20\) −1.76111 0.253446i −0.393795 0.0566722i
\(21\) 2.33171i 0.508820i
\(22\) 4.80762 + 5.54903i 1.02499 + 1.18306i
\(23\) 1.95543 0.407736 0.203868 0.978998i \(-0.434649\pi\)
0.203868 + 0.978998i \(0.434649\pi\)
\(24\) −5.54882 + 3.56446i −1.13265 + 0.727593i
\(25\) 4.20857 0.841713
\(26\) 0.926043 + 1.06885i 0.181612 + 0.209619i
\(27\) 1.31310i 0.252707i
\(28\) 0.284890 1.97961i 0.0538392 0.374110i
\(29\) 3.33778i 0.619809i −0.950768 0.309905i \(-0.899703\pi\)
0.950768 0.309905i \(-0.100297\pi\)
\(30\) −2.21717 + 1.92093i −0.404797 + 0.350712i
\(31\) −4.20796 −0.755773 −0.377886 0.925852i \(-0.623349\pi\)
−0.377886 + 0.925852i \(0.623349\pi\)
\(32\) 5.14643 2.34825i 0.909769 0.415116i
\(33\) 12.1052 2.10725
\(34\) −3.43984 + 2.98024i −0.589928 + 0.511108i
\(35\) 0.889625i 0.150374i
\(36\) −0.694235 + 4.82400i −0.115706 + 0.804000i
\(37\) 4.89196i 0.804234i −0.915588 0.402117i \(-0.868275\pi\)
0.915588 0.402117i \(-0.131725\pi\)
\(38\) 6.52162 + 7.52735i 1.05795 + 1.22110i
\(39\) 2.33171 0.373372
\(40\) 2.11706 1.35996i 0.334737 0.215029i
\(41\) 7.53924 1.17743 0.588716 0.808340i \(-0.299634\pi\)
0.588716 + 0.808340i \(0.299634\pi\)
\(42\) −2.15926 2.49225i −0.333181 0.384562i
\(43\) 7.93240i 1.20968i −0.796347 0.604840i \(-0.793237\pi\)
0.796347 0.604840i \(-0.206763\pi\)
\(44\) −10.2773 1.47903i −1.54936 0.222972i
\(45\) 2.16788i 0.323169i
\(46\) −2.09007 + 1.81082i −0.308164 + 0.266990i
\(47\) −5.87744 −0.857312 −0.428656 0.903468i \(-0.641013\pi\)
−0.428656 + 0.903468i \(0.641013\pi\)
\(48\) 2.63003 8.94833i 0.379611 1.29158i
\(49\) 1.00000 0.142857
\(50\) −4.49834 + 3.89731i −0.636161 + 0.551163i
\(51\) 7.50403i 1.05077i
\(52\) −1.97961 0.284890i −0.274522 0.0395072i
\(53\) 12.5689i 1.72647i 0.504805 + 0.863234i \(0.331565\pi\)
−0.504805 + 0.863234i \(0.668435\pi\)
\(54\) −1.21599 1.40351i −0.165475 0.190994i
\(55\) −4.61856 −0.622766
\(56\) 1.52869 + 2.37973i 0.204280 + 0.318004i
\(57\) 16.4210 2.17501
\(58\) 3.09092 + 3.56759i 0.405858 + 0.468447i
\(59\) 10.6544i 1.38708i 0.720417 + 0.693541i \(0.243950\pi\)
−0.720417 + 0.693541i \(0.756050\pi\)
\(60\) 0.590960 4.10638i 0.0762927 0.530132i
\(61\) 0.855217i 0.109499i −0.998500 0.0547496i \(-0.982564\pi\)
0.998500 0.0547496i \(-0.0174361\pi\)
\(62\) 4.49769 3.89675i 0.571207 0.494888i
\(63\) −2.43685 −0.307014
\(64\) −3.32619 + 7.27574i −0.415774 + 0.909468i
\(65\) −0.889625 −0.110344
\(66\) −12.9387 + 11.2100i −1.59264 + 1.37985i
\(67\) 0.692832i 0.0846429i 0.999104 + 0.0423215i \(0.0134754\pi\)
−0.999104 + 0.0423215i \(0.986525\pi\)
\(68\) 0.916850 6.37088i 0.111184 0.772583i
\(69\) 4.55950i 0.548899i
\(70\) 0.823831 + 0.950878i 0.0984666 + 0.113652i
\(71\) −3.83030 −0.454573 −0.227287 0.973828i \(-0.572985\pi\)
−0.227287 + 0.973828i \(0.572985\pi\)
\(72\) −3.72519 5.79903i −0.439018 0.683423i
\(73\) 0.715881 0.0837875 0.0418937 0.999122i \(-0.486661\pi\)
0.0418937 + 0.999122i \(0.486661\pi\)
\(74\) 4.53016 + 5.22878i 0.526621 + 0.607834i
\(75\) 9.81314i 1.13312i
\(76\) −13.9413 2.00633i −1.59918 0.230142i
\(77\) 5.19158i 0.591635i
\(78\) −2.49225 + 2.15926i −0.282192 + 0.244488i
\(79\) −1.11892 −0.125888 −0.0629441 0.998017i \(-0.520049\pi\)
−0.0629441 + 0.998017i \(0.520049\pi\)
\(80\) −1.00344 + 3.41409i −0.112189 + 0.381707i
\(81\) −10.3723 −1.15248
\(82\) −8.05833 + 6.98166i −0.889894 + 0.770995i
\(83\) 11.4825i 1.26037i 0.776447 + 0.630183i \(0.217020\pi\)
−0.776447 + 0.630183i \(0.782980\pi\)
\(84\) 4.61586 + 0.664280i 0.503631 + 0.0724789i
\(85\) 2.86304i 0.310541i
\(86\) 7.34574 + 8.47856i 0.792111 + 0.914267i
\(87\) 7.78271 0.834394
\(88\) 12.3545 7.93633i 1.31700 0.846015i
\(89\) −2.19918 −0.233113 −0.116556 0.993184i \(-0.537186\pi\)
−0.116556 + 0.993184i \(0.537186\pi\)
\(90\) −2.00755 2.31715i −0.211615 0.244249i
\(91\) 1.00000i 0.104828i
\(92\) 0.557084 3.87099i 0.0580800 0.403578i
\(93\) 9.81173i 1.01743i
\(94\) 6.28211 5.44276i 0.647950 0.561377i
\(95\) −6.26515 −0.642791
\(96\) 5.47542 + 12.0000i 0.558833 + 1.22474i
\(97\) 14.7605 1.49870 0.749352 0.662172i \(-0.230365\pi\)
0.749352 + 0.662172i \(0.230365\pi\)
\(98\) −1.06885 + 0.926043i −0.107970 + 0.0935444i
\(99\) 12.6511i 1.27148i
\(100\) 1.19898 8.33130i 0.119898 0.833130i
\(101\) 17.5421i 1.74550i 0.488166 + 0.872751i \(0.337666\pi\)
−0.488166 + 0.872751i \(0.662334\pi\)
\(102\) −6.94905 8.02070i −0.688058 0.794167i
\(103\) 4.01795 0.395900 0.197950 0.980212i \(-0.436572\pi\)
0.197950 + 0.980212i \(0.436572\pi\)
\(104\) 2.37973 1.52869i 0.233351 0.149901i
\(105\) 2.07434 0.202435
\(106\) −11.6393 13.4343i −1.13051 1.30485i
\(107\) 4.53921i 0.438822i −0.975633 0.219411i \(-0.929586\pi\)
0.975633 0.219411i \(-0.0704135\pi\)
\(108\) 2.59942 + 0.374090i 0.250130 + 0.0359968i
\(109\) 13.1578i 1.26029i −0.776478 0.630145i \(-0.782995\pi\)
0.776478 0.630145i \(-0.217005\pi\)
\(110\) 4.93656 4.27698i 0.470682 0.407794i
\(111\) 11.4066 1.08267
\(112\) −3.83768 1.12794i −0.362626 0.106580i
\(113\) −0.259943 −0.0244534 −0.0122267 0.999925i \(-0.503892\pi\)
−0.0122267 + 0.999925i \(0.503892\pi\)
\(114\) −17.5516 + 15.2065i −1.64386 + 1.42422i
\(115\) 1.73960i 0.162219i
\(116\) −6.60748 0.950900i −0.613489 0.0882888i
\(117\) 2.43685i 0.225287i
\(118\) −9.86641 11.3880i −0.908276 1.04835i
\(119\) 3.21826 0.295017
\(120\) 3.17104 + 4.93637i 0.289475 + 0.450627i
\(121\) −15.9525 −1.45022
\(122\) 0.791967 + 0.914100i 0.0717013 + 0.0827587i
\(123\) 17.5793i 1.58507i
\(124\) −1.19881 + 8.33011i −0.107656 + 0.748066i
\(125\) 8.19217i 0.732730i
\(126\) 2.60463 2.25663i 0.232039 0.201036i
\(127\) −9.05123 −0.803167 −0.401584 0.915822i \(-0.631540\pi\)
−0.401584 + 0.915822i \(0.631540\pi\)
\(128\) −3.18244 10.8569i −0.281290 0.959623i
\(129\) 18.4960 1.62848
\(130\) 0.950878 0.823831i 0.0833975 0.0722547i
\(131\) 19.7801i 1.72820i −0.503321 0.864099i \(-0.667889\pi\)
0.503321 0.864099i \(-0.332111\pi\)
\(132\) 3.44866 23.9636i 0.300167 2.08576i
\(133\) 7.04246i 0.610659i
\(134\) −0.641592 0.740535i −0.0554251 0.0639725i
\(135\) 1.16817 0.100540
\(136\) 4.91973 + 7.65857i 0.421863 + 0.656717i
\(137\) 13.8480 1.18311 0.591556 0.806264i \(-0.298514\pi\)
0.591556 + 0.806264i \(0.298514\pi\)
\(138\) −4.22229 4.87343i −0.359425 0.414854i
\(139\) 6.28021i 0.532681i −0.963879 0.266340i \(-0.914185\pi\)
0.963879 0.266340i \(-0.0858145\pi\)
\(140\) −1.76111 0.253446i −0.148841 0.0214201i
\(141\) 13.7044i 1.15412i
\(142\) 4.09403 3.54702i 0.343563 0.297660i
\(143\) −5.19158 −0.434141
\(144\) 9.35184 + 2.74862i 0.779320 + 0.229052i
\(145\) −2.96937 −0.246593
\(146\) −0.765171 + 0.662936i −0.0633260 + 0.0548650i
\(147\) 2.33171i 0.192316i
\(148\) −9.68415 1.39367i −0.796032 0.114559i
\(149\) 19.9794i 1.63677i −0.574669 0.818386i \(-0.694869\pi\)
0.574669 0.818386i \(-0.305131\pi\)
\(150\) −9.08738 10.4888i −0.741982 0.856406i
\(151\) 20.1238 1.63765 0.818825 0.574043i \(-0.194626\pi\)
0.818825 + 0.574043i \(0.194626\pi\)
\(152\) 16.7591 10.7658i 1.35935 0.873219i
\(153\) −7.84241 −0.634021
\(154\) 4.80762 + 5.54903i 0.387409 + 0.447153i
\(155\) 3.74351i 0.300686i
\(156\) 0.664280 4.61586i 0.0531850 0.369564i
\(157\) 6.20998i 0.495611i −0.968810 0.247805i \(-0.920291\pi\)
0.968810 0.247805i \(-0.0797093\pi\)
\(158\) 1.19596 1.03617i 0.0951454 0.0824330i
\(159\) −29.3069 −2.32419
\(160\) −2.08906 4.57839i −0.165155 0.361954i
\(161\) 1.95543 0.154110
\(162\) 11.0865 9.60520i 0.871035 0.754656i
\(163\) 16.5675i 1.29767i −0.760930 0.648834i \(-0.775257\pi\)
0.760930 0.648834i \(-0.224743\pi\)
\(164\) 2.14786 14.9247i 0.167719 1.16542i
\(165\) 10.7691i 0.838374i
\(166\) −10.6333 12.2731i −0.825301 0.952575i
\(167\) 9.45402 0.731574 0.365787 0.930699i \(-0.380800\pi\)
0.365787 + 0.930699i \(0.380800\pi\)
\(168\) −5.54882 + 3.56446i −0.428101 + 0.275004i
\(169\) −1.00000 −0.0769231
\(170\) 2.65130 + 3.06017i 0.203345 + 0.234704i
\(171\) 17.1614i 1.31237i
\(172\) −15.7030 2.25986i −1.19734 0.172313i
\(173\) 25.2077i 1.91650i 0.285924 + 0.958252i \(0.407700\pi\)
−0.285924 + 0.958252i \(0.592300\pi\)
\(174\) −8.31857 + 7.20712i −0.630629 + 0.546370i
\(175\) 4.20857 0.318138
\(176\) −5.85579 + 19.9236i −0.441397 + 1.50180i
\(177\) −24.8429 −1.86730
\(178\) 2.35060 2.03654i 0.176185 0.152645i
\(179\) 19.5708i 1.46279i 0.681953 + 0.731396i \(0.261131\pi\)
−0.681953 + 0.731396i \(0.738869\pi\)
\(180\) 4.29155 + 0.617609i 0.319873 + 0.0460338i
\(181\) 1.93265i 0.143652i 0.997417 + 0.0718262i \(0.0228827\pi\)
−0.997417 + 0.0718262i \(0.977117\pi\)
\(182\) 0.926043 + 1.06885i 0.0686428 + 0.0792286i
\(183\) 1.99411 0.147409
\(184\) 2.98926 + 4.65340i 0.220371 + 0.343053i
\(185\) −4.35201 −0.319966
\(186\) 9.08608 + 10.4873i 0.666224 + 0.768965i
\(187\) 16.7078i 1.22180i
\(188\) −1.67442 + 11.6350i −0.122120 + 0.848570i
\(189\) 1.31310i 0.0955141i
\(190\) 6.69652 5.80180i 0.485817 0.420907i
\(191\) 1.58197 0.114468 0.0572338 0.998361i \(-0.481772\pi\)
0.0572338 + 0.998361i \(0.481772\pi\)
\(192\) −16.9649 7.75570i −1.22434 0.559720i
\(193\) −17.6386 −1.26966 −0.634829 0.772653i \(-0.718929\pi\)
−0.634829 + 0.772653i \(0.718929\pi\)
\(194\) −15.7768 + 13.6689i −1.13271 + 0.981368i
\(195\) 2.07434i 0.148547i
\(196\) 0.284890 1.97961i 0.0203493 0.141400i
\(197\) 3.53842i 0.252102i −0.992024 0.126051i \(-0.959770\pi\)
0.992024 0.126051i \(-0.0402304\pi\)
\(198\) −11.7154 13.5221i −0.832581 0.960977i
\(199\) 1.47725 0.104720 0.0523598 0.998628i \(-0.483326\pi\)
0.0523598 + 0.998628i \(0.483326\pi\)
\(200\) 6.43361 + 10.0152i 0.454925 + 0.708184i
\(201\) −1.61548 −0.113947
\(202\) −16.2447 18.7499i −1.14297 1.31924i
\(203\) 3.33778i 0.234266i
\(204\) 14.8550 + 2.13782i 1.04006 + 0.149678i
\(205\) 6.70710i 0.468444i
\(206\) −4.29459 + 3.72079i −0.299218 + 0.259240i
\(207\) −4.76510 −0.331197
\(208\) −1.12794 + 3.83768i −0.0782086 + 0.266095i
\(209\) −36.5615 −2.52901
\(210\) −2.21717 + 1.92093i −0.152999 + 0.132557i
\(211\) 21.4365i 1.47575i 0.674939 + 0.737873i \(0.264170\pi\)
−0.674939 + 0.737873i \(0.735830\pi\)
\(212\) 24.8814 + 3.58075i 1.70886 + 0.245927i
\(213\) 8.93114i 0.611951i
\(214\) 4.20350 + 4.85174i 0.287345 + 0.331658i
\(215\) −7.05686 −0.481274
\(216\) −3.12482 + 2.00733i −0.212617 + 0.136582i
\(217\) −4.20796 −0.285655
\(218\) 12.1847 + 14.0638i 0.825252 + 0.952518i
\(219\) 1.66922i 0.112796i
\(220\) −1.31578 + 9.14292i −0.0887100 + 0.616416i
\(221\) 3.21826i 0.216483i
\(222\) −12.1920 + 10.5630i −0.818272 + 0.708943i
\(223\) −26.4880 −1.77377 −0.886883 0.461994i \(-0.847134\pi\)
−0.886883 + 0.461994i \(0.847134\pi\)
\(224\) 5.14643 2.34825i 0.343860 0.156899i
\(225\) −10.2556 −0.683710
\(226\) 0.277840 0.240718i 0.0184817 0.0160123i
\(227\) 13.9068i 0.923027i 0.887133 + 0.461514i \(0.152693\pi\)
−0.887133 + 0.461514i \(0.847307\pi\)
\(228\) 4.67817 32.5070i 0.309819 2.15283i
\(229\) 8.35469i 0.552093i −0.961144 0.276047i \(-0.910976\pi\)
0.961144 0.276047i \(-0.0890244\pi\)
\(230\) 1.61095 + 1.85938i 0.106223 + 0.122604i
\(231\) 12.1052 0.796465
\(232\) 7.94299 5.10244i 0.521483 0.334991i
\(233\) 6.99448 0.458224 0.229112 0.973400i \(-0.426418\pi\)
0.229112 + 0.973400i \(0.426418\pi\)
\(234\) −2.25663 2.60463i −0.147520 0.170270i
\(235\) 5.22872i 0.341084i
\(236\) 21.0915 + 3.03533i 1.37294 + 0.197583i
\(237\) 2.60899i 0.169472i
\(238\) −3.43984 + 2.98024i −0.222972 + 0.193181i
\(239\) −14.1229 −0.913537 −0.456768 0.889586i \(-0.650993\pi\)
−0.456768 + 0.889586i \(0.650993\pi\)
\(240\) −7.96066 2.33974i −0.513858 0.151029i
\(241\) 26.1438 1.68407 0.842036 0.539421i \(-0.181357\pi\)
0.842036 + 0.539421i \(0.181357\pi\)
\(242\) 17.0508 14.7727i 1.09607 0.949623i
\(243\) 20.2459i 1.29877i
\(244\) −1.69299 0.243643i −0.108383 0.0155976i
\(245\) 0.889625i 0.0568361i
\(246\) −16.2792 18.7897i −1.03792 1.19799i
\(247\) −7.04246 −0.448101
\(248\) −6.43269 10.0138i −0.408476 0.635877i
\(249\) −26.7738 −1.69672
\(250\) 7.58630 + 8.75622i 0.479800 + 0.553792i
\(251\) 2.70950i 0.171022i −0.996337 0.0855112i \(-0.972748\pi\)
0.996337 0.0855112i \(-0.0272523\pi\)
\(252\) −0.694235 + 4.82400i −0.0437327 + 0.303883i
\(253\) 10.1518i 0.638237i
\(254\) 9.67443 8.38183i 0.607028 0.525923i
\(255\) 6.67577 0.418053
\(256\) 13.4555 + 8.65734i 0.840969 + 0.541084i
\(257\) 8.57734 0.535040 0.267520 0.963552i \(-0.413796\pi\)
0.267520 + 0.963552i \(0.413796\pi\)
\(258\) −19.7695 + 17.1281i −1.23080 + 1.06635i
\(259\) 4.89196i 0.303972i
\(260\) −0.253446 + 1.76111i −0.0157180 + 0.109219i
\(261\) 8.13366i 0.503461i
\(262\) 18.3173 + 21.1420i 1.13164 + 1.30616i
\(263\) −25.0591 −1.54521 −0.772606 0.634886i \(-0.781047\pi\)
−0.772606 + 0.634886i \(0.781047\pi\)
\(264\) 18.5052 + 28.8071i 1.13891 + 1.77296i
\(265\) 11.1816 0.686879
\(266\) 6.52162 + 7.52735i 0.399866 + 0.461532i
\(267\) 5.12784i 0.313819i
\(268\) 1.37153 + 0.197381i 0.0837798 + 0.0120570i
\(269\) 13.8889i 0.846818i −0.905939 0.423409i \(-0.860833\pi\)
0.905939 0.423409i \(-0.139167\pi\)
\(270\) −1.24860 + 1.08177i −0.0759874 + 0.0658347i
\(271\) 4.50260 0.273513 0.136757 0.990605i \(-0.456332\pi\)
0.136757 + 0.990605i \(0.456332\pi\)
\(272\) −12.3506 3.63000i −0.748867 0.220101i
\(273\) 2.33171 0.141121
\(274\) −14.8014 + 12.8238i −0.894187 + 0.774714i
\(275\) 21.8491i 1.31755i
\(276\) 9.02600 + 1.29896i 0.543301 + 0.0781880i
\(277\) 16.9466i 1.01822i 0.860700 + 0.509112i \(0.170026\pi\)
−0.860700 + 0.509112i \(0.829974\pi\)
\(278\) 5.81574 + 6.71262i 0.348805 + 0.402596i
\(279\) 10.2542 0.613901
\(280\) 2.11706 1.35996i 0.126519 0.0812734i
\(281\) 21.0461 1.25550 0.627751 0.778414i \(-0.283976\pi\)
0.627751 + 0.778414i \(0.283976\pi\)
\(282\) 12.6909 + 14.6480i 0.755732 + 0.872277i
\(283\) 5.29404i 0.314698i −0.987543 0.157349i \(-0.949705\pi\)
0.987543 0.157349i \(-0.0502947\pi\)
\(284\) −1.09122 + 7.58249i −0.0647518 + 0.449938i
\(285\) 14.6085i 0.865332i
\(286\) 5.54903 4.80762i 0.328121 0.284281i
\(287\) 7.53924 0.445027
\(288\) −12.5411 + 5.72233i −0.738990 + 0.337191i
\(289\) −6.64282 −0.390754
\(290\) 3.17382 2.74976i 0.186373 0.161472i
\(291\) 34.4172i 2.01757i
\(292\) 0.203947 1.41716i 0.0119351 0.0829331i
\(293\) 5.41703i 0.316466i 0.987402 + 0.158233i \(0.0505797\pi\)
−0.987402 + 0.158233i \(0.949420\pi\)
\(294\) −2.15926 2.49225i −0.125931 0.145351i
\(295\) 9.47840 0.551854
\(296\) 11.6415 7.47831i 0.676650 0.434668i
\(297\) 6.81707 0.395566
\(298\) 18.5017 + 21.3550i 1.07178 + 1.23706i
\(299\) 1.95543i 0.113086i
\(300\) 19.4261 + 2.79567i 1.12157 + 0.161408i
\(301\) 7.93240i 0.457216i
\(302\) −21.5094 + 18.6355i −1.23772 + 1.07235i
\(303\) −40.9029 −2.34981
\(304\) −7.94348 + 27.0267i −0.455590 + 1.55009i
\(305\) −0.760822 −0.0435646
\(306\) 8.38238 7.26240i 0.479189 0.415164i
\(307\) 9.90651i 0.565394i 0.959209 + 0.282697i \(0.0912292\pi\)
−0.959209 + 0.282697i \(0.908771\pi\)
\(308\) −10.2773 1.47903i −0.585602 0.0842755i
\(309\) 9.36866i 0.532965i
\(310\) −3.46665 4.00126i −0.196892 0.227256i
\(311\) 16.7956 0.952392 0.476196 0.879339i \(-0.342015\pi\)
0.476196 + 0.879339i \(0.342015\pi\)
\(312\) 3.56446 + 5.54882i 0.201798 + 0.314140i
\(313\) 9.70069 0.548315 0.274158 0.961685i \(-0.411601\pi\)
0.274158 + 0.961685i \(0.411601\pi\)
\(314\) 5.75071 + 6.63756i 0.324531 + 0.374579i
\(315\) 2.16788i 0.122146i
\(316\) −0.318769 + 2.21502i −0.0179322 + 0.124604i
\(317\) 9.27094i 0.520708i −0.965513 0.260354i \(-0.916161\pi\)
0.965513 0.260354i \(-0.0838392\pi\)
\(318\) 31.3247 27.1394i 1.75660 1.52190i
\(319\) −17.3283 −0.970200
\(320\) 6.47268 + 2.95907i 0.361834 + 0.165417i
\(321\) 10.5841 0.590747
\(322\) −2.09007 + 1.81082i −0.116475 + 0.100913i
\(323\) 22.6645i 1.26108i
\(324\) −2.95497 + 20.5331i −0.164165 + 1.14073i
\(325\) 4.20857i 0.233449i
\(326\) 15.3422 + 17.7082i 0.849727 + 0.980768i
\(327\) 30.6801 1.69662
\(328\) 11.5252 + 17.9413i 0.636372 + 0.990644i
\(329\) −5.87744 −0.324034
\(330\) 9.97266 + 11.5106i 0.548977 + 0.633637i
\(331\) 6.12891i 0.336875i 0.985712 + 0.168438i \(0.0538722\pi\)
−0.985712 + 0.168438i \(0.946128\pi\)
\(332\) 22.7308 + 3.27125i 1.24751 + 0.179533i
\(333\) 11.9210i 0.653265i
\(334\) −10.1050 + 8.75483i −0.552918 + 0.479043i
\(335\) 0.616361 0.0336754
\(336\) 2.63003 8.94833i 0.143480 0.488171i
\(337\) −12.8282 −0.698794 −0.349397 0.936975i \(-0.613614\pi\)
−0.349397 + 0.936975i \(0.613614\pi\)
\(338\) 1.06885 0.926043i 0.0581379 0.0503701i
\(339\) 0.606110i 0.0329194i
\(340\) −5.66770 0.815653i −0.307374 0.0442350i
\(341\) 21.8460i 1.18303i
\(342\) −15.8922 18.3430i −0.859352 0.991877i
\(343\) 1.00000 0.0539949
\(344\) 18.8769 12.1262i 1.01778 0.653801i
\(345\) 4.05624 0.218381
\(346\) −23.3434 26.9433i −1.25495 1.44848i
\(347\) 1.74202i 0.0935163i 0.998906 + 0.0467582i \(0.0148890\pi\)
−0.998906 + 0.0467582i \(0.985111\pi\)
\(348\) 2.21722 15.4067i 0.118855 0.825885i
\(349\) 28.4674i 1.52383i 0.647679 + 0.761914i \(0.275740\pi\)
−0.647679 + 0.761914i \(0.724260\pi\)
\(350\) −4.49834 + 3.89731i −0.240446 + 0.208320i
\(351\) 1.31310 0.0700882
\(352\) −12.1911 26.7181i −0.649788 1.42408i
\(353\) 24.2648 1.29149 0.645743 0.763554i \(-0.276548\pi\)
0.645743 + 0.763554i \(0.276548\pi\)
\(354\) 26.5534 23.0056i 1.41129 1.22273i
\(355\) 3.40753i 0.180853i
\(356\) −0.626526 + 4.35351i −0.0332058 + 0.230736i
\(357\) 7.50403i 0.397155i
\(358\) −18.1234 20.9183i −0.957852 1.10557i
\(359\) −10.6867 −0.564023 −0.282012 0.959411i \(-0.591002\pi\)
−0.282012 + 0.959411i \(0.591002\pi\)
\(360\) −5.15897 + 3.31403i −0.271901 + 0.174665i
\(361\) −30.5963 −1.61033
\(362\) −1.78971 2.06571i −0.0940652 0.108571i
\(363\) 37.1964i 1.95231i
\(364\) −1.97961 0.284890i −0.103760 0.0149323i
\(365\) 0.636866i 0.0333351i
\(366\) −2.13141 + 1.84663i −0.111411 + 0.0965251i
\(367\) −0.861092 −0.0449486 −0.0224743 0.999747i \(-0.507154\pi\)
−0.0224743 + 0.999747i \(0.507154\pi\)
\(368\) −7.50432 2.20561i −0.391190 0.114976i
\(369\) −18.3720 −0.956408
\(370\) 4.65166 4.03015i 0.241828 0.209517i
\(371\) 12.5689i 0.652543i
\(372\) −19.4234 2.79527i −1.00705 0.144928i
\(373\) 36.1432i 1.87142i 0.352764 + 0.935712i \(0.385242\pi\)
−0.352764 + 0.935712i \(0.614758\pi\)
\(374\) 15.4722 + 17.8582i 0.800047 + 0.923426i
\(375\) 19.1017 0.986409
\(376\) −8.98480 13.9867i −0.463355 0.721308i
\(377\) −3.33778 −0.171904
\(378\) −1.21599 1.40351i −0.0625437 0.0721889i
\(379\) 7.88623i 0.405088i 0.979273 + 0.202544i \(0.0649210\pi\)
−0.979273 + 0.202544i \(0.935079\pi\)
\(380\) −1.78488 + 12.4025i −0.0915625 + 0.636237i
\(381\) 21.1048i 1.08123i
\(382\) −1.69089 + 1.46497i −0.0865137 + 0.0749546i
\(383\) −25.9897 −1.32801 −0.664006 0.747727i \(-0.731145\pi\)
−0.664006 + 0.747727i \(0.731145\pi\)
\(384\) 25.3151 7.42051i 1.29185 0.378676i
\(385\) −4.61856 −0.235383
\(386\) 18.8531 16.3341i 0.959598 0.831386i
\(387\) 19.3301i 0.982602i
\(388\) 4.20513 29.2200i 0.213483 1.48342i
\(389\) 31.9104i 1.61792i −0.587862 0.808961i \(-0.700030\pi\)
0.587862 0.808961i \(-0.299970\pi\)
\(390\) 1.92093 + 2.21717i 0.0972701 + 0.112271i
\(391\) 6.29309 0.318255
\(392\) 1.52869 + 2.37973i 0.0772107 + 0.120194i
\(393\) 46.1215 2.32652
\(394\) 3.27673 + 3.78205i 0.165079 + 0.190537i
\(395\) 0.995418i 0.0500849i
\(396\) 25.0442 + 3.60417i 1.25852 + 0.181116i
\(397\) 18.4407i 0.925512i 0.886486 + 0.462756i \(0.153139\pi\)
−0.886486 + 0.462756i \(0.846861\pi\)
\(398\) −1.57896 + 1.36800i −0.0791464 + 0.0685716i
\(399\) 16.4210 0.822076
\(400\) −16.1511 4.74701i −0.807556 0.237351i
\(401\) −29.2421 −1.46028 −0.730140 0.683298i \(-0.760545\pi\)
−0.730140 + 0.683298i \(0.760545\pi\)
\(402\) 1.72671 1.49600i 0.0861205 0.0746139i
\(403\) 4.20796i 0.209614i
\(404\) 34.7264 + 4.99757i 1.72770 + 0.248638i
\(405\) 9.22747i 0.458517i
\(406\) 3.09092 + 3.56759i 0.153400 + 0.177056i
\(407\) −25.3970 −1.25888
\(408\) −17.8575 + 11.4714i −0.884080 + 0.567917i
\(409\) −19.6165 −0.969974 −0.484987 0.874521i \(-0.661176\pi\)
−0.484987 + 0.874521i \(0.661176\pi\)
\(410\) 6.21106 + 7.16890i 0.306742 + 0.354047i
\(411\) 32.2894i 1.59272i
\(412\) 1.14467 7.95395i 0.0563940 0.391863i
\(413\) 10.6544i 0.524268i
\(414\) 5.09319 4.41268i 0.250316 0.216872i
\(415\) 10.2151 0.501440
\(416\) −2.34825 5.14643i −0.115132 0.252324i
\(417\) 14.6436 0.717100
\(418\) 39.0788 33.8575i 1.91141 1.65602i
\(419\) 24.6034i 1.20195i 0.799266 + 0.600977i \(0.205222\pi\)
−0.799266 + 0.600977i \(0.794778\pi\)
\(420\) 0.590960 4.10638i 0.0288359 0.200371i
\(421\) 14.8488i 0.723685i 0.932239 + 0.361842i \(0.117852\pi\)
−0.932239 + 0.361842i \(0.882148\pi\)
\(422\) −19.8511 22.9124i −0.966335 1.11536i
\(423\) 14.3224 0.696380
\(424\) −29.9105 + 19.2139i −1.45258 + 0.933112i
\(425\) 13.5443 0.656993
\(426\) 8.27061 + 9.54607i 0.400713 + 0.462508i
\(427\) 0.855217i 0.0413868i
\(428\) −8.98584 1.29318i −0.434347 0.0625080i
\(429\) 12.1052i 0.584446i
\(430\) 7.54274 6.53495i 0.363743 0.315143i
\(431\) 8.96639 0.431896 0.215948 0.976405i \(-0.430716\pi\)
0.215948 + 0.976405i \(0.430716\pi\)
\(432\) 1.48110 5.03926i 0.0712595 0.242451i
\(433\) 3.46538 0.166535 0.0832677 0.996527i \(-0.473464\pi\)
0.0832677 + 0.996527i \(0.473464\pi\)
\(434\) 4.49769 3.89675i 0.215896 0.187050i
\(435\) 6.92369i 0.331966i
\(436\) −26.0473 3.74853i −1.24744 0.179522i
\(437\) 13.7711i 0.658760i
\(438\) −1.54577 1.78415i −0.0738598 0.0852501i
\(439\) 0.528709 0.0252339 0.0126170 0.999920i \(-0.495984\pi\)
0.0126170 + 0.999920i \(0.495984\pi\)
\(440\) −7.06036 10.9909i −0.336589 0.523971i
\(441\) −2.43685 −0.116040
\(442\) 2.98024 + 3.43984i 0.141756 + 0.163617i
\(443\) 18.5545i 0.881552i −0.897617 0.440776i \(-0.854703\pi\)
0.897617 0.440776i \(-0.145297\pi\)
\(444\) 3.24963 22.5806i 0.154221 1.07163i
\(445\) 1.95645i 0.0927445i
\(446\) 28.3117 24.5290i 1.34060 1.16148i
\(447\) 46.5860 2.20344
\(448\) −3.32619 + 7.27574i −0.157148 + 0.343747i
\(449\) 8.39859 0.396354 0.198177 0.980166i \(-0.436498\pi\)
0.198177 + 0.980166i \(0.436498\pi\)
\(450\) 10.9618 9.49716i 0.516743 0.447700i
\(451\) 39.1405i 1.84306i
\(452\) −0.0740552 + 0.514584i −0.00348326 + 0.0242040i
\(453\) 46.9227i 2.20462i
\(454\) −12.8783 14.8643i −0.604408 0.697617i
\(455\) −0.889625 −0.0417063
\(456\) 25.1026 + 39.0774i 1.17554 + 1.82997i
\(457\) 5.59397 0.261675 0.130837 0.991404i \(-0.458233\pi\)
0.130837 + 0.991404i \(0.458233\pi\)
\(458\) 7.73680 + 8.92993i 0.361517 + 0.417268i
\(459\) 4.22590i 0.197248i
\(460\) −3.44373 0.495596i −0.160565 0.0231073i
\(461\) 12.5828i 0.586039i 0.956106 + 0.293019i \(0.0946601\pi\)
−0.956106 + 0.293019i \(0.905340\pi\)
\(462\) −12.9387 + 11.2100i −0.601963 + 0.521534i
\(463\) −18.7682 −0.872232 −0.436116 0.899890i \(-0.643646\pi\)
−0.436116 + 0.899890i \(0.643646\pi\)
\(464\) −3.76481 + 12.8093i −0.174777 + 0.594657i
\(465\) −8.72876 −0.404787
\(466\) −7.47607 + 6.47719i −0.346322 + 0.300050i
\(467\) 21.4368i 0.991978i 0.868329 + 0.495989i \(0.165194\pi\)
−0.868329 + 0.495989i \(0.834806\pi\)
\(468\) 4.82400 + 0.694235i 0.222989 + 0.0320910i
\(469\) 0.692832i 0.0319920i
\(470\) −4.84201 5.58872i −0.223345 0.257789i
\(471\) 14.4799 0.667196
\(472\) −25.3545 + 16.2873i −1.16704 + 0.749683i
\(473\) −41.1816 −1.89353
\(474\) 2.41603 + 2.78862i 0.110972 + 0.128086i
\(475\) 29.6387i 1.35992i
\(476\) 0.916850 6.37088i 0.0420238 0.292009i
\(477\) 30.6284i 1.40238i
\(478\) 15.0953 13.0784i 0.690444 0.598194i
\(479\) 39.9154 1.82378 0.911892 0.410431i \(-0.134622\pi\)
0.911892 + 0.410431i \(0.134622\pi\)
\(480\) 10.6755 4.87108i 0.487266 0.222333i
\(481\) −4.89196 −0.223054
\(482\) −27.9439 + 24.2103i −1.27281 + 1.10275i
\(483\) 4.55950i 0.207464i
\(484\) −4.54470 + 31.5796i −0.206577 + 1.43544i
\(485\) 13.1313i 0.596263i
\(486\) 18.7485 + 21.6398i 0.850451 + 0.981603i
\(487\) −40.5689 −1.83835 −0.919177 0.393844i \(-0.871145\pi\)
−0.919177 + 0.393844i \(0.871145\pi\)
\(488\) 2.03518 1.30736i 0.0921283 0.0591816i
\(489\) 38.6305 1.74693
\(490\) 0.823831 + 0.950878i 0.0372169 + 0.0429563i
\(491\) 29.2954i 1.32208i 0.750349 + 0.661042i \(0.229886\pi\)
−0.750349 + 0.661042i \(0.770114\pi\)
\(492\) 34.8001 + 5.00817i 1.56891 + 0.225786i
\(493\) 10.7418i 0.483787i
\(494\) 7.52735 6.52162i 0.338672 0.293422i
\(495\) 11.2547 0.505862
\(496\) 16.1488 + 4.74633i 0.725102 + 0.213117i
\(497\) −3.83030 −0.171813
\(498\) 28.6172 24.7936i 1.28237 1.11103i
\(499\) 2.31819i 0.103776i 0.998653 + 0.0518882i \(0.0165239\pi\)
−0.998653 + 0.0518882i \(0.983476\pi\)
\(500\) −16.2173 2.33387i −0.725258 0.104374i
\(501\) 22.0440i 0.984853i
\(502\) 2.50912 + 2.89606i 0.111987 + 0.129257i
\(503\) −11.4341 −0.509819 −0.254910 0.966965i \(-0.582046\pi\)
−0.254910 + 0.966965i \(0.582046\pi\)
\(504\) −3.72519 5.79903i −0.165933 0.258309i
\(505\) 15.6059 0.694452
\(506\) 9.40099 + 10.8508i 0.417925 + 0.482375i
\(507\) 2.33171i 0.103555i
\(508\) −2.57861 + 17.9179i −0.114407 + 0.794977i
\(509\) 33.7643i 1.49658i 0.663374 + 0.748288i \(0.269124\pi\)
−0.663374 + 0.748288i \(0.730876\pi\)
\(510\) −7.13542 + 6.18205i −0.315962 + 0.273746i
\(511\) 0.715881 0.0316687
\(512\) −22.3990 + 3.20695i −0.989906 + 0.141728i
\(513\) 9.24747 0.408286
\(514\) −9.16791 + 7.94298i −0.404379 + 0.350350i
\(515\) 3.57447i 0.157510i
\(516\) 5.26933 36.6148i 0.231969 1.61188i
\(517\) 30.5132i 1.34197i
\(518\) 4.53016 + 5.22878i 0.199044 + 0.229740i
\(519\) −58.7769 −2.58002
\(520\) −1.35996 2.11706i −0.0596384 0.0928394i
\(521\) −18.0635 −0.791378 −0.395689 0.918385i \(-0.629494\pi\)
−0.395689 + 0.918385i \(0.629494\pi\)
\(522\) −7.53211 8.69368i −0.329672 0.380512i
\(523\) 22.7221i 0.993568i −0.867874 0.496784i \(-0.834514\pi\)
0.867874 0.496784i \(-0.165486\pi\)
\(524\) −39.1569 5.63517i −1.71058 0.246174i
\(525\) 9.81314i 0.428280i
\(526\) 26.7845 23.2058i 1.16786 1.01182i
\(527\) −13.5423 −0.589912
\(528\) −46.4559 13.6540i −2.02173 0.594213i
\(529\) −19.1763 −0.833751
\(530\) −11.9515 + 10.3546i −0.519138 + 0.449776i
\(531\) 25.9631i 1.12670i
\(532\) −13.9413 2.00633i −0.604432 0.0869854i
\(533\) 7.53924i 0.326561i
\(534\) 4.74860 + 5.48091i 0.205492 + 0.237182i
\(535\) −4.03819 −0.174586
\(536\) −1.64875 + 1.05913i −0.0712152 + 0.0457474i
\(537\) −45.6334 −1.96923
\(538\) 12.8617 + 14.8451i 0.554506 + 0.640019i
\(539\) 5.19158i 0.223617i
\(540\) 0.332800 2.31251i 0.0143214 0.0995147i
\(541\) 44.6632i 1.92022i 0.279624 + 0.960110i \(0.409790\pi\)
−0.279624 + 0.960110i \(0.590210\pi\)
\(542\) −4.81261 + 4.16960i −0.206719 + 0.179099i
\(543\) −4.50636 −0.193386
\(544\) 16.5625 7.55727i 0.710113 0.324015i
\(545\) −11.7055 −0.501410
\(546\) −2.49225 + 2.15926i −0.106658 + 0.0924077i
\(547\) 29.9883i 1.28221i −0.767455 0.641103i \(-0.778477\pi\)
0.767455 0.641103i \(-0.221523\pi\)
\(548\) 3.94515 27.4135i 0.168528 1.17105i
\(549\) 2.08403i 0.0889444i
\(550\) 20.2332 + 23.3535i 0.862746 + 0.995795i
\(551\) −23.5062 −1.00140
\(552\) −10.8504 + 6.97007i −0.461822 + 0.296666i
\(553\) −1.11892 −0.0475813
\(554\) −15.6933 18.1134i −0.666744 0.769566i
\(555\) 10.1476i 0.430742i
\(556\) −12.4323 1.78917i −0.527249 0.0758778i
\(557\) 22.5823i 0.956843i −0.878130 0.478422i \(-0.841209\pi\)
0.878130 0.478422i \(-0.158791\pi\)
\(558\) −10.9602 + 9.49580i −0.463982 + 0.401989i
\(559\) −7.93240 −0.335505
\(560\) −1.00344 + 3.41409i −0.0424033 + 0.144272i
\(561\) 38.9577 1.64480
\(562\) −22.4951 + 19.4895i −0.948899 + 0.822117i
\(563\) 13.4350i 0.566219i 0.959088 + 0.283110i \(0.0913660\pi\)
−0.959088 + 0.283110i \(0.908634\pi\)
\(564\) −27.1294 3.90426i −1.14235 0.164399i
\(565\) 0.231252i 0.00972883i
\(566\) 4.90251 + 5.65855i 0.206068 + 0.237846i
\(567\) −10.3723 −0.435596
\(568\) −5.85536 9.11507i −0.245685 0.382460i
\(569\) −0.954464 −0.0400132 −0.0200066 0.999800i \(-0.506369\pi\)
−0.0200066 + 0.999800i \(0.506369\pi\)
\(570\) 13.5281 + 15.6143i 0.566629 + 0.654012i
\(571\) 1.74439i 0.0730005i −0.999334 0.0365003i \(-0.988379\pi\)
0.999334 0.0365003i \(-0.0116210\pi\)
\(572\) −1.47903 + 10.2773i −0.0618413 + 0.429714i
\(573\) 3.68869i 0.154097i
\(574\) −8.05833 + 6.98166i −0.336348 + 0.291409i
\(575\) 8.22957 0.343197
\(576\) 8.10543 17.7299i 0.337726 0.738745i
\(577\) 10.1146 0.421078 0.210539 0.977585i \(-0.432478\pi\)
0.210539 + 0.977585i \(0.432478\pi\)
\(578\) 7.10019 6.15153i 0.295329 0.255870i
\(579\) 41.1281i 1.70923i
\(580\) −0.845945 + 5.87818i −0.0351259 + 0.244078i
\(581\) 11.4825i 0.476374i
\(582\) −31.8718 36.7869i −1.32113 1.52487i
\(583\) 65.2523 2.70247
\(584\) 1.09436 + 1.70360i 0.0452850 + 0.0704955i
\(585\) 2.16788 0.0896309
\(586\) −5.01640 5.79000i −0.207226 0.239183i
\(587\) 3.47868i 0.143581i 0.997420 + 0.0717903i \(0.0228712\pi\)
−0.997420 + 0.0717903i \(0.977129\pi\)
\(588\) 4.61586 + 0.664280i 0.190355 + 0.0273945i
\(589\) 29.6344i 1.22107i
\(590\) −10.1310 + 8.77740i −0.417087 + 0.361360i
\(591\) 8.25056 0.339383
\(592\) −5.51784 + 18.7738i −0.226782 + 0.771597i
\(593\) 3.45123 0.141725 0.0708626 0.997486i \(-0.477425\pi\)
0.0708626 + 0.997486i \(0.477425\pi\)
\(594\) −7.28644 + 6.31290i −0.298966 + 0.259021i
\(595\) 2.86304i 0.117373i
\(596\) −39.5512 5.69192i −1.62008 0.233150i
\(597\) 3.44452i 0.140975i
\(598\) 1.81082 + 2.09007i 0.0740497 + 0.0854693i
\(599\) −31.2867 −1.27834 −0.639169 0.769066i \(-0.720722\pi\)
−0.639169 + 0.769066i \(0.720722\pi\)
\(600\) −23.3526 + 15.0013i −0.953365 + 0.612425i
\(601\) 8.69289 0.354590 0.177295 0.984158i \(-0.443265\pi\)
0.177295 + 0.984158i \(0.443265\pi\)
\(602\) 7.34574 + 8.47856i 0.299390 + 0.345560i
\(603\) 1.68833i 0.0687540i
\(604\) 5.73307 39.8371i 0.233275 1.62095i
\(605\) 14.1917i 0.576975i
\(606\) 43.7192 37.8779i 1.77597 1.53868i
\(607\) 25.9859 1.05473 0.527367 0.849638i \(-0.323179\pi\)
0.527367 + 0.849638i \(0.323179\pi\)
\(608\) −16.5375 36.2435i −0.670683 1.46987i
\(609\) 7.78271 0.315371
\(610\) 0.813207 0.704554i 0.0329258 0.0285266i
\(611\) 5.87744i 0.237776i
\(612\) −2.23423 + 15.5249i −0.0903132 + 0.627556i
\(613\) 9.59008i 0.387340i −0.981067 0.193670i \(-0.937961\pi\)
0.981067 0.193670i \(-0.0620391\pi\)
\(614\) −9.17385 10.5886i −0.370227 0.427321i
\(615\) 15.6390 0.630624
\(616\) 12.3545 7.93633i 0.497778 0.319764i
\(617\) −20.9085 −0.841746 −0.420873 0.907119i \(-0.638276\pi\)
−0.420873 + 0.907119i \(0.638276\pi\)
\(618\) −8.67578 10.0137i −0.348991 0.402811i
\(619\) 3.42979i 0.137855i −0.997622 0.0689274i \(-0.978042\pi\)
0.997622 0.0689274i \(-0.0219577\pi\)
\(620\) 7.41067 + 1.06649i 0.297620 + 0.0428313i
\(621\) 2.56768i 0.103038i
\(622\) −17.9520 + 15.5535i −0.719811 + 0.623637i
\(623\) −2.19918 −0.0881084
\(624\) −8.94833 2.63003i −0.358220 0.105285i
\(625\) 13.7549 0.550195
\(626\) −10.3686 + 8.98325i −0.414413 + 0.359043i
\(627\) 85.2506i 3.40458i
\(628\) −12.2933 1.76916i −0.490557 0.0705973i
\(629\) 15.7436i 0.627738i
\(630\) −2.00755 2.31715i −0.0799828 0.0923173i
\(631\) 20.1897 0.803741 0.401870 0.915697i \(-0.368360\pi\)
0.401870 + 0.915697i \(0.368360\pi\)
\(632\) −1.71048 2.66272i −0.0680394 0.105917i
\(633\) −49.9835 −1.98667
\(634\) 8.58528 + 9.90926i 0.340965 + 0.393547i
\(635\) 8.05221i 0.319542i
\(636\) −8.34925 + 58.0161i −0.331069 + 2.30049i
\(637\) 1.00000i 0.0396214i
\(638\) 18.5214 16.0468i 0.733270 0.635297i
\(639\) 9.33387 0.369242
\(640\) −9.65856 + 2.83118i −0.381788 + 0.111912i
\(641\) 43.0839 1.70171 0.850855 0.525400i \(-0.176084\pi\)
0.850855 + 0.525400i \(0.176084\pi\)
\(642\) −11.3128 + 9.80132i −0.446482 + 0.386827i
\(643\) 40.7613i 1.60747i −0.594988 0.803734i \(-0.702843\pi\)
0.594988 0.803734i \(-0.297157\pi\)
\(644\) 0.557084 3.87099i 0.0219522 0.152538i
\(645\) 16.4545i 0.647896i
\(646\) 20.9883 + 24.2250i 0.825772 + 0.953119i
\(647\) −17.0384 −0.669847 −0.334924 0.942245i \(-0.608710\pi\)
−0.334924 + 0.942245i \(0.608710\pi\)
\(648\) −15.8561 24.6833i −0.622886 0.969650i
\(649\) 55.3130 2.17123
\(650\) 3.89731 + 4.49834i 0.152865 + 0.176439i
\(651\) 9.81173i 0.384552i
\(652\) −32.7971 4.71992i −1.28443 0.184846i
\(653\) 11.3248i 0.443174i 0.975141 + 0.221587i \(0.0711236\pi\)
−0.975141 + 0.221587i \(0.928876\pi\)
\(654\) −32.7925 + 28.4111i −1.28229 + 1.11096i
\(655\) −17.5969 −0.687568
\(656\) −28.9332 8.50382i −1.12965 0.332018i
\(657\) −1.74449 −0.0680592
\(658\) 6.28211 5.44276i 0.244902 0.212181i
\(659\) 9.05494i 0.352730i −0.984325 0.176365i \(-0.943566\pi\)
0.984325 0.176365i \(-0.0564339\pi\)
\(660\) −21.3186 3.06802i −0.829825 0.119422i
\(661\) 5.92208i 0.230342i −0.993346 0.115171i \(-0.963258\pi\)
0.993346 0.115171i \(-0.0367416\pi\)
\(662\) −5.67563 6.55090i −0.220590 0.254608i
\(663\) 7.50403 0.291432
\(664\) −27.3252 + 17.5532i −1.06042 + 0.681196i
\(665\) −6.26515 −0.242952
\(666\) −11.0393 12.7418i −0.427765 0.493733i
\(667\) 6.52680i 0.252719i
\(668\) 2.69336 18.7152i 0.104209 0.724114i
\(669\) 61.7622i 2.38786i
\(670\) −0.658799 + 0.570777i −0.0254516 + 0.0220510i
\(671\) −4.43992 −0.171401
\(672\) 5.47542 + 12.0000i 0.211219 + 0.462908i
\(673\) −33.2995 −1.28360 −0.641800 0.766872i \(-0.721812\pi\)
−0.641800 + 0.766872i \(0.721812\pi\)
\(674\) 13.7114 11.8794i 0.528144 0.457578i
\(675\) 5.52628i 0.212706i
\(676\) −0.284890 + 1.97961i −0.0109573 + 0.0761387i
\(677\) 23.5539i 0.905249i 0.891701 + 0.452625i \(0.149512\pi\)
−0.891701 + 0.452625i \(0.850488\pi\)
\(678\) 0.561284 + 0.647842i 0.0215560 + 0.0248802i
\(679\) 14.7605 0.566457
\(680\) 6.81326 4.37672i 0.261277 0.167839i
\(681\) −32.4266 −1.24259
\(682\) −20.2303 23.3501i −0.774658 0.894122i
\(683\) 10.8973i 0.416974i 0.978025 + 0.208487i \(0.0668539\pi\)
−0.978025 + 0.208487i \(0.933146\pi\)
\(684\) 33.9728 + 4.88912i 1.29898 + 0.186940i
\(685\) 12.3195i 0.470704i
\(686\) −1.06885 + 0.926043i −0.0408090 + 0.0353565i
\(687\) 19.4807 0.743234
\(688\) −8.94727 + 30.4420i −0.341112 + 1.16059i
\(689\) 12.5689 0.478836
\(690\) −4.33552 + 3.75625i −0.165051 + 0.142998i
\(691\) 18.9351i 0.720325i 0.932889 + 0.360163i \(0.117279\pi\)
−0.932889 + 0.360163i \(0.882721\pi\)
\(692\) 49.9013 + 7.18142i 1.89696 + 0.272997i
\(693\) 12.6511i 0.480575i
\(694\) −1.61318 1.86196i −0.0612355 0.0706790i
\(695\) −5.58704 −0.211928
\(696\) 11.8974 + 18.5207i 0.450969 + 0.702026i
\(697\) 24.2632 0.919035
\(698\) −26.3621 30.4275i −0.997819 1.15170i
\(699\) 16.3091i 0.616866i
\(700\) 1.19898 8.33130i 0.0453172 0.314894i
\(701\) 42.1055i 1.59030i −0.606411 0.795152i \(-0.707391\pi\)
0.606411 0.795152i \(-0.292609\pi\)
\(702\) −1.40351 + 1.21599i −0.0529721 + 0.0458945i
\(703\) −34.4515 −1.29936
\(704\) 37.7726 + 17.2682i 1.42361 + 0.650819i
\(705\) −12.1918 −0.459171
\(706\) −25.9355 + 22.4703i −0.976096 + 0.845680i
\(707\) 17.5421i 0.659738i
\(708\) −7.07749 + 49.1791i −0.265988 + 1.84826i
\(709\) 12.1005i 0.454444i 0.973843 + 0.227222i \(0.0729642\pi\)
−0.973843 + 0.227222i \(0.927036\pi\)
\(710\) −3.15552 3.64215i −0.118425 0.136687i
\(711\) 2.72664 0.102257
\(712\) −3.36187 5.23345i −0.125992 0.196132i
\(713\) −8.22839 −0.308156
\(714\) −6.94905 8.02070i −0.260062 0.300167i
\(715\) 4.61856i 0.172724i
\(716\) 38.7425 + 5.57554i 1.44788 + 0.208368i
\(717\) 32.9305i 1.22981i
\(718\) 11.4225 9.89635i 0.426285 0.369329i
\(719\) 27.1158 1.01125 0.505624 0.862754i \(-0.331262\pi\)
0.505624 + 0.862754i \(0.331262\pi\)
\(720\) 2.44524 8.31963i 0.0911288 0.310054i
\(721\) 4.01795 0.149636
\(722\) 32.7029 28.3335i 1.21708 1.05446i
\(723\) 60.9597i 2.26712i
\(724\) 3.82588 + 0.550592i 0.142188 + 0.0204626i
\(725\) 14.0473i 0.521702i
\(726\) 34.4455 + 39.7575i 1.27839 + 1.47554i
\(727\) 41.6183 1.54354 0.771769 0.635903i \(-0.219372\pi\)
0.771769 + 0.635903i \(0.219372\pi\)
\(728\) 2.37973 1.52869i 0.0881985 0.0566571i
\(729\) 16.0905 0.595943
\(730\) 0.589765 + 0.680715i 0.0218282 + 0.0251944i
\(731\) 25.5285i 0.944206i
\(732\) 0.568103 3.94756i 0.0209977 0.145906i
\(733\) 26.7816i 0.989202i −0.869120 0.494601i \(-0.835314\pi\)
0.869120 0.494601i \(-0.164686\pi\)
\(734\) 0.920380 0.797408i 0.0339719 0.0294329i
\(735\) 2.07434 0.0765133
\(736\) 10.0635 4.59185i 0.370946 0.169258i
\(737\) 3.59689 0.132493
\(738\) 19.6369 17.0132i 0.722846 0.626266i
\(739\) 42.7016i 1.57080i −0.618987 0.785401i \(-0.712457\pi\)
0.618987 0.785401i \(-0.287543\pi\)
\(740\) −1.23985 + 8.61527i −0.0455776 + 0.316704i
\(741\) 16.4210i 0.603239i
\(742\) −11.6393 13.4343i −0.427293 0.493187i
\(743\) 42.5351 1.56046 0.780230 0.625492i \(-0.215102\pi\)
0.780230 + 0.625492i \(0.215102\pi\)
\(744\) 23.3492 14.9991i 0.856024 0.549895i
\(745\) −17.7741 −0.651194
\(746\) −33.4702 38.6318i −1.22543 1.41441i
\(747\) 27.9811i 1.02377i
\(748\) −33.0749 4.75990i −1.20934 0.174039i
\(749\) 4.53921i 0.165859i
\(750\) −20.4169 + 17.6890i −0.745521 + 0.645912i
\(751\) 42.8241 1.56267 0.781336 0.624110i \(-0.214538\pi\)
0.781336 + 0.624110i \(0.214538\pi\)
\(752\) 22.5557 + 6.62940i 0.822521 + 0.241749i
\(753\) 6.31776 0.230232
\(754\) 3.56759 3.09092i 0.129924 0.112565i
\(755\) 17.9026i 0.651543i
\(756\) 2.59942 + 0.374090i 0.0945401 + 0.0136055i
\(757\) 7.20682i 0.261936i 0.991387 + 0.130968i \(0.0418085\pi\)
−0.991387 + 0.130968i \(0.958191\pi\)
\(758\) −7.30298 8.42921i −0.265256 0.306163i
\(759\) 23.6710 0.859202
\(760\) −9.57750 14.9094i −0.347412 0.540819i
\(761\) −8.67573 −0.314495 −0.157247 0.987559i \(-0.550262\pi\)
−0.157247 + 0.987559i \(0.550262\pi\)
\(762\) 19.5440 + 22.5579i 0.708003 + 0.817187i
\(763\) 13.1578i 0.476345i
\(764\) 0.450689 3.13168i 0.0163053 0.113300i
\(765\) 6.97680i 0.252247i
\(766\) 27.7791 24.0676i 1.00370 0.869596i
\(767\) 10.6544 0.384707
\(768\) −20.1864 + 31.3743i −0.728413 + 1.13212i
\(769\) −37.3169 −1.34568 −0.672840 0.739788i \(-0.734926\pi\)
−0.672840 + 0.739788i \(0.734926\pi\)
\(770\) 4.93656 4.27698i 0.177901 0.154132i
\(771\) 19.9998i 0.720276i
\(772\) −5.02508 + 34.9176i −0.180857 + 1.25671i
\(773\) 17.6533i 0.634946i 0.948267 + 0.317473i \(0.102834\pi\)
−0.948267 + 0.317473i \(0.897166\pi\)
\(774\) −17.9005 20.6610i −0.643418 0.742643i
\(775\) −17.7095 −0.636144
\(776\) 22.5643 + 35.1260i 0.810012 + 1.26095i
\(777\) 11.4066 0.409210
\(778\) 29.5504 + 34.1075i 1.05943 + 1.22281i
\(779\) 53.0948i 1.90232i
\(780\) −4.10638 0.590960i −0.147032 0.0211598i
\(781\) 19.8853i 0.711552i
\(782\) −6.72638 + 5.82767i −0.240535 + 0.208397i
\(783\) 4.38284 0.156630
\(784\) −3.83768 1.12794i −0.137060 0.0402836i
\(785\) −5.52456 −0.197180
\(786\) −49.2970 + 42.7104i −1.75837 + 1.52343i
\(787\) 36.1972i 1.29029i 0.764059 + 0.645146i \(0.223203\pi\)
−0.764059 + 0.645146i \(0.776797\pi\)
\(788\) −7.00468 1.00806i −0.249532 0.0359108i
\(789\) 58.4305i 2.08018i
\(790\) −0.921800 1.06395i −0.0327962 0.0378538i
\(791\) −0.259943 −0.00924250
\(792\) −30.1061 + 19.3396i −1.06977 + 0.687204i
\(793\) −0.855217 −0.0303696
\(794\) −17.0769 19.7104i −0.606035 0.699495i
\(795\) 26.0722i 0.924684i
\(796\) 0.420855 2.92438i 0.0149168 0.103652i
\(797\) 23.4086i 0.829174i −0.910010 0.414587i \(-0.863926\pi\)
0.910010 0.414587i \(-0.136074\pi\)
\(798\) −17.5516 + 15.2065i −0.621319 + 0.538304i
\(799\) −18.9151 −0.669168
\(800\) 21.6591 9.88276i 0.765764 0.349408i
\(801\) 5.35907 0.189354
\(802\) 31.2555 27.0794i 1.10367 0.956207i
\(803\) 3.71655i 0.131154i
\(804\) −0.460235 + 3.19801i −0.0162312 + 0.112785i
\(805\) 1.73960i 0.0613130i
\(806\) −3.89675 4.49769i −0.137257 0.158424i
\(807\) 32.3847 1.14000
\(808\) −41.7453 + 26.8165i −1.46860 + 0.943399i
\(809\) −40.2721 −1.41589 −0.707946 0.706266i \(-0.750378\pi\)
−0.707946 + 0.706266i \(0.750378\pi\)
\(810\) −8.54503 9.86280i −0.300242 0.346544i
\(811\) 42.9222i 1.50720i −0.657331 0.753602i \(-0.728315\pi\)
0.657331 0.753602i \(-0.271685\pi\)
\(812\) −6.60748 0.950900i −0.231877 0.0333700i
\(813\) 10.4987i 0.368206i
\(814\) 27.1456 23.5187i 0.951454 0.824330i
\(815\) −14.7389 −0.516280
\(816\) 8.46410 28.7980i 0.296303 1.00813i
\(817\) −55.8636 −1.95442
\(818\) 20.9671 18.1657i 0.733099 0.635149i
\(819\) 2.43685i 0.0851504i
\(820\) −13.2774 1.91079i −0.463667 0.0667276i
\(821\) 28.2362i 0.985451i 0.870185 + 0.492726i \(0.163999\pi\)
−0.870185 + 0.492726i \(0.836001\pi\)
\(822\) −29.9013 34.5126i −1.04293 1.20376i
\(823\) 53.0998 1.85094 0.925471 0.378819i \(-0.123670\pi\)
0.925471 + 0.378819i \(0.123670\pi\)
\(824\) 6.14221 + 9.56161i 0.213974 + 0.333094i
\(825\) 50.9457 1.77370
\(826\) −9.86641 11.3880i −0.343296 0.396238i
\(827\) 42.7395i 1.48620i 0.669182 + 0.743099i \(0.266645\pi\)
−0.669182 + 0.743099i \(0.733355\pi\)
\(828\) −1.35753 + 9.43301i −0.0471774 + 0.327820i
\(829\) 4.07693i 0.141598i 0.997491 + 0.0707989i \(0.0225549\pi\)
−0.997491 + 0.0707989i \(0.977445\pi\)
\(830\) −10.9184 + 9.45962i −0.378984 + 0.328348i
\(831\) −39.5145 −1.37074
\(832\) 7.27574 + 3.32619i 0.252241 + 0.115315i
\(833\) 3.21826 0.111506
\(834\) −15.6518 + 13.5606i −0.541979 + 0.469565i
\(835\) 8.41053i 0.291059i
\(836\) −10.4160 + 72.3773i −0.360245 + 2.50322i
\(837\) 5.52548i 0.190989i
\(838\) −22.7838 26.2974i −0.787053 0.908428i
\(839\) −26.6733 −0.920864 −0.460432 0.887695i \(-0.652306\pi\)
−0.460432 + 0.887695i \(0.652306\pi\)
\(840\) 3.17104 + 4.93637i 0.109411 + 0.170321i
\(841\) 17.8593 0.615836
\(842\) −13.7506 15.8711i −0.473877 0.546956i
\(843\) 49.0732i 1.69017i
\(844\) 42.4357 + 6.10704i 1.46070 + 0.210213i
\(845\) 0.889625i 0.0306040i
\(846\) −15.3086 + 13.2632i −0.526319 + 0.455997i
\(847\) −15.9525 −0.548133
\(848\) 14.1769 48.2352i 0.486838 1.65641i
\(849\) 12.3441 0.423650
\(850\) −14.4768 + 12.5426i −0.496550 + 0.430206i
\(851\) 9.56591i 0.327915i
\(852\) −17.6801 2.54439i −0.605711 0.0871695i
\(853\) 31.4793i 1.07783i 0.842360 + 0.538916i \(0.181166\pi\)
−0.842360 + 0.538916i \(0.818834\pi\)
\(854\) 0.791967 + 0.914100i 0.0271006 + 0.0312799i
\(855\) 15.2672 0.522128
\(856\) 10.8021 6.93906i 0.369207 0.237172i
\(857\) 5.01876 0.171438 0.0857188 0.996319i \(-0.472681\pi\)
0.0857188 + 0.996319i \(0.472681\pi\)
\(858\) 11.2100 + 12.9387i 0.382702 + 0.441720i
\(859\) 6.90746i 0.235680i 0.993033 + 0.117840i \(0.0375969\pi\)
−0.993033 + 0.117840i \(0.962403\pi\)
\(860\) −2.01043 + 13.9698i −0.0685551 + 0.476366i
\(861\) 17.5793i 0.599101i
\(862\) −9.58375 + 8.30326i −0.326424 + 0.282810i
\(863\) −19.0353 −0.647971 −0.323985 0.946062i \(-0.605023\pi\)
−0.323985 + 0.946062i \(0.605023\pi\)
\(864\) 3.08349 + 6.75778i 0.104902 + 0.229905i
\(865\) 22.4254 0.762486
\(866\) −3.70398 + 3.20909i −0.125866 + 0.109049i
\(867\) 15.4891i 0.526037i
\(868\) −1.19881 + 8.33011i −0.0406902 + 0.282742i
\(869\) 5.80895i 0.197055i
\(870\) 6.41164 + 7.40041i 0.217375 + 0.250897i
\(871\) 0.692832 0.0234757
\(872\) 31.3120 20.1143i 1.06036 0.681155i
\(873\) −35.9692 −1.21737
\(874\) 12.7526 + 14.7192i 0.431363 + 0.497886i
\(875\) 8.19217i 0.276946i
\(876\) 3.30440 + 0.475545i 0.111645 + 0.0160672i
\(877\) 25.1299i 0.848576i −0.905527 0.424288i \(-0.860524\pi\)
0.905527 0.424288i \(-0.139476\pi\)
\(878\) −0.565112 + 0.489607i −0.0190716 + 0.0165235i
\(879\) −12.6309 −0.426030
\(880\) 17.7245 + 5.20946i 0.597494 + 0.175611i
\(881\) −33.4577 −1.12722 −0.563610 0.826041i \(-0.690588\pi\)
−0.563610 + 0.826041i \(0.690588\pi\)
\(882\) 2.60463 2.25663i 0.0877025 0.0759846i
\(883\) 21.7210i 0.730971i 0.930817 + 0.365485i \(0.119097\pi\)
−0.930817 + 0.365485i \(0.880903\pi\)
\(884\) −6.37088 0.916850i −0.214276 0.0308370i
\(885\) 22.1008i 0.742912i
\(886\) 17.1823 + 19.8320i 0.577250 + 0.666270i
\(887\) −35.4161 −1.18916 −0.594579 0.804037i \(-0.702681\pi\)
−0.594579 + 0.804037i \(0.702681\pi\)
\(888\) 17.4372 + 27.1446i 0.585154 + 0.910914i
\(889\) −9.05123 −0.303569
\(890\) −1.81175 2.09115i −0.0607301 0.0700956i
\(891\) 53.8487i 1.80400i
\(892\) −7.54617 + 52.4357i −0.252664 + 1.75568i
\(893\) 41.3916i 1.38512i
\(894\) −49.7935 + 43.1406i −1.66534 + 1.44284i
\(895\) 17.4107 0.581975
\(896\) −3.18244 10.8569i −0.106318 0.362703i
\(897\) 4.55950 0.152237
\(898\) −8.97685 + 7.77745i −0.299561 + 0.259537i
\(899\) 14.0452i 0.468435i
\(900\) −2.92173 + 20.3021i −0.0973911 + 0.676738i
\(901\) 40.4499i 1.34758i
\(902\) 36.2458 + 41.8355i 1.20685 + 1.39297i
\(903\) 18.4960 0.615509
\(904\) −0.397373 0.618593i −0.0132164 0.0205741i
\(905\) 1.71933 0.0571525
\(906\) −43.4524 50.1535i −1.44361 1.66624i
\(907\) 46.8717i 1.55635i 0.628047 + 0.778175i \(0.283854\pi\)
−0.628047 + 0.778175i \(0.716146\pi\)
\(908\) 27.5300 + 3.96191i 0.913615 + 0.131481i
\(909\) 42.7474i 1.41784i
\(910\) 0.950878 0.823831i 0.0315213 0.0273097i
\(911\) 27.6680 0.916680 0.458340 0.888777i \(-0.348444\pi\)
0.458340 + 0.888777i \(0.348444\pi\)
\(912\) −63.0183 18.5219i −2.08674 0.613320i
\(913\) 59.6122 1.97288
\(914\) −5.97912 + 5.18025i −0.197772 + 0.171347i
\(915\) 1.77401i 0.0586471i
\(916\) −16.5390 2.38017i −0.546464 0.0786430i
\(917\) 19.7801i 0.653198i
\(918\) −3.91336 4.51686i −0.129160 0.149079i
\(919\) −6.79058 −0.224000 −0.112000 0.993708i \(-0.535726\pi\)
−0.112000 + 0.993708i \(0.535726\pi\)
\(920\) 4.13978 2.65932i 0.136484 0.0876752i
\(921\) −23.0991 −0.761140
\(922\) −11.6522 13.4491i −0.383745 0.442924i
\(923\) 3.83030i 0.126076i
\(924\) 3.44866 23.9636i 0.113453 0.788344i
\(925\) 20.5881i 0.676934i
\(926\) 20.0604 17.3801i 0.659226 0.571147i
\(927\) −9.79113 −0.321583
\(928\) −7.83793 17.1776i −0.257293 0.563883i
\(929\) −39.6932 −1.30229 −0.651145 0.758953i \(-0.725711\pi\)
−0.651145 + 0.758953i \(0.725711\pi\)
\(930\) 9.32976 8.08321i 0.305935 0.265059i
\(931\) 7.04246i 0.230807i
\(932\) 1.99266 13.8463i 0.0652717 0.453551i
\(933\) 39.1624i 1.28212i
\(934\) −19.8514 22.9128i −0.649558 0.749730i
\(935\) −14.8637 −0.486095
\(936\) −5.79903 + 3.72519i −0.189547 + 0.121762i
\(937\) −20.4351 −0.667584 −0.333792 0.942647i \(-0.608328\pi\)
−0.333792 + 0.942647i \(0.608328\pi\)
\(938\) −0.641592 0.740535i −0.0209487 0.0241793i
\(939\) 22.6192i 0.738148i
\(940\) 10.3508 + 1.48961i 0.337606 + 0.0485857i
\(941\) 36.4344i 1.18773i −0.804566 0.593863i \(-0.797602\pi\)
0.804566 0.593863i \(-0.202398\pi\)
\(942\) −15.4768 + 13.4090i −0.504262 + 0.436888i
\(943\) 14.7425 0.480081
\(944\) 12.0175 40.8880i 0.391136 1.33079i
\(945\) 1.16817 0.0380005
\(946\) 44.0171 38.1360i 1.43112 1.23991i
\(947\) 26.0051i 0.845051i −0.906351 0.422526i \(-0.861144\pi\)
0.906351 0.422526i \(-0.138856\pi\)
\(948\) −5.16477 0.743275i −0.167744 0.0241405i
\(949\) 0.715881i 0.0232385i
\(950\) 27.4467 + 31.6794i 0.890488 + 1.02781i
\(951\) 21.6171 0.700982
\(952\) 4.91973 + 7.65857i 0.159449 + 0.248216i
\(953\) 58.1737 1.88443 0.942216 0.335006i \(-0.108738\pi\)
0.942216 + 0.335006i \(0.108738\pi\)
\(954\) 28.3632 + 32.7373i 0.918294 + 1.05991i
\(955\) 1.40736i 0.0455412i
\(956\) −4.02349 + 27.9578i −0.130129 + 0.904221i
\(957\) 40.4045i 1.30609i
\(958\) −42.6637 + 36.9634i −1.37840 + 1.19423i
\(959\) 13.8480 0.447174
\(960\) −6.89967 + 15.0924i −0.222686 + 0.487105i
\(961\) −13.2930 −0.428808
\(962\) 5.22878 4.53016i 0.168583 0.146058i
\(963\) 11.0614i 0.356448i
\(964\) 7.44813 51.7545i 0.239888 1.66690i
\(965\) 15.6918i 0.505136i
\(966\) −4.22229 4.87343i −0.135850 0.156800i
\(967\) 5.23136 0.168229 0.0841146 0.996456i \(-0.473194\pi\)
0.0841146 + 0.996456i \(0.473194\pi\)
\(968\) −24.3864 37.9625i −0.783809 1.22016i
\(969\) 52.8469 1.69769
\(970\) 12.1602 + 14.0355i 0.390440 + 0.450651i
\(971\) 2.29589i 0.0736787i 0.999321 + 0.0368394i \(0.0117290\pi\)
−0.999321 + 0.0368394i \(0.988271\pi\)
\(972\) −40.0788 5.76785i −1.28553 0.185004i
\(973\) 6.28021i 0.201334i
\(974\) 43.3622 37.5686i 1.38941 1.20377i
\(975\) 9.81314 0.314272
\(976\) −0.964634 + 3.28204i −0.0308772 + 0.105056i
\(977\) −17.2924 −0.553233 −0.276617 0.960980i \(-0.589213\pi\)
−0.276617 + 0.960980i \(0.589213\pi\)
\(978\) −41.2903 + 35.7735i −1.32032 + 1.14391i
\(979\) 11.4172i 0.364896i
\(980\) −1.76111 0.253446i −0.0562565 0.00809602i
\(981\) 32.0636i 1.02371i
\(982\) −27.1288 31.3125i −0.865715 0.999222i
\(983\) −0.377112 −0.0120280 −0.00601400 0.999982i \(-0.501914\pi\)
−0.00601400 + 0.999982i \(0.501914\pi\)
\(984\) −41.8339 + 26.8733i −1.33362 + 0.856691i
\(985\) −3.14787 −0.100300
\(986\) 9.94739 + 11.4814i 0.316789 + 0.365643i
\(987\) 13.7044i 0.436217i
\(988\) −2.00633 + 13.9413i −0.0638299 + 0.443532i
\(989\) 15.5113i 0.493230i
\(990\) −12.0296 + 10.4224i −0.382327 + 0.331244i
\(991\) 55.7354 1.77049 0.885246 0.465122i \(-0.153990\pi\)
0.885246 + 0.465122i \(0.153990\pi\)
\(992\) −21.6560 + 9.88134i −0.687578 + 0.313733i
\(993\) −14.2908 −0.453505
\(994\) 4.09403 3.54702i 0.129855 0.112505i
\(995\) 1.31420i 0.0416630i
\(996\) −7.62758 + 53.0015i −0.241689 + 1.67942i
\(997\) 58.2737i 1.84555i 0.385345 + 0.922773i \(0.374083\pi\)
−0.385345 + 0.922773i \(0.625917\pi\)
\(998\) −2.14674 2.47780i −0.0679539 0.0784334i
\(999\) 6.42364 0.203235
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.c.b.365.12 yes 38
4.3 odd 2 2912.2.c.b.1457.7 38
8.3 odd 2 2912.2.c.b.1457.32 38
8.5 even 2 inner 728.2.c.b.365.11 38
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.c.b.365.11 38 8.5 even 2 inner
728.2.c.b.365.12 yes 38 1.1 even 1 trivial
2912.2.c.b.1457.7 38 4.3 odd 2
2912.2.c.b.1457.32 38 8.3 odd 2