Properties

Label 726.2.e.f.493.1
Level $726$
Weight $2$
Character 726.493
Analytic conductor $5.797$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [726,2,Mod(487,726)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(726, base_ring=CyclotomicField(10)) chi = DirichletCharacter(H, H._module([0, 8])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("726.487"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 726 = 2 \cdot 3 \cdot 11^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 726.e (of order \(5\), degree \(4\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,-1,1,-1,-7,1,-1,-1,-1,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(10)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.79713918674\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 66)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 493.1
Root \(-0.309017 - 0.951057i\) of defining polynomial
Character \(\chi\) \(=\) 726.493
Dual form 726.2.e.f.511.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.309017 - 0.951057i) q^{2} +(0.809017 - 0.587785i) q^{3} +(-0.809017 - 0.587785i) q^{4} +(-1.19098 - 3.66547i) q^{5} +(-0.309017 - 0.951057i) q^{6} +(-1.92705 - 1.40008i) q^{7} +(-0.809017 + 0.587785i) q^{8} +(0.309017 - 0.951057i) q^{9} -3.85410 q^{10} -1.00000 q^{12} +(0.381966 - 1.17557i) q^{13} +(-1.92705 + 1.40008i) q^{14} +(-3.11803 - 2.26538i) q^{15} +(0.309017 + 0.951057i) q^{16} +(2.00000 + 6.15537i) q^{17} +(-0.809017 - 0.587785i) q^{18} +(-1.00000 + 0.726543i) q^{19} +(-1.19098 + 3.66547i) q^{20} -2.38197 q^{21} +1.23607 q^{23} +(-0.309017 + 0.951057i) q^{24} +(-7.97214 + 5.79210i) q^{25} +(-1.00000 - 0.726543i) q^{26} +(-0.309017 - 0.951057i) q^{27} +(0.736068 + 2.26538i) q^{28} +(2.11803 + 1.53884i) q^{29} +(-3.11803 + 2.26538i) q^{30} +(1.97214 - 6.06961i) q^{31} +1.00000 q^{32} +6.47214 q^{34} +(-2.83688 + 8.73102i) q^{35} +(-0.809017 + 0.587785i) q^{36} +(-8.47214 - 6.15537i) q^{37} +(0.381966 + 1.17557i) q^{38} +(-0.381966 - 1.17557i) q^{39} +(3.11803 + 2.26538i) q^{40} +(-1.00000 + 0.726543i) q^{41} +(-0.736068 + 2.26538i) q^{42} +1.23607 q^{43} -3.85410 q^{45} +(0.381966 - 1.17557i) q^{46} +(5.23607 - 3.80423i) q^{47} +(0.809017 + 0.587785i) q^{48} +(-0.409830 - 1.26133i) q^{49} +(3.04508 + 9.37181i) q^{50} +(5.23607 + 3.80423i) q^{51} +(-1.00000 + 0.726543i) q^{52} +(0.881966 - 2.71441i) q^{53} -1.00000 q^{54} +2.38197 q^{56} +(-0.381966 + 1.17557i) q^{57} +(2.11803 - 1.53884i) q^{58} +(-2.30902 - 1.67760i) q^{59} +(1.19098 + 3.66547i) q^{60} +(-3.47214 - 10.6861i) q^{61} +(-5.16312 - 3.75123i) q^{62} +(-1.92705 + 1.40008i) q^{63} +(0.309017 - 0.951057i) q^{64} -4.76393 q^{65} +4.00000 q^{67} +(2.00000 - 6.15537i) q^{68} +(1.00000 - 0.726543i) q^{69} +(7.42705 + 5.39607i) q^{70} +(1.09017 + 3.35520i) q^{71} +(0.309017 + 0.951057i) q^{72} +(-3.50000 - 2.54290i) q^{73} +(-8.47214 + 6.15537i) q^{74} +(-3.04508 + 9.37181i) q^{75} +1.23607 q^{76} -1.23607 q^{78} +(1.95492 - 6.01661i) q^{79} +(3.11803 - 2.26538i) q^{80} +(-0.809017 - 0.587785i) q^{81} +(0.381966 + 1.17557i) q^{82} +(-5.04508 - 15.5272i) q^{83} +(1.92705 + 1.40008i) q^{84} +(20.1803 - 14.6619i) q^{85} +(0.381966 - 1.17557i) q^{86} +2.61803 q^{87} +1.70820 q^{89} +(-1.19098 + 3.66547i) q^{90} +(-2.38197 + 1.73060i) q^{91} +(-1.00000 - 0.726543i) q^{92} +(-1.97214 - 6.06961i) q^{93} +(-2.00000 - 6.15537i) q^{94} +(3.85410 + 2.80017i) q^{95} +(0.809017 - 0.587785i) q^{96} +(-1.33688 + 4.11450i) q^{97} -1.32624 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} + q^{3} - q^{4} - 7 q^{5} + q^{6} - q^{7} - q^{8} - q^{9} - 2 q^{10} - 4 q^{12} + 6 q^{13} - q^{14} - 8 q^{15} - q^{16} + 8 q^{17} - q^{18} - 4 q^{19} - 7 q^{20} - 14 q^{21} - 4 q^{23}+ \cdots + 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/726\mathbb{Z}\right)^\times\).

\(n\) \(485\) \(607\)
\(\chi(n)\) \(1\) \(e\left(\frac{3}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.309017 0.951057i 0.218508 0.672499i
\(3\) 0.809017 0.587785i 0.467086 0.339358i
\(4\) −0.809017 0.587785i −0.404508 0.293893i
\(5\) −1.19098 3.66547i −0.532624 1.63925i −0.748728 0.662877i \(-0.769335\pi\)
0.216104 0.976370i \(-0.430665\pi\)
\(6\) −0.309017 0.951057i −0.126156 0.388267i
\(7\) −1.92705 1.40008i −0.728357 0.529182i 0.160686 0.987006i \(-0.448629\pi\)
−0.889043 + 0.457823i \(0.848629\pi\)
\(8\) −0.809017 + 0.587785i −0.286031 + 0.207813i
\(9\) 0.309017 0.951057i 0.103006 0.317019i
\(10\) −3.85410 −1.21877
\(11\) 0 0
\(12\) −1.00000 −0.288675
\(13\) 0.381966 1.17557i 0.105938 0.326045i −0.884011 0.467466i \(-0.845167\pi\)
0.989950 + 0.141421i \(0.0451671\pi\)
\(14\) −1.92705 + 1.40008i −0.515026 + 0.374188i
\(15\) −3.11803 2.26538i −0.805073 0.584920i
\(16\) 0.309017 + 0.951057i 0.0772542 + 0.237764i
\(17\) 2.00000 + 6.15537i 0.485071 + 1.49290i 0.831878 + 0.554959i \(0.187266\pi\)
−0.346806 + 0.937937i \(0.612734\pi\)
\(18\) −0.809017 0.587785i −0.190687 0.138542i
\(19\) −1.00000 + 0.726543i −0.229416 + 0.166680i −0.696555 0.717504i \(-0.745285\pi\)
0.467139 + 0.884184i \(0.345285\pi\)
\(20\) −1.19098 + 3.66547i −0.266312 + 0.819624i
\(21\) −2.38197 −0.519788
\(22\) 0 0
\(23\) 1.23607 0.257738 0.128869 0.991662i \(-0.458865\pi\)
0.128869 + 0.991662i \(0.458865\pi\)
\(24\) −0.309017 + 0.951057i −0.0630778 + 0.194134i
\(25\) −7.97214 + 5.79210i −1.59443 + 1.15842i
\(26\) −1.00000 0.726543i −0.196116 0.142487i
\(27\) −0.309017 0.951057i −0.0594703 0.183031i
\(28\) 0.736068 + 2.26538i 0.139104 + 0.428117i
\(29\) 2.11803 + 1.53884i 0.393309 + 0.285756i 0.766810 0.641874i \(-0.221843\pi\)
−0.373501 + 0.927630i \(0.621843\pi\)
\(30\) −3.11803 + 2.26538i −0.569273 + 0.413601i
\(31\) 1.97214 6.06961i 0.354206 1.09013i −0.602262 0.798298i \(-0.705734\pi\)
0.956468 0.291836i \(-0.0942661\pi\)
\(32\) 1.00000 0.176777
\(33\) 0 0
\(34\) 6.47214 1.10996
\(35\) −2.83688 + 8.73102i −0.479520 + 1.47581i
\(36\) −0.809017 + 0.587785i −0.134836 + 0.0979642i
\(37\) −8.47214 6.15537i −1.39281 1.01194i −0.995550 0.0942301i \(-0.969961\pi\)
−0.397260 0.917706i \(-0.630039\pi\)
\(38\) 0.381966 + 1.17557i 0.0619631 + 0.190703i
\(39\) −0.381966 1.17557i −0.0611635 0.188242i
\(40\) 3.11803 + 2.26538i 0.493004 + 0.358189i
\(41\) −1.00000 + 0.726543i −0.156174 + 0.113467i −0.663128 0.748506i \(-0.730771\pi\)
0.506954 + 0.861973i \(0.330771\pi\)
\(42\) −0.736068 + 2.26538i −0.113578 + 0.349556i
\(43\) 1.23607 0.188499 0.0942493 0.995549i \(-0.469955\pi\)
0.0942493 + 0.995549i \(0.469955\pi\)
\(44\) 0 0
\(45\) −3.85410 −0.574536
\(46\) 0.381966 1.17557i 0.0563178 0.173328i
\(47\) 5.23607 3.80423i 0.763759 0.554903i −0.136302 0.990667i \(-0.543522\pi\)
0.900061 + 0.435764i \(0.143522\pi\)
\(48\) 0.809017 + 0.587785i 0.116772 + 0.0848395i
\(49\) −0.409830 1.26133i −0.0585472 0.180190i
\(50\) 3.04508 + 9.37181i 0.430640 + 1.32537i
\(51\) 5.23607 + 3.80423i 0.733196 + 0.532698i
\(52\) −1.00000 + 0.726543i −0.138675 + 0.100753i
\(53\) 0.881966 2.71441i 0.121147 0.372853i −0.872032 0.489449i \(-0.837198\pi\)
0.993179 + 0.116595i \(0.0371981\pi\)
\(54\) −1.00000 −0.136083
\(55\) 0 0
\(56\) 2.38197 0.318304
\(57\) −0.381966 + 1.17557i −0.0505926 + 0.155708i
\(58\) 2.11803 1.53884i 0.278111 0.202060i
\(59\) −2.30902 1.67760i −0.300608 0.218405i 0.427248 0.904135i \(-0.359483\pi\)
−0.727856 + 0.685730i \(0.759483\pi\)
\(60\) 1.19098 + 3.66547i 0.153755 + 0.473210i
\(61\) −3.47214 10.6861i −0.444561 1.36822i −0.882964 0.469441i \(-0.844456\pi\)
0.438403 0.898779i \(-0.355544\pi\)
\(62\) −5.16312 3.75123i −0.655717 0.476406i
\(63\) −1.92705 + 1.40008i −0.242786 + 0.176394i
\(64\) 0.309017 0.951057i 0.0386271 0.118882i
\(65\) −4.76393 −0.590893
\(66\) 0 0
\(67\) 4.00000 0.488678 0.244339 0.969690i \(-0.421429\pi\)
0.244339 + 0.969690i \(0.421429\pi\)
\(68\) 2.00000 6.15537i 0.242536 0.746448i
\(69\) 1.00000 0.726543i 0.120386 0.0874654i
\(70\) 7.42705 + 5.39607i 0.887702 + 0.644954i
\(71\) 1.09017 + 3.35520i 0.129379 + 0.398189i 0.994674 0.103076i \(-0.0328684\pi\)
−0.865294 + 0.501264i \(0.832868\pi\)
\(72\) 0.309017 + 0.951057i 0.0364180 + 0.112083i
\(73\) −3.50000 2.54290i −0.409644 0.297624i 0.363814 0.931472i \(-0.381474\pi\)
−0.773458 + 0.633848i \(0.781474\pi\)
\(74\) −8.47214 + 6.15537i −0.984866 + 0.715547i
\(75\) −3.04508 + 9.37181i −0.351616 + 1.08216i
\(76\) 1.23607 0.141787
\(77\) 0 0
\(78\) −1.23607 −0.139957
\(79\) 1.95492 6.01661i 0.219945 0.676921i −0.778820 0.627247i \(-0.784182\pi\)
0.998765 0.0496744i \(-0.0158184\pi\)
\(80\) 3.11803 2.26538i 0.348607 0.253278i
\(81\) −0.809017 0.587785i −0.0898908 0.0653095i
\(82\) 0.381966 + 1.17557i 0.0421811 + 0.129820i
\(83\) −5.04508 15.5272i −0.553770 1.70433i −0.699170 0.714956i \(-0.746447\pi\)
0.145400 0.989373i \(-0.453553\pi\)
\(84\) 1.92705 + 1.40008i 0.210258 + 0.152762i
\(85\) 20.1803 14.6619i 2.18887 1.59030i
\(86\) 0.381966 1.17557i 0.0411885 0.126765i
\(87\) 2.61803 0.280683
\(88\) 0 0
\(89\) 1.70820 0.181069 0.0905346 0.995893i \(-0.471142\pi\)
0.0905346 + 0.995893i \(0.471142\pi\)
\(90\) −1.19098 + 3.66547i −0.125541 + 0.386374i
\(91\) −2.38197 + 1.73060i −0.249698 + 0.181416i
\(92\) −1.00000 0.726543i −0.104257 0.0757473i
\(93\) −1.97214 6.06961i −0.204501 0.629389i
\(94\) −2.00000 6.15537i −0.206284 0.634878i
\(95\) 3.85410 + 2.80017i 0.395423 + 0.287291i
\(96\) 0.809017 0.587785i 0.0825700 0.0599906i
\(97\) −1.33688 + 4.11450i −0.135740 + 0.417764i −0.995704 0.0925898i \(-0.970485\pi\)
0.859965 + 0.510354i \(0.170485\pi\)
\(98\) −1.32624 −0.133970
\(99\) 0 0
\(100\) 9.85410 0.985410
\(101\) −4.51722 + 13.9026i −0.449480 + 1.38336i 0.428014 + 0.903772i \(0.359213\pi\)
−0.877495 + 0.479586i \(0.840787\pi\)
\(102\) 5.23607 3.80423i 0.518448 0.376675i
\(103\) 13.7812 + 10.0126i 1.35790 + 0.986570i 0.998576 + 0.0533565i \(0.0169920\pi\)
0.359322 + 0.933214i \(0.383008\pi\)
\(104\) 0.381966 + 1.17557i 0.0374548 + 0.115274i
\(105\) 2.83688 + 8.73102i 0.276851 + 0.852061i
\(106\) −2.30902 1.67760i −0.224272 0.162943i
\(107\) −6.16312 + 4.47777i −0.595811 + 0.432882i −0.844390 0.535730i \(-0.820037\pi\)
0.248578 + 0.968612i \(0.420037\pi\)
\(108\) −0.309017 + 0.951057i −0.0297352 + 0.0915155i
\(109\) −9.41641 −0.901928 −0.450964 0.892542i \(-0.648920\pi\)
−0.450964 + 0.892542i \(0.648920\pi\)
\(110\) 0 0
\(111\) −10.4721 −0.993971
\(112\) 0.736068 2.26538i 0.0695519 0.214059i
\(113\) 2.85410 2.07363i 0.268491 0.195070i −0.445391 0.895336i \(-0.646935\pi\)
0.713882 + 0.700266i \(0.246935\pi\)
\(114\) 1.00000 + 0.726543i 0.0936586 + 0.0680469i
\(115\) −1.47214 4.53077i −0.137277 0.422496i
\(116\) −0.809017 2.48990i −0.0751153 0.231181i
\(117\) −1.00000 0.726543i −0.0924500 0.0671689i
\(118\) −2.30902 + 1.67760i −0.212562 + 0.154436i
\(119\) 4.76393 14.6619i 0.436709 1.34405i
\(120\) 3.85410 0.351830
\(121\) 0 0
\(122\) −11.2361 −1.01727
\(123\) −0.381966 + 1.17557i −0.0344407 + 0.105998i
\(124\) −5.16312 + 3.75123i −0.463662 + 0.336870i
\(125\) 15.1353 + 10.9964i 1.35374 + 0.983548i
\(126\) 0.736068 + 2.26538i 0.0655741 + 0.201816i
\(127\) 3.70820 + 11.4127i 0.329050 + 1.01271i 0.969579 + 0.244778i \(0.0787150\pi\)
−0.640529 + 0.767934i \(0.721285\pi\)
\(128\) −0.809017 0.587785i −0.0715077 0.0519534i
\(129\) 1.00000 0.726543i 0.0880451 0.0639685i
\(130\) −1.47214 + 4.53077i −0.129115 + 0.397375i
\(131\) 18.2705 1.59630 0.798151 0.602458i \(-0.205812\pi\)
0.798151 + 0.602458i \(0.205812\pi\)
\(132\) 0 0
\(133\) 2.94427 0.255301
\(134\) 1.23607 3.80423i 0.106780 0.328635i
\(135\) −3.11803 + 2.26538i −0.268358 + 0.194973i
\(136\) −5.23607 3.80423i −0.448989 0.326210i
\(137\) 5.29180 + 16.2865i 0.452109 + 1.39145i 0.874496 + 0.485032i \(0.161192\pi\)
−0.422388 + 0.906415i \(0.638808\pi\)
\(138\) −0.381966 1.17557i −0.0325151 0.100071i
\(139\) −7.09017 5.15131i −0.601380 0.436928i 0.244988 0.969526i \(-0.421216\pi\)
−0.846369 + 0.532598i \(0.821216\pi\)
\(140\) 7.42705 5.39607i 0.627700 0.456051i
\(141\) 2.00000 6.15537i 0.168430 0.518375i
\(142\) 3.52786 0.296052
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 3.11803 9.59632i 0.258939 0.796931i
\(146\) −3.50000 + 2.54290i −0.289662 + 0.210452i
\(147\) −1.07295 0.779543i −0.0884953 0.0642956i
\(148\) 3.23607 + 9.95959i 0.266003 + 0.818674i
\(149\) 1.11803 + 3.44095i 0.0915929 + 0.281894i 0.986351 0.164658i \(-0.0526519\pi\)
−0.894758 + 0.446552i \(0.852652\pi\)
\(150\) 7.97214 + 5.79210i 0.650922 + 0.472923i
\(151\) 5.11803 3.71847i 0.416500 0.302605i −0.359728 0.933057i \(-0.617131\pi\)
0.776228 + 0.630452i \(0.217131\pi\)
\(152\) 0.381966 1.17557i 0.0309815 0.0953514i
\(153\) 6.47214 0.523241
\(154\) 0 0
\(155\) −24.5967 −1.97566
\(156\) −0.381966 + 1.17557i −0.0305818 + 0.0941210i
\(157\) 3.61803 2.62866i 0.288751 0.209790i −0.433975 0.900925i \(-0.642889\pi\)
0.722725 + 0.691136i \(0.242889\pi\)
\(158\) −5.11803 3.71847i −0.407169 0.295826i
\(159\) −0.881966 2.71441i −0.0699445 0.215267i
\(160\) −1.19098 3.66547i −0.0941555 0.289781i
\(161\) −2.38197 1.73060i −0.187725 0.136390i
\(162\) −0.809017 + 0.587785i −0.0635624 + 0.0461808i
\(163\) 4.14590 12.7598i 0.324732 0.999422i −0.646830 0.762634i \(-0.723906\pi\)
0.971562 0.236787i \(-0.0760944\pi\)
\(164\) 1.23607 0.0965207
\(165\) 0 0
\(166\) −16.3262 −1.26716
\(167\) 0.854102 2.62866i 0.0660924 0.203411i −0.912556 0.408951i \(-0.865895\pi\)
0.978649 + 0.205539i \(0.0658948\pi\)
\(168\) 1.92705 1.40008i 0.148675 0.108019i
\(169\) 9.28115 + 6.74315i 0.713935 + 0.518704i
\(170\) −7.70820 23.7234i −0.591192 1.81950i
\(171\) 0.381966 + 1.17557i 0.0292097 + 0.0898981i
\(172\) −1.00000 0.726543i −0.0762493 0.0553983i
\(173\) 8.78115 6.37988i 0.667619 0.485053i −0.201609 0.979466i \(-0.564617\pi\)
0.869227 + 0.494413i \(0.164617\pi\)
\(174\) 0.809017 2.48990i 0.0613314 0.188759i
\(175\) 23.4721 1.77433
\(176\) 0 0
\(177\) −2.85410 −0.214527
\(178\) 0.527864 1.62460i 0.0395651 0.121769i
\(179\) 6.97214 5.06555i 0.521122 0.378617i −0.295904 0.955218i \(-0.595621\pi\)
0.817026 + 0.576600i \(0.195621\pi\)
\(180\) 3.11803 + 2.26538i 0.232405 + 0.168852i
\(181\) −2.32624 7.15942i −0.172908 0.532156i 0.826624 0.562755i \(-0.190258\pi\)
−0.999532 + 0.0305991i \(0.990258\pi\)
\(182\) 0.909830 + 2.80017i 0.0674411 + 0.207562i
\(183\) −9.09017 6.60440i −0.671965 0.488211i
\(184\) −1.00000 + 0.726543i −0.0737210 + 0.0535614i
\(185\) −12.4721 + 38.3853i −0.916970 + 2.82214i
\(186\) −6.38197 −0.467948
\(187\) 0 0
\(188\) −6.47214 −0.472029
\(189\) −0.736068 + 2.26538i −0.0535411 + 0.164782i
\(190\) 3.85410 2.80017i 0.279606 0.203146i
\(191\) −10.9443 7.95148i −0.791900 0.575349i 0.116627 0.993176i \(-0.462792\pi\)
−0.908527 + 0.417827i \(0.862792\pi\)
\(192\) −0.309017 0.951057i −0.0223014 0.0686366i
\(193\) −4.73607 14.5761i −0.340910 1.04921i −0.963737 0.266853i \(-0.914016\pi\)
0.622828 0.782359i \(-0.285984\pi\)
\(194\) 3.50000 + 2.54290i 0.251285 + 0.182569i
\(195\) −3.85410 + 2.80017i −0.275998 + 0.200524i
\(196\) −0.409830 + 1.26133i −0.0292736 + 0.0900948i
\(197\) −5.09017 −0.362660 −0.181330 0.983422i \(-0.558040\pi\)
−0.181330 + 0.983422i \(0.558040\pi\)
\(198\) 0 0
\(199\) 19.8541 1.40742 0.703710 0.710487i \(-0.251525\pi\)
0.703710 + 0.710487i \(0.251525\pi\)
\(200\) 3.04508 9.37181i 0.215320 0.662687i
\(201\) 3.23607 2.35114i 0.228255 0.165837i
\(202\) 11.8262 + 8.59226i 0.832091 + 0.604550i
\(203\) −1.92705 5.93085i −0.135252 0.416264i
\(204\) −2.00000 6.15537i −0.140028 0.430962i
\(205\) 3.85410 + 2.80017i 0.269182 + 0.195572i
\(206\) 13.7812 10.0126i 0.960178 0.697610i
\(207\) 0.381966 1.17557i 0.0265485 0.0817078i
\(208\) 1.23607 0.0857059
\(209\) 0 0
\(210\) 9.18034 0.633504
\(211\) 8.23607 25.3480i 0.566994 1.74503i −0.0949562 0.995481i \(-0.530271\pi\)
0.661950 0.749548i \(-0.269729\pi\)
\(212\) −2.30902 + 1.67760i −0.158584 + 0.115218i
\(213\) 2.85410 + 2.07363i 0.195560 + 0.142083i
\(214\) 2.35410 + 7.24518i 0.160923 + 0.495270i
\(215\) −1.47214 4.53077i −0.100399 0.308996i
\(216\) 0.809017 + 0.587785i 0.0550466 + 0.0399937i
\(217\) −12.2984 + 8.93529i −0.834868 + 0.606567i
\(218\) −2.90983 + 8.95554i −0.197079 + 0.606545i
\(219\) −4.32624 −0.292340
\(220\) 0 0
\(221\) 8.00000 0.538138
\(222\) −3.23607 + 9.95959i −0.217191 + 0.668444i
\(223\) 10.5902 7.69421i 0.709170 0.515242i −0.173736 0.984792i \(-0.555584\pi\)
0.882906 + 0.469550i \(0.155584\pi\)
\(224\) −1.92705 1.40008i −0.128757 0.0935471i
\(225\) 3.04508 + 9.37181i 0.203006 + 0.624787i
\(226\) −1.09017 3.35520i −0.0725170 0.223184i
\(227\) 11.2082 + 8.14324i 0.743915 + 0.540486i 0.893935 0.448197i \(-0.147934\pi\)
−0.150020 + 0.988683i \(0.547934\pi\)
\(228\) 1.00000 0.726543i 0.0662266 0.0481165i
\(229\) 1.56231 4.80828i 0.103240 0.317740i −0.886073 0.463545i \(-0.846577\pi\)
0.989313 + 0.145805i \(0.0465772\pi\)
\(230\) −4.76393 −0.314124
\(231\) 0 0
\(232\) −2.61803 −0.171882
\(233\) 2.76393 8.50651i 0.181071 0.557280i −0.818787 0.574097i \(-0.805353\pi\)
0.999859 + 0.0168170i \(0.00535327\pi\)
\(234\) −1.00000 + 0.726543i −0.0653720 + 0.0474956i
\(235\) −20.1803 14.6619i −1.31642 0.956435i
\(236\) 0.881966 + 2.71441i 0.0574111 + 0.176693i
\(237\) −1.95492 6.01661i −0.126985 0.390821i
\(238\) −12.4721 9.06154i −0.808448 0.587372i
\(239\) 6.09017 4.42477i 0.393940 0.286214i −0.373128 0.927780i \(-0.621715\pi\)
0.767068 + 0.641565i \(0.221715\pi\)
\(240\) 1.19098 3.66547i 0.0768776 0.236605i
\(241\) −22.5623 −1.45337 −0.726683 0.686973i \(-0.758939\pi\)
−0.726683 + 0.686973i \(0.758939\pi\)
\(242\) 0 0
\(243\) −1.00000 −0.0641500
\(244\) −3.47214 + 10.6861i −0.222281 + 0.684110i
\(245\) −4.13525 + 3.00444i −0.264192 + 0.191947i
\(246\) 1.00000 + 0.726543i 0.0637577 + 0.0463227i
\(247\) 0.472136 + 1.45309i 0.0300413 + 0.0924576i
\(248\) 1.97214 + 6.06961i 0.125231 + 0.385421i
\(249\) −13.2082 9.59632i −0.837036 0.608142i
\(250\) 15.1353 10.9964i 0.957238 0.695474i
\(251\) −1.13525 + 3.49396i −0.0716567 + 0.220537i −0.980471 0.196665i \(-0.936989\pi\)
0.908814 + 0.417201i \(0.136989\pi\)
\(252\) 2.38197 0.150050
\(253\) 0 0
\(254\) 12.0000 0.752947
\(255\) 7.70820 23.7234i 0.482706 1.48562i
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) 19.5623 + 14.2128i 1.22026 + 0.886573i 0.996122 0.0879836i \(-0.0280423\pi\)
0.224141 + 0.974557i \(0.428042\pi\)
\(258\) −0.381966 1.17557i −0.0237802 0.0731878i
\(259\) 7.70820 + 23.7234i 0.478964 + 1.47410i
\(260\) 3.85410 + 2.80017i 0.239021 + 0.173659i
\(261\) 2.11803 1.53884i 0.131103 0.0952519i
\(262\) 5.64590 17.3763i 0.348805 1.07351i
\(263\) −5.70820 −0.351983 −0.175991 0.984392i \(-0.556313\pi\)
−0.175991 + 0.984392i \(0.556313\pi\)
\(264\) 0 0
\(265\) −11.0000 −0.675725
\(266\) 0.909830 2.80017i 0.0557853 0.171689i
\(267\) 1.38197 1.00406i 0.0845749 0.0614473i
\(268\) −3.23607 2.35114i −0.197674 0.143619i
\(269\) 4.61803 + 14.2128i 0.281567 + 0.866573i 0.987407 + 0.158202i \(0.0505696\pi\)
−0.705840 + 0.708371i \(0.749430\pi\)
\(270\) 1.19098 + 3.66547i 0.0724809 + 0.223073i
\(271\) 2.76393 + 2.00811i 0.167897 + 0.121984i 0.668561 0.743658i \(-0.266911\pi\)
−0.500664 + 0.865642i \(0.666911\pi\)
\(272\) −5.23607 + 3.80423i −0.317483 + 0.230665i
\(273\) −0.909830 + 2.80017i −0.0550654 + 0.169474i
\(274\) 17.1246 1.03454
\(275\) 0 0
\(276\) −1.23607 −0.0744025
\(277\) −9.00000 + 27.6992i −0.540758 + 1.66428i 0.190111 + 0.981763i \(0.439115\pi\)
−0.730869 + 0.682518i \(0.760885\pi\)
\(278\) −7.09017 + 5.15131i −0.425240 + 0.308955i
\(279\) −5.16312 3.75123i −0.309108 0.224580i
\(280\) −2.83688 8.73102i −0.169536 0.521778i
\(281\) −5.29180 16.2865i −0.315682 0.971570i −0.975473 0.220120i \(-0.929355\pi\)
0.659791 0.751449i \(-0.270645\pi\)
\(282\) −5.23607 3.80423i −0.311803 0.226538i
\(283\) −9.61803 + 6.98791i −0.571733 + 0.415388i −0.835734 0.549134i \(-0.814958\pi\)
0.264001 + 0.964522i \(0.414958\pi\)
\(284\) 1.09017 3.35520i 0.0646897 0.199094i
\(285\) 4.76393 0.282191
\(286\) 0 0
\(287\) 2.94427 0.173795
\(288\) 0.309017 0.951057i 0.0182090 0.0560415i
\(289\) −20.1353 + 14.6291i −1.18443 + 0.860536i
\(290\) −8.16312 5.93085i −0.479355 0.348272i
\(291\) 1.33688 + 4.11450i 0.0783694 + 0.241196i
\(292\) 1.33688 + 4.11450i 0.0782350 + 0.240783i
\(293\) 19.3992 + 14.0943i 1.13331 + 0.823400i 0.986174 0.165716i \(-0.0529935\pi\)
0.147139 + 0.989116i \(0.452994\pi\)
\(294\) −1.07295 + 0.779543i −0.0625757 + 0.0454639i
\(295\) −3.39919 + 10.4616i −0.197908 + 0.609099i
\(296\) 10.4721 0.608681
\(297\) 0 0
\(298\) 3.61803 0.209587
\(299\) 0.472136 1.45309i 0.0273043 0.0840341i
\(300\) 7.97214 5.79210i 0.460271 0.334407i
\(301\) −2.38197 1.73060i −0.137294 0.0997501i
\(302\) −1.95492 6.01661i −0.112493 0.346217i
\(303\) 4.51722 + 13.9026i 0.259508 + 0.798682i
\(304\) −1.00000 0.726543i −0.0573539 0.0416701i
\(305\) −35.0344 + 25.4540i −2.00607 + 1.45749i
\(306\) 2.00000 6.15537i 0.114332 0.351879i
\(307\) 14.6525 0.836261 0.418130 0.908387i \(-0.362685\pi\)
0.418130 + 0.908387i \(0.362685\pi\)
\(308\) 0 0
\(309\) 17.0344 0.969056
\(310\) −7.60081 + 23.3929i −0.431697 + 1.32863i
\(311\) −9.61803 + 6.98791i −0.545389 + 0.396248i −0.826082 0.563549i \(-0.809435\pi\)
0.280694 + 0.959797i \(0.409435\pi\)
\(312\) 1.00000 + 0.726543i 0.0566139 + 0.0411324i
\(313\) 6.75329 + 20.7845i 0.381718 + 1.17481i 0.938833 + 0.344373i \(0.111908\pi\)
−0.557114 + 0.830436i \(0.688092\pi\)
\(314\) −1.38197 4.25325i −0.0779889 0.240025i
\(315\) 7.42705 + 5.39607i 0.418467 + 0.304034i
\(316\) −5.11803 + 3.71847i −0.287912 + 0.209180i
\(317\) 4.90983 15.1109i 0.275764 0.848713i −0.713253 0.700907i \(-0.752779\pi\)
0.989016 0.147806i \(-0.0472211\pi\)
\(318\) −2.85410 −0.160050
\(319\) 0 0
\(320\) −3.85410 −0.215451
\(321\) −2.35410 + 7.24518i −0.131393 + 0.404387i
\(322\) −2.38197 + 1.73060i −0.132742 + 0.0964425i
\(323\) −6.47214 4.70228i −0.360119 0.261642i
\(324\) 0.309017 + 0.951057i 0.0171676 + 0.0528365i
\(325\) 3.76393 + 11.5842i 0.208785 + 0.642575i
\(326\) −10.8541 7.88597i −0.601153 0.436763i
\(327\) −7.61803 + 5.53483i −0.421278 + 0.306077i
\(328\) 0.381966 1.17557i 0.0210905 0.0649100i
\(329\) −15.4164 −0.849934
\(330\) 0 0
\(331\) −8.94427 −0.491622 −0.245811 0.969318i \(-0.579054\pi\)
−0.245811 + 0.969318i \(0.579054\pi\)
\(332\) −5.04508 + 15.5272i −0.276885 + 0.852164i
\(333\) −8.47214 + 6.15537i −0.464270 + 0.337312i
\(334\) −2.23607 1.62460i −0.122352 0.0888941i
\(335\) −4.76393 14.6619i −0.260281 0.801064i
\(336\) −0.736068 2.26538i −0.0401558 0.123587i
\(337\) 8.85410 + 6.43288i 0.482314 + 0.350421i 0.802221 0.597028i \(-0.203652\pi\)
−0.319907 + 0.947449i \(0.603652\pi\)
\(338\) 9.28115 6.74315i 0.504828 0.366779i
\(339\) 1.09017 3.35520i 0.0592099 0.182229i
\(340\) −24.9443 −1.35279
\(341\) 0 0
\(342\) 1.23607 0.0668389
\(343\) −6.12868 + 18.8621i −0.330917 + 1.01846i
\(344\) −1.00000 + 0.726543i −0.0539164 + 0.0391725i
\(345\) −3.85410 2.80017i −0.207498 0.150756i
\(346\) −3.35410 10.3229i −0.180318 0.554961i
\(347\) 1.59017 + 4.89404i 0.0853648 + 0.262726i 0.984623 0.174692i \(-0.0558930\pi\)
−0.899258 + 0.437418i \(0.855893\pi\)
\(348\) −2.11803 1.53884i −0.113539 0.0824906i
\(349\) 7.09017 5.15131i 0.379528 0.275743i −0.381623 0.924318i \(-0.624635\pi\)
0.761151 + 0.648575i \(0.224635\pi\)
\(350\) 7.25329 22.3233i 0.387705 1.19323i
\(351\) −1.23607 −0.0659764
\(352\) 0 0
\(353\) 27.5967 1.46883 0.734413 0.678702i \(-0.237457\pi\)
0.734413 + 0.678702i \(0.237457\pi\)
\(354\) −0.881966 + 2.71441i −0.0468760 + 0.144269i
\(355\) 11.0000 7.99197i 0.583819 0.424170i
\(356\) −1.38197 1.00406i −0.0732441 0.0532149i
\(357\) −4.76393 14.6619i −0.252134 0.775989i
\(358\) −2.66312 8.19624i −0.140750 0.433185i
\(359\) −13.9443 10.1311i −0.735951 0.534699i 0.155490 0.987838i \(-0.450304\pi\)
−0.891440 + 0.453138i \(0.850304\pi\)
\(360\) 3.11803 2.26538i 0.164335 0.119396i
\(361\) −5.39919 + 16.6170i −0.284168 + 0.874578i
\(362\) −7.52786 −0.395656
\(363\) 0 0
\(364\) 2.94427 0.154322
\(365\) −5.15248 + 15.8577i −0.269693 + 0.830029i
\(366\) −9.09017 + 6.60440i −0.475151 + 0.345217i
\(367\) −0.409830 0.297759i −0.0213930 0.0155429i 0.577037 0.816718i \(-0.304209\pi\)
−0.598430 + 0.801175i \(0.704209\pi\)
\(368\) 0.381966 + 1.17557i 0.0199114 + 0.0612808i
\(369\) 0.381966 + 1.17557i 0.0198844 + 0.0611978i
\(370\) 32.6525 + 23.7234i 1.69752 + 1.23332i
\(371\) −5.50000 + 3.99598i −0.285546 + 0.207461i
\(372\) −1.97214 + 6.06961i −0.102250 + 0.314695i
\(373\) −18.4721 −0.956451 −0.478225 0.878237i \(-0.658720\pi\)
−0.478225 + 0.878237i \(0.658720\pi\)
\(374\) 0 0
\(375\) 18.7082 0.966087
\(376\) −2.00000 + 6.15537i −0.103142 + 0.317439i
\(377\) 2.61803 1.90211i 0.134836 0.0979638i
\(378\) 1.92705 + 1.40008i 0.0991168 + 0.0720126i
\(379\) −3.00000 9.23305i −0.154100 0.474270i 0.843969 0.536392i \(-0.180213\pi\)
−0.998069 + 0.0621221i \(0.980213\pi\)
\(380\) −1.47214 4.53077i −0.0755190 0.232424i
\(381\) 9.70820 + 7.05342i 0.497366 + 0.361358i
\(382\) −10.9443 + 7.95148i −0.559958 + 0.406833i
\(383\) 2.70820 8.33499i 0.138383 0.425898i −0.857718 0.514120i \(-0.828118\pi\)
0.996101 + 0.0882220i \(0.0281185\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0 0
\(386\) −15.3262 −0.780085
\(387\) 0.381966 1.17557i 0.0194164 0.0597576i
\(388\) 3.50000 2.54290i 0.177686 0.129096i
\(389\) −17.0344 12.3762i −0.863680 0.627501i 0.0652033 0.997872i \(-0.479230\pi\)
−0.928884 + 0.370371i \(0.879230\pi\)
\(390\) 1.47214 + 4.53077i 0.0745445 + 0.229424i
\(391\) 2.47214 + 7.60845i 0.125021 + 0.384776i
\(392\) 1.07295 + 0.779543i 0.0541921 + 0.0393729i
\(393\) 14.7812 10.7391i 0.745611 0.541718i
\(394\) −1.57295 + 4.84104i −0.0792440 + 0.243888i
\(395\) −24.3820 −1.22679
\(396\) 0 0
\(397\) −25.8885 −1.29931 −0.649654 0.760230i \(-0.725086\pi\)
−0.649654 + 0.760230i \(0.725086\pi\)
\(398\) 6.13525 18.8824i 0.307533 0.946488i
\(399\) 2.38197 1.73060i 0.119247 0.0866383i
\(400\) −7.97214 5.79210i −0.398607 0.289605i
\(401\) 7.32624 + 22.5478i 0.365855 + 1.12599i 0.949444 + 0.313936i \(0.101648\pi\)
−0.583589 + 0.812049i \(0.698352\pi\)
\(402\) −1.23607 3.80423i −0.0616495 0.189738i
\(403\) −6.38197 4.63677i −0.317908 0.230974i
\(404\) 11.8262 8.59226i 0.588377 0.427481i
\(405\) −1.19098 + 3.66547i −0.0591804 + 0.182139i
\(406\) −6.23607 −0.309491
\(407\) 0 0
\(408\) −6.47214 −0.320418
\(409\) −0.281153 + 0.865300i −0.0139021 + 0.0427863i −0.957767 0.287546i \(-0.907161\pi\)
0.943865 + 0.330332i \(0.107161\pi\)
\(410\) 3.85410 2.80017i 0.190341 0.138290i
\(411\) 13.8541 + 10.0656i 0.683372 + 0.496499i
\(412\) −5.26393 16.2007i −0.259335 0.798152i
\(413\) 2.10081 + 6.46564i 0.103374 + 0.318153i
\(414\) −1.00000 0.726543i −0.0491473 0.0357076i
\(415\) −50.9058 + 36.9852i −2.49887 + 1.81553i
\(416\) 0.381966 1.17557i 0.0187274 0.0576371i
\(417\) −8.76393 −0.429172
\(418\) 0 0
\(419\) 28.9787 1.41570 0.707851 0.706361i \(-0.249665\pi\)
0.707851 + 0.706361i \(0.249665\pi\)
\(420\) 2.83688 8.73102i 0.138426 0.426030i
\(421\) 4.14590 3.01217i 0.202059 0.146804i −0.482155 0.876086i \(-0.660146\pi\)
0.684213 + 0.729282i \(0.260146\pi\)
\(422\) −21.5623 15.6659i −1.04964 0.762606i
\(423\) −2.00000 6.15537i −0.0972433 0.299284i
\(424\) 0.881966 + 2.71441i 0.0428321 + 0.131824i
\(425\) −51.5967 37.4872i −2.50281 1.81840i
\(426\) 2.85410 2.07363i 0.138282 0.100468i
\(427\) −8.27051 + 25.4540i −0.400238 + 1.23181i
\(428\) 7.61803 0.368232
\(429\) 0 0
\(430\) −4.76393 −0.229737
\(431\) −0.854102 + 2.62866i −0.0411406 + 0.126618i −0.969517 0.245023i \(-0.921205\pi\)
0.928377 + 0.371641i \(0.121205\pi\)
\(432\) 0.809017 0.587785i 0.0389238 0.0282798i
\(433\) 2.69098 + 1.95511i 0.129320 + 0.0939568i 0.650565 0.759451i \(-0.274532\pi\)
−0.521245 + 0.853407i \(0.674532\pi\)
\(434\) 4.69756 + 14.4576i 0.225490 + 0.693987i
\(435\) −3.11803 9.59632i −0.149498 0.460108i
\(436\) 7.61803 + 5.53483i 0.364838 + 0.265070i
\(437\) −1.23607 + 0.898056i −0.0591292 + 0.0429598i
\(438\) −1.33688 + 4.11450i −0.0638786 + 0.196598i
\(439\) −13.0344 −0.622100 −0.311050 0.950394i \(-0.600681\pi\)
−0.311050 + 0.950394i \(0.600681\pi\)
\(440\) 0 0
\(441\) −1.32624 −0.0631542
\(442\) 2.47214 7.60845i 0.117588 0.361897i
\(443\) 14.0172 10.1841i 0.665978 0.483862i −0.202698 0.979241i \(-0.564971\pi\)
0.868677 + 0.495380i \(0.164971\pi\)
\(444\) 8.47214 + 6.15537i 0.402070 + 0.292121i
\(445\) −2.03444 6.26137i −0.0964418 0.296817i
\(446\) −4.04508 12.4495i −0.191540 0.589501i
\(447\) 2.92705 + 2.12663i 0.138445 + 0.100586i
\(448\) −1.92705 + 1.40008i −0.0910446 + 0.0661478i
\(449\) 0.0344419 0.106001i 0.00162541 0.00500250i −0.950241 0.311517i \(-0.899163\pi\)
0.951866 + 0.306515i \(0.0991629\pi\)
\(450\) 9.85410 0.464527
\(451\) 0 0
\(452\) −3.52786 −0.165937
\(453\) 1.95492 6.01661i 0.0918499 0.282685i
\(454\) 11.2082 8.14324i 0.526027 0.382181i
\(455\) 9.18034 + 6.66991i 0.430381 + 0.312690i
\(456\) −0.381966 1.17557i −0.0178872 0.0550511i
\(457\) 7.71885 + 23.7562i 0.361072 + 1.11127i 0.952404 + 0.304838i \(0.0986024\pi\)
−0.591332 + 0.806428i \(0.701398\pi\)
\(458\) −4.09017 2.97168i −0.191121 0.138858i
\(459\) 5.23607 3.80423i 0.244399 0.177566i
\(460\) −1.47214 + 4.53077i −0.0686387 + 0.211248i
\(461\) −12.8328 −0.597684 −0.298842 0.954303i \(-0.596600\pi\)
−0.298842 + 0.954303i \(0.596600\pi\)
\(462\) 0 0
\(463\) 7.90983 0.367601 0.183800 0.982964i \(-0.441160\pi\)
0.183800 + 0.982964i \(0.441160\pi\)
\(464\) −0.809017 + 2.48990i −0.0375577 + 0.115591i
\(465\) −19.8992 + 14.4576i −0.922803 + 0.670455i
\(466\) −7.23607 5.25731i −0.335204 0.243540i
\(467\) −0.173762 0.534785i −0.00804075 0.0247469i 0.946956 0.321364i \(-0.104141\pi\)
−0.954996 + 0.296617i \(0.904141\pi\)
\(468\) 0.381966 + 1.17557i 0.0176564 + 0.0543408i
\(469\) −7.70820 5.60034i −0.355932 0.258600i
\(470\) −20.1803 + 14.6619i −0.930850 + 0.676302i
\(471\) 1.38197 4.25325i 0.0636776 0.195980i
\(472\) 2.85410 0.131371
\(473\) 0 0
\(474\) −6.32624 −0.290574
\(475\) 3.76393 11.5842i 0.172701 0.531519i
\(476\) −12.4721 + 9.06154i −0.571659 + 0.415335i
\(477\) −2.30902 1.67760i −0.105723 0.0768120i
\(478\) −2.32624 7.15942i −0.106400 0.327464i
\(479\) −0.854102 2.62866i −0.0390249 0.120106i 0.929646 0.368454i \(-0.120113\pi\)
−0.968671 + 0.248347i \(0.920113\pi\)
\(480\) −3.11803 2.26538i −0.142318 0.103400i
\(481\) −10.4721 + 7.60845i −0.477488 + 0.346916i
\(482\) −6.97214 + 21.4580i −0.317572 + 0.977386i
\(483\) −2.94427 −0.133969
\(484\) 0 0
\(485\) 16.6738 0.757117
\(486\) −0.309017 + 0.951057i −0.0140173 + 0.0431408i
\(487\) 17.7812 12.9188i 0.805741 0.585405i −0.106852 0.994275i \(-0.534077\pi\)
0.912593 + 0.408870i \(0.134077\pi\)
\(488\) 9.09017 + 6.60440i 0.411493 + 0.298967i
\(489\) −4.14590 12.7598i −0.187484 0.577016i
\(490\) 1.57953 + 4.86128i 0.0713557 + 0.219610i
\(491\) 30.9443 + 22.4823i 1.39650 + 1.01461i 0.995117 + 0.0987010i \(0.0314687\pi\)
0.401378 + 0.915912i \(0.368531\pi\)
\(492\) 1.00000 0.726543i 0.0450835 0.0327551i
\(493\) −5.23607 + 16.1150i −0.235821 + 0.725781i
\(494\) 1.52786 0.0687419
\(495\) 0 0
\(496\) 6.38197 0.286559
\(497\) 2.59675 7.99197i 0.116480 0.358489i
\(498\) −13.2082 + 9.59632i −0.591874 + 0.430021i
\(499\) −15.7082 11.4127i −0.703196 0.510902i 0.177776 0.984071i \(-0.443110\pi\)
−0.880971 + 0.473169i \(0.843110\pi\)
\(500\) −5.78115 17.7926i −0.258541 0.795707i
\(501\) −0.854102 2.62866i −0.0381585 0.117440i
\(502\) 2.97214 + 2.15938i 0.132653 + 0.0963780i
\(503\) 32.6525 23.7234i 1.45590 1.05777i 0.471495 0.881869i \(-0.343715\pi\)
0.984407 0.175906i \(-0.0562855\pi\)
\(504\) 0.736068 2.26538i 0.0327871 0.100908i
\(505\) 56.3394 2.50707
\(506\) 0 0
\(507\) 11.4721 0.509495
\(508\) 3.70820 11.4127i 0.164525 0.506356i
\(509\) −22.4894 + 16.3395i −0.996823 + 0.724234i −0.961405 0.275138i \(-0.911276\pi\)
−0.0354185 + 0.999373i \(0.511276\pi\)
\(510\) −20.1803 14.6619i −0.893600 0.649239i
\(511\) 3.18441 + 9.80059i 0.140870 + 0.433553i
\(512\) 0.309017 + 0.951057i 0.0136568 + 0.0420312i
\(513\) 1.00000 + 0.726543i 0.0441511 + 0.0320776i
\(514\) 19.5623 14.2128i 0.862856 0.626902i
\(515\) 20.2877 62.4392i 0.893984 2.75140i
\(516\) −1.23607 −0.0544149
\(517\) 0 0
\(518\) 24.9443 1.09599
\(519\) 3.35410 10.3229i 0.147229 0.453123i
\(520\) 3.85410 2.80017i 0.169014 0.122796i
\(521\) −3.70820 2.69417i −0.162459 0.118034i 0.503585 0.863946i \(-0.332014\pi\)
−0.666045 + 0.745912i \(0.732014\pi\)
\(522\) −0.809017 2.48990i −0.0354097 0.108980i
\(523\) −9.14590 28.1482i −0.399922 1.23083i −0.925061 0.379818i \(-0.875987\pi\)
0.525139 0.851016i \(-0.324013\pi\)
\(524\) −14.7812 10.7391i −0.645718 0.469141i
\(525\) 18.9894 13.7966i 0.828763 0.602132i
\(526\) −1.76393 + 5.42882i −0.0769111 + 0.236708i
\(527\) 41.3050 1.79927
\(528\) 0 0
\(529\) −21.4721 −0.933571
\(530\) −3.39919 + 10.4616i −0.147651 + 0.454424i
\(531\) −2.30902 + 1.67760i −0.100203 + 0.0728016i
\(532\) −2.38197 1.73060i −0.103271 0.0750310i
\(533\) 0.472136 + 1.45309i 0.0204505 + 0.0629401i
\(534\) −0.527864 1.62460i −0.0228429 0.0703033i
\(535\) 23.7533 + 17.2578i 1.02694 + 0.746119i
\(536\) −3.23607 + 2.35114i −0.139777 + 0.101554i
\(537\) 2.66312 8.19624i 0.114922 0.353694i
\(538\) 14.9443 0.644293
\(539\) 0 0
\(540\) 3.85410 0.165854
\(541\) 5.09017 15.6659i 0.218843 0.673531i −0.780015 0.625761i \(-0.784789\pi\)
0.998858 0.0477700i \(-0.0152115\pi\)
\(542\) 2.76393 2.00811i 0.118721 0.0862559i
\(543\) −6.09017 4.42477i −0.261354 0.189885i
\(544\) 2.00000 + 6.15537i 0.0857493 + 0.263909i
\(545\) 11.2148 + 34.5155i 0.480388 + 1.47848i
\(546\) 2.38197 + 1.73060i 0.101939 + 0.0740628i
\(547\) 3.38197 2.45714i 0.144602 0.105060i −0.513132 0.858310i \(-0.671515\pi\)
0.657734 + 0.753250i \(0.271515\pi\)
\(548\) 5.29180 16.2865i 0.226054 0.695724i
\(549\) −11.2361 −0.479544
\(550\) 0 0
\(551\) −3.23607 −0.137861
\(552\) −0.381966 + 1.17557i −0.0162576 + 0.0500356i
\(553\) −12.1910 + 8.85727i −0.518413 + 0.376649i
\(554\) 23.5623 + 17.1190i 1.00107 + 0.727317i
\(555\) 12.4721 + 38.3853i 0.529413 + 1.62936i
\(556\) 2.70820 + 8.33499i 0.114853 + 0.353483i
\(557\) 10.4894 + 7.62096i 0.444448 + 0.322911i 0.787400 0.616442i \(-0.211427\pi\)
−0.342952 + 0.939353i \(0.611427\pi\)
\(558\) −5.16312 + 3.75123i −0.218572 + 0.158802i
\(559\) 0.472136 1.45309i 0.0199692 0.0614589i
\(560\) −9.18034 −0.387940
\(561\) 0 0
\(562\) −17.1246 −0.722358
\(563\) 2.11146 6.49839i 0.0889873 0.273875i −0.896653 0.442734i \(-0.854008\pi\)
0.985640 + 0.168860i \(0.0540085\pi\)
\(564\) −5.23607 + 3.80423i −0.220478 + 0.160187i
\(565\) −11.0000 7.99197i −0.462773 0.336225i
\(566\) 3.67376 + 11.3067i 0.154420 + 0.475255i
\(567\) 0.736068 + 2.26538i 0.0309119 + 0.0951372i
\(568\) −2.85410 2.07363i −0.119755 0.0870074i
\(569\) 13.6180 9.89408i 0.570898 0.414781i −0.264534 0.964376i \(-0.585218\pi\)
0.835431 + 0.549595i \(0.185218\pi\)
\(570\) 1.47214 4.53077i 0.0616610 0.189773i
\(571\) −39.5967 −1.65707 −0.828536 0.559936i \(-0.810826\pi\)
−0.828536 + 0.559936i \(0.810826\pi\)
\(572\) 0 0
\(573\) −13.5279 −0.565135
\(574\) 0.909830 2.80017i 0.0379756 0.116877i
\(575\) −9.85410 + 7.15942i −0.410944 + 0.298569i
\(576\) −0.809017 0.587785i −0.0337090 0.0244911i
\(577\) −1.26393 3.88998i −0.0526182 0.161942i 0.921294 0.388866i \(-0.127133\pi\)
−0.973912 + 0.226924i \(0.927133\pi\)
\(578\) 7.69098 + 23.6704i 0.319903 + 0.984559i
\(579\) −12.3992 9.00854i −0.515293 0.374382i
\(580\) −8.16312 + 5.93085i −0.338955 + 0.246265i
\(581\) −12.0172 + 36.9852i −0.498558 + 1.53440i
\(582\) 4.32624 0.179328
\(583\) 0 0
\(584\) 4.32624 0.179021
\(585\) −1.47214 + 4.53077i −0.0608653 + 0.187324i
\(586\) 19.3992 14.0943i 0.801373 0.582232i
\(587\) 10.4443 + 7.58821i 0.431081 + 0.313199i 0.782081 0.623177i \(-0.214158\pi\)
−0.351000 + 0.936376i \(0.614158\pi\)
\(588\) 0.409830 + 1.26133i 0.0169011 + 0.0520163i
\(589\) 2.43769 + 7.50245i 0.100443 + 0.309133i
\(590\) 8.89919 + 6.46564i 0.366374 + 0.266186i
\(591\) −4.11803 + 2.99193i −0.169393 + 0.123071i
\(592\) 3.23607 9.95959i 0.133002 0.409337i
\(593\) 15.5279 0.637653 0.318826 0.947813i \(-0.396711\pi\)
0.318826 + 0.947813i \(0.396711\pi\)
\(594\) 0 0
\(595\) −59.4164 −2.43584
\(596\) 1.11803 3.44095i 0.0457965 0.140947i
\(597\) 16.0623 11.6699i 0.657386 0.477619i
\(598\) −1.23607 0.898056i −0.0505466 0.0367242i
\(599\) −11.2361 34.5811i −0.459093 1.41294i −0.866262 0.499591i \(-0.833484\pi\)
0.407168 0.913353i \(-0.366516\pi\)
\(600\) −3.04508 9.37181i −0.124315 0.382602i
\(601\) −15.1631 11.0167i −0.618517 0.449379i 0.233886 0.972264i \(-0.424856\pi\)
−0.852403 + 0.522885i \(0.824856\pi\)
\(602\) −2.38197 + 1.73060i −0.0970817 + 0.0705340i
\(603\) 1.23607 3.80423i 0.0503366 0.154920i
\(604\) −6.32624 −0.257411
\(605\) 0 0
\(606\) 14.6180 0.593817
\(607\) −14.7639 + 45.4387i −0.599250 + 1.84430i −0.0669285 + 0.997758i \(0.521320\pi\)
−0.532321 + 0.846543i \(0.678680\pi\)
\(608\) −1.00000 + 0.726543i −0.0405554 + 0.0294652i
\(609\) −5.04508 3.66547i −0.204437 0.148532i
\(610\) 13.3820 + 41.1855i 0.541820 + 1.66755i
\(611\) −2.47214 7.60845i −0.100012 0.307805i
\(612\) −5.23607 3.80423i −0.211656 0.153777i
\(613\) 22.4164 16.2865i 0.905390 0.657804i −0.0344546 0.999406i \(-0.510969\pi\)
0.939845 + 0.341602i \(0.110969\pi\)
\(614\) 4.52786 13.9353i 0.182730 0.562384i
\(615\) 4.76393 0.192100
\(616\) 0 0
\(617\) −43.7082 −1.75963 −0.879813 0.475320i \(-0.842332\pi\)
−0.879813 + 0.475320i \(0.842332\pi\)
\(618\) 5.26393 16.2007i 0.211746 0.651688i
\(619\) −30.1803 + 21.9273i −1.21305 + 0.881333i −0.995504 0.0947174i \(-0.969805\pi\)
−0.217546 + 0.976050i \(0.569805\pi\)
\(620\) 19.8992 + 14.4576i 0.799171 + 0.580631i
\(621\) −0.381966 1.17557i −0.0153278 0.0471740i
\(622\) 3.67376 + 11.3067i 0.147304 + 0.453356i
\(623\) −3.29180 2.39163i −0.131883 0.0958186i
\(624\) 1.00000 0.726543i 0.0400320 0.0290850i
\(625\) 7.05573 21.7153i 0.282229 0.868612i
\(626\) 21.8541 0.873466
\(627\) 0 0
\(628\) −4.47214 −0.178458
\(629\) 20.9443 64.4598i 0.835103 2.57018i
\(630\) 7.42705 5.39607i 0.295901 0.214985i
\(631\) 19.2984 + 14.0211i 0.768256 + 0.558171i 0.901432 0.432922i \(-0.142517\pi\)
−0.133175 + 0.991092i \(0.542517\pi\)
\(632\) 1.95492 + 6.01661i 0.0777623 + 0.239328i
\(633\) −8.23607 25.3480i −0.327354 1.00749i
\(634\) −12.8541 9.33905i −0.510502 0.370901i
\(635\) 37.4164 27.1846i 1.48482 1.07879i
\(636\) −0.881966 + 2.71441i −0.0349722 + 0.107633i
\(637\) −1.63932 −0.0649522
\(638\) 0 0
\(639\) 3.52786 0.139560
\(640\) −1.19098 + 3.66547i −0.0470777 + 0.144890i
\(641\) −5.56231 + 4.04125i −0.219698 + 0.159620i −0.692191 0.721715i \(-0.743354\pi\)
0.472493 + 0.881335i \(0.343354\pi\)
\(642\) 6.16312 + 4.47777i 0.243239 + 0.176723i
\(643\) −2.14590 6.60440i −0.0846260 0.260452i 0.899786 0.436332i \(-0.143723\pi\)
−0.984412 + 0.175880i \(0.943723\pi\)
\(644\) 0.909830 + 2.80017i 0.0358523 + 0.110342i
\(645\) −3.85410 2.80017i −0.151755 0.110257i
\(646\) −6.47214 + 4.70228i −0.254643 + 0.185009i
\(647\) −13.3262 + 41.0139i −0.523908 + 1.61242i 0.242556 + 0.970137i \(0.422014\pi\)
−0.766464 + 0.642287i \(0.777986\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0 0
\(650\) 12.1803 0.477752
\(651\) −4.69756 + 14.4576i −0.184112 + 0.566638i
\(652\) −10.8541 + 7.88597i −0.425079 + 0.308838i
\(653\) 22.5344 + 16.3722i 0.881841 + 0.640695i 0.933738 0.357958i \(-0.116527\pi\)
−0.0518970 + 0.998652i \(0.516527\pi\)
\(654\) 2.90983 + 8.95554i 0.113783 + 0.350189i
\(655\) −21.7599 66.9700i −0.850228 2.61673i
\(656\) −1.00000 0.726543i −0.0390434 0.0283667i
\(657\) −3.50000 + 2.54290i −0.136548 + 0.0992079i
\(658\) −4.76393 + 14.6619i −0.185717 + 0.571579i
\(659\) 49.8541 1.94204 0.971020 0.238998i \(-0.0768190\pi\)
0.971020 + 0.238998i \(0.0768190\pi\)
\(660\) 0 0
\(661\) 28.1803 1.09609 0.548044 0.836449i \(-0.315373\pi\)
0.548044 + 0.836449i \(0.315373\pi\)
\(662\) −2.76393 + 8.50651i −0.107423 + 0.330615i
\(663\) 6.47214 4.70228i 0.251357 0.182622i
\(664\) 13.2082 + 9.59632i 0.512578 + 0.372410i
\(665\) −3.50658 10.7921i −0.135979 0.418501i
\(666\) 3.23607 + 9.95959i 0.125395 + 0.385926i
\(667\) 2.61803 + 1.90211i 0.101371 + 0.0736501i
\(668\) −2.23607 + 1.62460i −0.0865161 + 0.0628576i
\(669\) 4.04508 12.4495i 0.156392 0.481325i
\(670\) −15.4164 −0.595588
\(671\) 0 0
\(672\) −2.38197 −0.0918863
\(673\) −11.1353 + 34.2708i −0.429233 + 1.32104i 0.469650 + 0.882853i \(0.344380\pi\)
−0.898883 + 0.438189i \(0.855620\pi\)
\(674\) 8.85410 6.43288i 0.341047 0.247785i
\(675\) 7.97214 + 5.79210i 0.306848 + 0.222938i
\(676\) −3.54508 10.9106i −0.136349 0.419640i
\(677\) −0.770510 2.37139i −0.0296131 0.0911397i 0.935158 0.354232i \(-0.115258\pi\)
−0.964771 + 0.263092i \(0.915258\pi\)
\(678\) −2.85410 2.07363i −0.109611 0.0796371i
\(679\) 8.33688 6.05710i 0.319940 0.232450i
\(680\) −7.70820 + 23.7234i −0.295596 + 0.909751i
\(681\) 13.8541 0.530890
\(682\) 0 0
\(683\) 3.25735 0.124639 0.0623196 0.998056i \(-0.480150\pi\)
0.0623196 + 0.998056i \(0.480150\pi\)
\(684\) 0.381966 1.17557i 0.0146048 0.0449491i
\(685\) 53.3951 38.7938i 2.04012 1.48224i
\(686\) 16.0451 + 11.6574i 0.612604 + 0.445083i
\(687\) −1.56231 4.80828i −0.0596057 0.183447i
\(688\) 0.381966 + 1.17557i 0.0145623 + 0.0448182i
\(689\) −2.85410 2.07363i −0.108733 0.0789989i
\(690\) −3.85410 + 2.80017i −0.146723 + 0.106601i
\(691\) −4.23607 + 13.0373i −0.161148 + 0.495961i −0.998732 0.0503469i \(-0.983967\pi\)
0.837584 + 0.546308i \(0.183967\pi\)
\(692\) −10.8541 −0.412611
\(693\) 0 0
\(694\) 5.14590 0.195336
\(695\) −10.4377 + 32.1239i −0.395924 + 1.21853i
\(696\) −2.11803 + 1.53884i −0.0802839 + 0.0583296i
\(697\) −6.47214 4.70228i −0.245150 0.178112i
\(698\) −2.70820 8.33499i −0.102507 0.315484i
\(699\) −2.76393 8.50651i −0.104542 0.321746i
\(700\) −18.9894 13.7966i −0.717730 0.521462i
\(701\) −15.3262 + 11.1352i −0.578864 + 0.420569i −0.838314 0.545187i \(-0.816459\pi\)
0.259450 + 0.965756i \(0.416459\pi\)
\(702\) −0.381966 + 1.17557i −0.0144164 + 0.0443690i
\(703\) 12.9443 0.488202
\(704\) 0 0
\(705\) −24.9443 −0.939456
\(706\) 8.52786 26.2461i 0.320950 0.987784i
\(707\) 28.1697 20.4665i 1.05943 0.769721i
\(708\) 2.30902 + 1.67760i 0.0867782 + 0.0630480i
\(709\) −12.6738 39.0058i −0.475973 1.46489i −0.844641 0.535333i \(-0.820186\pi\)
0.368668 0.929561i \(-0.379814\pi\)
\(710\) −4.20163 12.9313i −0.157684 0.485302i
\(711\) −5.11803 3.71847i −0.191941 0.139453i
\(712\) −1.38197 + 1.00406i −0.0517914 + 0.0376286i
\(713\) 2.43769 7.50245i 0.0912924 0.280969i
\(714\) −15.4164 −0.576945
\(715\) 0 0
\(716\) −8.61803 −0.322071
\(717\) 2.32624 7.15942i 0.0868749 0.267374i
\(718\) −13.9443 + 10.1311i −0.520396 + 0.378090i
\(719\) 5.61803 + 4.08174i 0.209517 + 0.152223i 0.687595 0.726094i \(-0.258666\pi\)
−0.478078 + 0.878317i \(0.658666\pi\)
\(720\) −1.19098 3.66547i −0.0443853 0.136604i
\(721\) −12.5385 38.5896i −0.466958 1.43715i
\(722\) 14.1353 + 10.2699i 0.526060 + 0.382205i
\(723\) −18.2533 + 13.2618i −0.678847 + 0.493211i
\(724\) −2.32624 + 7.15942i −0.0864540 + 0.266078i
\(725\) −25.7984 −0.958128
\(726\) 0 0
\(727\) −23.4164 −0.868466 −0.434233 0.900800i \(-0.642981\pi\)
−0.434233 + 0.900800i \(0.642981\pi\)
\(728\) 0.909830 2.80017i 0.0337205 0.103781i
\(729\) −0.809017 + 0.587785i −0.0299636 + 0.0217698i
\(730\) 13.4894 + 9.80059i 0.499263 + 0.362736i
\(731\) 2.47214 + 7.60845i 0.0914353 + 0.281409i
\(732\) 3.47214 + 10.6861i 0.128334 + 0.394971i
\(733\) 24.5066 + 17.8051i 0.905171 + 0.657645i 0.939789 0.341755i \(-0.111021\pi\)
−0.0346179 + 0.999401i \(0.511021\pi\)
\(734\) −0.409830 + 0.297759i −0.0151271 + 0.0109905i
\(735\) −1.57953 + 4.86128i −0.0582617 + 0.179311i
\(736\) 1.23607 0.0455621
\(737\) 0 0
\(738\) 1.23607 0.0455003
\(739\) 10.1803 31.3319i 0.374490 1.15256i −0.569332 0.822107i \(-0.692798\pi\)
0.943822 0.330454i \(-0.107202\pi\)
\(740\) 32.6525 23.7234i 1.20033 0.872090i
\(741\) 1.23607 + 0.898056i 0.0454081 + 0.0329909i
\(742\) 2.10081 + 6.46564i 0.0771233 + 0.237361i
\(743\) 10.4377 + 32.1239i 0.382922 + 1.17851i 0.937977 + 0.346698i \(0.112697\pi\)
−0.555055 + 0.831814i \(0.687303\pi\)
\(744\) 5.16312 + 3.75123i 0.189289 + 0.137527i
\(745\) 11.2812 8.19624i 0.413309 0.300287i
\(746\) −5.70820 + 17.5680i −0.208992 + 0.643212i
\(747\) −16.3262 −0.597346
\(748\) 0 0
\(749\) 18.1459 0.663037
\(750\) 5.78115 17.7926i 0.211098 0.649692i
\(751\) 37.1246 26.9726i 1.35470 0.984244i 0.355934 0.934511i \(-0.384163\pi\)
0.998763 0.0497333i \(-0.0158371\pi\)
\(752\) 5.23607 + 3.80423i 0.190940 + 0.138726i
\(753\) 1.13525 + 3.49396i 0.0413710 + 0.127327i
\(754\) −1.00000 3.07768i −0.0364179 0.112083i
\(755\) −19.7254 14.3314i −0.717882 0.521572i
\(756\) 1.92705 1.40008i 0.0700862 0.0509206i
\(757\) 11.2918 34.7526i 0.410407 1.26310i −0.505888 0.862599i \(-0.668835\pi\)
0.916295 0.400504i \(-0.131165\pi\)
\(758\) −9.70820 −0.352618
\(759\) 0 0
\(760\) −4.76393 −0.172806
\(761\) 7.32624 22.5478i 0.265576 0.817359i −0.725984 0.687711i \(-0.758615\pi\)
0.991560 0.129647i \(-0.0413845\pi\)
\(762\) 9.70820 7.05342i 0.351691 0.255519i
\(763\) 18.1459 + 13.1838i 0.656926 + 0.477284i
\(764\) 4.18034 + 12.8658i 0.151239 + 0.465467i
\(765\) −7.70820 23.7234i −0.278691 0.857722i
\(766\) −7.09017 5.15131i −0.256178 0.186124i
\(767\) −2.85410 + 2.07363i −0.103056 + 0.0748743i
\(768\) −0.309017 + 0.951057i −0.0111507 + 0.0343183i
\(769\) 29.2705 1.05552 0.527761 0.849393i \(-0.323032\pi\)
0.527761 + 0.849393i \(0.323032\pi\)
\(770\) 0 0
\(771\) 24.1803 0.870834
\(772\) −4.73607 + 14.5761i −0.170455 + 0.524606i
\(773\) 23.0623 16.7557i 0.829493 0.602662i −0.0899225 0.995949i \(-0.528662\pi\)
0.919416 + 0.393286i \(0.128662\pi\)
\(774\) −1.00000 0.726543i −0.0359443 0.0261150i
\(775\) 19.4336 + 59.8106i 0.698077 + 2.14846i
\(776\) −1.33688 4.11450i −0.0479912 0.147702i
\(777\) 20.1803 + 14.6619i 0.723966 + 0.525992i
\(778\) −17.0344 + 12.3762i −0.610714 + 0.443710i
\(779\) 0.472136 1.45309i 0.0169160 0.0520622i
\(780\) 4.76393 0.170576
\(781\) 0 0
\(782\) 8.00000 0.286079
\(783\) 0.809017 2.48990i 0.0289119 0.0889817i
\(784\) 1.07295 0.779543i 0.0383196 0.0278408i
\(785\) −13.9443 10.1311i −0.497692 0.361595i
\(786\) −5.64590 17.3763i −0.201383 0.619792i
\(787\) 14.6738 + 45.1612i 0.523063 + 1.60982i 0.768114 + 0.640313i \(0.221195\pi\)
−0.245051 + 0.969510i \(0.578805\pi\)
\(788\) 4.11803 + 2.99193i 0.146699 + 0.106583i
\(789\) −4.61803 + 3.35520i −0.164406 + 0.119448i
\(790\) −7.53444 + 23.1886i −0.268063 + 0.825014i
\(791\) −8.40325 −0.298785
\(792\) 0 0
\(793\) −13.8885 −0.493197
\(794\) −8.00000 + 24.6215i −0.283909 + 0.873783i
\(795\) −8.89919 + 6.46564i −0.315622 + 0.229313i
\(796\) −16.0623 11.6699i −0.569313 0.413630i
\(797\) −6.29837 19.3844i −0.223100 0.686631i −0.998479 0.0551347i \(-0.982441\pi\)
0.775379 0.631496i \(-0.217559\pi\)
\(798\) −0.909830 2.80017i −0.0322076 0.0991249i
\(799\) 33.8885 + 24.6215i 1.19889 + 0.871045i
\(800\) −7.97214 + 5.79210i −0.281858 + 0.204782i
\(801\) 0.527864 1.62460i 0.0186512 0.0574024i
\(802\) 23.7082 0.837166
\(803\) 0 0
\(804\) −4.00000 −0.141069
\(805\) −3.50658 + 10.7921i −0.123591 + 0.380373i
\(806\) −6.38197 + 4.63677i −0.224795 + 0.163323i
\(807\) 12.0902 + 8.78402i 0.425594 + 0.309212i
\(808\) −4.51722 13.9026i −0.158915 0.489091i
\(809\) −15.5279 47.7899i −0.545931 1.68020i −0.718767 0.695251i \(-0.755293\pi\)
0.172836 0.984951i \(-0.444707\pi\)
\(810\) 3.11803 + 2.26538i 0.109557 + 0.0795975i
\(811\) 36.5967 26.5891i 1.28509 0.933669i 0.285392 0.958411i \(-0.407876\pi\)
0.999694 + 0.0247416i \(0.00787630\pi\)
\(812\) −1.92705 + 5.93085i −0.0676262 + 0.208132i
\(813\) 3.41641 0.119819
\(814\) 0 0
\(815\) −51.7082 −1.81126
\(816\) −2.00000 + 6.15537i −0.0700140 + 0.215481i
\(817\) −1.23607 + 0.898056i −0.0432445 + 0.0314190i
\(818\) 0.736068 + 0.534785i 0.0257360 + 0.0186983i
\(819\) 0.909830 + 2.80017i 0.0317920 + 0.0978458i
\(820\) −1.47214 4.53077i −0.0514092 0.158221i
\(821\) −8.01722 5.82485i −0.279803 0.203289i 0.439029 0.898473i \(-0.355323\pi\)
−0.718831 + 0.695184i \(0.755323\pi\)
\(822\) 13.8541 10.0656i 0.483217 0.351078i
\(823\) 14.8992 45.8550i 0.519353 1.59840i −0.255866 0.966712i \(-0.582361\pi\)
0.775219 0.631692i \(-0.217639\pi\)
\(824\) −17.0344 −0.593423
\(825\) 0 0
\(826\) 6.79837 0.236546
\(827\) −15.3541 + 47.2551i −0.533914 + 1.64322i 0.212069 + 0.977255i \(0.431980\pi\)
−0.745983 + 0.665965i \(0.768020\pi\)
\(828\) −1.00000 + 0.726543i −0.0347524 + 0.0252491i
\(829\) 44.7426 + 32.5074i 1.55398 + 1.12903i 0.940739 + 0.339131i \(0.110133\pi\)
0.613237 + 0.789899i \(0.289867\pi\)
\(830\) 19.4443 + 59.8433i 0.674921 + 2.07719i
\(831\) 9.00000 + 27.6992i 0.312207 + 0.960873i
\(832\) −1.00000 0.726543i −0.0346688 0.0251883i
\(833\) 6.94427 5.04531i 0.240605 0.174810i
\(834\) −2.70820 + 8.33499i −0.0937774 + 0.288617i
\(835\) −10.6525 −0.368644
\(836\) 0 0
\(837\) −6.38197 −0.220593
\(838\) 8.95492 27.5604i 0.309342 0.952058i
\(839\) −30.0344 + 21.8213i −1.03690 + 0.753355i −0.969679 0.244383i \(-0.921415\pi\)
−0.0672253 + 0.997738i \(0.521415\pi\)
\(840\) −7.42705 5.39607i −0.256258 0.186182i
\(841\) −6.84346 21.0620i −0.235981 0.726276i
\(842\) −1.58359 4.87380i −0.0545742 0.167962i
\(843\) −13.8541 10.0656i −0.477161 0.346677i
\(844\) −21.5623 + 15.6659i −0.742205 + 0.539244i
\(845\) 13.6631 42.0508i 0.470026 1.44659i
\(846\) −6.47214 −0.222517
\(847\) 0 0
\(848\) 2.85410 0.0980103
\(849\) −3.67376 + 11.3067i −0.126083 + 0.388044i
\(850\) −51.5967 + 37.4872i −1.76975 + 1.28580i
\(851\) −10.4721 7.60845i −0.358980 0.260814i
\(852\) −1.09017 3.35520i −0.0373486 0.114947i
\(853\) 10.1803 + 31.3319i 0.348568 + 1.07278i 0.959646 + 0.281212i \(0.0907364\pi\)
−0.611078 + 0.791571i \(0.709264\pi\)
\(854\) 21.6525 + 15.7314i 0.740932 + 0.538319i
\(855\) 3.85410 2.80017i 0.131808 0.0957638i
\(856\) 2.35410 7.24518i 0.0804615 0.247635i
\(857\) 13.2361 0.452135 0.226068 0.974112i \(-0.427413\pi\)
0.226068 + 0.974112i \(0.427413\pi\)
\(858\) 0 0
\(859\) 53.5967 1.82870 0.914349 0.404928i \(-0.132703\pi\)
0.914349 + 0.404928i \(0.132703\pi\)
\(860\) −1.47214 + 4.53077i −0.0501994 + 0.154498i
\(861\) 2.38197 1.73060i 0.0811772 0.0589787i
\(862\) 2.23607 + 1.62460i 0.0761608 + 0.0553340i
\(863\) 2.23607 + 6.88191i 0.0761166 + 0.234263i 0.981874 0.189533i \(-0.0606974\pi\)
−0.905758 + 0.423796i \(0.860697\pi\)
\(864\) −0.309017 0.951057i −0.0105130 0.0323556i
\(865\) −33.8435 24.5887i −1.15071 0.836041i
\(866\) 2.69098 1.95511i 0.0914433 0.0664375i
\(867\) −7.69098 + 23.6704i −0.261199 + 0.803889i
\(868\) 15.2016 0.515977
\(869\) 0 0
\(870\) −10.0902 −0.342089
\(871\) 1.52786 4.70228i 0.0517697 0.159331i
\(872\) 7.61803 5.53483i 0.257979 0.187433i
\(873\) 3.50000 + 2.54290i 0.118457 + 0.0860641i
\(874\) 0.472136 + 1.45309i 0.0159702 + 0.0491513i
\(875\) −13.7705 42.3813i −0.465528 1.43275i
\(876\) 3.50000 + 2.54290i 0.118254 + 0.0859166i
\(877\) −11.6180 + 8.44100i −0.392313 + 0.285032i −0.766403 0.642360i \(-0.777955\pi\)
0.374090 + 0.927393i \(0.377955\pi\)
\(878\) −4.02786 + 12.3965i −0.135934 + 0.418361i
\(879\) 23.9787 0.808782
\(880\) 0 0
\(881\) −25.7082 −0.866131 −0.433066 0.901362i \(-0.642568\pi\)
−0.433066 + 0.901362i \(0.642568\pi\)
\(882\) −0.409830 + 1.26133i −0.0137997 + 0.0424711i
\(883\) −40.5967 + 29.4953i −1.36619 + 0.992595i −0.368165 + 0.929760i \(0.620014\pi\)
−0.998024 + 0.0628343i \(0.979986\pi\)
\(884\) −6.47214 4.70228i −0.217681 0.158155i
\(885\) 3.39919 + 10.4616i 0.114262 + 0.351664i
\(886\) −5.35410 16.4782i −0.179875 0.553597i
\(887\) −31.1803 22.6538i −1.04693 0.760642i −0.0753064 0.997160i \(-0.523994\pi\)
−0.971627 + 0.236519i \(0.923994\pi\)
\(888\) 8.47214 6.15537i 0.284306 0.206561i
\(889\) 8.83282 27.1846i 0.296243 0.911743i
\(890\) −6.58359 −0.220683
\(891\) 0 0
\(892\) −13.0902 −0.438291
\(893\) −2.47214 + 7.60845i −0.0827269 + 0.254607i
\(894\) 2.92705 2.12663i 0.0978952 0.0711250i
\(895\) −26.8713 19.5232i −0.898209 0.652587i
\(896\) 0.736068 + 2.26538i 0.0245903 + 0.0756812i
\(897\) −0.472136 1.45309i −0.0157642 0.0485171i
\(898\) −0.0901699 0.0655123i −0.00300901 0.00218617i
\(899\) 13.5172 9.82084i 0.450825 0.327543i
\(900\) 3.04508 9.37181i 0.101503 0.312394i
\(901\) 18.4721 0.615396
\(902\) 0 0
\(903\) −2.94427 −0.0979792
\(904\) −1.09017 + 3.35520i −0.0362585 + 0.111592i
\(905\) −23.4721 + 17.0535i −0.780240 + 0.566878i
\(906\) −5.11803 3.71847i −0.170035 0.123538i
\(907\) 4.38197 + 13.4863i 0.145501 + 0.447805i 0.997075 0.0764286i \(-0.0243517\pi\)
−0.851574 + 0.524234i \(0.824352\pi\)
\(908\) −4.28115 13.1760i −0.142075 0.437262i
\(909\) 11.8262 + 8.59226i 0.392252 + 0.284987i
\(910\) 9.18034 6.66991i 0.304325 0.221105i
\(911\) 9.36068 28.8092i 0.310133 0.954492i −0.667578 0.744539i \(-0.732669\pi\)
0.977712 0.209952i \(-0.0673309\pi\)
\(912\) −1.23607 −0.0409303
\(913\) 0 0
\(914\) 24.9787 0.826222
\(915\) −13.3820 + 41.1855i −0.442394 + 1.36155i
\(916\) −4.09017 + 2.97168i −0.135143 + 0.0981872i
\(917\) −35.2082 25.5803i −1.16268 0.844735i
\(918\) −2.00000 6.15537i −0.0660098 0.203157i
\(919\) 5.16970 + 15.9107i 0.170533 + 0.524845i 0.999401 0.0345978i \(-0.0110150\pi\)
−0.828869 + 0.559443i \(0.811015\pi\)
\(920\) 3.85410 + 2.80017i 0.127066 + 0.0923188i
\(921\) 11.8541 8.61251i 0.390606 0.283792i
\(922\) −3.96556 + 12.2047i −0.130599 + 0.401941i
\(923\) 4.36068 0.143534
\(924\) 0 0
\(925\) 103.193 3.39298
\(926\) 2.44427 7.52270i 0.0803238 0.247211i
\(927\) 13.7812 10.0126i 0.452632 0.328857i
\(928\) 2.11803 + 1.53884i 0.0695279 + 0.0505150i
\(929\) 5.29180 + 16.2865i 0.173618 + 0.534342i 0.999568 0.0294023i \(-0.00936039\pi\)
−0.825949 + 0.563744i \(0.809360\pi\)
\(930\) 7.60081 + 23.3929i 0.249240 + 0.767083i
\(931\) 1.32624 + 0.963568i 0.0434657 + 0.0315797i
\(932\) −7.23607 + 5.25731i −0.237025 + 0.172209i
\(933\) −3.67376 + 11.3067i −0.120274 + 0.370164i
\(934\) −0.562306 −0.0183992
\(935\) 0 0
\(936\) 1.23607 0.0404021
\(937\) −8.79180 + 27.0584i −0.287215 + 0.883958i 0.698510 + 0.715600i \(0.253847\pi\)
−0.985726 + 0.168358i \(0.946153\pi\)
\(938\) −7.70820 + 5.60034i −0.251682 + 0.182858i
\(939\) 17.6803 + 12.8455i 0.576976 + 0.419198i
\(940\) 7.70820 + 23.7234i 0.251414 + 0.773772i
\(941\) 13.8541 + 42.6385i 0.451631 + 1.38998i 0.875045 + 0.484041i \(0.160831\pi\)
−0.423415 + 0.905936i \(0.639169\pi\)
\(942\) −3.61803 2.62866i −0.117882 0.0856462i
\(943\) −1.23607 + 0.898056i −0.0402519 + 0.0292447i
\(944\) 0.881966 2.71441i 0.0287055 0.0883466i
\(945\) 9.18034 0.298636
\(946\) 0 0
\(947\) −13.3262 −0.433045 −0.216522 0.976278i \(-0.569471\pi\)
−0.216522 + 0.976278i \(0.569471\pi\)
\(948\) −1.95492 + 6.01661i −0.0634927 + 0.195410i
\(949\) −4.32624 + 3.14320i −0.140436 + 0.102032i
\(950\) −9.85410 7.15942i −0.319709 0.232282i
\(951\) −4.90983 15.1109i −0.159212 0.490005i
\(952\) 4.76393 + 14.6619i 0.154400 + 0.475194i
\(953\) 32.9443 + 23.9354i 1.06717 + 0.775344i 0.975401 0.220436i \(-0.0707481\pi\)
0.0917683 + 0.995780i \(0.470748\pi\)
\(954\) −2.30902 + 1.67760i −0.0747572 + 0.0543143i
\(955\) −16.1115 + 49.5860i −0.521354 + 1.60456i
\(956\) −7.52786 −0.243469
\(957\) 0 0
\(958\) −2.76393 −0.0892986
\(959\) 12.6049 38.7938i 0.407033 1.25272i
\(960\) −3.11803 + 2.26538i −0.100634 + 0.0731150i
\(961\) −7.87132 5.71885i −0.253914 0.184479i
\(962\) 4.00000 + 12.3107i 0.128965 + 0.396914i
\(963\) 2.35410 + 7.24518i 0.0758599 + 0.233473i
\(964\) 18.2533 + 13.2618i 0.587899 + 0.427134i
\(965\) −47.7877 + 34.7198i −1.53834 + 1.11767i
\(966\) −0.909830 + 2.80017i −0.0292733 + 0.0900940i
\(967\) −46.6869 −1.50135 −0.750675 0.660672i \(-0.770272\pi\)
−0.750675 + 0.660672i \(0.770272\pi\)
\(968\) 0 0
\(969\) −8.00000 −0.256997
\(970\) 5.15248 15.8577i 0.165436 0.509160i
\(971\) −43.1246 + 31.3319i −1.38393 + 1.00549i −0.387434 + 0.921897i \(0.626639\pi\)
−0.996500 + 0.0835901i \(0.973361\pi\)
\(972\) 0.809017 + 0.587785i 0.0259492 + 0.0188532i
\(973\) 6.45085 + 19.8537i 0.206805 + 0.636480i
\(974\) −6.79180 20.9030i −0.217623 0.669775i
\(975\) 9.85410 + 7.15942i 0.315584 + 0.229285i
\(976\) 9.09017 6.60440i 0.290969 0.211402i
\(977\) −12.7426 + 39.2178i −0.407673 + 1.25469i 0.510969 + 0.859599i \(0.329287\pi\)
−0.918642 + 0.395090i \(0.870713\pi\)
\(978\) −13.4164 −0.429009
\(979\) 0 0
\(980\) 5.11146 0.163279
\(981\) −2.90983 + 8.95554i −0.0929037 + 0.285928i
\(982\) 30.9443 22.4823i 0.987471 0.717440i
\(983\) −25.1803 18.2946i −0.803128 0.583507i 0.108702 0.994074i \(-0.465331\pi\)
−0.911830 + 0.410568i \(0.865331\pi\)
\(984\) −0.381966 1.17557i −0.0121766 0.0374758i
\(985\) 6.06231 + 18.6579i 0.193161 + 0.594489i
\(986\) 13.7082 + 9.95959i 0.436558 + 0.317178i
\(987\) −12.4721 + 9.06154i −0.396992 + 0.288432i
\(988\) 0.472136 1.45309i 0.0150206 0.0462288i
\(989\) 1.52786 0.0485833
\(990\) 0 0
\(991\) 14.6869 0.466545 0.233273 0.972411i \(-0.425057\pi\)
0.233273 + 0.972411i \(0.425057\pi\)
\(992\) 1.97214 6.06961i 0.0626154 0.192710i
\(993\) −7.23607 + 5.25731i −0.229630 + 0.166836i
\(994\) −6.79837 4.93931i −0.215631 0.156665i
\(995\) −23.6459 72.7746i −0.749625 2.30711i
\(996\) 5.04508 + 15.5272i 0.159860 + 0.491997i
\(997\) 29.0902 + 21.1352i 0.921295 + 0.669360i 0.943846 0.330386i \(-0.107179\pi\)
−0.0225511 + 0.999746i \(0.507179\pi\)
\(998\) −15.7082 + 11.4127i −0.497235 + 0.361262i
\(999\) −3.23607 + 9.95959i −0.102385 + 0.315108i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 726.2.e.f.493.1 4
11.2 odd 10 726.2.e.r.487.1 4
11.3 even 5 66.2.e.a.37.1 yes 4
11.4 even 5 726.2.a.l.1.1 2
11.5 even 5 inner 726.2.e.f.511.1 4
11.6 odd 10 726.2.e.n.511.1 4
11.7 odd 10 726.2.a.j.1.1 2
11.8 odd 10 726.2.e.r.565.1 4
11.9 even 5 66.2.e.a.25.1 4
11.10 odd 2 726.2.e.n.493.1 4
33.14 odd 10 198.2.f.c.37.1 4
33.20 odd 10 198.2.f.c.91.1 4
33.26 odd 10 2178.2.a.t.1.2 2
33.29 even 10 2178.2.a.bb.1.2 2
44.3 odd 10 528.2.y.d.433.1 4
44.7 even 10 5808.2.a.cg.1.1 2
44.15 odd 10 5808.2.a.cb.1.1 2
44.31 odd 10 528.2.y.d.289.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
66.2.e.a.25.1 4 11.9 even 5
66.2.e.a.37.1 yes 4 11.3 even 5
198.2.f.c.37.1 4 33.14 odd 10
198.2.f.c.91.1 4 33.20 odd 10
528.2.y.d.289.1 4 44.31 odd 10
528.2.y.d.433.1 4 44.3 odd 10
726.2.a.j.1.1 2 11.7 odd 10
726.2.a.l.1.1 2 11.4 even 5
726.2.e.f.493.1 4 1.1 even 1 trivial
726.2.e.f.511.1 4 11.5 even 5 inner
726.2.e.n.493.1 4 11.10 odd 2
726.2.e.n.511.1 4 11.6 odd 10
726.2.e.r.487.1 4 11.2 odd 10
726.2.e.r.565.1 4 11.8 odd 10
2178.2.a.t.1.2 2 33.26 odd 10
2178.2.a.bb.1.2 2 33.29 even 10
5808.2.a.cb.1.1 2 44.15 odd 10
5808.2.a.cg.1.1 2 44.7 even 10