Properties

Label 725.2.y.b.282.9
Level $725$
Weight $2$
Character 725.282
Analytic conductor $5.789$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(18,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.18"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(28)) chi = DirichletCharacter(H, H._module([21, 11])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.y (of order \(28\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [156] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{28})\)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 282.9
Character \(\chi\) \(=\) 725.282
Dual form 725.2.y.b.18.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.920277 - 0.443182i) q^{2} +(1.22069 - 0.973467i) q^{3} +(-0.596480 + 0.747962i) q^{4} +(0.691949 - 1.43685i) q^{6} +(-0.359728 + 3.19267i) q^{7} +(-0.672023 + 2.94432i) q^{8} +(-0.125119 + 0.548181i) q^{9} +(-0.282265 - 0.177359i) q^{11} +1.49368i q^{12} +(-2.30460 + 3.66774i) q^{13} +(1.08389 + 3.09757i) q^{14} +(0.260662 + 1.14204i) q^{16} +7.42290 q^{17} +(0.127800 + 0.559929i) q^{18} +(-5.42486 + 0.611234i) q^{19} +(2.66885 + 4.24744i) q^{21} +(-0.338364 - 0.0381244i) q^{22} +(3.83282 - 1.34116i) q^{23} +(2.04587 + 4.24830i) q^{24} +(-0.495389 + 4.39670i) q^{26} +(2.41320 + 5.01106i) q^{27} +(-2.17343 - 2.17343i) q^{28} +(0.0218780 - 5.38512i) q^{29} +(0.716676 - 2.04814i) q^{31} +(-3.01992 - 3.78686i) q^{32} +(-0.517210 + 0.0582756i) q^{33} +(6.83113 - 3.28970i) q^{34} +(-0.335388 - 0.420563i) q^{36} +(-7.12342 - 1.62587i) q^{37} +(-4.72148 + 2.96670i) q^{38} +(0.757232 + 6.72062i) q^{39} +(1.70982 + 1.70982i) q^{41} +(4.33847 + 2.72604i) q^{42} +(2.98830 - 6.20526i) q^{43} +(0.301023 - 0.105332i) q^{44} +(2.93288 - 2.93288i) q^{46} +(9.47549 - 2.16272i) q^{47} +(1.42992 + 1.14032i) q^{48} +(-3.23926 - 0.739339i) q^{49} +(9.06106 - 7.22595i) q^{51} +(-1.36869 - 3.91149i) q^{52} +(-2.41210 + 6.89339i) q^{53} +(4.44163 + 3.54208i) q^{54} +(-9.15852 - 3.20470i) q^{56} +(-6.02705 + 6.02705i) q^{57} +(-2.36646 - 4.96550i) q^{58} -6.55260i q^{59} +(6.95855 + 0.784041i) q^{61} +(-0.248159 - 2.20248i) q^{62} +(-1.70515 - 0.596659i) q^{63} +(-6.56823 - 3.16309i) q^{64} +(-0.450150 + 0.282848i) q^{66} +(3.99208 + 6.35336i) q^{67} +(-4.42761 + 5.55205i) q^{68} +(3.37311 - 5.36827i) q^{69} +(-3.19119 + 0.728367i) q^{71} +(-1.52994 - 0.736780i) q^{72} +(3.80763 + 1.83366i) q^{73} +(-7.27608 + 1.66072i) q^{74} +(2.77864 - 4.42218i) q^{76} +(0.667786 - 0.837377i) q^{77} +(3.67532 + 5.84924i) q^{78} +(-1.68732 + 1.06021i) q^{79} +(6.30409 + 3.03589i) q^{81} +(2.33127 + 0.815745i) q^{82} +(-0.854097 - 7.58032i) q^{83} +(-4.76884 - 0.537319i) q^{84} -7.03492i q^{86} +(-5.21553 - 6.59486i) q^{87} +(0.711889 - 0.711889i) q^{88} +(9.71523 + 3.39950i) q^{89} +(-10.8809 - 8.67721i) q^{91} +(-1.28306 + 3.66678i) q^{92} +(-1.11896 - 3.19781i) q^{93} +(7.76160 - 6.18967i) q^{94} +(-7.37277 - 1.68279i) q^{96} +(-0.929141 - 0.740965i) q^{97} +(-3.30868 + 0.755184i) q^{98} +(0.132541 - 0.132541i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 8 q^{2} + 14 q^{3} - 22 q^{4} - 28 q^{6} + 10 q^{7} - 4 q^{8} + 10 q^{9} - 20 q^{11} + 4 q^{14} - 34 q^{16} + 48 q^{17} + 94 q^{18} - 16 q^{21} + 6 q^{22} + 10 q^{23} + 56 q^{24} + 36 q^{26} + 56 q^{27}+ \cdots + 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{17}{28}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.920277 0.443182i 0.650734 0.313377i −0.0792362 0.996856i \(-0.525248\pi\)
0.729970 + 0.683479i \(0.239534\pi\)
\(3\) 1.22069 0.973467i 0.704765 0.562032i −0.204187 0.978932i \(-0.565455\pi\)
0.908952 + 0.416900i \(0.136884\pi\)
\(4\) −0.596480 + 0.747962i −0.298240 + 0.373981i
\(5\) 0 0
\(6\) 0.691949 1.43685i 0.282487 0.586591i
\(7\) −0.359728 + 3.19267i −0.135964 + 1.20672i 0.721589 + 0.692322i \(0.243412\pi\)
−0.857553 + 0.514395i \(0.828017\pi\)
\(8\) −0.672023 + 2.94432i −0.237596 + 1.04098i
\(9\) −0.125119 + 0.548181i −0.0417063 + 0.182727i
\(10\) 0 0
\(11\) −0.282265 0.177359i −0.0851060 0.0534756i 0.488807 0.872392i \(-0.337432\pi\)
−0.573913 + 0.818916i \(0.694575\pi\)
\(12\) 1.49368i 0.431189i
\(13\) −2.30460 + 3.66774i −0.639180 + 1.01725i 0.357347 + 0.933972i \(0.383681\pi\)
−0.996526 + 0.0832770i \(0.973461\pi\)
\(14\) 1.08389 + 3.09757i 0.289681 + 0.827860i
\(15\) 0 0
\(16\) 0.260662 + 1.14204i 0.0651655 + 0.285509i
\(17\) 7.42290 1.80032 0.900159 0.435561i \(-0.143450\pi\)
0.900159 + 0.435561i \(0.143450\pi\)
\(18\) 0.127800 + 0.559929i 0.0301228 + 0.131977i
\(19\) −5.42486 + 0.611234i −1.24455 + 0.140227i −0.709567 0.704638i \(-0.751110\pi\)
−0.534980 + 0.844865i \(0.679681\pi\)
\(20\) 0 0
\(21\) 2.66885 + 4.24744i 0.582390 + 0.926868i
\(22\) −0.338364 0.0381244i −0.0721394 0.00812816i
\(23\) 3.83282 1.34116i 0.799199 0.279652i 0.100379 0.994949i \(-0.467995\pi\)
0.698820 + 0.715297i \(0.253709\pi\)
\(24\) 2.04587 + 4.24830i 0.417612 + 0.867180i
\(25\) 0 0
\(26\) −0.495389 + 4.39670i −0.0971537 + 0.862263i
\(27\) 2.41320 + 5.01106i 0.464421 + 0.964379i
\(28\) −2.17343 2.17343i −0.410739 0.410739i
\(29\) 0.0218780 5.38512i 0.00406265 0.999992i
\(30\) 0 0
\(31\) 0.716676 2.04814i 0.128719 0.367857i −0.861430 0.507876i \(-0.830431\pi\)
0.990149 + 0.140019i \(0.0447164\pi\)
\(32\) −3.01992 3.78686i −0.533852 0.669429i
\(33\) −0.517210 + 0.0582756i −0.0900347 + 0.0101445i
\(34\) 6.83113 3.28970i 1.17153 0.564178i
\(35\) 0 0
\(36\) −0.335388 0.420563i −0.0558980 0.0700939i
\(37\) −7.12342 1.62587i −1.17108 0.267292i −0.407625 0.913149i \(-0.633643\pi\)
−0.763458 + 0.645857i \(0.776500\pi\)
\(38\) −4.72148 + 2.96670i −0.765926 + 0.481263i
\(39\) 0.757232 + 6.72062i 0.121254 + 1.07616i
\(40\) 0 0
\(41\) 1.70982 + 1.70982i 0.267029 + 0.267029i 0.827902 0.560873i \(-0.189534\pi\)
−0.560873 + 0.827902i \(0.689534\pi\)
\(42\) 4.33847 + 2.72604i 0.669440 + 0.420637i
\(43\) 2.98830 6.20526i 0.455711 0.946294i −0.538876 0.842385i \(-0.681151\pi\)
0.994587 0.103908i \(-0.0331349\pi\)
\(44\) 0.301023 0.105332i 0.0453809 0.0158795i
\(45\) 0 0
\(46\) 2.93288 2.93288i 0.432430 0.432430i
\(47\) 9.47549 2.16272i 1.38214 0.315465i 0.534112 0.845414i \(-0.320646\pi\)
0.848030 + 0.529949i \(0.177789\pi\)
\(48\) 1.42992 + 1.14032i 0.206391 + 0.164592i
\(49\) −3.23926 0.739339i −0.462751 0.105620i
\(50\) 0 0
\(51\) 9.06106 7.22595i 1.26880 1.01184i
\(52\) −1.36869 3.91149i −0.189803 0.542425i
\(53\) −2.41210 + 6.89339i −0.331328 + 0.946880i 0.650896 + 0.759167i \(0.274393\pi\)
−0.982224 + 0.187713i \(0.939892\pi\)
\(54\) 4.44163 + 3.54208i 0.604429 + 0.482016i
\(55\) 0 0
\(56\) −9.15852 3.20470i −1.22386 0.428247i
\(57\) −6.02705 + 6.02705i −0.798302 + 0.798302i
\(58\) −2.36646 4.96550i −0.310731 0.652002i
\(59\) 6.55260i 0.853075i −0.904470 0.426538i \(-0.859733\pi\)
0.904470 0.426538i \(-0.140267\pi\)
\(60\) 0 0
\(61\) 6.95855 + 0.784041i 0.890952 + 0.100386i 0.545559 0.838072i \(-0.316317\pi\)
0.345392 + 0.938458i \(0.387746\pi\)
\(62\) −0.248159 2.20248i −0.0315163 0.279715i
\(63\) −1.70515 0.596659i −0.214829 0.0751720i
\(64\) −6.56823 3.16309i −0.821029 0.395387i
\(65\) 0 0
\(66\) −0.450150 + 0.282848i −0.0554096 + 0.0348162i
\(67\) 3.99208 + 6.35336i 0.487710 + 0.776186i 0.996401 0.0847630i \(-0.0270133\pi\)
−0.508691 + 0.860949i \(0.669870\pi\)
\(68\) −4.42761 + 5.55205i −0.536927 + 0.673285i
\(69\) 3.37311 5.36827i 0.406075 0.646264i
\(70\) 0 0
\(71\) −3.19119 + 0.728367i −0.378724 + 0.0864413i −0.407645 0.913140i \(-0.633650\pi\)
0.0289212 + 0.999582i \(0.490793\pi\)
\(72\) −1.52994 0.736780i −0.180305 0.0868304i
\(73\) 3.80763 + 1.83366i 0.445650 + 0.214614i 0.643230 0.765673i \(-0.277594\pi\)
−0.197580 + 0.980287i \(0.563308\pi\)
\(74\) −7.27608 + 1.66072i −0.845827 + 0.193055i
\(75\) 0 0
\(76\) 2.77864 4.42218i 0.318732 0.507258i
\(77\) 0.667786 0.837377i 0.0761013 0.0954280i
\(78\) 3.67532 + 5.84924i 0.416148 + 0.662296i
\(79\) −1.68732 + 1.06021i −0.189838 + 0.119283i −0.623598 0.781746i \(-0.714330\pi\)
0.433760 + 0.901029i \(0.357187\pi\)
\(80\) 0 0
\(81\) 6.30409 + 3.03589i 0.700454 + 0.337321i
\(82\) 2.33127 + 0.815745i 0.257445 + 0.0900840i
\(83\) −0.854097 7.58032i −0.0937493 0.832048i −0.949309 0.314344i \(-0.898215\pi\)
0.855560 0.517704i \(-0.173213\pi\)
\(84\) −4.76884 0.537319i −0.520323 0.0586264i
\(85\) 0 0
\(86\) 7.03492i 0.758595i
\(87\) −5.21553 6.59486i −0.559164 0.707043i
\(88\) 0.711889 0.711889i 0.0758877 0.0758877i
\(89\) 9.71523 + 3.39950i 1.02981 + 0.360347i 0.791712 0.610894i \(-0.209190\pi\)
0.238100 + 0.971241i \(0.423476\pi\)
\(90\) 0 0
\(91\) −10.8809 8.67721i −1.14063 0.909618i
\(92\) −1.28306 + 3.66678i −0.133769 + 0.382289i
\(93\) −1.11896 3.19781i −0.116031 0.331597i
\(94\) 7.76160 6.18967i 0.800547 0.638415i
\(95\) 0 0
\(96\) −7.37277 1.68279i −0.752480 0.171749i
\(97\) −0.929141 0.740965i −0.0943400 0.0752336i 0.575184 0.818024i \(-0.304930\pi\)
−0.669524 + 0.742790i \(0.733502\pi\)
\(98\) −3.30868 + 0.755184i −0.334227 + 0.0762851i
\(99\) 0.132541 0.132541i 0.0133209 0.0133209i
\(100\) 0 0
\(101\) −8.62410 + 3.01770i −0.858130 + 0.300273i −0.723247 0.690589i \(-0.757351\pi\)
−0.134882 + 0.990862i \(0.543066\pi\)
\(102\) 5.13627 10.6656i 0.508567 1.05605i
\(103\) 8.94639 + 5.62139i 0.881514 + 0.553892i 0.895025 0.446017i \(-0.147158\pi\)
−0.0135104 + 0.999909i \(0.504301\pi\)
\(104\) −9.25028 9.25028i −0.907065 0.907065i
\(105\) 0 0
\(106\) 0.835225 + 7.41283i 0.0811242 + 0.719997i
\(107\) −7.37505 + 4.63405i −0.712973 + 0.447990i −0.839067 0.544028i \(-0.816899\pi\)
0.126094 + 0.992018i \(0.459756\pi\)
\(108\) −5.18751 1.18402i −0.499168 0.113932i
\(109\) 3.50666 + 4.39721i 0.335877 + 0.421177i 0.920875 0.389858i \(-0.127476\pi\)
−0.584998 + 0.811035i \(0.698905\pi\)
\(110\) 0 0
\(111\) −10.2782 + 4.94973i −0.975566 + 0.469808i
\(112\) −3.73991 + 0.421387i −0.353388 + 0.0398173i
\(113\) −0.145757 0.182774i −0.0137117 0.0171939i 0.774928 0.632049i \(-0.217786\pi\)
−0.788640 + 0.614855i \(0.789214\pi\)
\(114\) −2.87547 + 8.21763i −0.269313 + 0.769652i
\(115\) 0 0
\(116\) 4.01482 + 3.22848i 0.372766 + 0.299757i
\(117\) −1.72224 1.72224i −0.159221 0.159221i
\(118\) −2.90399 6.03020i −0.267334 0.555125i
\(119\) −2.67022 + 23.6989i −0.244779 + 2.17247i
\(120\) 0 0
\(121\) −4.72450 9.81053i −0.429500 0.891867i
\(122\) 6.75127 2.36237i 0.611231 0.213879i
\(123\) 3.75161 + 0.422705i 0.338271 + 0.0381140i
\(124\) 1.10445 + 1.75772i 0.0991826 + 0.157848i
\(125\) 0 0
\(126\) −1.83364 + 0.206602i −0.163354 + 0.0184056i
\(127\) −1.20212 5.26685i −0.106671 0.467358i −0.999844 0.0176444i \(-0.994383\pi\)
0.893173 0.449713i \(-0.148474\pi\)
\(128\) 2.24073 0.198055
\(129\) −2.39284 10.4837i −0.210678 0.923039i
\(130\) 0 0
\(131\) 2.90820 + 8.31115i 0.254091 + 0.726149i 0.998304 + 0.0582077i \(0.0185386\pi\)
−0.744214 + 0.667941i \(0.767176\pi\)
\(132\) 0.264918 0.421614i 0.0230581 0.0366968i
\(133\) 17.5397i 1.52088i
\(134\) 6.48951 + 4.07763i 0.560609 + 0.352254i
\(135\) 0 0
\(136\) −4.98836 + 21.8554i −0.427748 + 1.87409i
\(137\) 1.35489 5.93617i 0.115756 0.507161i −0.883494 0.468443i \(-0.844815\pi\)
0.999250 0.0387184i \(-0.0123275\pi\)
\(138\) 0.725073 6.43520i 0.0617223 0.547801i
\(139\) 8.13195 16.8862i 0.689743 1.43227i −0.201845 0.979418i \(-0.564694\pi\)
0.891588 0.452848i \(-0.149592\pi\)
\(140\) 0 0
\(141\) 9.46129 11.8641i 0.796784 0.999136i
\(142\) −2.61398 + 2.08458i −0.219360 + 0.174934i
\(143\) 1.30101 0.626534i 0.108796 0.0523934i
\(144\) −0.658656 −0.0548880
\(145\) 0 0
\(146\) 4.31672 0.357255
\(147\) −4.67385 + 2.25081i −0.385493 + 0.185643i
\(148\) 5.46507 4.35825i 0.449226 0.358246i
\(149\) 12.0345 15.0908i 0.985904 1.23628i 0.0142448 0.999899i \(-0.495466\pi\)
0.971659 0.236386i \(-0.0759630\pi\)
\(150\) 0 0
\(151\) −7.58945 + 15.7597i −0.617621 + 1.28250i 0.324073 + 0.946032i \(0.394948\pi\)
−0.941694 + 0.336471i \(0.890767\pi\)
\(152\) 1.84595 16.3833i 0.149727 1.32886i
\(153\) −0.928744 + 4.06909i −0.0750845 + 0.328967i
\(154\) 0.243438 1.06657i 0.0196168 0.0859467i
\(155\) 0 0
\(156\) −5.47845 3.44234i −0.438627 0.275607i
\(157\) 18.5421i 1.47982i 0.672706 + 0.739910i \(0.265132\pi\)
−0.672706 + 0.739910i \(0.734868\pi\)
\(158\) −1.08293 + 1.72348i −0.0861534 + 0.137112i
\(159\) 3.76606 + 10.7628i 0.298668 + 0.853545i
\(160\) 0 0
\(161\) 2.90312 + 12.7194i 0.228798 + 1.00243i
\(162\) 7.14696 0.561518
\(163\) 0.438548 + 1.92140i 0.0343497 + 0.150496i 0.989195 0.146609i \(-0.0468360\pi\)
−0.954845 + 0.297105i \(0.903979\pi\)
\(164\) −2.29875 + 0.259007i −0.179502 + 0.0202250i
\(165\) 0 0
\(166\) −4.14547 6.59747i −0.321751 0.512063i
\(167\) −9.66345 1.08881i −0.747780 0.0842546i −0.270153 0.962817i \(-0.587074\pi\)
−0.477627 + 0.878563i \(0.658503\pi\)
\(168\) −14.2994 + 5.00357i −1.10322 + 0.386034i
\(169\) −2.50069 5.19273i −0.192361 0.399441i
\(170\) 0 0
\(171\) 0.343684 3.05028i 0.0262822 0.233261i
\(172\) 2.85884 + 5.93645i 0.217985 + 0.452650i
\(173\) 0.563496 + 0.563496i 0.0428418 + 0.0428418i 0.728203 0.685361i \(-0.240356\pi\)
−0.685361 + 0.728203i \(0.740356\pi\)
\(174\) −7.72246 3.75767i −0.585438 0.284868i
\(175\) 0 0
\(176\) 0.128974 0.368587i 0.00972179 0.0277833i
\(177\) −6.37874 7.99868i −0.479455 0.601218i
\(178\) 10.4473 1.17713i 0.783058 0.0882295i
\(179\) −1.04193 + 0.501769i −0.0778778 + 0.0375040i −0.472417 0.881375i \(-0.656618\pi\)
0.394539 + 0.918879i \(0.370904\pi\)
\(180\) 0 0
\(181\) −8.53309 10.7002i −0.634260 0.795337i 0.356012 0.934481i \(-0.384136\pi\)
−0.990272 + 0.139145i \(0.955565\pi\)
\(182\) −13.8590 3.16323i −1.02730 0.234474i
\(183\) 9.25747 5.81685i 0.684332 0.429994i
\(184\) 1.37307 + 12.1864i 0.101224 + 0.898391i
\(185\) 0 0
\(186\) −2.44696 2.44696i −0.179420 0.179420i
\(187\) −2.09522 1.31652i −0.153218 0.0962731i
\(188\) −4.03431 + 8.37732i −0.294232 + 0.610979i
\(189\) −16.8668 + 5.90194i −1.22688 + 0.429303i
\(190\) 0 0
\(191\) 10.1739 10.1739i 0.736156 0.736156i −0.235676 0.971832i \(-0.575730\pi\)
0.971832 + 0.235676i \(0.0757304\pi\)
\(192\) −11.0969 + 2.53280i −0.800853 + 0.182789i
\(193\) 0.166154 + 0.132503i 0.0119600 + 0.00953779i 0.629452 0.777040i \(-0.283280\pi\)
−0.617492 + 0.786578i \(0.711851\pi\)
\(194\) −1.18345 0.270115i −0.0849667 0.0193931i
\(195\) 0 0
\(196\) 2.48515 1.98184i 0.177511 0.141560i
\(197\) 0.452582 + 1.29341i 0.0322452 + 0.0921514i 0.958881 0.283810i \(-0.0915984\pi\)
−0.926635 + 0.375961i \(0.877313\pi\)
\(198\) 0.0632348 0.180715i 0.00449390 0.0128428i
\(199\) −16.6181 13.2525i −1.17802 0.939443i −0.179011 0.983847i \(-0.557290\pi\)
−0.999014 + 0.0444042i \(0.985861\pi\)
\(200\) 0 0
\(201\) 11.0579 + 3.86932i 0.779962 + 0.272921i
\(202\) −6.59917 + 6.59917i −0.464316 + 0.464316i
\(203\) 17.1851 + 2.00703i 1.20615 + 0.140866i
\(204\) 11.0875i 0.776278i
\(205\) 0 0
\(206\) 10.7245 + 1.20836i 0.747209 + 0.0841902i
\(207\) 0.255642 + 2.26889i 0.0177684 + 0.157699i
\(208\) −4.78941 1.67589i −0.332086 0.116202i
\(209\) 1.63965 + 0.789615i 0.113417 + 0.0546188i
\(210\) 0 0
\(211\) 0.0410704 0.0258062i 0.00282740 0.00177657i −0.530618 0.847611i \(-0.678040\pi\)
0.533445 + 0.845835i \(0.320897\pi\)
\(212\) −3.71722 5.91593i −0.255300 0.406308i
\(213\) −3.18640 + 3.99562i −0.218329 + 0.273776i
\(214\) −4.73336 + 7.53310i −0.323566 + 0.514952i
\(215\) 0 0
\(216\) −16.3759 + 3.73770i −1.11424 + 0.254318i
\(217\) 6.28124 + 3.02488i 0.426398 + 0.205343i
\(218\) 5.17587 + 2.49257i 0.350554 + 0.168818i
\(219\) 6.43295 1.46828i 0.434698 0.0992170i
\(220\) 0 0
\(221\) −17.1068 + 27.2253i −1.15073 + 1.83137i
\(222\) −7.26518 + 9.11025i −0.487607 + 0.611440i
\(223\) 6.55891 + 10.4384i 0.439217 + 0.699010i 0.990834 0.135088i \(-0.0431316\pi\)
−0.551616 + 0.834098i \(0.685989\pi\)
\(224\) 13.1766 8.27938i 0.880396 0.553189i
\(225\) 0 0
\(226\) −0.215139 0.103606i −0.0143108 0.00689174i
\(227\) −9.63473 3.37134i −0.639480 0.223764i −0.00898794 0.999960i \(-0.502861\pi\)
−0.630492 + 0.776196i \(0.717147\pi\)
\(228\) −0.912991 8.10302i −0.0604643 0.536635i
\(229\) −20.6689 2.32882i −1.36584 0.153893i −0.601584 0.798810i \(-0.705463\pi\)
−0.764253 + 0.644917i \(0.776892\pi\)
\(230\) 0 0
\(231\) 1.67225i 0.110026i
\(232\) 15.8408 + 3.68334i 1.04000 + 0.241823i
\(233\) 15.9794 15.9794i 1.04684 1.04684i 0.0479964 0.998848i \(-0.484716\pi\)
0.998848 0.0479964i \(-0.0152836\pi\)
\(234\) −2.34820 0.821672i −0.153507 0.0537144i
\(235\) 0 0
\(236\) 4.90109 + 3.90849i 0.319034 + 0.254421i
\(237\) −1.02761 + 2.93674i −0.0667503 + 0.190761i
\(238\) 8.04558 + 22.9929i 0.521517 + 1.49041i
\(239\) 10.5217 8.39081i 0.680595 0.542757i −0.221034 0.975266i \(-0.570943\pi\)
0.901629 + 0.432509i \(0.142372\pi\)
\(240\) 0 0
\(241\) 7.37877 + 1.68416i 0.475309 + 0.108486i 0.453463 0.891275i \(-0.350189\pi\)
0.0218459 + 0.999761i \(0.493046\pi\)
\(242\) −8.69571 6.93459i −0.558981 0.445773i
\(243\) −5.61656 + 1.28194i −0.360303 + 0.0822368i
\(244\) −4.73707 + 4.73707i −0.303260 + 0.303260i
\(245\) 0 0
\(246\) 3.63985 1.27364i 0.232069 0.0812043i
\(247\) 10.2602 21.3056i 0.652844 1.35564i
\(248\) 5.54877 + 3.48652i 0.352347 + 0.221395i
\(249\) −8.42178 8.42178i −0.533709 0.533709i
\(250\) 0 0
\(251\) −2.50604 22.2418i −0.158180 1.40389i −0.782467 0.622692i \(-0.786039\pi\)
0.624287 0.781195i \(-0.285390\pi\)
\(252\) 1.46337 0.919496i 0.0921836 0.0579228i
\(253\) −1.31974 0.301221i −0.0829712 0.0189376i
\(254\) −3.44046 4.31420i −0.215874 0.270697i
\(255\) 0 0
\(256\) 15.1986 7.31924i 0.949910 0.457453i
\(257\) −16.6517 + 1.87619i −1.03870 + 0.117034i −0.614807 0.788677i \(-0.710766\pi\)
−0.423895 + 0.905711i \(0.639338\pi\)
\(258\) −6.84827 8.58745i −0.426354 0.534632i
\(259\) 7.75338 22.1579i 0.481771 1.37682i
\(260\) 0 0
\(261\) 2.94928 + 0.685773i 0.182556 + 0.0424483i
\(262\) 6.35970 + 6.35970i 0.392904 + 0.392904i
\(263\) 3.95590 + 8.21450i 0.243931 + 0.506528i 0.986605 0.163125i \(-0.0521573\pi\)
−0.742674 + 0.669653i \(0.766443\pi\)
\(264\) 0.175995 1.56200i 0.0108317 0.0961343i
\(265\) 0 0
\(266\) −7.77327 16.1414i −0.476610 0.989690i
\(267\) 15.1686 5.30772i 0.928302 0.324827i
\(268\) −7.13327 0.803726i −0.435734 0.0490954i
\(269\) −2.83114 4.50574i −0.172618 0.274720i 0.749199 0.662344i \(-0.230438\pi\)
−0.921817 + 0.387625i \(0.873296\pi\)
\(270\) 0 0
\(271\) 1.33774 0.150727i 0.0812619 0.00915602i −0.0712399 0.997459i \(-0.522696\pi\)
0.152502 + 0.988303i \(0.451267\pi\)
\(272\) 1.93487 + 8.47722i 0.117319 + 0.514007i
\(273\) −21.7291 −1.31511
\(274\) −1.38393 6.06338i −0.0836061 0.366302i
\(275\) 0 0
\(276\) 2.00327 + 5.72503i 0.120583 + 0.344606i
\(277\) 11.8812 18.9088i 0.713871 1.13612i −0.270958 0.962591i \(-0.587340\pi\)
0.984829 0.173528i \(-0.0555168\pi\)
\(278\) 19.1439i 1.14817i
\(279\) 1.03308 + 0.649129i 0.0618491 + 0.0388624i
\(280\) 0 0
\(281\) −1.16627 + 5.10977i −0.0695739 + 0.304823i −0.997728 0.0673733i \(-0.978538\pi\)
0.928154 + 0.372197i \(0.121395\pi\)
\(282\) 3.44906 15.1113i 0.205389 0.899866i
\(283\) 2.90239 25.7594i 0.172529 1.53124i −0.547210 0.836995i \(-0.684310\pi\)
0.719739 0.694244i \(-0.244261\pi\)
\(284\) 1.35869 2.82134i 0.0806232 0.167416i
\(285\) 0 0
\(286\) 0.919622 1.15317i 0.0543784 0.0681884i
\(287\) −6.07395 + 4.84382i −0.358534 + 0.285921i
\(288\) 2.45373 1.18166i 0.144588 0.0696298i
\(289\) 38.0995 2.24115
\(290\) 0 0
\(291\) −1.85550 −0.108771
\(292\) −3.64269 + 1.75422i −0.213172 + 0.102658i
\(293\) −17.9259 + 14.2954i −1.04724 + 0.835149i −0.986624 0.163012i \(-0.947879\pi\)
−0.0606195 + 0.998161i \(0.519308\pi\)
\(294\) −3.30372 + 4.14273i −0.192677 + 0.241609i
\(295\) 0 0
\(296\) 9.57420 19.8810i 0.556489 1.15556i
\(297\) 0.207594 1.84245i 0.0120458 0.106910i
\(298\) 4.38711 19.2212i 0.254138 1.11345i
\(299\) −3.91407 + 17.1487i −0.226356 + 0.991732i
\(300\) 0 0
\(301\) 18.7364 + 11.7729i 1.07995 + 0.678576i
\(302\) 17.8668i 1.02812i
\(303\) −7.58971 + 12.0790i −0.436017 + 0.693918i
\(304\) −2.11211 6.03605i −0.121138 0.346191i
\(305\) 0 0
\(306\) 0.948648 + 4.15630i 0.0542306 + 0.237600i
\(307\) 31.7559 1.81240 0.906202 0.422844i \(-0.138968\pi\)
0.906202 + 0.422844i \(0.138968\pi\)
\(308\) 0.228006 + 0.998958i 0.0129918 + 0.0569209i
\(309\) 16.3930 1.84705i 0.932566 0.105075i
\(310\) 0 0
\(311\) −1.19084 1.89521i −0.0675263 0.107468i 0.811254 0.584693i \(-0.198785\pi\)
−0.878781 + 0.477226i \(0.841642\pi\)
\(312\) −20.2966 2.28687i −1.14907 0.129469i
\(313\) 10.1055 3.53606i 0.571196 0.199870i −0.0291992 0.999574i \(-0.509296\pi\)
0.600395 + 0.799704i \(0.295010\pi\)
\(314\) 8.21752 + 17.0639i 0.463741 + 0.962969i
\(315\) 0 0
\(316\) 0.213453 1.89444i 0.0120076 0.106571i
\(317\) 9.69299 + 20.1277i 0.544413 + 1.13048i 0.973809 + 0.227368i \(0.0730121\pi\)
−0.429396 + 0.903116i \(0.641274\pi\)
\(318\) 8.23570 + 8.23570i 0.461835 + 0.461835i
\(319\) −0.961273 + 1.51615i −0.0538209 + 0.0848880i
\(320\) 0 0
\(321\) −4.49155 + 12.8361i −0.250694 + 0.716441i
\(322\) 8.30869 + 10.4188i 0.463025 + 0.580615i
\(323\) −40.2682 + 4.53713i −2.24058 + 0.252453i
\(324\) −6.03099 + 2.90437i −0.335055 + 0.161354i
\(325\) 0 0
\(326\) 1.25512 + 1.57387i 0.0695146 + 0.0871685i
\(327\) 8.56109 + 1.95401i 0.473429 + 0.108057i
\(328\) −6.18329 + 3.88522i −0.341415 + 0.214525i
\(329\) 3.49625 + 31.0301i 0.192755 + 1.71075i
\(330\) 0 0
\(331\) −8.77860 8.77860i −0.482516 0.482516i 0.423418 0.905934i \(-0.360830\pi\)
−0.905934 + 0.423418i \(0.860830\pi\)
\(332\) 6.17924 + 3.88268i 0.339130 + 0.213090i
\(333\) 1.78255 3.70150i 0.0976830 0.202841i
\(334\) −9.37559 + 3.28066i −0.513009 + 0.179510i
\(335\) 0 0
\(336\) −4.15506 + 4.15506i −0.226677 + 0.226677i
\(337\) −1.38871 + 0.316965i −0.0756481 + 0.0172662i −0.260177 0.965561i \(-0.583781\pi\)
0.184529 + 0.982827i \(0.440924\pi\)
\(338\) −4.60265 3.67049i −0.250351 0.199648i
\(339\) −0.355849 0.0812201i −0.0193270 0.00441127i
\(340\) 0 0
\(341\) −0.565548 + 0.451009i −0.0306261 + 0.0244235i
\(342\) −1.03555 2.95942i −0.0559959 0.160027i
\(343\) −3.90230 + 11.1521i −0.210704 + 0.602158i
\(344\) 16.2621 + 12.9686i 0.876794 + 0.699220i
\(345\) 0 0
\(346\) 0.768304 + 0.268841i 0.0413043 + 0.0144530i
\(347\) 14.4583 14.4583i 0.776163 0.776163i −0.203013 0.979176i \(-0.565073\pi\)
0.979176 + 0.203013i \(0.0650733\pi\)
\(348\) 8.04366 + 0.0326789i 0.431186 + 0.00175177i
\(349\) 28.1957i 1.50928i 0.656138 + 0.754641i \(0.272189\pi\)
−0.656138 + 0.754641i \(0.727811\pi\)
\(350\) 0 0
\(351\) −23.9407 2.69747i −1.27786 0.143980i
\(352\) 0.180784 + 1.60451i 0.00963584 + 0.0855204i
\(353\) −5.33528 1.86690i −0.283968 0.0993648i 0.184537 0.982826i \(-0.440922\pi\)
−0.468505 + 0.883461i \(0.655207\pi\)
\(354\) −9.41508 4.53406i −0.500406 0.240983i
\(355\) 0 0
\(356\) −8.33764 + 5.23889i −0.441894 + 0.277660i
\(357\) 19.8106 + 31.5284i 1.04849 + 1.66866i
\(358\) −0.736493 + 0.923533i −0.0389249 + 0.0488103i
\(359\) 0.405361 0.645128i 0.0213941 0.0340486i −0.835856 0.548949i \(-0.815028\pi\)
0.857250 + 0.514900i \(0.172171\pi\)
\(360\) 0 0
\(361\) 10.5318 2.40382i 0.554307 0.126517i
\(362\) −12.5949 6.06540i −0.661975 0.318790i
\(363\) −15.3174 7.37646i −0.803954 0.387164i
\(364\) 12.9804 2.96270i 0.680360 0.155288i
\(365\) 0 0
\(366\) 5.94151 9.45586i 0.310568 0.494266i
\(367\) −1.49125 + 1.86997i −0.0778429 + 0.0976119i −0.819228 0.573468i \(-0.805598\pi\)
0.741385 + 0.671080i \(0.234169\pi\)
\(368\) 2.53073 + 4.02763i 0.131923 + 0.209955i
\(369\) −1.15122 + 0.723359i −0.0599301 + 0.0376566i
\(370\) 0 0
\(371\) −21.1406 10.1808i −1.09757 0.528560i
\(372\) 3.05928 + 1.07049i 0.158616 + 0.0555022i
\(373\) 1.80161 + 15.9897i 0.0932837 + 0.827916i 0.950026 + 0.312171i \(0.101056\pi\)
−0.856742 + 0.515745i \(0.827515\pi\)
\(374\) −2.51164 0.282994i −0.129874 0.0146333i
\(375\) 0 0
\(376\) 29.3523i 1.51373i
\(377\) 19.7008 + 12.4908i 1.01464 + 0.643307i
\(378\) −12.9065 + 12.9065i −0.663837 + 0.663837i
\(379\) 15.5819 + 5.45235i 0.800390 + 0.280069i 0.699318 0.714811i \(-0.253487\pi\)
0.101072 + 0.994879i \(0.467773\pi\)
\(380\) 0 0
\(381\) −6.59453 5.25896i −0.337848 0.269425i
\(382\) 4.85391 13.8717i 0.248347 0.709736i
\(383\) −1.54379 4.41190i −0.0788840 0.225437i 0.897687 0.440634i \(-0.145246\pi\)
−0.976571 + 0.215197i \(0.930961\pi\)
\(384\) 2.73524 2.18128i 0.139582 0.111313i
\(385\) 0 0
\(386\) 0.211631 + 0.0483033i 0.0107717 + 0.00245857i
\(387\) 3.02772 + 2.41452i 0.153907 + 0.122737i
\(388\) 1.10843 0.252991i 0.0562719 0.0128437i
\(389\) −26.3154 + 26.3154i −1.33424 + 1.33424i −0.432711 + 0.901533i \(0.642443\pi\)
−0.901533 + 0.432711i \(0.857557\pi\)
\(390\) 0 0
\(391\) 28.4507 9.95532i 1.43881 0.503462i
\(392\) 4.35371 9.04057i 0.219895 0.456618i
\(393\) 11.6406 + 7.31430i 0.587193 + 0.368958i
\(394\) 0.989716 + 0.989716i 0.0498612 + 0.0498612i
\(395\) 0 0
\(396\) 0.0200776 + 0.178194i 0.00100894 + 0.00895459i
\(397\) −25.6132 + 16.0938i −1.28549 + 0.807726i −0.989086 0.147337i \(-0.952930\pi\)
−0.296402 + 0.955063i \(0.595787\pi\)
\(398\) −21.1665 4.83111i −1.06098 0.242162i
\(399\) −17.0743 21.4105i −0.854784 1.07186i
\(400\) 0 0
\(401\) −2.42926 + 1.16987i −0.121311 + 0.0584205i −0.493555 0.869715i \(-0.664303\pi\)
0.372244 + 0.928135i \(0.378589\pi\)
\(402\) 11.8911 1.33981i 0.593075 0.0668235i
\(403\) 5.86041 + 7.34872i 0.291928 + 0.366066i
\(404\) 2.88697 8.25050i 0.143632 0.410478i
\(405\) 0 0
\(406\) 16.7045 5.76909i 0.829030 0.286315i
\(407\) 1.72233 + 1.72233i 0.0853726 + 0.0853726i
\(408\) 15.1863 + 31.5347i 0.751834 + 1.56120i
\(409\) 1.94353 17.2493i 0.0961013 0.852922i −0.849499 0.527591i \(-0.823095\pi\)
0.945600 0.325332i \(-0.105476\pi\)
\(410\) 0 0
\(411\) −4.12476 8.56516i −0.203460 0.422488i
\(412\) −9.54093 + 3.33852i −0.470048 + 0.164477i
\(413\) 20.9203 + 2.35715i 1.02942 + 0.115988i
\(414\) 1.24079 + 1.97471i 0.0609816 + 0.0970516i
\(415\) 0 0
\(416\) 20.8489 2.34911i 1.02220 0.115175i
\(417\) −6.51155 28.5290i −0.318872 1.39707i
\(418\) 1.85888 0.0909207
\(419\) −1.52289 6.67222i −0.0743981 0.325960i 0.924010 0.382369i \(-0.124892\pi\)
−0.998408 + 0.0564098i \(0.982035\pi\)
\(420\) 0 0
\(421\) 2.91469 + 8.32970i 0.142053 + 0.405965i 0.992826 0.119569i \(-0.0381513\pi\)
−0.850773 + 0.525534i \(0.823866\pi\)
\(422\) 0.0263593 0.0419505i 0.00128315 0.00204212i
\(423\) 5.46488i 0.265712i
\(424\) −18.6754 11.7345i −0.906957 0.569879i
\(425\) 0 0
\(426\) −1.16159 + 5.08924i −0.0562790 + 0.246574i
\(427\) −5.00637 + 21.9343i −0.242275 + 1.06148i
\(428\) 0.932974 8.28037i 0.0450970 0.400247i
\(429\) 0.978220 2.03130i 0.0472289 0.0980719i
\(430\) 0 0
\(431\) 10.0620 12.6174i 0.484671 0.607758i −0.478024 0.878347i \(-0.658647\pi\)
0.962695 + 0.270589i \(0.0872183\pi\)
\(432\) −5.09378 + 4.06215i −0.245075 + 0.195440i
\(433\) −3.68847 + 1.77627i −0.177257 + 0.0853622i −0.520408 0.853918i \(-0.674220\pi\)
0.343151 + 0.939280i \(0.388506\pi\)
\(434\) 7.12105 0.341822
\(435\) 0 0
\(436\) −5.38060 −0.257684
\(437\) −19.9728 + 9.61837i −0.955426 + 0.460109i
\(438\) 5.26938 4.20219i 0.251781 0.200788i
\(439\) 11.9256 14.9542i 0.569177 0.713725i −0.411048 0.911614i \(-0.634837\pi\)
0.980224 + 0.197889i \(0.0634085\pi\)
\(440\) 0 0
\(441\) 0.810583 1.68319i 0.0385992 0.0801521i
\(442\) −3.67722 + 32.6362i −0.174908 + 1.55235i
\(443\) −6.66320 + 29.1934i −0.316578 + 1.38702i 0.526932 + 0.849908i \(0.323342\pi\)
−0.843510 + 0.537113i \(0.819515\pi\)
\(444\) 2.42854 10.6401i 0.115254 0.504959i
\(445\) 0 0
\(446\) 10.6621 + 6.69947i 0.504867 + 0.317229i
\(447\) 30.1363i 1.42540i
\(448\) 12.4615 19.8324i 0.588750 0.936991i
\(449\) −0.137280 0.392324i −0.00647865 0.0185149i 0.940599 0.339521i \(-0.110265\pi\)
−0.947077 + 0.321006i \(0.895979\pi\)
\(450\) 0 0
\(451\) −0.179370 0.785871i −0.00844621 0.0370052i
\(452\) 0.223649 0.0105196
\(453\) 6.07715 + 26.6257i 0.285529 + 1.25099i
\(454\) −10.3607 + 1.16738i −0.486254 + 0.0547876i
\(455\) 0 0
\(456\) −13.6953 21.7959i −0.641340 1.02069i
\(457\) 28.0159 + 3.15663i 1.31053 + 0.147661i 0.739437 0.673226i \(-0.235092\pi\)
0.571091 + 0.820887i \(0.306520\pi\)
\(458\) −20.0532 + 7.01691i −0.937023 + 0.327879i
\(459\) 17.9129 + 37.1966i 0.836105 + 1.73619i
\(460\) 0 0
\(461\) −1.94340 + 17.2482i −0.0905133 + 0.803328i 0.863660 + 0.504074i \(0.168166\pi\)
−0.954174 + 0.299254i \(0.903262\pi\)
\(462\) −0.741109 1.53893i −0.0344795 0.0715975i
\(463\) 10.1426 + 10.1426i 0.471365 + 0.471365i 0.902356 0.430991i \(-0.141836\pi\)
−0.430991 + 0.902356i \(0.641836\pi\)
\(464\) 6.15570 1.37871i 0.285771 0.0640051i
\(465\) 0 0
\(466\) 7.62368 21.7872i 0.353160 1.00927i
\(467\) 3.38662 + 4.24669i 0.156714 + 0.196513i 0.853990 0.520290i \(-0.174176\pi\)
−0.697276 + 0.716803i \(0.745605\pi\)
\(468\) 2.31545 0.260889i 0.107032 0.0120596i
\(469\) −21.7202 + 10.4599i −1.00295 + 0.482994i
\(470\) 0 0
\(471\) 18.0501 + 22.6341i 0.831705 + 1.04293i
\(472\) 19.2930 + 4.40349i 0.888031 + 0.202687i
\(473\) −1.94405 + 1.22153i −0.0893874 + 0.0561658i
\(474\) 0.355824 + 3.15803i 0.0163436 + 0.145053i
\(475\) 0 0
\(476\) −16.1331 16.1331i −0.739461 0.739461i
\(477\) −3.47703 2.18476i −0.159202 0.100033i
\(478\) 5.96427 12.3849i 0.272799 0.566473i
\(479\) 7.85928 2.75008i 0.359100 0.125654i −0.144698 0.989476i \(-0.546221\pi\)
0.503798 + 0.863821i \(0.331936\pi\)
\(480\) 0 0
\(481\) 22.3799 22.3799i 1.02044 1.02044i
\(482\) 7.53690 1.72025i 0.343297 0.0783552i
\(483\) 15.9257 + 12.7003i 0.724646 + 0.577886i
\(484\) 10.1560 + 2.31804i 0.461635 + 0.105365i
\(485\) 0 0
\(486\) −4.60066 + 3.66890i −0.208690 + 0.166425i
\(487\) −6.34097 18.1215i −0.287337 0.821161i −0.993574 0.113186i \(-0.963894\pi\)
0.706237 0.707975i \(-0.250391\pi\)
\(488\) −6.98478 + 19.9613i −0.316186 + 0.903608i
\(489\) 2.40576 + 1.91853i 0.108792 + 0.0867588i
\(490\) 0 0
\(491\) 9.42610 + 3.29834i 0.425394 + 0.148852i 0.534481 0.845180i \(-0.320507\pi\)
−0.109087 + 0.994032i \(0.534793\pi\)
\(492\) −2.55393 + 2.55393i −0.115140 + 0.115140i
\(493\) 0.162399 39.9732i 0.00731406 1.80030i
\(494\) 24.1542i 1.08675i
\(495\) 0 0
\(496\) 2.52586 + 0.284596i 0.113415 + 0.0127787i
\(497\) −1.17748 10.4504i −0.0528172 0.468766i
\(498\) −11.4828 4.01799i −0.514555 0.180050i
\(499\) −6.72572 3.23894i −0.301085 0.144995i 0.277242 0.960800i \(-0.410580\pi\)
−0.578326 + 0.815805i \(0.696294\pi\)
\(500\) 0 0
\(501\) −12.8560 + 8.07795i −0.574363 + 0.360896i
\(502\) −12.1634 19.3579i −0.542879 0.863987i
\(503\) 23.7256 29.7509i 1.05787 1.32653i 0.115001 0.993365i \(-0.463313\pi\)
0.942869 0.333163i \(-0.108116\pi\)
\(504\) 2.90266 4.61956i 0.129295 0.205771i
\(505\) 0 0
\(506\) −1.34802 + 0.307677i −0.0599268 + 0.0136779i
\(507\) −8.10752 3.90438i −0.360068 0.173399i
\(508\) 4.65645 + 2.24243i 0.206597 + 0.0994917i
\(509\) −17.5133 + 3.99729i −0.776263 + 0.177177i −0.592258 0.805748i \(-0.701763\pi\)
−0.184005 + 0.982925i \(0.558906\pi\)
\(510\) 0 0
\(511\) −7.22399 + 11.4969i −0.319570 + 0.508593i
\(512\) 7.94898 9.96771i 0.351299 0.440515i
\(513\) −16.1542 25.7093i −0.713225 1.13509i
\(514\) −14.4927 + 9.10634i −0.639244 + 0.401663i
\(515\) 0 0
\(516\) 9.26870 + 4.46357i 0.408032 + 0.196498i
\(517\) −3.05817 1.07010i −0.134498 0.0470630i
\(518\) −2.68472 23.8275i −0.117960 1.04692i
\(519\) 1.23640 + 0.139309i 0.0542719 + 0.00611498i
\(520\) 0 0
\(521\) 15.7501i 0.690024i −0.938598 0.345012i \(-0.887875\pi\)
0.938598 0.345012i \(-0.112125\pi\)
\(522\) 3.01808 0.675969i 0.132098 0.0295864i
\(523\) 8.21538 8.21538i 0.359233 0.359233i −0.504297 0.863530i \(-0.668248\pi\)
0.863530 + 0.504297i \(0.168248\pi\)
\(524\) −7.95111 2.78221i −0.347346 0.121542i
\(525\) 0 0
\(526\) 7.28104 + 5.80644i 0.317468 + 0.253173i
\(527\) 5.31982 15.2032i 0.231735 0.662260i
\(528\) −0.201370 0.575482i −0.00876350 0.0250446i
\(529\) −5.09030 + 4.05938i −0.221318 + 0.176495i
\(530\) 0 0
\(531\) 3.59201 + 0.819853i 0.155880 + 0.0355786i
\(532\) 13.1190 + 10.4621i 0.568781 + 0.453588i
\(533\) −10.2116 + 2.33073i −0.442314 + 0.100955i
\(534\) 11.6070 11.6070i 0.502285 0.502285i
\(535\) 0 0
\(536\) −21.3891 + 7.48437i −0.923869 + 0.323276i
\(537\) −0.783422 + 1.62679i −0.0338072 + 0.0702013i
\(538\) −4.60230 2.89181i −0.198419 0.124675i
\(539\) 0.783199 + 0.783199i 0.0337348 + 0.0337348i
\(540\) 0 0
\(541\) 3.67537 + 32.6198i 0.158016 + 1.40243i 0.783109 + 0.621884i \(0.213633\pi\)
−0.625093 + 0.780551i \(0.714939\pi\)
\(542\) 1.16429 0.731573i 0.0500106 0.0314238i
\(543\) −20.8325 4.75488i −0.894009 0.204052i
\(544\) −22.4166 28.1095i −0.961103 1.20518i
\(545\) 0 0
\(546\) −19.9968 + 9.62997i −0.855786 + 0.412125i
\(547\) −9.99406 + 1.12606i −0.427315 + 0.0481468i −0.323003 0.946398i \(-0.604693\pi\)
−0.104312 + 0.994545i \(0.533264\pi\)
\(548\) 3.63186 + 4.55421i 0.155145 + 0.194546i
\(549\) −1.30044 + 3.71645i −0.0555015 + 0.158614i
\(550\) 0 0
\(551\) 3.17289 + 29.2269i 0.135169 + 1.24511i
\(552\) 13.5391 + 13.5391i 0.576264 + 0.576264i
\(553\) −2.77793 5.76843i −0.118130 0.245299i
\(554\) 2.55394 22.6669i 0.108507 0.963023i
\(555\) 0 0
\(556\) 7.77967 + 16.1547i 0.329931 + 0.685110i
\(557\) −35.6586 + 12.4775i −1.51090 + 0.528688i −0.953458 0.301525i \(-0.902504\pi\)
−0.557446 + 0.830213i \(0.688219\pi\)
\(558\) 1.23841 + 0.139535i 0.0524259 + 0.00590698i
\(559\) 15.8725 + 25.2609i 0.671335 + 1.06842i
\(560\) 0 0
\(561\) −3.83920 + 0.432574i −0.162091 + 0.0182633i
\(562\) 1.19127 + 5.21927i 0.0502505 + 0.220162i
\(563\) 0.0469315 0.00197793 0.000988963 1.00000i \(-0.499685\pi\)
0.000988963 1.00000i \(0.499685\pi\)
\(564\) 3.23042 + 14.1534i 0.136025 + 0.595965i
\(565\) 0 0
\(566\) −8.74512 24.9921i −0.367585 1.05050i
\(567\) −11.9603 + 19.0348i −0.502287 + 0.799386i
\(568\) 9.88536i 0.414781i
\(569\) 24.4344 + 15.3531i 1.02434 + 0.643637i 0.935835 0.352438i \(-0.114647\pi\)
0.0885075 + 0.996076i \(0.471790\pi\)
\(570\) 0 0
\(571\) 9.57895 41.9681i 0.400867 1.75631i −0.223036 0.974810i \(-0.571597\pi\)
0.623903 0.781502i \(-0.285546\pi\)
\(572\) −0.307403 + 1.34682i −0.0128532 + 0.0563135i
\(573\) 2.51521 22.3231i 0.105074 0.932560i
\(574\) −3.44303 + 7.14952i −0.143709 + 0.298415i
\(575\) 0 0
\(576\) 2.55576 3.20482i 0.106490 0.133534i
\(577\) −21.3823 + 17.0518i −0.890155 + 0.709875i −0.957678 0.287843i \(-0.907062\pi\)
0.0675225 + 0.997718i \(0.478491\pi\)
\(578\) 35.0621 16.8850i 1.45839 0.702324i
\(579\) 0.331810 0.0137895
\(580\) 0 0
\(581\) 24.5087 1.01679
\(582\) −1.70757 + 0.822324i −0.0707812 + 0.0340864i
\(583\) 1.90345 1.51795i 0.0788329 0.0628672i
\(584\) −7.95770 + 9.97865i −0.329292 + 0.412919i
\(585\) 0 0
\(586\) −10.1613 + 21.1002i −0.419761 + 0.871642i
\(587\) −0.247035 + 2.19250i −0.0101962 + 0.0904941i −0.997780 0.0666013i \(-0.978784\pi\)
0.987583 + 0.157095i \(0.0502130\pi\)
\(588\) 1.10434 4.83842i 0.0455422 0.199533i
\(589\) −2.63597 + 11.5489i −0.108613 + 0.475866i
\(590\) 0 0
\(591\) 1.81155 + 1.13827i 0.0745173 + 0.0468223i
\(592\) 8.55900i 0.351773i
\(593\) −0.841384 + 1.33905i −0.0345515 + 0.0549884i −0.863553 0.504257i \(-0.831766\pi\)
0.829002 + 0.559246i \(0.188909\pi\)
\(594\) −0.625496 1.78756i −0.0256644 0.0733446i
\(595\) 0 0
\(596\) 4.10900 + 18.0027i 0.168311 + 0.737419i
\(597\) −33.1864 −1.35823
\(598\) 3.99795 + 17.5162i 0.163488 + 0.716289i
\(599\) −25.1241 + 2.83081i −1.02654 + 0.115664i −0.609144 0.793060i \(-0.708487\pi\)
−0.417399 + 0.908723i \(0.637058\pi\)
\(600\) 0 0
\(601\) −14.9382 23.7740i −0.609342 0.969762i −0.998812 0.0487229i \(-0.984485\pi\)
0.389471 0.921039i \(-0.372658\pi\)
\(602\) 22.4602 + 2.53066i 0.915409 + 0.103142i
\(603\) −3.98227 + 1.39346i −0.162171 + 0.0567460i
\(604\) −7.26068 15.0769i −0.295433 0.613472i
\(605\) 0 0
\(606\) −1.63146 + 14.4796i −0.0662735 + 0.588194i
\(607\) −14.6311 30.3818i −0.593859 1.23316i −0.953872 0.300213i \(-0.902942\pi\)
0.360013 0.932947i \(-0.382772\pi\)
\(608\) 18.6973 + 18.6973i 0.758276 + 0.758276i
\(609\) 22.9314 14.2791i 0.929227 0.578620i
\(610\) 0 0
\(611\) −13.9049 + 39.7378i −0.562531 + 1.60762i
\(612\) −2.48955 3.12180i −0.100634 0.126191i
\(613\) 36.8524 4.15227i 1.48846 0.167709i 0.670036 0.742329i \(-0.266279\pi\)
0.818420 + 0.574620i \(0.194850\pi\)
\(614\) 29.2242 14.0736i 1.17939 0.567966i
\(615\) 0 0
\(616\) 2.01674 + 2.52892i 0.0812569 + 0.101893i
\(617\) 23.6532 + 5.39870i 0.952243 + 0.217343i 0.670302 0.742088i \(-0.266165\pi\)
0.281941 + 0.959432i \(0.409022\pi\)
\(618\) 14.2675 8.96488i 0.573924 0.360621i
\(619\) −4.24442 37.6702i −0.170598 1.51410i −0.728994 0.684521i \(-0.760012\pi\)
0.558396 0.829574i \(-0.311417\pi\)
\(620\) 0 0
\(621\) 15.9700 + 15.9700i 0.640855 + 0.640855i
\(622\) −1.93583 1.21636i −0.0776195 0.0487716i
\(623\) −14.3483 + 29.7946i −0.574854 + 1.19370i
\(624\) −7.47781 + 2.61660i −0.299352 + 0.104748i
\(625\) 0 0
\(626\) 7.73273 7.73273i 0.309062 0.309062i
\(627\) 2.77017 0.632273i 0.110630 0.0252506i
\(628\) −13.8688 11.0600i −0.553424 0.441341i
\(629\) −52.8765 12.0687i −2.10832 0.481211i
\(630\) 0 0
\(631\) 15.9303 12.7040i 0.634175 0.505737i −0.252822 0.967513i \(-0.581359\pi\)
0.886997 + 0.461775i \(0.152787\pi\)
\(632\) −1.98769 5.68049i −0.0790661 0.225958i
\(633\) 0.0250127 0.0714821i 0.000994164 0.00284116i
\(634\) 17.8405 + 14.2273i 0.708536 + 0.565038i
\(635\) 0 0
\(636\) −10.2965 3.60291i −0.408284 0.142865i
\(637\) 10.1769 10.1769i 0.403223 0.403223i
\(638\) −0.212707 + 1.82130i −0.00842117 + 0.0721058i
\(639\) 1.84048i 0.0728083i
\(640\) 0 0
\(641\) −20.0334 2.25723i −0.791273 0.0891550i −0.292929 0.956134i \(-0.594630\pi\)
−0.498344 + 0.866979i \(0.666058\pi\)
\(642\) 1.55526 + 13.8033i 0.0613813 + 0.544775i
\(643\) −41.5577 14.5417i −1.63887 0.573467i −0.655522 0.755176i \(-0.727551\pi\)
−0.983352 + 0.181709i \(0.941837\pi\)
\(644\) −11.2453 5.41544i −0.443126 0.213398i
\(645\) 0 0
\(646\) −35.0471 + 22.0216i −1.37891 + 0.866426i
\(647\) −21.7375 34.5951i −0.854591 1.36007i −0.931767 0.363056i \(-0.881733\pi\)
0.0771768 0.997017i \(-0.475409\pi\)
\(648\) −13.1751 + 16.5211i −0.517568 + 0.649010i
\(649\) −1.16216 + 1.84957i −0.0456187 + 0.0726018i
\(650\) 0 0
\(651\) 10.6121 2.42214i 0.415920 0.0949310i
\(652\) −1.69872 0.818062i −0.0665271 0.0320378i
\(653\) −38.3770 18.4814i −1.50181 0.723233i −0.511137 0.859499i \(-0.670776\pi\)
−0.990672 + 0.136266i \(0.956490\pi\)
\(654\) 8.74456 1.99589i 0.341939 0.0780454i
\(655\) 0 0
\(656\) −1.50699 + 2.39836i −0.0588379 + 0.0936401i
\(657\) −1.48158 + 1.85785i −0.0578021 + 0.0724815i
\(658\) 16.9695 + 27.0068i 0.661540 + 1.05284i
\(659\) −29.0653 + 18.2629i −1.13222 + 0.711423i −0.961747 0.273939i \(-0.911673\pi\)
−0.170476 + 0.985362i \(0.554530\pi\)
\(660\) 0 0
\(661\) −42.5571 20.4944i −1.65528 0.797141i −0.999095 0.0425427i \(-0.986454\pi\)
−0.656187 0.754599i \(-0.727832\pi\)
\(662\) −11.9693 4.18823i −0.465199 0.162780i
\(663\) 5.62086 + 49.8865i 0.218296 + 1.93743i
\(664\) 22.8929 + 2.57941i 0.888417 + 0.100100i
\(665\) 0 0
\(666\) 4.19640i 0.162607i
\(667\) −7.13847 20.6696i −0.276403 0.800329i
\(668\) 6.57844 6.57844i 0.254528 0.254528i
\(669\) 18.1679 + 6.35722i 0.702411 + 0.245784i
\(670\) 0 0
\(671\) −1.82510 1.45547i −0.0704571 0.0561877i
\(672\) 8.02478 22.9335i 0.309563 0.884679i
\(673\) −12.1061 34.5971i −0.466654 1.33362i −0.901368 0.433053i \(-0.857436\pi\)
0.434714 0.900569i \(-0.356849\pi\)
\(674\) −1.13753 + 0.907149i −0.0438160 + 0.0349421i
\(675\) 0 0
\(676\) 5.37558 + 1.22694i 0.206753 + 0.0471900i
\(677\) 21.1078 + 16.8329i 0.811240 + 0.646942i 0.938636 0.344910i \(-0.112090\pi\)
−0.127396 + 0.991852i \(0.540662\pi\)
\(678\) −0.363475 + 0.0829607i −0.0139592 + 0.00318609i
\(679\) 2.69990 2.69990i 0.103613 0.103613i
\(680\) 0 0
\(681\) −15.0429 + 5.26374i −0.576445 + 0.201707i
\(682\) −0.320581 + 0.665694i −0.0122757 + 0.0254908i
\(683\) −9.70047 6.09521i −0.371178 0.233227i 0.333506 0.942748i \(-0.391768\pi\)
−0.704684 + 0.709521i \(0.748911\pi\)
\(684\) 2.07649 + 2.07649i 0.0793967 + 0.0793967i
\(685\) 0 0
\(686\) 1.35123 + 11.9925i 0.0515901 + 0.457875i
\(687\) −27.4973 + 17.2777i −1.04909 + 0.659185i
\(688\) 7.86556 + 1.79526i 0.299872 + 0.0684438i
\(689\) −19.7243 24.7334i −0.751434 0.942269i
\(690\) 0 0
\(691\) −15.3535 + 7.39386i −0.584075 + 0.281276i −0.702496 0.711688i \(-0.747931\pi\)
0.118421 + 0.992964i \(0.462217\pi\)
\(692\) −0.757588 + 0.0853597i −0.0287992 + 0.00324489i
\(693\) 0.375482 + 0.470839i 0.0142634 + 0.0178857i
\(694\) 6.89799 19.7133i 0.261844 0.748308i
\(695\) 0 0
\(696\) 22.9224 10.9243i 0.868870 0.414085i
\(697\) 12.6918 + 12.6918i 0.480736 + 0.480736i
\(698\) 12.4958 + 25.9479i 0.472974 + 0.982141i
\(699\) 3.95046 35.0613i 0.149420 1.32614i
\(700\) 0 0
\(701\) −9.35305 19.4218i −0.353260 0.733552i 0.646304 0.763080i \(-0.276314\pi\)
−0.999564 + 0.0295282i \(0.990600\pi\)
\(702\) −23.2276 + 8.12768i −0.876669 + 0.306760i
\(703\) 39.6373 + 4.46605i 1.49495 + 0.168440i
\(704\) 1.29298 + 2.05776i 0.0487309 + 0.0775548i
\(705\) 0 0
\(706\) −5.73731 + 0.646440i −0.215927 + 0.0243291i
\(707\) −6.53221 28.6195i −0.245669 1.07635i
\(708\) 9.78750 0.367837
\(709\) 5.43528 + 23.8135i 0.204126 + 0.894336i 0.968392 + 0.249434i \(0.0802445\pi\)
−0.764266 + 0.644902i \(0.776898\pi\)
\(710\) 0 0
\(711\) −0.370073 1.05761i −0.0138788 0.0396634i
\(712\) −16.5381 + 26.3202i −0.619791 + 0.986392i
\(713\) 8.81135i 0.329988i
\(714\) 32.2040 + 20.2351i 1.20521 + 0.757281i
\(715\) 0 0
\(716\) 0.246189 1.07862i 0.00920050 0.0403100i
\(717\) 4.67560 20.4852i 0.174614 0.765032i
\(718\) 0.0871351 0.773345i 0.00325185 0.0288610i
\(719\) −12.1135 + 25.1540i −0.451758 + 0.938086i 0.543369 + 0.839494i \(0.317148\pi\)
−0.995128 + 0.0985924i \(0.968566\pi\)
\(720\) 0 0
\(721\) −21.1655 + 26.5407i −0.788245 + 0.988428i
\(722\) 8.62687 6.87970i 0.321059 0.256036i
\(723\) 10.6467 5.12716i 0.395954 0.190681i
\(724\) 13.0931 0.486602
\(725\) 0 0
\(726\) −17.3654 −0.644489
\(727\) 3.96162 1.90781i 0.146928 0.0707569i −0.358975 0.933347i \(-0.616874\pi\)
0.505903 + 0.862590i \(0.331159\pi\)
\(728\) 32.8607 26.2055i 1.21790 0.971242i
\(729\) −18.6958 + 23.4438i −0.692438 + 0.868290i
\(730\) 0 0
\(731\) 22.1818 46.0611i 0.820425 1.70363i
\(732\) −1.17111 + 10.3939i −0.0432854 + 0.384169i
\(733\) −5.79725 + 25.3994i −0.214126 + 0.938149i 0.747603 + 0.664146i \(0.231205\pi\)
−0.961729 + 0.274003i \(0.911652\pi\)
\(734\) −0.543629 + 2.38179i −0.0200657 + 0.0879136i
\(735\) 0 0
\(736\) −16.6536 10.4642i −0.613861 0.385714i
\(737\) 2.50136i 0.0921387i
\(738\) −0.738861 + 1.17589i −0.0271979 + 0.0432851i
\(739\) −1.95496 5.58694i −0.0719142 0.205519i 0.902316 0.431075i \(-0.141866\pi\)
−0.974230 + 0.225556i \(0.927580\pi\)
\(740\) 0 0
\(741\) −8.21575 35.9956i −0.301813 1.32233i
\(742\) −23.9672 −0.879863
\(743\) 1.56594 + 6.86085i 0.0574489 + 0.251700i 0.995495 0.0948090i \(-0.0302241\pi\)
−0.938047 + 0.346509i \(0.887367\pi\)
\(744\) 10.1673 1.14558i 0.372753 0.0419992i
\(745\) 0 0
\(746\) 8.74433 + 13.9165i 0.320153 + 0.509520i
\(747\) 4.26225 + 0.480240i 0.155948 + 0.0175711i
\(748\) 2.23446 0.781872i 0.0817000 0.0285881i
\(749\) −12.1420 25.2131i −0.443659 0.921267i
\(750\) 0 0
\(751\) 5.32203 47.2343i 0.194203 1.72360i −0.397632 0.917545i \(-0.630168\pi\)
0.591836 0.806059i \(-0.298403\pi\)
\(752\) 4.93980 + 10.2576i 0.180136 + 0.374056i
\(753\) −24.7107 24.7107i −0.900509 0.900509i
\(754\) 23.6659 + 2.76392i 0.861861 + 0.100656i
\(755\) 0 0
\(756\) 5.64626 16.1361i 0.205353 0.586864i
\(757\) −11.4688 14.3815i −0.416842 0.522704i 0.528434 0.848974i \(-0.322779\pi\)
−0.945276 + 0.326271i \(0.894208\pi\)
\(758\) 16.7561 1.88796i 0.608608 0.0685737i
\(759\) −1.90422 + 0.917023i −0.0691188 + 0.0332858i
\(760\) 0 0
\(761\) −12.2089 15.3094i −0.442571 0.554966i 0.509648 0.860383i \(-0.329776\pi\)
−0.952219 + 0.305417i \(0.901204\pi\)
\(762\) −8.39947 1.91713i −0.304281 0.0694501i
\(763\) −15.3003 + 9.61382i −0.553908 + 0.348044i
\(764\) 1.54116 + 13.6782i 0.0557573 + 0.494860i
\(765\) 0 0
\(766\) −3.37599 3.37599i −0.121979 0.121979i
\(767\) 24.0332 + 15.1011i 0.867790 + 0.545268i
\(768\) 11.4277 23.7298i 0.412361 0.856276i
\(769\) −15.5886 + 5.45470i −0.562141 + 0.196702i −0.596366 0.802713i \(-0.703389\pi\)
0.0342253 + 0.999414i \(0.489104\pi\)
\(770\) 0 0
\(771\) −18.5001 + 18.5001i −0.666265 + 0.666265i
\(772\) −0.198215 + 0.0452412i −0.00713391 + 0.00162827i
\(773\) 16.0469 + 12.7969i 0.577166 + 0.460274i 0.868045 0.496486i \(-0.165376\pi\)
−0.290879 + 0.956760i \(0.593948\pi\)
\(774\) 3.85641 + 0.880201i 0.138616 + 0.0316382i
\(775\) 0 0
\(776\) 2.80605 2.23775i 0.100731 0.0803304i
\(777\) −12.1055 34.5956i −0.434283 1.24111i
\(778\) −12.5549 + 35.8800i −0.450117 + 1.28636i
\(779\) −10.3206 8.23041i −0.369774 0.294885i
\(780\) 0 0
\(781\) 1.02994 + 0.360392i 0.0368542 + 0.0128958i
\(782\) 21.7705 21.7705i 0.778511 0.778511i
\(783\) 27.0380 12.8857i 0.966258 0.460499i
\(784\) 3.89206i 0.139002i
\(785\) 0 0
\(786\) 13.9542 + 1.57226i 0.497729 + 0.0560806i
\(787\) −3.84619 34.1359i −0.137102 1.21681i −0.854239 0.519880i \(-0.825977\pi\)
0.717137 0.696932i \(-0.245452\pi\)
\(788\) −1.23738 0.432976i −0.0440797 0.0154241i
\(789\) 12.8255 + 6.17642i 0.456599 + 0.219886i
\(790\) 0 0
\(791\) 0.635969 0.399606i 0.0226125 0.0142084i
\(792\) 0.301174 + 0.479315i 0.0107017 + 0.0170317i
\(793\) −18.9123 + 23.7153i −0.671596 + 0.842155i
\(794\) −16.4387 + 26.1621i −0.583388 + 0.928457i
\(795\) 0 0
\(796\) 19.8247 4.52486i 0.702668 0.160379i
\(797\) 12.4319 + 5.98688i 0.440360 + 0.212066i 0.640908 0.767618i \(-0.278558\pi\)
−0.200548 + 0.979684i \(0.564272\pi\)
\(798\) −25.2018 12.1366i −0.892135 0.429630i
\(799\) 70.3356 16.0536i 2.48829 0.567937i
\(800\) 0 0
\(801\) −3.07910 + 4.90036i −0.108795 + 0.173146i
\(802\) −1.71713 + 2.15321i −0.0606338 + 0.0760324i
\(803\) −0.749545 1.19289i −0.0264509 0.0420963i
\(804\) −9.48990 + 5.96290i −0.334683 + 0.210295i
\(805\) 0 0
\(806\) 8.65002 + 4.16563i 0.304684 + 0.146728i
\(807\) −7.84213 2.74408i −0.276056 0.0965962i
\(808\) −3.08950 27.4201i −0.108688 0.964636i
\(809\) 19.1241 + 2.15477i 0.672367 + 0.0757576i 0.441546 0.897239i \(-0.354430\pi\)
0.230821 + 0.972996i \(0.425859\pi\)
\(810\) 0 0
\(811\) 46.6872i 1.63941i 0.572787 + 0.819704i \(0.305862\pi\)
−0.572787 + 0.819704i \(0.694138\pi\)
\(812\) −11.7517 + 11.6566i −0.412405 + 0.409067i
\(813\) 1.48624 1.48624i 0.0521246 0.0521246i
\(814\) 2.34832 + 0.821714i 0.0823087 + 0.0288010i
\(815\) 0 0
\(816\) 10.6142 + 8.46452i 0.371570 + 0.296317i
\(817\) −12.4182 + 35.4892i −0.434458 + 1.24161i
\(818\) −5.85599 16.7355i −0.204750 0.585142i
\(819\) 6.11808 4.87901i 0.213783 0.170486i
\(820\) 0 0
\(821\) −8.38107 1.91292i −0.292501 0.0667615i 0.0737522 0.997277i \(-0.476503\pi\)
−0.366254 + 0.930515i \(0.619360\pi\)
\(822\) −7.59185 6.05430i −0.264796 0.211168i
\(823\) −16.7204 + 3.81633i −0.582838 + 0.133029i −0.503766 0.863840i \(-0.668053\pi\)
−0.0790717 + 0.996869i \(0.525196\pi\)
\(824\) −22.5634 + 22.5634i −0.786033 + 0.786033i
\(825\) 0 0
\(826\) 20.2971 7.10227i 0.706227 0.247119i
\(827\) −11.2519 + 23.3648i −0.391267 + 0.812474i 0.608553 + 0.793513i \(0.291750\pi\)
−0.999820 + 0.0189613i \(0.993964\pi\)
\(828\) −1.84953 1.16213i −0.0642755 0.0403870i
\(829\) −8.01072 8.01072i −0.278224 0.278224i 0.554176 0.832400i \(-0.313034\pi\)
−0.832400 + 0.554176i \(0.813034\pi\)
\(830\) 0 0
\(831\) −3.90386 34.6477i −0.135423 1.20192i
\(832\) 26.7385 16.8009i 0.926992 0.582468i
\(833\) −24.0447 5.48804i −0.833099 0.190149i
\(834\) −18.6359 23.3687i −0.645310 0.809193i
\(835\) 0 0
\(836\) −1.56862 + 0.755409i −0.0542519 + 0.0261264i
\(837\) 11.9928 1.35127i 0.414533 0.0467067i
\(838\) −4.35849 5.46538i −0.150562 0.188798i
\(839\) −1.26460 + 3.61402i −0.0436588 + 0.124770i −0.963649 0.267172i \(-0.913911\pi\)
0.919990 + 0.391942i \(0.128197\pi\)
\(840\) 0 0
\(841\) −28.9990 0.235632i −0.999967 0.00812523i
\(842\) 6.37389 + 6.37389i 0.219659 + 0.219659i
\(843\) 3.55054 + 7.37277i 0.122287 + 0.253932i
\(844\) −0.00519557 + 0.0461120i −0.000178839 + 0.00158724i
\(845\) 0 0
\(846\) 2.42194 + 5.02920i 0.0832679 + 0.172908i
\(847\) 33.0214 11.5547i 1.13463 0.397023i
\(848\) −8.50124 0.957859i −0.291934 0.0328930i
\(849\) −21.5331 34.2697i −0.739013 1.17613i
\(850\) 0 0
\(851\) −29.4834 + 3.32198i −1.01068 + 0.113876i
\(852\) −1.08795 4.76662i −0.0372726 0.163302i
\(853\) −39.2828 −1.34502 −0.672509 0.740089i \(-0.734783\pi\)
−0.672509 + 0.740089i \(0.734783\pi\)
\(854\) 5.11366 + 22.4044i 0.174986 + 0.766663i
\(855\) 0 0
\(856\) −8.68794 24.8287i −0.296948 0.848628i
\(857\) −29.7994 + 47.4255i −1.01793 + 1.62002i −0.262341 + 0.964975i \(0.584495\pi\)
−0.755587 + 0.655048i \(0.772648\pi\)
\(858\) 2.30288i 0.0786192i
\(859\) −3.31692 2.08416i −0.113172 0.0711105i 0.474257 0.880387i \(-0.342717\pi\)
−0.587429 + 0.809276i \(0.699860\pi\)
\(860\) 0 0
\(861\) −2.69911 + 11.8256i −0.0919856 + 0.403015i
\(862\) 3.66805 16.0708i 0.124934 0.547374i
\(863\) 3.91273 34.7264i 0.133191 1.18210i −0.732231 0.681057i \(-0.761521\pi\)
0.865421 0.501045i \(-0.167051\pi\)
\(864\) 11.6885 24.2715i 0.397652 0.825732i
\(865\) 0 0
\(866\) −2.60720 + 3.26933i −0.0885963 + 0.111096i
\(867\) 46.5076 37.0886i 1.57948 1.25959i
\(868\) −6.00913 + 2.89385i −0.203963 + 0.0982235i
\(869\) 0.664307 0.0225351
\(870\) 0 0
\(871\) −32.5026 −1.10131
\(872\) −15.3034 + 7.36972i −0.518238 + 0.249570i
\(873\) 0.522436 0.416629i 0.0176818 0.0141008i
\(874\) −14.1178 + 17.7031i −0.477541 + 0.598817i
\(875\) 0 0
\(876\) −2.73891 + 5.68740i −0.0925391 + 0.192159i
\(877\) 1.13966 10.1148i 0.0384837 0.341553i −0.959686 0.281075i \(-0.909309\pi\)
0.998170 0.0604776i \(-0.0192624\pi\)
\(878\) 4.34740 19.0472i 0.146718 0.642812i
\(879\) −7.96583 + 34.9006i −0.268681 + 1.17717i
\(880\) 0 0
\(881\) −10.5567 6.63321i −0.355664 0.223479i 0.342334 0.939578i \(-0.388783\pi\)
−0.697998 + 0.716100i \(0.745925\pi\)
\(882\) 1.90824i 0.0642538i
\(883\) 5.60565 8.92134i 0.188645 0.300227i −0.738989 0.673718i \(-0.764696\pi\)
0.927634 + 0.373491i \(0.121839\pi\)
\(884\) −10.1596 29.0346i −0.341706 0.976538i
\(885\) 0 0
\(886\) 6.80600 + 29.8190i 0.228652 + 1.00179i
\(887\) 10.4690 0.351515 0.175758 0.984433i \(-0.443763\pi\)
0.175758 + 0.984433i \(0.443763\pi\)
\(888\) −7.66641 33.5888i −0.257268 1.12716i
\(889\) 17.2478 1.94336i 0.578472 0.0651781i
\(890\) 0 0
\(891\) −1.24098 1.97501i −0.0415744 0.0661652i
\(892\) −11.7198 1.32051i −0.392409 0.0442138i
\(893\) −50.0812 + 17.5242i −1.67590 + 0.586424i
\(894\) −13.3559 27.7338i −0.446688 0.927556i
\(895\) 0 0
\(896\) −0.806054 + 7.15393i −0.0269284 + 0.238996i
\(897\) 11.9158 + 24.7434i 0.397857 + 0.826158i
\(898\) −0.300207 0.300207i −0.0100180 0.0100180i
\(899\) −11.0138 3.90420i −0.367331 0.130212i
\(900\) 0 0
\(901\) −17.9048 + 51.1689i −0.596495 + 1.70468i
\(902\) −0.513354 0.643726i −0.0170928 0.0214337i
\(903\) 34.3318 3.86827i 1.14249 0.128728i
\(904\) 0.636097 0.306328i 0.0211563 0.0101883i
\(905\) 0 0
\(906\) 17.3927 + 21.8098i 0.577834 + 0.724581i
\(907\) 36.6334 + 8.36134i 1.21639 + 0.277634i 0.782109 0.623142i \(-0.214144\pi\)
0.434284 + 0.900776i \(0.357001\pi\)
\(908\) 8.26856 5.19548i 0.274402 0.172418i
\(909\) −0.575211 5.10514i −0.0190785 0.169327i
\(910\) 0 0
\(911\) 27.7673 + 27.7673i 0.919972 + 0.919972i 0.997027 0.0770545i \(-0.0245516\pi\)
−0.0770545 + 0.997027i \(0.524552\pi\)
\(912\) −8.45412 5.31208i −0.279944 0.175900i
\(913\) −1.10335 + 2.29114i −0.0365157 + 0.0758256i
\(914\) 27.1813 9.51116i 0.899079 0.314601i
\(915\) 0 0
\(916\) 14.0704 14.0704i 0.464900 0.464900i
\(917\) −27.5810 + 6.29517i −0.910803 + 0.207885i
\(918\) 32.9697 + 26.2925i 1.08816 + 0.867782i
\(919\) 26.5398 + 6.05753i 0.875466 + 0.199819i 0.636564 0.771224i \(-0.280355\pi\)
0.238902 + 0.971044i \(0.423212\pi\)
\(920\) 0 0
\(921\) 38.7641 30.9133i 1.27732 1.01863i
\(922\) 5.85561 + 16.7344i 0.192844 + 0.551118i
\(923\) 4.68293 13.3830i 0.154140 0.440508i
\(924\) 1.25078 + 0.997461i 0.0411475 + 0.0328141i
\(925\) 0 0
\(926\) 13.8290 + 4.83896i 0.454448 + 0.159018i
\(927\) −4.20090 + 4.20090i −0.137976 + 0.137976i
\(928\) −20.4588 + 16.1798i −0.671592 + 0.531128i
\(929\) 42.3538i 1.38958i −0.719211 0.694792i \(-0.755496\pi\)
0.719211 0.694792i \(-0.244504\pi\)
\(930\) 0 0
\(931\) 18.0244 + 2.03086i 0.590726 + 0.0665588i
\(932\) 2.42059 + 21.4834i 0.0792891 + 0.703711i
\(933\) −3.29857 1.15422i −0.107990 0.0377875i
\(934\) 4.99869 + 2.40724i 0.163562 + 0.0787674i
\(935\) 0 0
\(936\) 6.22821 3.91345i 0.203576 0.127915i
\(937\) −3.38468 5.38668i −0.110573 0.175975i 0.786854 0.617139i \(-0.211709\pi\)
−0.897426 + 0.441164i \(0.854566\pi\)
\(938\) −15.3530 + 19.2521i −0.501293 + 0.628602i
\(939\) 8.89342 14.1538i 0.290226 0.461892i
\(940\) 0 0
\(941\) 43.5932 9.94986i 1.42110 0.324356i 0.558188 0.829715i \(-0.311497\pi\)
0.862910 + 0.505358i \(0.168640\pi\)
\(942\) 26.6421 + 12.8302i 0.868048 + 0.418030i
\(943\) 8.84657 + 4.26028i 0.288084 + 0.138734i
\(944\) 7.48330 1.70801i 0.243561 0.0555911i
\(945\) 0 0
\(946\) −1.24770 + 1.98571i −0.0405663 + 0.0645610i
\(947\) −12.6098 + 15.8121i −0.409762 + 0.513825i −0.943296 0.331954i \(-0.892292\pi\)
0.533534 + 0.845779i \(0.320864\pi\)
\(948\) −1.58362 2.52032i −0.0514336 0.0818561i
\(949\) −15.5004 + 9.73958i −0.503166 + 0.316160i
\(950\) 0 0
\(951\) 31.4258 + 15.1339i 1.01905 + 0.490749i
\(952\) −67.9828 23.7882i −2.20333 0.770980i
\(953\) 4.17513 + 37.0553i 0.135246 + 1.20034i 0.859621 + 0.510933i \(0.170700\pi\)
−0.724375 + 0.689406i \(0.757872\pi\)
\(954\) −4.16807 0.469629i −0.134946 0.0152048i
\(955\) 0 0
\(956\) 12.8748i 0.416402i
\(957\) 0.302506 + 2.78651i 0.00977862 + 0.0900752i
\(958\) 6.01393 6.01393i 0.194301 0.194301i
\(959\) 18.4648 + 6.46113i 0.596261 + 0.208641i
\(960\) 0 0
\(961\) 20.5555 + 16.3925i 0.663081 + 0.528790i
\(962\) 10.6773 30.5141i 0.344251 0.983813i
\(963\) −1.61754 4.62267i −0.0521245 0.148963i
\(964\) −5.66098 + 4.51448i −0.182328 + 0.145402i
\(965\) 0 0
\(966\) 20.2847 + 4.62984i 0.652648 + 0.148963i
\(967\) −29.4946 23.5211i −0.948482 0.756389i 0.0214491 0.999770i \(-0.493172\pi\)
−0.969931 + 0.243381i \(0.921743\pi\)
\(968\) 32.0604 7.31757i 1.03046 0.235196i
\(969\) −44.7382 + 44.7382i −1.43720 + 1.43720i
\(970\) 0 0
\(971\) −37.0487 + 12.9639i −1.18895 + 0.416031i −0.851016 0.525139i \(-0.824013\pi\)
−0.337933 + 0.941170i \(0.609728\pi\)
\(972\) 2.39132 4.96563i 0.0767017 0.159273i
\(973\) 50.9867 + 32.0371i 1.63456 + 1.02706i
\(974\) −13.8666 13.8666i −0.444313 0.444313i
\(975\) 0 0
\(976\) 0.918429 + 8.15128i 0.0293982 + 0.260916i
\(977\) −16.5196 + 10.3799i −0.528508 + 0.332083i −0.769712 0.638391i \(-0.779600\pi\)
0.241205 + 0.970474i \(0.422457\pi\)
\(978\) 3.06422 + 0.699388i 0.0979829 + 0.0223640i
\(979\) −2.13933 2.68264i −0.0683734 0.0857375i
\(980\) 0 0
\(981\) −2.84922 + 1.37211i −0.0909686 + 0.0438081i
\(982\) 10.1364 1.14210i 0.323465 0.0364458i
\(983\) −10.5042 13.1719i −0.335033 0.420118i 0.585568 0.810624i \(-0.300872\pi\)
−0.920601 + 0.390505i \(0.872300\pi\)
\(984\) −3.76574 + 10.7619i −0.120048 + 0.343076i
\(985\) 0 0
\(986\) −17.5660 36.8584i −0.559414 1.17381i
\(987\) 34.4746 + 34.4746i 1.09734 + 1.09734i
\(988\) 9.81577 + 20.3827i 0.312281 + 0.648459i
\(989\) 3.13135 27.7915i 0.0995710 0.883717i
\(990\) 0 0
\(991\) −1.37219 2.84939i −0.0435892 0.0905139i 0.878037 0.478593i \(-0.158853\pi\)
−0.921626 + 0.388079i \(0.873139\pi\)
\(992\) −9.92033 + 3.47128i −0.314971 + 0.110213i
\(993\) −19.2616 2.17026i −0.611249 0.0688713i
\(994\) −5.71505 9.09545i −0.181270 0.288490i
\(995\) 0 0
\(996\) 11.3226 1.27575i 0.358770 0.0404237i
\(997\) 3.17575 + 13.9139i 0.100577 + 0.440657i 0.999994 + 0.00356433i \(0.00113456\pi\)
−0.899417 + 0.437092i \(0.856008\pi\)
\(998\) −7.62497 −0.241364
\(999\) −9.04288 39.6195i −0.286104 1.25350i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.y.b.282.9 156
5.2 odd 4 145.2.t.a.108.9 yes 156
5.3 odd 4 725.2.bd.b.543.5 156
5.4 even 2 145.2.o.a.137.5 yes 156
29.18 odd 28 725.2.bd.b.482.5 156
145.18 even 28 inner 725.2.y.b.18.9 156
145.47 even 28 145.2.o.a.18.5 156
145.134 odd 28 145.2.t.a.47.9 yes 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.o.a.18.5 156 145.47 even 28
145.2.o.a.137.5 yes 156 5.4 even 2
145.2.t.a.47.9 yes 156 145.134 odd 28
145.2.t.a.108.9 yes 156 5.2 odd 4
725.2.y.b.18.9 156 145.18 even 28 inner
725.2.y.b.282.9 156 1.1 even 1 trivial
725.2.bd.b.482.5 156 29.18 odd 28
725.2.bd.b.543.5 156 5.3 odd 4