Properties

Label 725.2.bd.b.482.5
Level $725$
Weight $2$
Character 725.482
Analytic conductor $5.789$
Analytic rank $0$
Dimension $156$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(43,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.43"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(28)) chi = DirichletCharacter(H, H._module([21, 13])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.bd (of order \(28\), degree \(12\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [156] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(156\)
Relative dimension: \(13\) over \(\Q(\zeta_{28})\)
Twist minimal: no (minimal twist has level 145)
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 482.5
Character \(\chi\) \(=\) 725.482
Dual form 725.2.bd.b.543.5

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.443182 + 0.920277i) q^{2} +(0.973467 - 1.22069i) q^{3} +(0.596480 + 0.747962i) q^{4} +(0.691949 + 1.43685i) q^{6} +(3.19267 - 0.359728i) q^{7} +(-2.94432 + 0.672023i) q^{8} +(0.125119 + 0.548181i) q^{9} +(-0.282265 + 0.177359i) q^{11} +1.49368 q^{12} +(-3.66774 + 2.30460i) q^{13} +(-1.08389 + 3.09757i) q^{14} +(0.260662 - 1.14204i) q^{16} +7.42290i q^{17} +(-0.559929 - 0.127800i) q^{18} +(5.42486 + 0.611234i) q^{19} +(2.66885 - 4.24744i) q^{21} +(-0.0381244 - 0.338364i) q^{22} +(1.34116 - 3.83282i) q^{23} +(-2.04587 + 4.24830i) q^{24} +(-0.495389 - 4.39670i) q^{26} +(5.01106 + 2.41320i) q^{27} +(2.17343 + 2.17343i) q^{28} +(-0.0218780 - 5.38512i) q^{29} +(0.716676 + 2.04814i) q^{31} +(-3.78686 - 3.01992i) q^{32} +(-0.0582756 + 0.517210i) q^{33} +(-6.83113 - 3.28970i) q^{34} +(-0.335388 + 0.420563i) q^{36} +(-1.62587 - 7.12342i) q^{37} +(-2.96670 + 4.72148i) q^{38} +(-0.757232 + 6.72062i) q^{39} +(1.70982 - 1.70982i) q^{41} +(2.72604 + 4.33847i) q^{42} +(6.20526 - 2.98830i) q^{43} +(-0.301023 - 0.105332i) q^{44} +(2.93288 + 2.93288i) q^{46} +(-2.16272 + 9.47549i) q^{47} +(-1.14032 - 1.42992i) q^{48} +(3.23926 - 0.739339i) q^{49} +(9.06106 + 7.22595i) q^{51} +(-3.91149 - 1.36869i) q^{52} +(-6.89339 + 2.41210i) q^{53} +(-4.44163 + 3.54208i) q^{54} +(-9.15852 + 3.20470i) q^{56} +(6.02705 - 6.02705i) q^{57} +(4.96550 + 2.36646i) q^{58} -6.55260i q^{59} +(6.95855 - 0.784041i) q^{61} +(-2.20248 - 0.248159i) q^{62} +(0.596659 + 1.70515i) q^{63} +(6.56823 - 3.16309i) q^{64} +(-0.450150 - 0.282848i) q^{66} +(6.35336 + 3.99208i) q^{67} +(-5.55205 + 4.42761i) q^{68} +(-3.37311 - 5.36827i) q^{69} +(-3.19119 - 0.728367i) q^{71} +(-0.736780 - 1.52994i) q^{72} +(-1.83366 - 3.80763i) q^{73} +(7.27608 + 1.66072i) q^{74} +(2.77864 + 4.42218i) q^{76} +(-0.837377 + 0.667786i) q^{77} +(-5.84924 - 3.67532i) q^{78} +(1.68732 + 1.06021i) q^{79} +(6.30409 - 3.03589i) q^{81} +(0.815745 + 2.33127i) q^{82} +(7.58032 + 0.854097i) q^{83} +(4.76884 - 0.537319i) q^{84} +7.03492i q^{86} +(-6.59486 - 5.21553i) q^{87} +(0.711889 - 0.711889i) q^{88} +(-9.71523 + 3.39950i) q^{89} +(-10.8809 + 8.67721i) q^{91} +(3.66678 - 1.28306i) q^{92} +(3.19781 + 1.11896i) q^{93} +(-7.76160 - 6.18967i) q^{94} +(-7.37277 + 1.68279i) q^{96} +(-0.740965 - 0.929141i) q^{97} +(-0.755184 + 3.30868i) q^{98} +(-0.132541 - 0.132541i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 156 q + 14 q^{2} + 10 q^{3} + 22 q^{4} - 28 q^{6} + 10 q^{7} + 14 q^{8} - 10 q^{9} - 20 q^{11} + 20 q^{12} + 28 q^{13} - 4 q^{14} - 34 q^{16} - 84 q^{18} - 16 q^{21} + 22 q^{22} + 10 q^{23} - 56 q^{24}+ \cdots - 76 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.443182 + 0.920277i −0.313377 + 0.650734i −0.996856 0.0792362i \(-0.974752\pi\)
0.683479 + 0.729970i \(0.260466\pi\)
\(3\) 0.973467 1.22069i 0.562032 0.704765i −0.416900 0.908952i \(-0.636884\pi\)
0.978932 + 0.204187i \(0.0654550\pi\)
\(4\) 0.596480 + 0.747962i 0.298240 + 0.373981i
\(5\) 0 0
\(6\) 0.691949 + 1.43685i 0.282487 + 0.586591i
\(7\) 3.19267 0.359728i 1.20672 0.135964i 0.514395 0.857553i \(-0.328017\pi\)
0.692322 + 0.721589i \(0.256588\pi\)
\(8\) −2.94432 + 0.672023i −1.04098 + 0.237596i
\(9\) 0.125119 + 0.548181i 0.0417063 + 0.182727i
\(10\) 0 0
\(11\) −0.282265 + 0.177359i −0.0851060 + 0.0534756i −0.573913 0.818916i \(-0.694575\pi\)
0.488807 + 0.872392i \(0.337432\pi\)
\(12\) 1.49368 0.431189
\(13\) −3.66774 + 2.30460i −1.01725 + 0.639180i −0.933972 0.357347i \(-0.883681\pi\)
−0.0832770 + 0.996526i \(0.526539\pi\)
\(14\) −1.08389 + 3.09757i −0.289681 + 0.827860i
\(15\) 0 0
\(16\) 0.260662 1.14204i 0.0651655 0.285509i
\(17\) 7.42290i 1.80032i 0.435561 + 0.900159i \(0.356550\pi\)
−0.435561 + 0.900159i \(0.643450\pi\)
\(18\) −0.559929 0.127800i −0.131977 0.0301228i
\(19\) 5.42486 + 0.611234i 1.24455 + 0.140227i 0.709567 0.704638i \(-0.248890\pi\)
0.534980 + 0.844865i \(0.320319\pi\)
\(20\) 0 0
\(21\) 2.66885 4.24744i 0.582390 0.926868i
\(22\) −0.0381244 0.338364i −0.00812816 0.0721394i
\(23\) 1.34116 3.83282i 0.279652 0.799199i −0.715297 0.698820i \(-0.753709\pi\)
0.994949 0.100379i \(-0.0320055\pi\)
\(24\) −2.04587 + 4.24830i −0.417612 + 0.867180i
\(25\) 0 0
\(26\) −0.495389 4.39670i −0.0971537 0.862263i
\(27\) 5.01106 + 2.41320i 0.964379 + 0.464421i
\(28\) 2.17343 + 2.17343i 0.410739 + 0.410739i
\(29\) −0.0218780 5.38512i −0.00406265 0.999992i
\(30\) 0 0
\(31\) 0.716676 + 2.04814i 0.128719 + 0.367857i 0.990149 0.140019i \(-0.0447164\pi\)
−0.861430 + 0.507876i \(0.830431\pi\)
\(32\) −3.78686 3.01992i −0.669429 0.533852i
\(33\) −0.0582756 + 0.517210i −0.0101445 + 0.0900347i
\(34\) −6.83113 3.28970i −1.17153 0.564178i
\(35\) 0 0
\(36\) −0.335388 + 0.420563i −0.0558980 + 0.0700939i
\(37\) −1.62587 7.12342i −0.267292 1.17108i −0.913149 0.407625i \(-0.866357\pi\)
0.645857 0.763458i \(-0.276500\pi\)
\(38\) −2.96670 + 4.72148i −0.481263 + 0.765926i
\(39\) −0.757232 + 6.72062i −0.121254 + 1.07616i
\(40\) 0 0
\(41\) 1.70982 1.70982i 0.267029 0.267029i −0.560873 0.827902i \(-0.689534\pi\)
0.827902 + 0.560873i \(0.189534\pi\)
\(42\) 2.72604 + 4.33847i 0.420637 + 0.669440i
\(43\) 6.20526 2.98830i 0.946294 0.455711i 0.103908 0.994587i \(-0.466865\pi\)
0.842385 + 0.538876i \(0.181151\pi\)
\(44\) −0.301023 0.105332i −0.0453809 0.0158795i
\(45\) 0 0
\(46\) 2.93288 + 2.93288i 0.432430 + 0.432430i
\(47\) −2.16272 + 9.47549i −0.315465 + 1.38214i 0.529949 + 0.848030i \(0.322211\pi\)
−0.845414 + 0.534112i \(0.820646\pi\)
\(48\) −1.14032 1.42992i −0.164592 0.206391i
\(49\) 3.23926 0.739339i 0.462751 0.105620i
\(50\) 0 0
\(51\) 9.06106 + 7.22595i 1.26880 + 1.01184i
\(52\) −3.91149 1.36869i −0.542425 0.189803i
\(53\) −6.89339 + 2.41210i −0.946880 + 0.331328i −0.759167 0.650896i \(-0.774393\pi\)
−0.187713 + 0.982224i \(0.560108\pi\)
\(54\) −4.44163 + 3.54208i −0.604429 + 0.482016i
\(55\) 0 0
\(56\) −9.15852 + 3.20470i −1.22386 + 0.428247i
\(57\) 6.02705 6.02705i 0.798302 0.798302i
\(58\) 4.96550 + 2.36646i 0.652002 + 0.310731i
\(59\) 6.55260i 0.853075i −0.904470 0.426538i \(-0.859733\pi\)
0.904470 0.426538i \(-0.140267\pi\)
\(60\) 0 0
\(61\) 6.95855 0.784041i 0.890952 0.100386i 0.345392 0.938458i \(-0.387746\pi\)
0.545559 + 0.838072i \(0.316317\pi\)
\(62\) −2.20248 0.248159i −0.279715 0.0315163i
\(63\) 0.596659 + 1.70515i 0.0751720 + 0.214829i
\(64\) 6.56823 3.16309i 0.821029 0.395387i
\(65\) 0 0
\(66\) −0.450150 0.282848i −0.0554096 0.0348162i
\(67\) 6.35336 + 3.99208i 0.776186 + 0.487710i 0.860949 0.508691i \(-0.169870\pi\)
−0.0847630 + 0.996401i \(0.527013\pi\)
\(68\) −5.55205 + 4.42761i −0.673285 + 0.536927i
\(69\) −3.37311 5.36827i −0.406075 0.646264i
\(70\) 0 0
\(71\) −3.19119 0.728367i −0.378724 0.0864413i 0.0289212 0.999582i \(-0.490793\pi\)
−0.407645 + 0.913140i \(0.633650\pi\)
\(72\) −0.736780 1.52994i −0.0868304 0.180305i
\(73\) −1.83366 3.80763i −0.214614 0.445650i 0.765673 0.643230i \(-0.222406\pi\)
−0.980287 + 0.197580i \(0.936692\pi\)
\(74\) 7.27608 + 1.66072i 0.845827 + 0.193055i
\(75\) 0 0
\(76\) 2.77864 + 4.42218i 0.318732 + 0.507258i
\(77\) −0.837377 + 0.667786i −0.0954280 + 0.0761013i
\(78\) −5.84924 3.67532i −0.662296 0.416148i
\(79\) 1.68732 + 1.06021i 0.189838 + 0.119283i 0.623598 0.781746i \(-0.285670\pi\)
−0.433760 + 0.901029i \(0.642813\pi\)
\(80\) 0 0
\(81\) 6.30409 3.03589i 0.700454 0.337321i
\(82\) 0.815745 + 2.33127i 0.0900840 + 0.257445i
\(83\) 7.58032 + 0.854097i 0.832048 + 0.0937493i 0.517704 0.855560i \(-0.326787\pi\)
0.314344 + 0.949309i \(0.398215\pi\)
\(84\) 4.76884 0.537319i 0.520323 0.0586264i
\(85\) 0 0
\(86\) 7.03492i 0.758595i
\(87\) −6.59486 5.21553i −0.707043 0.559164i
\(88\) 0.711889 0.711889i 0.0758877 0.0758877i
\(89\) −9.71523 + 3.39950i −1.02981 + 0.360347i −0.791712 0.610894i \(-0.790810\pi\)
−0.238100 + 0.971241i \(0.576524\pi\)
\(90\) 0 0
\(91\) −10.8809 + 8.67721i −1.14063 + 0.909618i
\(92\) 3.66678 1.28306i 0.382289 0.133769i
\(93\) 3.19781 + 1.11896i 0.331597 + 0.116031i
\(94\) −7.76160 6.18967i −0.800547 0.638415i
\(95\) 0 0
\(96\) −7.37277 + 1.68279i −0.752480 + 0.171749i
\(97\) −0.740965 0.929141i −0.0752336 0.0943400i 0.742790 0.669524i \(-0.233502\pi\)
−0.818024 + 0.575184i \(0.804930\pi\)
\(98\) −0.755184 + 3.30868i −0.0762851 + 0.334227i
\(99\) −0.132541 0.132541i −0.0133209 0.0133209i
\(100\) 0 0
\(101\) −8.62410 3.01770i −0.858130 0.300273i −0.134882 0.990862i \(-0.543066\pi\)
−0.723247 + 0.690589i \(0.757351\pi\)
\(102\) −10.6656 + 5.13627i −1.05605 + 0.508567i
\(103\) −5.62139 8.94639i −0.553892 0.881514i 0.446017 0.895025i \(-0.352842\pi\)
−0.999909 + 0.0135104i \(0.995699\pi\)
\(104\) 9.25028 9.25028i 0.907065 0.907065i
\(105\) 0 0
\(106\) 0.835225 7.41283i 0.0811242 0.719997i
\(107\) 4.63405 7.37505i 0.447990 0.712973i −0.544028 0.839067i \(-0.683101\pi\)
0.992018 + 0.126094i \(0.0402443\pi\)
\(108\) 1.18402 + 5.18751i 0.113932 + 0.499168i
\(109\) −3.50666 + 4.39721i −0.335877 + 0.421177i −0.920875 0.389858i \(-0.872524\pi\)
0.584998 + 0.811035i \(0.301095\pi\)
\(110\) 0 0
\(111\) −10.2782 4.94973i −0.975566 0.469808i
\(112\) 0.421387 3.73991i 0.0398173 0.353388i
\(113\) 0.182774 + 0.145757i 0.0171939 + 0.0137117i 0.632049 0.774928i \(-0.282214\pi\)
−0.614855 + 0.788640i \(0.710786\pi\)
\(114\) 2.87547 + 8.21763i 0.269313 + 0.769652i
\(115\) 0 0
\(116\) 4.01482 3.22848i 0.372766 0.299757i
\(117\) −1.72224 1.72224i −0.159221 0.159221i
\(118\) 6.03020 + 2.90399i 0.555125 + 0.267334i
\(119\) 2.67022 + 23.6989i 0.244779 + 2.17247i
\(120\) 0 0
\(121\) −4.72450 + 9.81053i −0.429500 + 0.891867i
\(122\) −2.36237 + 6.75127i −0.213879 + 0.611231i
\(123\) −0.422705 3.75161i −0.0381140 0.338271i
\(124\) −1.10445 + 1.75772i −0.0991826 + 0.157848i
\(125\) 0 0
\(126\) −1.83364 0.206602i −0.163354 0.0184056i
\(127\) −5.26685 1.20212i −0.467358 0.106671i −0.0176444 0.999844i \(-0.505617\pi\)
−0.449713 + 0.893173i \(0.648474\pi\)
\(128\) 2.24073i 0.198055i
\(129\) 2.39284 10.4837i 0.210678 0.923039i
\(130\) 0 0
\(131\) 2.90820 8.31115i 0.254091 0.726149i −0.744214 0.667941i \(-0.767176\pi\)
0.998304 0.0582077i \(-0.0185386\pi\)
\(132\) −0.421614 + 0.264918i −0.0366968 + 0.0230581i
\(133\) 17.5397 1.52088
\(134\) −6.48951 + 4.07763i −0.560609 + 0.352254i
\(135\) 0 0
\(136\) −4.98836 21.8554i −0.427748 1.87409i
\(137\) −5.93617 + 1.35489i −0.507161 + 0.115756i −0.468443 0.883494i \(-0.655185\pi\)
−0.0387184 + 0.999250i \(0.512328\pi\)
\(138\) 6.43520 0.725073i 0.547801 0.0617223i
\(139\) −8.13195 16.8862i −0.689743 1.43227i −0.891588 0.452848i \(-0.850408\pi\)
0.201845 0.979418i \(-0.435306\pi\)
\(140\) 0 0
\(141\) 9.46129 + 11.8641i 0.796784 + 0.999136i
\(142\) 2.08458 2.61398i 0.174934 0.219360i
\(143\) 0.626534 1.30101i 0.0523934 0.108796i
\(144\) 0.658656 0.0548880
\(145\) 0 0
\(146\) 4.31672 0.357255
\(147\) 2.25081 4.67385i 0.185643 0.385493i
\(148\) 4.35825 5.46507i 0.358246 0.449226i
\(149\) −12.0345 15.0908i −0.985904 1.23628i −0.971659 0.236386i \(-0.924037\pi\)
−0.0142448 0.999899i \(-0.504534\pi\)
\(150\) 0 0
\(151\) −7.58945 15.7597i −0.617621 1.28250i −0.941694 0.336471i \(-0.890767\pi\)
0.324073 0.946032i \(-0.394948\pi\)
\(152\) −16.3833 + 1.84595i −1.32886 + 0.149727i
\(153\) −4.06909 + 0.928744i −0.328967 + 0.0750845i
\(154\) −0.243438 1.06657i −0.0196168 0.0859467i
\(155\) 0 0
\(156\) −5.47845 + 3.44234i −0.438627 + 0.275607i
\(157\) 18.5421 1.47982 0.739910 0.672706i \(-0.234868\pi\)
0.739910 + 0.672706i \(0.234868\pi\)
\(158\) −1.72348 + 1.08293i −0.137112 + 0.0861534i
\(159\) −3.76606 + 10.7628i −0.298668 + 0.853545i
\(160\) 0 0
\(161\) 2.90312 12.7194i 0.228798 1.00243i
\(162\) 7.14696i 0.561518i
\(163\) −1.92140 0.438548i −0.150496 0.0343497i 0.146609 0.989195i \(-0.453164\pi\)
−0.297105 + 0.954845i \(0.596021\pi\)
\(164\) 2.29875 + 0.259007i 0.179502 + 0.0202250i
\(165\) 0 0
\(166\) −4.14547 + 6.59747i −0.321751 + 0.512063i
\(167\) −1.08881 9.66345i −0.0842546 0.747780i −0.962817 0.270153i \(-0.912926\pi\)
0.878563 0.477627i \(-0.158503\pi\)
\(168\) −5.00357 + 14.2994i −0.386034 + 1.10322i
\(169\) 2.50069 5.19273i 0.192361 0.399441i
\(170\) 0 0
\(171\) 0.343684 + 3.05028i 0.0262822 + 0.233261i
\(172\) 5.93645 + 2.85884i 0.452650 + 0.217985i
\(173\) −0.563496 0.563496i −0.0428418 0.0428418i 0.685361 0.728203i \(-0.259644\pi\)
−0.728203 + 0.685361i \(0.759644\pi\)
\(174\) 7.72246 3.75767i 0.585438 0.284868i
\(175\) 0 0
\(176\) 0.128974 + 0.368587i 0.00972179 + 0.0277833i
\(177\) −7.99868 6.37874i −0.601218 0.479455i
\(178\) 1.17713 10.4473i 0.0882295 0.783058i
\(179\) 1.04193 + 0.501769i 0.0778778 + 0.0375040i 0.472417 0.881375i \(-0.343382\pi\)
−0.394539 + 0.918879i \(0.629096\pi\)
\(180\) 0 0
\(181\) −8.53309 + 10.7002i −0.634260 + 0.795337i −0.990272 0.139145i \(-0.955565\pi\)
0.356012 + 0.934481i \(0.384136\pi\)
\(182\) −3.16323 13.8590i −0.234474 1.02730i
\(183\) 5.81685 9.25747i 0.429994 0.684332i
\(184\) −1.37307 + 12.1864i −0.101224 + 0.898391i
\(185\) 0 0
\(186\) −2.44696 + 2.44696i −0.179420 + 0.179420i
\(187\) −1.31652 2.09522i −0.0962731 0.153218i
\(188\) −8.37732 + 4.03431i −0.610979 + 0.294232i
\(189\) 16.8668 + 5.90194i 1.22688 + 0.429303i
\(190\) 0 0
\(191\) 10.1739 + 10.1739i 0.736156 + 0.736156i 0.971832 0.235676i \(-0.0757304\pi\)
−0.235676 + 0.971832i \(0.575730\pi\)
\(192\) 2.53280 11.0969i 0.182789 0.800853i
\(193\) −0.132503 0.166154i −0.00953779 0.0119600i 0.777040 0.629452i \(-0.216720\pi\)
−0.786578 + 0.617492i \(0.788149\pi\)
\(194\) 1.18345 0.270115i 0.0849667 0.0193931i
\(195\) 0 0
\(196\) 2.48515 + 1.98184i 0.177511 + 0.141560i
\(197\) 1.29341 + 0.452582i 0.0921514 + 0.0322452i 0.375961 0.926635i \(-0.377313\pi\)
−0.283810 + 0.958881i \(0.591598\pi\)
\(198\) 0.180715 0.0632348i 0.0128428 0.00449390i
\(199\) 16.6181 13.2525i 1.17802 0.939443i 0.179011 0.983847i \(-0.442710\pi\)
0.999014 + 0.0444042i \(0.0141389\pi\)
\(200\) 0 0
\(201\) 11.0579 3.86932i 0.779962 0.272921i
\(202\) 6.59917 6.59917i 0.464316 0.464316i
\(203\) −2.00703 17.1851i −0.140866 1.20615i
\(204\) 11.0875i 0.776278i
\(205\) 0 0
\(206\) 10.7245 1.20836i 0.747209 0.0841902i
\(207\) 2.26889 + 0.255642i 0.157699 + 0.0177684i
\(208\) 1.67589 + 4.78941i 0.116202 + 0.332086i
\(209\) −1.63965 + 0.789615i −0.113417 + 0.0546188i
\(210\) 0 0
\(211\) 0.0410704 + 0.0258062i 0.00282740 + 0.00177657i 0.533445 0.845835i \(-0.320897\pi\)
−0.530618 + 0.847611i \(0.678040\pi\)
\(212\) −5.91593 3.71722i −0.406308 0.255300i
\(213\) −3.99562 + 3.18640i −0.273776 + 0.218329i
\(214\) 4.73336 + 7.53310i 0.323566 + 0.514952i
\(215\) 0 0
\(216\) −16.3759 3.73770i −1.11424 0.254318i
\(217\) 3.02488 + 6.28124i 0.205343 + 0.426398i
\(218\) −2.49257 5.17587i −0.168818 0.350554i
\(219\) −6.43295 1.46828i −0.434698 0.0992170i
\(220\) 0 0
\(221\) −17.1068 27.2253i −1.15073 1.83137i
\(222\) 9.11025 7.26518i 0.611440 0.487607i
\(223\) −10.4384 6.55891i −0.699010 0.439217i 0.135088 0.990834i \(-0.456868\pi\)
−0.834098 + 0.551616i \(0.814011\pi\)
\(224\) −13.1766 8.27938i −0.880396 0.553189i
\(225\) 0 0
\(226\) −0.215139 + 0.103606i −0.0143108 + 0.00689174i
\(227\) −3.37134 9.63473i −0.223764 0.639480i −0.999960 0.00898794i \(-0.997139\pi\)
0.776196 0.630492i \(-0.217147\pi\)
\(228\) 8.10302 + 0.912991i 0.536635 + 0.0604643i
\(229\) 20.6689 2.32882i 1.36584 0.153893i 0.601584 0.798810i \(-0.294537\pi\)
0.764253 + 0.644917i \(0.223108\pi\)
\(230\) 0 0
\(231\) 1.67225i 0.110026i
\(232\) 3.68334 + 15.8408i 0.241823 + 1.04000i
\(233\) 15.9794 15.9794i 1.04684 1.04684i 0.0479964 0.998848i \(-0.484716\pi\)
0.998848 0.0479964i \(-0.0152836\pi\)
\(234\) 2.34820 0.821672i 0.153507 0.0537144i
\(235\) 0 0
\(236\) 4.90109 3.90849i 0.319034 0.254421i
\(237\) 2.93674 1.02761i 0.190761 0.0667503i
\(238\) −22.9929 8.04558i −1.49041 0.521517i
\(239\) −10.5217 8.39081i −0.680595 0.542757i 0.221034 0.975266i \(-0.429057\pi\)
−0.901629 + 0.432509i \(0.857628\pi\)
\(240\) 0 0
\(241\) 7.37877 1.68416i 0.475309 0.108486i 0.0218459 0.999761i \(-0.493046\pi\)
0.453463 + 0.891275i \(0.350189\pi\)
\(242\) −6.93459 8.69571i −0.445773 0.558981i
\(243\) −1.28194 + 5.61656i −0.0822368 + 0.360303i
\(244\) 4.73707 + 4.73707i 0.303260 + 0.303260i
\(245\) 0 0
\(246\) 3.63985 + 1.27364i 0.232069 + 0.0812043i
\(247\) −21.3056 + 10.2602i −1.35564 + 0.652844i
\(248\) −3.48652 5.54877i −0.221395 0.352347i
\(249\) 8.42178 8.42178i 0.533709 0.533709i
\(250\) 0 0
\(251\) −2.50604 + 22.2418i −0.158180 + 1.40389i 0.624287 + 0.781195i \(0.285390\pi\)
−0.782467 + 0.622692i \(0.786039\pi\)
\(252\) −0.919496 + 1.46337i −0.0579228 + 0.0921836i
\(253\) 0.301221 + 1.31974i 0.0189376 + 0.0829712i
\(254\) 3.44046 4.31420i 0.215874 0.270697i
\(255\) 0 0
\(256\) 15.1986 + 7.31924i 0.949910 + 0.457453i
\(257\) 1.87619 16.6517i 0.117034 1.03870i −0.788677 0.614807i \(-0.789234\pi\)
0.905711 0.423895i \(-0.139338\pi\)
\(258\) 8.58745 + 6.84827i 0.534632 + 0.426354i
\(259\) −7.75338 22.1579i −0.481771 1.37682i
\(260\) 0 0
\(261\) 2.94928 0.685773i 0.182556 0.0424483i
\(262\) 6.35970 + 6.35970i 0.392904 + 0.392904i
\(263\) −8.21450 3.95590i −0.506528 0.243931i 0.163125 0.986605i \(-0.447843\pi\)
−0.669653 + 0.742674i \(0.733557\pi\)
\(264\) −0.175995 1.56200i −0.0108317 0.0961343i
\(265\) 0 0
\(266\) −7.77327 + 16.1414i −0.476610 + 0.989690i
\(267\) −5.30772 + 15.1686i −0.324827 + 0.928302i
\(268\) 0.803726 + 7.13327i 0.0490954 + 0.435734i
\(269\) 2.83114 4.50574i 0.172618 0.274720i −0.749199 0.662344i \(-0.769562\pi\)
0.921817 + 0.387625i \(0.126704\pi\)
\(270\) 0 0
\(271\) 1.33774 + 0.150727i 0.0812619 + 0.00915602i 0.152502 0.988303i \(-0.451267\pi\)
−0.0712399 + 0.997459i \(0.522696\pi\)
\(272\) 8.47722 + 1.93487i 0.514007 + 0.117319i
\(273\) 21.7291i 1.31511i
\(274\) 1.38393 6.06338i 0.0836061 0.366302i
\(275\) 0 0
\(276\) 2.00327 5.72503i 0.120583 0.344606i
\(277\) −18.9088 + 11.8812i −1.13612 + 0.713871i −0.962591 0.270958i \(-0.912660\pi\)
−0.173528 + 0.984829i \(0.555517\pi\)
\(278\) 19.1439 1.14817
\(279\) −1.03308 + 0.649129i −0.0618491 + 0.0388624i
\(280\) 0 0
\(281\) −1.16627 5.10977i −0.0695739 0.304823i 0.928154 0.372197i \(-0.121395\pi\)
−0.997728 + 0.0673733i \(0.978538\pi\)
\(282\) −15.1113 + 3.44906i −0.899866 + 0.205389i
\(283\) 25.7594 2.90239i 1.53124 0.172529i 0.694244 0.719739i \(-0.255739\pi\)
0.836995 + 0.547210i \(0.184310\pi\)
\(284\) −1.35869 2.82134i −0.0806232 0.167416i
\(285\) 0 0
\(286\) 0.919622 + 1.15317i 0.0543784 + 0.0681884i
\(287\) 4.84382 6.07395i 0.285921 0.358534i
\(288\) 1.18166 2.45373i 0.0696298 0.144588i
\(289\) −38.0995 −2.24115
\(290\) 0 0
\(291\) −1.85550 −0.108771
\(292\) 1.75422 3.64269i 0.102658 0.213172i
\(293\) −14.2954 + 17.9259i −0.835149 + 1.04724i 0.163012 + 0.986624i \(0.447879\pi\)
−0.998161 + 0.0606195i \(0.980692\pi\)
\(294\) 3.30372 + 4.14273i 0.192677 + 0.241609i
\(295\) 0 0
\(296\) 9.57420 + 19.8810i 0.556489 + 1.15556i
\(297\) −1.84245 + 0.207594i −0.106910 + 0.0120458i
\(298\) 19.2212 4.38711i 1.11345 0.254138i
\(299\) 3.91407 + 17.1487i 0.226356 + 0.991732i
\(300\) 0 0
\(301\) 18.7364 11.7729i 1.07995 0.678576i
\(302\) 17.8668 1.02812
\(303\) −12.0790 + 7.58971i −0.693918 + 0.436017i
\(304\) 2.11211 6.03605i 0.121138 0.346191i
\(305\) 0 0
\(306\) 0.948648 4.15630i 0.0542306 0.237600i
\(307\) 31.7559i 1.81240i 0.422844 + 0.906202i \(0.361032\pi\)
−0.422844 + 0.906202i \(0.638968\pi\)
\(308\) −0.998958 0.228006i −0.0569209 0.0129918i
\(309\) −16.3930 1.84705i −0.932566 0.105075i
\(310\) 0 0
\(311\) −1.19084 + 1.89521i −0.0675263 + 0.107468i −0.878781 0.477226i \(-0.841642\pi\)
0.811254 + 0.584693i \(0.198785\pi\)
\(312\) −2.28687 20.2966i −0.129469 1.14907i
\(313\) 3.53606 10.1055i 0.199870 0.571196i −0.799704 0.600395i \(-0.795010\pi\)
0.999574 + 0.0291992i \(0.00929571\pi\)
\(314\) −8.21752 + 17.0639i −0.463741 + 0.962969i
\(315\) 0 0
\(316\) 0.213453 + 1.89444i 0.0120076 + 0.106571i
\(317\) 20.1277 + 9.69299i 1.13048 + 0.544413i 0.903116 0.429396i \(-0.141274\pi\)
0.227368 + 0.973809i \(0.426988\pi\)
\(318\) −8.23570 8.23570i −0.461835 0.461835i
\(319\) 0.961273 + 1.51615i 0.0538209 + 0.0848880i
\(320\) 0 0
\(321\) −4.49155 12.8361i −0.250694 0.716441i
\(322\) 10.4188 + 8.30869i 0.580615 + 0.463025i
\(323\) −4.53713 + 40.2682i −0.252453 + 2.24058i
\(324\) 6.03099 + 2.90437i 0.335055 + 0.161354i
\(325\) 0 0
\(326\) 1.25512 1.57387i 0.0695146 0.0871685i
\(327\) 1.95401 + 8.56109i 0.108057 + 0.473429i
\(328\) −3.88522 + 6.18329i −0.214525 + 0.341415i
\(329\) −3.49625 + 31.0301i −0.192755 + 1.71075i
\(330\) 0 0
\(331\) −8.77860 + 8.77860i −0.482516 + 0.482516i −0.905934 0.423418i \(-0.860830\pi\)
0.423418 + 0.905934i \(0.360830\pi\)
\(332\) 3.88268 + 6.17924i 0.213090 + 0.339130i
\(333\) 3.70150 1.78255i 0.202841 0.0976830i
\(334\) 9.37559 + 3.28066i 0.513009 + 0.179510i
\(335\) 0 0
\(336\) −4.15506 4.15506i −0.226677 0.226677i
\(337\) 0.316965 1.38871i 0.0172662 0.0756481i −0.965561 0.260177i \(-0.916219\pi\)
0.982827 + 0.184529i \(0.0590761\pi\)
\(338\) 3.67049 + 4.60265i 0.199648 + 0.250351i
\(339\) 0.355849 0.0812201i 0.0193270 0.00441127i
\(340\) 0 0
\(341\) −0.565548 0.451009i −0.0306261 0.0244235i
\(342\) −2.95942 1.03555i −0.160027 0.0559959i
\(343\) −11.1521 + 3.90230i −0.602158 + 0.210704i
\(344\) −16.2621 + 12.9686i −0.876794 + 0.699220i
\(345\) 0 0
\(346\) 0.768304 0.268841i 0.0413043 0.0144530i
\(347\) −14.4583 + 14.4583i −0.776163 + 0.776163i −0.979176 0.203013i \(-0.934927\pi\)
0.203013 + 0.979176i \(0.434927\pi\)
\(348\) −0.0326789 8.04366i −0.00175177 0.431186i
\(349\) 28.1957i 1.50928i 0.656138 + 0.754641i \(0.272189\pi\)
−0.656138 + 0.754641i \(0.727811\pi\)
\(350\) 0 0
\(351\) −23.9407 + 2.69747i −1.27786 + 0.143980i
\(352\) 1.60451 + 0.180784i 0.0855204 + 0.00963584i
\(353\) 1.86690 + 5.33528i 0.0993648 + 0.283968i 0.982826 0.184537i \(-0.0590785\pi\)
−0.883461 + 0.468505i \(0.844793\pi\)
\(354\) 9.41508 4.53406i 0.500406 0.240983i
\(355\) 0 0
\(356\) −8.33764 5.23889i −0.441894 0.277660i
\(357\) 31.5284 + 19.8106i 1.66866 + 1.04849i
\(358\) −0.923533 + 0.736493i −0.0488103 + 0.0389249i
\(359\) −0.405361 0.645128i −0.0213941 0.0340486i 0.835856 0.548949i \(-0.184972\pi\)
−0.857250 + 0.514900i \(0.827829\pi\)
\(360\) 0 0
\(361\) 10.5318 + 2.40382i 0.554307 + 0.126517i
\(362\) −6.06540 12.5949i −0.318790 0.661975i
\(363\) 7.37646 + 15.3174i 0.387164 + 0.803954i
\(364\) −12.9804 2.96270i −0.680360 0.155288i
\(365\) 0 0
\(366\) 5.94151 + 9.45586i 0.310568 + 0.494266i
\(367\) 1.86997 1.49125i 0.0976119 0.0778429i −0.573468 0.819228i \(-0.694402\pi\)
0.671080 + 0.741385i \(0.265831\pi\)
\(368\) −4.02763 2.53073i −0.209955 0.131923i
\(369\) 1.15122 + 0.723359i 0.0599301 + 0.0376566i
\(370\) 0 0
\(371\) −21.1406 + 10.1808i −1.09757 + 0.528560i
\(372\) 1.07049 + 3.05928i 0.0555022 + 0.158616i
\(373\) −15.9897 1.80161i −0.827916 0.0932837i −0.312171 0.950026i \(-0.601056\pi\)
−0.515745 + 0.856742i \(0.672485\pi\)
\(374\) 2.51164 0.282994i 0.129874 0.0146333i
\(375\) 0 0
\(376\) 29.3523i 1.51373i
\(377\) 12.4908 + 19.7008i 0.643307 + 1.01464i
\(378\) −12.9065 + 12.9065i −0.663837 + 0.663837i
\(379\) −15.5819 + 5.45235i −0.800390 + 0.280069i −0.699318 0.714811i \(-0.746513\pi\)
−0.101072 + 0.994879i \(0.532227\pi\)
\(380\) 0 0
\(381\) −6.59453 + 5.25896i −0.337848 + 0.269425i
\(382\) −13.8717 + 4.85391i −0.709736 + 0.248347i
\(383\) 4.41190 + 1.54379i 0.225437 + 0.0788840i 0.440634 0.897687i \(-0.354754\pi\)
−0.215197 + 0.976571i \(0.569039\pi\)
\(384\) −2.73524 2.18128i −0.139582 0.111313i
\(385\) 0 0
\(386\) 0.211631 0.0483033i 0.0107717 0.00245857i
\(387\) 2.41452 + 3.02772i 0.122737 + 0.153907i
\(388\) 0.252991 1.10843i 0.0128437 0.0562719i
\(389\) 26.3154 + 26.3154i 1.33424 + 1.33424i 0.901533 + 0.432711i \(0.142443\pi\)
0.432711 + 0.901533i \(0.357557\pi\)
\(390\) 0 0
\(391\) 28.4507 + 9.95532i 1.43881 + 0.503462i
\(392\) −9.04057 + 4.35371i −0.456618 + 0.219895i
\(393\) −7.31430 11.6406i −0.368958 0.587193i
\(394\) −0.989716 + 0.989716i −0.0498612 + 0.0498612i
\(395\) 0 0
\(396\) 0.0200776 0.178194i 0.00100894 0.00895459i
\(397\) 16.0938 25.6132i 0.807726 1.28549i −0.147337 0.989086i \(-0.547070\pi\)
0.955063 0.296402i \(-0.0957869\pi\)
\(398\) 4.83111 + 21.1665i 0.242162 + 1.06098i
\(399\) 17.0743 21.4105i 0.854784 1.07186i
\(400\) 0 0
\(401\) −2.42926 1.16987i −0.121311 0.0584205i 0.372244 0.928135i \(-0.378589\pi\)
−0.493555 + 0.869715i \(0.664303\pi\)
\(402\) −1.33981 + 11.8911i −0.0668235 + 0.593075i
\(403\) −7.34872 5.86041i −0.366066 0.291928i
\(404\) −2.88697 8.25050i −0.143632 0.410478i
\(405\) 0 0
\(406\) 16.7045 + 5.76909i 0.829030 + 0.286315i
\(407\) 1.72233 + 1.72233i 0.0853726 + 0.0853726i
\(408\) −31.5347 15.1863i −1.56120 0.751834i
\(409\) −1.94353 17.2493i −0.0961013 0.852922i −0.945600 0.325332i \(-0.894524\pi\)
0.849499 0.527591i \(-0.176905\pi\)
\(410\) 0 0
\(411\) −4.12476 + 8.56516i −0.203460 + 0.422488i
\(412\) 3.33852 9.54093i 0.164477 0.470048i
\(413\) −2.35715 20.9203i −0.115988 1.02942i
\(414\) −1.24079 + 1.97471i −0.0609816 + 0.0970516i
\(415\) 0 0
\(416\) 20.8489 + 2.34911i 1.02220 + 0.115175i
\(417\) −28.5290 6.51155i −1.39707 0.318872i
\(418\) 1.85888i 0.0909207i
\(419\) 1.52289 6.67222i 0.0743981 0.325960i −0.924010 0.382369i \(-0.875108\pi\)
0.998408 + 0.0564098i \(0.0179653\pi\)
\(420\) 0 0
\(421\) 2.91469 8.32970i 0.142053 0.405965i −0.850773 0.525534i \(-0.823866\pi\)
0.992826 + 0.119569i \(0.0381513\pi\)
\(422\) −0.0419505 + 0.0263593i −0.00204212 + 0.00128315i
\(423\) −5.46488 −0.265712
\(424\) 18.6754 11.7345i 0.906957 0.569879i
\(425\) 0 0
\(426\) −1.16159 5.08924i −0.0562790 0.246574i
\(427\) 21.9343 5.00637i 1.06148 0.242275i
\(428\) 8.28037 0.932974i 0.400247 0.0450970i
\(429\) −0.978220 2.03130i −0.0472289 0.0980719i
\(430\) 0 0
\(431\) 10.0620 + 12.6174i 0.484671 + 0.607758i 0.962695 0.270589i \(-0.0872183\pi\)
−0.478024 + 0.878347i \(0.658647\pi\)
\(432\) 4.06215 5.09378i 0.195440 0.245075i
\(433\) −1.77627 + 3.68847i −0.0853622 + 0.177257i −0.939280 0.343151i \(-0.888506\pi\)
0.853918 + 0.520408i \(0.174220\pi\)
\(434\) −7.12105 −0.341822
\(435\) 0 0
\(436\) −5.38060 −0.257684
\(437\) 9.61837 19.9728i 0.460109 0.955426i
\(438\) 4.20219 5.26938i 0.200788 0.251781i
\(439\) −11.9256 14.9542i −0.569177 0.713725i 0.411048 0.911614i \(-0.365163\pi\)
−0.980224 + 0.197889i \(0.936592\pi\)
\(440\) 0 0
\(441\) 0.810583 + 1.68319i 0.0385992 + 0.0801521i
\(442\) 32.6362 3.67722i 1.55235 0.174908i
\(443\) −29.1934 + 6.66320i −1.38702 + 0.316578i −0.849908 0.526932i \(-0.823342\pi\)
−0.537113 + 0.843510i \(0.680485\pi\)
\(444\) −2.42854 10.6401i −0.115254 0.504959i
\(445\) 0 0
\(446\) 10.6621 6.69947i 0.504867 0.317229i
\(447\) −30.1363 −1.42540
\(448\) 19.8324 12.4615i 0.936991 0.588750i
\(449\) 0.137280 0.392324i 0.00647865 0.0185149i −0.940599 0.339521i \(-0.889735\pi\)
0.947077 + 0.321006i \(0.104021\pi\)
\(450\) 0 0
\(451\) −0.179370 + 0.785871i −0.00844621 + 0.0370052i
\(452\) 0.223649i 0.0105196i
\(453\) −26.6257 6.07715i −1.25099 0.285529i
\(454\) 10.3607 + 1.16738i 0.486254 + 0.0547876i
\(455\) 0 0
\(456\) −13.6953 + 21.7959i −0.641340 + 1.02069i
\(457\) 3.15663 + 28.0159i 0.147661 + 1.31053i 0.820887 + 0.571091i \(0.193480\pi\)
−0.673226 + 0.739437i \(0.735092\pi\)
\(458\) −7.01691 + 20.0532i −0.327879 + 0.937023i
\(459\) −17.9129 + 37.1966i −0.836105 + 1.73619i
\(460\) 0 0
\(461\) −1.94340 17.2482i −0.0905133 0.803328i −0.954174 0.299254i \(-0.903262\pi\)
0.863660 0.504074i \(-0.168166\pi\)
\(462\) −1.53893 0.741109i −0.0715975 0.0344795i
\(463\) −10.1426 10.1426i −0.471365 0.471365i 0.430991 0.902356i \(-0.358164\pi\)
−0.902356 + 0.430991i \(0.858164\pi\)
\(464\) −6.15570 1.37871i −0.285771 0.0640051i
\(465\) 0 0
\(466\) 7.62368 + 21.7872i 0.353160 + 1.00927i
\(467\) 4.24669 + 3.38662i 0.196513 + 0.156714i 0.716803 0.697276i \(-0.245605\pi\)
−0.520290 + 0.853990i \(0.674176\pi\)
\(468\) 0.260889 2.31545i 0.0120596 0.107032i
\(469\) 21.7202 + 10.4599i 1.00295 + 0.482994i
\(470\) 0 0
\(471\) 18.0501 22.6341i 0.831705 1.04293i
\(472\) 4.40349 + 19.2930i 0.202687 + 0.888031i
\(473\) −1.22153 + 1.94405i −0.0561658 + 0.0893874i
\(474\) −0.355824 + 3.15803i −0.0163436 + 0.145053i
\(475\) 0 0
\(476\) −16.1331 + 16.1331i −0.739461 + 0.739461i
\(477\) −2.18476 3.47703i −0.100033 0.159202i
\(478\) 12.3849 5.96427i 0.566473 0.272799i
\(479\) −7.85928 2.75008i −0.359100 0.125654i 0.144698 0.989476i \(-0.453779\pi\)
−0.503798 + 0.863821i \(0.668064\pi\)
\(480\) 0 0
\(481\) 22.3799 + 22.3799i 1.02044 + 1.02044i
\(482\) −1.72025 + 7.53690i −0.0783552 + 0.343297i
\(483\) −12.7003 15.9257i −0.577886 0.724646i
\(484\) −10.1560 + 2.31804i −0.461635 + 0.105365i
\(485\) 0 0
\(486\) −4.60066 3.66890i −0.208690 0.166425i
\(487\) −18.1215 6.34097i −0.821161 0.287337i −0.113186 0.993574i \(-0.536106\pi\)
−0.707975 + 0.706237i \(0.750391\pi\)
\(488\) −19.9613 + 6.98478i −0.903608 + 0.316186i
\(489\) −2.40576 + 1.91853i −0.108792 + 0.0867588i
\(490\) 0 0
\(491\) 9.42610 3.29834i 0.425394 0.148852i −0.109087 0.994032i \(-0.534793\pi\)
0.534481 + 0.845180i \(0.320507\pi\)
\(492\) 2.55393 2.55393i 0.115140 0.115140i
\(493\) 39.9732 0.162399i 1.80030 0.00731406i
\(494\) 24.1542i 1.08675i
\(495\) 0 0
\(496\) 2.52586 0.284596i 0.113415 0.0127787i
\(497\) −10.4504 1.17748i −0.468766 0.0528172i
\(498\) 4.01799 + 11.4828i 0.180050 + 0.514555i
\(499\) 6.72572 3.23894i 0.301085 0.144995i −0.277242 0.960800i \(-0.589420\pi\)
0.578326 + 0.815805i \(0.303706\pi\)
\(500\) 0 0
\(501\) −12.8560 8.07795i −0.574363 0.360896i
\(502\) −19.3579 12.1634i −0.863987 0.542879i
\(503\) 29.7509 23.7256i 1.32653 1.05787i 0.333163 0.942869i \(-0.391884\pi\)
0.993365 0.115001i \(-0.0366873\pi\)
\(504\) −2.90266 4.61956i −0.129295 0.205771i
\(505\) 0 0
\(506\) −1.34802 0.307677i −0.0599268 0.0136779i
\(507\) −3.90438 8.10752i −0.173399 0.360068i
\(508\) −2.24243 4.65645i −0.0994917 0.206597i
\(509\) 17.5133 + 3.99729i 0.776263 + 0.177177i 0.592258 0.805748i \(-0.298237\pi\)
0.184005 + 0.982925i \(0.441094\pi\)
\(510\) 0 0
\(511\) −7.22399 11.4969i −0.319570 0.508593i
\(512\) −9.96771 + 7.94898i −0.440515 + 0.351299i
\(513\) 25.7093 + 16.1542i 1.13509 + 0.713225i
\(514\) 14.4927 + 9.10634i 0.639244 + 0.401663i
\(515\) 0 0
\(516\) 9.26870 4.46357i 0.408032 0.196498i
\(517\) −1.07010 3.05817i −0.0470630 0.134498i
\(518\) 23.8275 + 2.68472i 1.04692 + 0.117960i
\(519\) −1.23640 + 0.139309i −0.0542719 + 0.00611498i
\(520\) 0 0
\(521\) 15.7501i 0.690024i 0.938598 + 0.345012i \(0.112125\pi\)
−0.938598 + 0.345012i \(0.887875\pi\)
\(522\) −0.675969 + 3.01808i −0.0295864 + 0.132098i
\(523\) 8.21538 8.21538i 0.359233 0.359233i −0.504297 0.863530i \(-0.668248\pi\)
0.863530 + 0.504297i \(0.168248\pi\)
\(524\) 7.95111 2.78221i 0.347346 0.121542i
\(525\) 0 0
\(526\) 7.28104 5.80644i 0.317468 0.253173i
\(527\) −15.2032 + 5.31982i −0.662260 + 0.231735i
\(528\) 0.575482 + 0.201370i 0.0250446 + 0.00876350i
\(529\) 5.09030 + 4.05938i 0.221318 + 0.176495i
\(530\) 0 0
\(531\) 3.59201 0.819853i 0.155880 0.0355786i
\(532\) 10.4621 + 13.1190i 0.453588 + 0.568781i
\(533\) −2.33073 + 10.2116i −0.100955 + 0.442314i
\(534\) −11.6070 11.6070i −0.502285 0.502285i
\(535\) 0 0
\(536\) −21.3891 7.48437i −0.923869 0.323276i
\(537\) 1.62679 0.783422i 0.0702013 0.0338072i
\(538\) 2.89181 + 4.60230i 0.124675 + 0.198419i
\(539\) −0.783199 + 0.783199i −0.0337348 + 0.0337348i
\(540\) 0 0
\(541\) 3.67537 32.6198i 0.158016 1.40243i −0.625093 0.780551i \(-0.714939\pi\)
0.783109 0.621884i \(-0.213633\pi\)
\(542\) −0.731573 + 1.16429i −0.0314238 + 0.0500106i
\(543\) 4.75488 + 20.8325i 0.204052 + 0.894009i
\(544\) 22.4166 28.1095i 0.961103 1.20518i
\(545\) 0 0
\(546\) −19.9968 9.62997i −0.855786 0.412125i
\(547\) 1.12606 9.99406i 0.0481468 0.427315i −0.946398 0.323003i \(-0.895307\pi\)
0.994545 0.104312i \(-0.0332639\pi\)
\(548\) −4.55421 3.63186i −0.194546 0.155145i
\(549\) 1.30044 + 3.71645i 0.0555015 + 0.158614i
\(550\) 0 0
\(551\) 3.17289 29.2269i 0.135169 1.24511i
\(552\) 13.5391 + 13.5391i 0.576264 + 0.576264i
\(553\) 5.76843 + 2.77793i 0.245299 + 0.118130i
\(554\) −2.55394 22.6669i −0.108507 0.963023i
\(555\) 0 0
\(556\) 7.77967 16.1547i 0.329931 0.685110i
\(557\) 12.4775 35.6586i 0.528688 1.51090i −0.301525 0.953458i \(-0.597496\pi\)
0.830213 0.557446i \(-0.188219\pi\)
\(558\) −0.139535 1.23841i −0.00590698 0.0524259i
\(559\) −15.8725 + 25.2609i −0.671335 + 1.06842i
\(560\) 0 0
\(561\) −3.83920 0.432574i −0.162091 0.0182633i
\(562\) 5.21927 + 1.19127i 0.220162 + 0.0502505i
\(563\) 0.0469315i 0.00197793i −1.00000 0.000988963i \(-0.999685\pi\)
1.00000 0.000988963i \(-0.000314797\pi\)
\(564\) −3.23042 + 14.1534i −0.136025 + 0.595965i
\(565\) 0 0
\(566\) −8.74512 + 24.9921i −0.367585 + 1.05050i
\(567\) 19.0348 11.9603i 0.799386 0.502287i
\(568\) 9.88536 0.414781
\(569\) −24.4344 + 15.3531i −1.02434 + 0.643637i −0.935835 0.352438i \(-0.885353\pi\)
−0.0885075 + 0.996076i \(0.528210\pi\)
\(570\) 0 0
\(571\) 9.57895 + 41.9681i 0.400867 + 1.75631i 0.623903 + 0.781502i \(0.285546\pi\)
−0.223036 + 0.974810i \(0.571597\pi\)
\(572\) 1.34682 0.307403i 0.0563135 0.0128532i
\(573\) 22.3231 2.51521i 0.932560 0.105074i
\(574\) 3.44303 + 7.14952i 0.143709 + 0.298415i
\(575\) 0 0
\(576\) 2.55576 + 3.20482i 0.106490 + 0.133534i
\(577\) 17.0518 21.3823i 0.709875 0.890155i −0.287843 0.957678i \(-0.592938\pi\)
0.997718 + 0.0675225i \(0.0215094\pi\)
\(578\) 16.8850 35.0621i 0.702324 1.45839i
\(579\) −0.331810 −0.0137895
\(580\) 0 0
\(581\) 24.5087 1.01679
\(582\) 0.822324 1.70757i 0.0340864 0.0707812i
\(583\) 1.51795 1.90345i 0.0628672 0.0788329i
\(584\) 7.95770 + 9.97865i 0.329292 + 0.412919i
\(585\) 0 0
\(586\) −10.1613 21.1002i −0.419761 0.871642i
\(587\) 2.19250 0.247035i 0.0904941 0.0101962i −0.0666013 0.997780i \(-0.521216\pi\)
0.157095 + 0.987583i \(0.449787\pi\)
\(588\) 4.83842 1.10434i 0.199533 0.0455422i
\(589\) 2.63597 + 11.5489i 0.108613 + 0.475866i
\(590\) 0 0
\(591\) 1.81155 1.13827i 0.0745173 0.0468223i
\(592\) −8.55900 −0.351773
\(593\) −1.33905 + 0.841384i −0.0549884 + 0.0345515i −0.559246 0.829002i \(-0.688909\pi\)
0.504257 + 0.863553i \(0.331766\pi\)
\(594\) 0.625496 1.78756i 0.0256644 0.0733446i
\(595\) 0 0
\(596\) 4.10900 18.0027i 0.168311 0.737419i
\(597\) 33.1864i 1.35823i
\(598\) −17.5162 3.99795i −0.716289 0.163488i
\(599\) 25.1241 + 2.83081i 1.02654 + 0.115664i 0.609144 0.793060i \(-0.291513\pi\)
0.417399 + 0.908723i \(0.362942\pi\)
\(600\) 0 0
\(601\) −14.9382 + 23.7740i −0.609342 + 0.969762i 0.389471 + 0.921039i \(0.372658\pi\)
−0.998812 + 0.0487229i \(0.984485\pi\)
\(602\) 2.53066 + 22.4602i 0.103142 + 0.915409i
\(603\) −1.39346 + 3.98227i −0.0567460 + 0.162171i
\(604\) 7.26068 15.0769i 0.295433 0.613472i
\(605\) 0 0
\(606\) −1.63146 14.4796i −0.0662735 0.588194i
\(607\) −30.3818 14.6311i −1.23316 0.593859i −0.300213 0.953872i \(-0.597058\pi\)
−0.932947 + 0.360013i \(0.882772\pi\)
\(608\) −18.6973 18.6973i −0.758276 0.758276i
\(609\) −22.9314 14.2791i −0.929227 0.578620i
\(610\) 0 0
\(611\) −13.9049 39.7378i −0.562531 1.60762i
\(612\) −3.12180 2.48955i −0.126191 0.100634i
\(613\) 4.15227 36.8524i 0.167709 1.48846i −0.574620 0.818420i \(-0.694850\pi\)
0.742329 0.670036i \(-0.233721\pi\)
\(614\) −29.2242 14.0736i −1.17939 0.567966i
\(615\) 0 0
\(616\) 2.01674 2.52892i 0.0812569 0.101893i
\(617\) 5.39870 + 23.6532i 0.217343 + 0.952243i 0.959432 + 0.281941i \(0.0909783\pi\)
−0.742088 + 0.670302i \(0.766165\pi\)
\(618\) 8.96488 14.2675i 0.360621 0.573924i
\(619\) 4.24442 37.6702i 0.170598 1.51410i −0.558396 0.829574i \(-0.688583\pi\)
0.728994 0.684521i \(-0.239988\pi\)
\(620\) 0 0
\(621\) 15.9700 15.9700i 0.640855 0.640855i
\(622\) −1.21636 1.93583i −0.0487716 0.0776195i
\(623\) −29.7946 + 14.3483i −1.19370 + 0.574854i
\(624\) 7.47781 + 2.61660i 0.299352 + 0.104748i
\(625\) 0 0
\(626\) 7.73273 + 7.73273i 0.309062 + 0.309062i
\(627\) −0.632273 + 2.77017i −0.0252506 + 0.110630i
\(628\) 11.0600 + 13.8688i 0.441341 + 0.553424i
\(629\) 52.8765 12.0687i 2.10832 0.481211i
\(630\) 0 0
\(631\) 15.9303 + 12.7040i 0.634175 + 0.505737i 0.886997 0.461775i \(-0.152787\pi\)
−0.252822 + 0.967513i \(0.581359\pi\)
\(632\) −5.68049 1.98769i −0.225958 0.0790661i
\(633\) 0.0714821 0.0250127i 0.00284116 0.000994164i
\(634\) −17.8405 + 14.2273i −0.708536 + 0.565038i
\(635\) 0 0
\(636\) −10.2965 + 3.60291i −0.408284 + 0.142865i
\(637\) −10.1769 + 10.1769i −0.403223 + 0.403223i
\(638\) −1.82130 + 0.212707i −0.0721058 + 0.00842117i
\(639\) 1.84048i 0.0728083i
\(640\) 0 0
\(641\) −20.0334 + 2.25723i −0.791273 + 0.0891550i −0.498344 0.866979i \(-0.666058\pi\)
−0.292929 + 0.956134i \(0.594630\pi\)
\(642\) 13.8033 + 1.55526i 0.544775 + 0.0613813i
\(643\) 14.5417 + 41.5577i 0.573467 + 1.63887i 0.755176 + 0.655522i \(0.227551\pi\)
−0.181709 + 0.983352i \(0.558163\pi\)
\(644\) 11.2453 5.41544i 0.443126 0.213398i
\(645\) 0 0
\(646\) −35.0471 22.0216i −1.37891 0.866426i
\(647\) −34.5951 21.7375i −1.36007 0.854591i −0.363056 0.931767i \(-0.618267\pi\)
−0.997017 + 0.0771768i \(0.975409\pi\)
\(648\) −16.5211 + 13.1751i −0.649010 + 0.517568i
\(649\) 1.16216 + 1.84957i 0.0456187 + 0.0726018i
\(650\) 0 0
\(651\) 10.6121 + 2.42214i 0.415920 + 0.0949310i
\(652\) −0.818062 1.69872i −0.0320378 0.0665271i
\(653\) 18.4814 + 38.3770i 0.723233 + 1.50181i 0.859499 + 0.511137i \(0.170776\pi\)
−0.136266 + 0.990672i \(0.543510\pi\)
\(654\) −8.74456 1.99589i −0.341939 0.0780454i
\(655\) 0 0
\(656\) −1.50699 2.39836i −0.0588379 0.0936401i
\(657\) 1.85785 1.48158i 0.0724815 0.0578021i
\(658\) −27.0068 16.9695i −1.05284 0.661540i
\(659\) 29.0653 + 18.2629i 1.13222 + 0.711423i 0.961747 0.273939i \(-0.0883267\pi\)
0.170476 + 0.985362i \(0.445470\pi\)
\(660\) 0 0
\(661\) −42.5571 + 20.4944i −1.65528 + 0.797141i −0.656187 + 0.754599i \(0.727832\pi\)
−0.999095 + 0.0425427i \(0.986454\pi\)
\(662\) −4.18823 11.9693i −0.162780 0.465199i
\(663\) −49.8865 5.62086i −1.93743 0.218296i
\(664\) −22.8929 + 2.57941i −0.888417 + 0.100100i
\(665\) 0 0
\(666\) 4.19640i 0.162607i
\(667\) −20.6696 7.13847i −0.800329 0.276403i
\(668\) 6.57844 6.57844i 0.254528 0.254528i
\(669\) −18.1679 + 6.35722i −0.702411 + 0.245784i
\(670\) 0 0
\(671\) −1.82510 + 1.45547i −0.0704571 + 0.0561877i
\(672\) −22.9335 + 8.02478i −0.884679 + 0.309563i
\(673\) 34.5971 + 12.1061i 1.33362 + 0.466654i 0.900569 0.434714i \(-0.143151\pi\)
0.433053 + 0.901368i \(0.357436\pi\)
\(674\) 1.13753 + 0.907149i 0.0438160 + 0.0349421i
\(675\) 0 0
\(676\) 5.37558 1.22694i 0.206753 0.0471900i
\(677\) 16.8329 + 21.1078i 0.646942 + 0.811240i 0.991852 0.127396i \(-0.0406619\pi\)
−0.344910 + 0.938636i \(0.612090\pi\)
\(678\) −0.0829607 + 0.363475i −0.00318609 + 0.0139592i
\(679\) −2.69990 2.69990i −0.103613 0.103613i
\(680\) 0 0
\(681\) −15.0429 5.26374i −0.576445 0.201707i
\(682\) 0.665694 0.320581i 0.0254908 0.0122757i
\(683\) 6.09521 + 9.70047i 0.233227 + 0.371178i 0.942748 0.333506i \(-0.108232\pi\)
−0.709521 + 0.704684i \(0.751089\pi\)
\(684\) −2.07649 + 2.07649i −0.0793967 + 0.0793967i
\(685\) 0 0
\(686\) 1.35123 11.9925i 0.0515901 0.457875i
\(687\) 17.2777 27.4973i 0.659185 1.04909i
\(688\) −1.79526 7.86556i −0.0684438 0.299872i
\(689\) 19.7243 24.7334i 0.751434 0.942269i
\(690\) 0 0
\(691\) −15.3535 7.39386i −0.584075 0.281276i 0.118421 0.992964i \(-0.462217\pi\)
−0.702496 + 0.711688i \(0.747931\pi\)
\(692\) 0.0853597 0.757588i 0.00324489 0.0287992i
\(693\) −0.470839 0.375482i −0.0178857 0.0142634i
\(694\) −6.89799 19.7133i −0.261844 0.748308i
\(695\) 0 0
\(696\) 22.9224 + 10.9243i 0.868870 + 0.414085i
\(697\) 12.6918 + 12.6918i 0.480736 + 0.480736i
\(698\) −25.9479 12.4958i −0.982141 0.472974i
\(699\) −3.95046 35.0613i −0.149420 1.32614i
\(700\) 0 0
\(701\) −9.35305 + 19.4218i −0.353260 + 0.733552i −0.999564 0.0295282i \(-0.990600\pi\)
0.646304 + 0.763080i \(0.276314\pi\)
\(702\) 8.12768 23.2276i 0.306760 0.876669i
\(703\) −4.46605 39.6373i −0.168440 1.49495i
\(704\) −1.29298 + 2.05776i −0.0487309 + 0.0775548i
\(705\) 0 0
\(706\) −5.73731 0.646440i −0.215927 0.0243291i
\(707\) −28.6195 6.53221i −1.07635 0.245669i
\(708\) 9.78750i 0.367837i
\(709\) −5.43528 + 23.8135i −0.204126 + 0.894336i 0.764266 + 0.644902i \(0.223102\pi\)
−0.968392 + 0.249434i \(0.919755\pi\)
\(710\) 0 0
\(711\) −0.370073 + 1.05761i −0.0138788 + 0.0396634i
\(712\) 26.3202 16.5381i 0.986392 0.619791i
\(713\) 8.81135 0.329988
\(714\) −32.2040 + 20.2351i −1.20521 + 0.757281i
\(715\) 0 0
\(716\) 0.246189 + 1.07862i 0.00920050 + 0.0403100i
\(717\) −20.4852 + 4.67560i −0.765032 + 0.174614i
\(718\) 0.773345 0.0871351i 0.0288610 0.00325185i
\(719\) 12.1135 + 25.1540i 0.451758 + 0.938086i 0.995128 + 0.0985924i \(0.0314340\pi\)
−0.543369 + 0.839494i \(0.682852\pi\)
\(720\) 0 0
\(721\) −21.1655 26.5407i −0.788245 0.988428i
\(722\) −6.87970 + 8.62687i −0.256036 + 0.321059i
\(723\) 5.12716 10.6467i 0.190681 0.395954i
\(724\) −13.0931 −0.486602
\(725\) 0 0
\(726\) −17.3654 −0.644489
\(727\) −1.90781 + 3.96162i −0.0707569 + 0.146928i −0.933347 0.358975i \(-0.883126\pi\)
0.862590 + 0.505903i \(0.168841\pi\)
\(728\) 26.2055 32.8607i 0.971242 1.21790i
\(729\) 18.6958 + 23.4438i 0.692438 + 0.868290i
\(730\) 0 0
\(731\) 22.1818 + 46.0611i 0.820425 + 1.70363i
\(732\) 10.3939 1.17111i 0.384169 0.0432854i
\(733\) −25.3994 + 5.79725i −0.938149 + 0.214126i −0.664146 0.747603i \(-0.731205\pi\)
−0.274003 + 0.961729i \(0.588348\pi\)
\(734\) 0.543629 + 2.38179i 0.0200657 + 0.0879136i
\(735\) 0 0
\(736\) −16.6536 + 10.4642i −0.613861 + 0.385714i
\(737\) −2.50136 −0.0921387
\(738\) −1.17589 + 0.738861i −0.0432851 + 0.0271979i
\(739\) 1.95496 5.58694i 0.0719142 0.205519i −0.902316 0.431075i \(-0.858134\pi\)
0.974230 + 0.225556i \(0.0724200\pi\)
\(740\) 0 0
\(741\) −8.21575 + 35.9956i −0.301813 + 1.32233i
\(742\) 23.9672i 0.879863i
\(743\) −6.86085 1.56594i −0.251700 0.0574489i 0.0948090 0.995495i \(-0.469776\pi\)
−0.346509 + 0.938047i \(0.612633\pi\)
\(744\) −10.1673 1.14558i −0.372753 0.0419992i
\(745\) 0 0
\(746\) 8.74433 13.9165i 0.320153 0.509520i
\(747\) 0.480240 + 4.26225i 0.0175711 + 0.155948i
\(748\) 0.781872 2.23446i 0.0285881 0.0817000i
\(749\) 12.1420 25.2131i 0.443659 0.921267i
\(750\) 0 0
\(751\) 5.32203 + 47.2343i 0.194203 + 1.72360i 0.591836 + 0.806059i \(0.298403\pi\)
−0.397632 + 0.917545i \(0.630168\pi\)
\(752\) 10.2576 + 4.93980i 0.374056 + 0.180136i
\(753\) 24.7107 + 24.7107i 0.900509 + 0.900509i
\(754\) −23.6659 + 2.76392i −0.861861 + 0.100656i
\(755\) 0 0
\(756\) 5.64626 + 16.1361i 0.205353 + 0.586864i
\(757\) −14.3815 11.4688i −0.522704 0.416842i 0.326271 0.945276i \(-0.394208\pi\)
−0.848974 + 0.528434i \(0.822779\pi\)
\(758\) 1.88796 16.7561i 0.0685737 0.608608i
\(759\) 1.90422 + 0.917023i 0.0691188 + 0.0332858i
\(760\) 0 0
\(761\) −12.2089 + 15.3094i −0.442571 + 0.554966i −0.952219 0.305417i \(-0.901204\pi\)
0.509648 + 0.860383i \(0.329776\pi\)
\(762\) −1.91713 8.39947i −0.0694501 0.304281i
\(763\) −9.61382 + 15.3003i −0.348044 + 0.553908i
\(764\) −1.54116 + 13.6782i −0.0557573 + 0.494860i
\(765\) 0 0
\(766\) −3.37599 + 3.37599i −0.121979 + 0.121979i
\(767\) 15.1011 + 24.0332i 0.545268 + 0.867790i
\(768\) 23.7298 11.4277i 0.856276 0.412361i
\(769\) 15.5886 + 5.45470i 0.562141 + 0.196702i 0.596366 0.802713i \(-0.296611\pi\)
−0.0342253 + 0.999414i \(0.510896\pi\)
\(770\) 0 0
\(771\) −18.5001 18.5001i −0.666265 0.666265i
\(772\) 0.0452412 0.198215i 0.00162827 0.00713391i
\(773\) −12.7969 16.0469i −0.460274 0.577166i 0.496486 0.868045i \(-0.334624\pi\)
−0.956760 + 0.290879i \(0.906052\pi\)
\(774\) −3.85641 + 0.880201i −0.138616 + 0.0316382i
\(775\) 0 0
\(776\) 2.80605 + 2.23775i 0.100731 + 0.0803304i
\(777\) −34.5956 12.1055i −1.24111 0.434283i
\(778\) −35.8800 + 12.5549i −1.28636 + 0.450117i
\(779\) 10.3206 8.23041i 0.369774 0.294885i
\(780\) 0 0
\(781\) 1.02994 0.360392i 0.0368542 0.0128958i
\(782\) −21.7705 + 21.7705i −0.778511 + 0.778511i
\(783\) 12.8857 27.0380i 0.460499 0.966258i
\(784\) 3.89206i 0.139002i
\(785\) 0 0
\(786\) 13.9542 1.57226i 0.497729 0.0560806i
\(787\) −34.1359 3.84619i −1.21681 0.137102i −0.519880 0.854239i \(-0.674023\pi\)
−0.696932 + 0.717137i \(0.745452\pi\)
\(788\) 0.432976 + 1.23738i 0.0154241 + 0.0440797i
\(789\) −12.8255 + 6.17642i −0.456599 + 0.219886i
\(790\) 0 0
\(791\) 0.635969 + 0.399606i 0.0226125 + 0.0142084i
\(792\) 0.479315 + 0.301174i 0.0170317 + 0.0107017i
\(793\) −23.7153 + 18.9123i −0.842155 + 0.671596i
\(794\) 16.4387 + 26.1621i 0.583388 + 0.928457i
\(795\) 0 0
\(796\) 19.8247 + 4.52486i 0.702668 + 0.160379i
\(797\) 5.98688 + 12.4319i 0.212066 + 0.440360i 0.979684 0.200548i \(-0.0642723\pi\)
−0.767618 + 0.640908i \(0.778558\pi\)
\(798\) 12.1366 + 25.2018i 0.429630 + 0.892135i
\(799\) −70.3356 16.0536i −2.48829 0.567937i
\(800\) 0 0
\(801\) −3.07910 4.90036i −0.108795 0.173146i
\(802\) 2.15321 1.71713i 0.0760324 0.0606338i
\(803\) 1.19289 + 0.749545i 0.0420963 + 0.0264509i
\(804\) 9.48990 + 5.96290i 0.334683 + 0.210295i
\(805\) 0 0
\(806\) 8.65002 4.16563i 0.304684 0.146728i
\(807\) −2.74408 7.84213i −0.0965962 0.276056i
\(808\) 27.4201 + 3.08950i 0.964636 + 0.108688i
\(809\) −19.1241 + 2.15477i −0.672367 + 0.0757576i −0.441546 0.897239i \(-0.645570\pi\)
−0.230821 + 0.972996i \(0.574141\pi\)
\(810\) 0 0
\(811\) 46.6872i 1.63941i −0.572787 0.819704i \(-0.694138\pi\)
0.572787 0.819704i \(-0.305862\pi\)
\(812\) 11.6566 11.7517i 0.409067 0.412405i
\(813\) 1.48624 1.48624i 0.0521246 0.0521246i
\(814\) −2.34832 + 0.821714i −0.0823087 + 0.0288010i
\(815\) 0 0
\(816\) 10.6142 8.46452i 0.371570 0.296317i
\(817\) 35.4892 12.4182i 1.24161 0.434458i
\(818\) 16.7355 + 5.85599i 0.585142 + 0.204750i
\(819\) −6.11808 4.87901i −0.213783 0.170486i
\(820\) 0 0
\(821\) −8.38107 + 1.91292i −0.292501 + 0.0667615i −0.366254 0.930515i \(-0.619360\pi\)
0.0737522 + 0.997277i \(0.476503\pi\)
\(822\) −6.05430 7.59185i −0.211168 0.264796i
\(823\) −3.81633 + 16.7204i −0.133029 + 0.582838i 0.863840 + 0.503766i \(0.168053\pi\)
−0.996869 + 0.0790717i \(0.974804\pi\)
\(824\) 22.5634 + 22.5634i 0.786033 + 0.786033i
\(825\) 0 0
\(826\) 20.2971 + 7.10227i 0.706227 + 0.247119i
\(827\) 23.3648 11.2519i 0.812474 0.391267i 0.0189613 0.999820i \(-0.493964\pi\)
0.793513 + 0.608553i \(0.208250\pi\)
\(828\) 1.16213 + 1.84953i 0.0403870 + 0.0642755i
\(829\) 8.01072 8.01072i 0.278224 0.278224i −0.554176 0.832400i \(-0.686966\pi\)
0.832400 + 0.554176i \(0.186966\pi\)
\(830\) 0 0
\(831\) −3.90386 + 34.6477i −0.135423 + 1.20192i
\(832\) −16.8009 + 26.7385i −0.582468 + 0.926992i
\(833\) 5.48804 + 24.0447i 0.190149 + 0.833099i
\(834\) 18.6359 23.3687i 0.645310 0.809193i
\(835\) 0 0
\(836\) −1.56862 0.755409i −0.0542519 0.0261264i
\(837\) −1.35127 + 11.9928i −0.0467067 + 0.414533i
\(838\) 5.46538 + 4.35849i 0.188798 + 0.150562i
\(839\) 1.26460 + 3.61402i 0.0436588 + 0.124770i 0.963649 0.267172i \(-0.0860892\pi\)
−0.919990 + 0.391942i \(0.871803\pi\)
\(840\) 0 0
\(841\) −28.9990 + 0.235632i −0.999967 + 0.00812523i
\(842\) 6.37389 + 6.37389i 0.219659 + 0.219659i
\(843\) −7.37277 3.55054i −0.253932 0.122287i
\(844\) 0.00519557 + 0.0461120i 0.000178839 + 0.00158724i
\(845\) 0 0
\(846\) 2.42194 5.02920i 0.0832679 0.172908i
\(847\) −11.5547 + 33.0214i −0.397023 + 1.13463i
\(848\) 0.957859 + 8.50124i 0.0328930 + 0.291934i
\(849\) 21.5331 34.2697i 0.739013 1.17613i
\(850\) 0 0
\(851\) −29.4834 3.32198i −1.01068 0.113876i
\(852\) −4.76662 1.08795i −0.163302 0.0372726i
\(853\) 39.2828i 1.34502i 0.740089 + 0.672509i \(0.234783\pi\)
−0.740089 + 0.672509i \(0.765217\pi\)
\(854\) −5.11366 + 22.4044i −0.174986 + 0.766663i
\(855\) 0 0
\(856\) −8.68794 + 24.8287i −0.296948 + 0.848628i
\(857\) 47.4255 29.7994i 1.62002 1.01793i 0.655048 0.755587i \(-0.272648\pi\)
0.964975 0.262341i \(-0.0844946\pi\)
\(858\) 2.30288 0.0786192
\(859\) 3.31692 2.08416i 0.113172 0.0711105i −0.474257 0.880387i \(-0.657283\pi\)
0.587429 + 0.809276i \(0.300140\pi\)
\(860\) 0 0
\(861\) −2.69911 11.8256i −0.0919856 0.403015i
\(862\) −16.0708 + 3.66805i −0.547374 + 0.124934i
\(863\) 34.7264 3.91273i 1.18210 0.133191i 0.501045 0.865421i \(-0.332949\pi\)
0.681057 + 0.732231i \(0.261521\pi\)
\(864\) −11.6885 24.2715i −0.397652 0.825732i
\(865\) 0 0
\(866\) −2.60720 3.26933i −0.0885963 0.111096i
\(867\) −37.0886 + 46.5076i −1.25959 + 1.57948i
\(868\) −2.89385 + 6.00913i −0.0982235 + 0.203963i
\(869\) −0.664307 −0.0225351
\(870\) 0 0
\(871\) −32.5026 −1.10131
\(872\) 7.36972 15.3034i 0.249570 0.518238i
\(873\) 0.416629 0.522436i 0.0141008 0.0176818i
\(874\) 14.1178 + 17.7031i 0.477541 + 0.598817i
\(875\) 0 0
\(876\) −2.73891 5.68740i −0.0925391 0.192159i
\(877\) −10.1148 + 1.13966i −0.341553 + 0.0384837i −0.281075 0.959686i \(-0.590691\pi\)
−0.0604776 + 0.998170i \(0.519262\pi\)
\(878\) 19.0472 4.34740i 0.642812 0.146718i
\(879\) 7.96583 + 34.9006i 0.268681 + 1.17717i
\(880\) 0 0
\(881\) −10.5567 + 6.63321i −0.355664 + 0.223479i −0.697998 0.716100i \(-0.745925\pi\)
0.342334 + 0.939578i \(0.388783\pi\)
\(882\) −1.90824 −0.0642538
\(883\) 8.92134 5.60565i 0.300227 0.188645i −0.373491 0.927634i \(-0.621839\pi\)
0.673718 + 0.738989i \(0.264696\pi\)
\(884\) 10.1596 29.0346i 0.341706 0.976538i
\(885\) 0 0
\(886\) 6.80600 29.8190i 0.228652 1.00179i
\(887\) 10.4690i 0.351515i 0.984433 + 0.175758i \(0.0562375\pi\)
−0.984433 + 0.175758i \(0.943763\pi\)
\(888\) 33.5888 + 7.66641i 1.12716 + 0.257268i
\(889\) −17.2478 1.94336i −0.578472 0.0651781i
\(890\) 0 0
\(891\) −1.24098 + 1.97501i −0.0415744 + 0.0661652i
\(892\) −1.32051 11.7198i −0.0442138 0.392409i
\(893\) −17.5242 + 50.0812i −0.586424 + 1.67590i
\(894\) 13.3559 27.7338i 0.446688 0.927556i
\(895\) 0 0
\(896\) −0.806054 7.15393i −0.0269284 0.238996i
\(897\) 24.7434 + 11.9158i 0.826158 + 0.397857i
\(898\) 0.300207 + 0.300207i 0.0100180 + 0.0100180i
\(899\) 11.0138 3.90420i 0.367331 0.130212i
\(900\) 0 0
\(901\) −17.9048 51.1689i −0.596495 1.70468i
\(902\) −0.643726 0.513354i −0.0214337 0.0170928i
\(903\) 3.86827 34.3318i 0.128728 1.14249i
\(904\) −0.636097 0.306328i −0.0211563 0.0101883i
\(905\) 0 0
\(906\) 17.3927 21.8098i 0.577834 0.724581i
\(907\) 8.36134 + 36.6334i 0.277634 + 1.21639i 0.900776 + 0.434284i \(0.142999\pi\)
−0.623142 + 0.782109i \(0.714144\pi\)
\(908\) 5.19548 8.26856i 0.172418 0.274402i
\(909\) 0.575211 5.10514i 0.0190785 0.169327i
\(910\) 0 0
\(911\) 27.7673 27.7673i 0.919972 0.919972i −0.0770545 0.997027i \(-0.524552\pi\)
0.997027 + 0.0770545i \(0.0245516\pi\)
\(912\) −5.31208 8.45412i −0.175900 0.279944i
\(913\) −2.29114 + 1.10335i −0.0758256 + 0.0365157i
\(914\) −27.1813 9.51116i −0.899079 0.314601i
\(915\) 0 0
\(916\) 14.0704 + 14.0704i 0.464900 + 0.464900i
\(917\) 6.29517 27.5810i 0.207885 0.910803i
\(918\) −26.2925 32.9697i −0.867782 1.08816i
\(919\) −26.5398 + 6.05753i −0.875466 + 0.199819i −0.636564 0.771224i \(-0.719645\pi\)
−0.238902 + 0.971044i \(0.576788\pi\)
\(920\) 0 0
\(921\) 38.7641 + 30.9133i 1.27732 + 1.01863i
\(922\) 16.7344 + 5.85561i 0.551118 + 0.192844i
\(923\) 13.3830 4.68293i 0.440508 0.154140i
\(924\) −1.25078 + 0.997461i −0.0411475 + 0.0328141i
\(925\) 0 0
\(926\) 13.8290 4.83896i 0.454448 0.159018i
\(927\) 4.20090 4.20090i 0.137976 0.137976i
\(928\) −16.1798 + 20.4588i −0.531128 + 0.671592i
\(929\) 42.3538i 1.38958i −0.719211 0.694792i \(-0.755496\pi\)
0.719211 0.694792i \(-0.244504\pi\)
\(930\) 0 0
\(931\) 18.0244 2.03086i 0.590726 0.0665588i
\(932\) 21.4834 + 2.42059i 0.703711 + 0.0792891i
\(933\) 1.15422 + 3.29857i 0.0377875 + 0.107990i
\(934\) −4.99869 + 2.40724i −0.163562 + 0.0787674i
\(935\) 0 0
\(936\) 6.22821 + 3.91345i 0.203576 + 0.127915i
\(937\) −5.38668 3.38468i −0.175975 0.110573i 0.441164 0.897426i \(-0.354566\pi\)
−0.617139 + 0.786854i \(0.711709\pi\)
\(938\) −19.2521 + 15.3530i −0.628602 + 0.501293i
\(939\) −8.89342 14.1538i −0.290226 0.461892i
\(940\) 0 0
\(941\) 43.5932 + 9.94986i 1.42110 + 0.324356i 0.862910 0.505358i \(-0.168640\pi\)
0.558188 + 0.829715i \(0.311497\pi\)
\(942\) 12.8302 + 26.6421i 0.418030 + 0.868048i
\(943\) −4.26028 8.84657i −0.138734 0.288084i
\(944\) −7.48330 1.70801i −0.243561 0.0555911i
\(945\) 0 0
\(946\) −1.24770 1.98571i −0.0405663 0.0645610i
\(947\) 15.8121 12.6098i 0.513825 0.409762i −0.331954 0.943296i \(-0.607708\pi\)
0.845779 + 0.533534i \(0.179136\pi\)
\(948\) 2.52032 + 1.58362i 0.0818561 + 0.0514336i
\(949\) 15.5004 + 9.73958i 0.503166 + 0.316160i
\(950\) 0 0
\(951\) 31.4258 15.1339i 1.01905 0.490749i
\(952\) −23.7882 67.9828i −0.770980 2.20333i
\(953\) −37.0553 4.17513i −1.20034 0.135246i −0.510933 0.859621i \(-0.670700\pi\)
−0.689406 + 0.724375i \(0.742128\pi\)
\(954\) 4.16807 0.469629i 0.134946 0.0152048i
\(955\) 0 0
\(956\) 12.8748i 0.416402i
\(957\) 2.78651 + 0.302506i 0.0900752 + 0.00977862i
\(958\) 6.01393 6.01393i 0.194301 0.194301i
\(959\) −18.4648 + 6.46113i −0.596261 + 0.208641i
\(960\) 0 0
\(961\) 20.5555 16.3925i 0.663081 0.528790i
\(962\) −30.5141 + 10.6773i −0.983813 + 0.344251i
\(963\) 4.62267 + 1.61754i 0.148963 + 0.0521245i
\(964\) 5.66098 + 4.51448i 0.182328 + 0.145402i
\(965\) 0 0
\(966\) 20.2847 4.62984i 0.652648 0.148963i
\(967\) −23.5211 29.4946i −0.756389 0.948482i 0.243381 0.969931i \(-0.421743\pi\)
−0.999770 + 0.0214491i \(0.993172\pi\)
\(968\) 7.31757 32.0604i 0.235196 1.03046i
\(969\) 44.7382 + 44.7382i 1.43720 + 1.43720i
\(970\) 0 0
\(971\) −37.0487 12.9639i −1.18895 0.416031i −0.337933 0.941170i \(-0.609728\pi\)
−0.851016 + 0.525139i \(0.824013\pi\)
\(972\) −4.96563 + 2.39132i −0.159273 + 0.0767017i
\(973\) −32.0371 50.9867i −1.02706 1.63456i
\(974\) 13.8666 13.8666i 0.444313 0.444313i
\(975\) 0 0
\(976\) 0.918429 8.15128i 0.0293982 0.260916i
\(977\) 10.3799 16.5196i 0.332083 0.528508i −0.638391 0.769712i \(-0.720400\pi\)
0.970474 + 0.241205i \(0.0775425\pi\)
\(978\) −0.699388 3.06422i −0.0223640 0.0979829i
\(979\) 2.13933 2.68264i 0.0683734 0.0857375i
\(980\) 0 0
\(981\) −2.84922 1.37211i −0.0909686 0.0438081i
\(982\) −1.14210 + 10.1364i −0.0364458 + 0.323465i
\(983\) 13.1719 + 10.5042i 0.420118 + 0.335033i 0.810624 0.585568i \(-0.199128\pi\)
−0.390505 + 0.920601i \(0.627700\pi\)
\(984\) 3.76574 + 10.7619i 0.120048 + 0.343076i
\(985\) 0 0
\(986\) −17.5660 + 36.8584i −0.559414 + 1.17381i
\(987\) 34.4746 + 34.4746i 1.09734 + 1.09734i
\(988\) −20.3827 9.81577i −0.648459 0.312281i
\(989\) −3.13135 27.7915i −0.0995710 0.883717i
\(990\) 0 0
\(991\) −1.37219 + 2.84939i −0.0435892 + 0.0905139i −0.921626 0.388079i \(-0.873139\pi\)
0.878037 + 0.478593i \(0.158853\pi\)
\(992\) 3.47128 9.92033i 0.110213 0.314971i
\(993\) 2.17026 + 19.2616i 0.0688713 + 0.611249i
\(994\) 5.71505 9.09545i 0.181270 0.288490i
\(995\) 0 0
\(996\) 11.3226 + 1.27575i 0.358770 + 0.0404237i
\(997\) 13.9139 + 3.17575i 0.440657 + 0.100577i 0.437092 0.899417i \(-0.356008\pi\)
0.00356433 + 0.999994i \(0.498865\pi\)
\(998\) 7.62497i 0.241364i
\(999\) 9.04288 39.6195i 0.286104 1.25350i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.bd.b.482.5 156
5.2 odd 4 145.2.o.a.18.5 156
5.3 odd 4 725.2.y.b.18.9 156
5.4 even 2 145.2.t.a.47.9 yes 156
29.21 odd 28 725.2.y.b.282.9 156
145.79 odd 28 145.2.o.a.137.5 yes 156
145.108 even 28 inner 725.2.bd.b.543.5 156
145.137 even 28 145.2.t.a.108.9 yes 156
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
145.2.o.a.18.5 156 5.2 odd 4
145.2.o.a.137.5 yes 156 145.79 odd 28
145.2.t.a.47.9 yes 156 5.4 even 2
145.2.t.a.108.9 yes 156 145.137 even 28
725.2.y.b.18.9 156 5.3 odd 4
725.2.y.b.282.9 156 29.21 odd 28
725.2.bd.b.482.5 156 1.1 even 1 trivial
725.2.bd.b.543.5 156 145.108 even 28 inner