Properties

Label 725.2.b.f.349.2
Level $725$
Weight $2$
Character 725.349
Analytic conductor $5.789$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [725,2,Mod(349,725)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(725, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("725.349"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.b (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-8,0,-2,0,0,-22] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.59416223908864.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 14x^{8} + 71x^{6} + 159x^{4} + 151x^{2} + 49 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 349.2
Root \(-1.88481i\) of defining polynomial
Character \(\chi\) \(=\) 725.349
Dual form 725.2.b.f.349.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.88481i q^{2} -1.10085i q^{3} -1.55251 q^{4} -2.07489 q^{6} +1.70908i q^{7} -0.843434i q^{8} +1.78814 q^{9} -2.85130 q^{11} +1.70908i q^{12} -6.22128i q^{13} +3.22128 q^{14} -4.69473 q^{16} -1.40381i q^{17} -3.37030i q^{18} -6.74028 q^{19} +1.88143 q^{21} +5.37416i q^{22} -1.42153i q^{23} -0.928492 q^{24} -11.7259 q^{26} -5.27100i q^{27} -2.65336i q^{28} -1.00000 q^{29} -1.29510 q^{31} +7.16181i q^{32} +3.13884i q^{33} -2.64591 q^{34} -2.77610 q^{36} -0.989830i q^{37} +12.7042i q^{38} -6.84868 q^{39} +6.32213 q^{41} -3.54614i q^{42} -6.03720i q^{43} +4.42667 q^{44} -2.67932 q^{46} +8.97549i q^{47} +5.16818i q^{48} +4.07906 q^{49} -1.54538 q^{51} +9.65860i q^{52} -2.11288i q^{53} -9.93484 q^{54} +1.44149 q^{56} +7.42002i q^{57} +1.88481i q^{58} +10.0504 q^{59} +5.73236 q^{61} +2.44101i q^{62} +3.05606i q^{63} +4.10919 q^{64} +5.91612 q^{66} -2.45274i q^{67} +2.17943i q^{68} -1.56489 q^{69} +5.04282 q^{71} -1.50817i q^{72} -5.55668i q^{73} -1.86564 q^{74} +10.4644 q^{76} -4.87309i q^{77} +12.9085i q^{78} -9.37892 q^{79} -0.438162 q^{81} -11.9160i q^{82} -5.06744i q^{83} -2.92094 q^{84} -11.3790 q^{86} +1.10085i q^{87} +2.40488i q^{88} +1.75693 q^{89} +10.6326 q^{91} +2.20694i q^{92} +1.42570i q^{93} +16.9171 q^{94} +7.88406 q^{96} +14.6037i q^{97} -7.68825i q^{98} -5.09851 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 8 q^{4} - 2 q^{6} - 22 q^{9} - 4 q^{11} - 22 q^{14} - 20 q^{16} - 4 q^{19} - 2 q^{21} - 26 q^{24} - 32 q^{26} - 10 q^{29} - 2 q^{31} - 6 q^{34} - 26 q^{36} + 12 q^{39} + 10 q^{41} - 14 q^{44} - 40 q^{46}+ \cdots + 52 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.88481i − 1.33276i −0.745611 0.666381i \(-0.767842\pi\)
0.745611 0.666381i \(-0.232158\pi\)
\(3\) − 1.10085i − 0.635574i −0.948162 0.317787i \(-0.897060\pi\)
0.948162 0.317787i \(-0.102940\pi\)
\(4\) −1.55251 −0.776255
\(5\) 0 0
\(6\) −2.07489 −0.847069
\(7\) 1.70908i 0.645970i 0.946404 + 0.322985i \(0.104686\pi\)
−0.946404 + 0.322985i \(0.895314\pi\)
\(8\) − 0.843434i − 0.298199i
\(9\) 1.78814 0.596045
\(10\) 0 0
\(11\) −2.85130 −0.859699 −0.429849 0.902901i \(-0.641433\pi\)
−0.429849 + 0.902901i \(0.641433\pi\)
\(12\) 1.70908i 0.493368i
\(13\) − 6.22128i − 1.72547i −0.505653 0.862737i \(-0.668748\pi\)
0.505653 0.862737i \(-0.331252\pi\)
\(14\) 3.22128 0.860924
\(15\) 0 0
\(16\) −4.69473 −1.17368
\(17\) − 1.40381i − 0.340474i −0.985403 0.170237i \(-0.945547\pi\)
0.985403 0.170237i \(-0.0544533\pi\)
\(18\) − 3.37030i − 0.794387i
\(19\) −6.74028 −1.54633 −0.773163 0.634207i \(-0.781327\pi\)
−0.773163 + 0.634207i \(0.781327\pi\)
\(20\) 0 0
\(21\) 1.88143 0.410562
\(22\) 5.37416i 1.14577i
\(23\) − 1.42153i − 0.296410i −0.988957 0.148205i \(-0.952651\pi\)
0.988957 0.148205i \(-0.0473495\pi\)
\(24\) −0.928492 −0.189528
\(25\) 0 0
\(26\) −11.7259 −2.29965
\(27\) − 5.27100i − 1.01441i
\(28\) − 2.65336i − 0.501437i
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −1.29510 −0.232606 −0.116303 0.993214i \(-0.537104\pi\)
−0.116303 + 0.993214i \(0.537104\pi\)
\(32\) 7.16181i 1.26604i
\(33\) 3.13884i 0.546403i
\(34\) −2.64591 −0.453770
\(35\) 0 0
\(36\) −2.77610 −0.462683
\(37\) − 0.989830i − 0.162727i −0.996684 0.0813635i \(-0.974073\pi\)
0.996684 0.0813635i \(-0.0259275\pi\)
\(38\) 12.7042i 2.06089i
\(39\) −6.84868 −1.09667
\(40\) 0 0
\(41\) 6.32213 0.987351 0.493675 0.869646i \(-0.335653\pi\)
0.493675 + 0.869646i \(0.335653\pi\)
\(42\) − 3.54614i − 0.547181i
\(43\) − 6.03720i − 0.920665i −0.887747 0.460332i \(-0.847730\pi\)
0.887747 0.460332i \(-0.152270\pi\)
\(44\) 4.42667 0.667346
\(45\) 0 0
\(46\) −2.67932 −0.395044
\(47\) 8.97549i 1.30921i 0.755971 + 0.654605i \(0.227165\pi\)
−0.755971 + 0.654605i \(0.772835\pi\)
\(48\) 5.16818i 0.745963i
\(49\) 4.07906 0.582723
\(50\) 0 0
\(51\) −1.54538 −0.216396
\(52\) 9.65860i 1.33941i
\(53\) − 2.11288i − 0.290227i −0.989415 0.145113i \(-0.953645\pi\)
0.989415 0.145113i \(-0.0463547\pi\)
\(54\) −9.93484 −1.35196
\(55\) 0 0
\(56\) 1.44149 0.192628
\(57\) 7.42002i 0.982805i
\(58\) 1.88481i 0.247488i
\(59\) 10.0504 1.30845 0.654224 0.756301i \(-0.272995\pi\)
0.654224 + 0.756301i \(0.272995\pi\)
\(60\) 0 0
\(61\) 5.73236 0.733953 0.366977 0.930230i \(-0.380393\pi\)
0.366977 + 0.930230i \(0.380393\pi\)
\(62\) 2.44101i 0.310009i
\(63\) 3.05606i 0.385027i
\(64\) 4.10919 0.513649
\(65\) 0 0
\(66\) 5.91612 0.728225
\(67\) − 2.45274i − 0.299650i −0.988713 0.149825i \(-0.952129\pi\)
0.988713 0.149825i \(-0.0478710\pi\)
\(68\) 2.17943i 0.264294i
\(69\) −1.56489 −0.188390
\(70\) 0 0
\(71\) 5.04282 0.598473 0.299236 0.954179i \(-0.403268\pi\)
0.299236 + 0.954179i \(0.403268\pi\)
\(72\) − 1.50817i − 0.177740i
\(73\) − 5.55668i − 0.650360i −0.945652 0.325180i \(-0.894575\pi\)
0.945652 0.325180i \(-0.105425\pi\)
\(74\) −1.86564 −0.216876
\(75\) 0 0
\(76\) 10.4644 1.20034
\(77\) − 4.87309i − 0.555340i
\(78\) 12.9085i 1.46160i
\(79\) −9.37892 −1.05521 −0.527606 0.849489i \(-0.676910\pi\)
−0.527606 + 0.849489i \(0.676910\pi\)
\(80\) 0 0
\(81\) −0.438162 −0.0486846
\(82\) − 11.9160i − 1.31590i
\(83\) − 5.06744i − 0.556224i −0.960549 0.278112i \(-0.910291\pi\)
0.960549 0.278112i \(-0.0897087\pi\)
\(84\) −2.92094 −0.318701
\(85\) 0 0
\(86\) −11.3790 −1.22703
\(87\) 1.10085i 0.118023i
\(88\) 2.40488i 0.256361i
\(89\) 1.75693 0.186234 0.0931171 0.995655i \(-0.470317\pi\)
0.0931171 + 0.995655i \(0.470317\pi\)
\(90\) 0 0
\(91\) 10.6326 1.11460
\(92\) 2.20694i 0.230089i
\(93\) 1.42570i 0.147839i
\(94\) 16.9171 1.74486
\(95\) 0 0
\(96\) 7.88406 0.804663
\(97\) 14.6037i 1.48278i 0.671075 + 0.741389i \(0.265833\pi\)
−0.671075 + 0.741389i \(0.734167\pi\)
\(98\) − 7.68825i − 0.776631i
\(99\) −5.09851 −0.512420
\(100\) 0 0
\(101\) 15.8868 1.58079 0.790397 0.612595i \(-0.209874\pi\)
0.790397 + 0.612595i \(0.209874\pi\)
\(102\) 2.91275i 0.288405i
\(103\) − 11.6322i − 1.14616i −0.819500 0.573079i \(-0.805749\pi\)
0.819500 0.573079i \(-0.194251\pi\)
\(104\) −5.24724 −0.514534
\(105\) 0 0
\(106\) −3.98239 −0.386804
\(107\) 13.0887i 1.26533i 0.774426 + 0.632664i \(0.218039\pi\)
−0.774426 + 0.632664i \(0.781961\pi\)
\(108\) 8.18329i 0.787437i
\(109\) −10.5634 −1.01179 −0.505894 0.862596i \(-0.668837\pi\)
−0.505894 + 0.862596i \(0.668837\pi\)
\(110\) 0 0
\(111\) −1.08965 −0.103425
\(112\) − 8.02365i − 0.758164i
\(113\) 18.4952i 1.73988i 0.493157 + 0.869940i \(0.335843\pi\)
−0.493157 + 0.869940i \(0.664157\pi\)
\(114\) 13.9853 1.30985
\(115\) 0 0
\(116\) 1.55251 0.144147
\(117\) − 11.1245i − 1.02846i
\(118\) − 18.9430i − 1.74385i
\(119\) 2.39922 0.219936
\(120\) 0 0
\(121\) −2.87010 −0.260918
\(122\) − 10.8044i − 0.978185i
\(123\) − 6.95970i − 0.627535i
\(124\) 2.01065 0.180562
\(125\) 0 0
\(126\) 5.76009 0.513150
\(127\) − 2.95697i − 0.262389i −0.991357 0.131194i \(-0.958119\pi\)
0.991357 0.131194i \(-0.0418812\pi\)
\(128\) 6.57858i 0.581470i
\(129\) −6.64604 −0.585151
\(130\) 0 0
\(131\) −20.9785 −1.83290 −0.916450 0.400150i \(-0.868958\pi\)
−0.916450 + 0.400150i \(0.868958\pi\)
\(132\) − 4.87309i − 0.424148i
\(133\) − 11.5197i − 0.998880i
\(134\) −4.62294 −0.399362
\(135\) 0 0
\(136\) −1.18402 −0.101529
\(137\) − 19.5953i − 1.67414i −0.547094 0.837071i \(-0.684266\pi\)
0.547094 0.837071i \(-0.315734\pi\)
\(138\) 2.94952i 0.251080i
\(139\) 21.2859 1.80545 0.902725 0.430218i \(-0.141563\pi\)
0.902725 + 0.430218i \(0.141563\pi\)
\(140\) 0 0
\(141\) 9.88064 0.832100
\(142\) − 9.50476i − 0.797622i
\(143\) 17.7387i 1.48339i
\(144\) −8.39482 −0.699568
\(145\) 0 0
\(146\) −10.4733 −0.866776
\(147\) − 4.49042i − 0.370364i
\(148\) 1.53672i 0.126318i
\(149\) 16.6123 1.36093 0.680466 0.732779i \(-0.261777\pi\)
0.680466 + 0.732779i \(0.261777\pi\)
\(150\) 0 0
\(151\) 8.74718 0.711835 0.355918 0.934517i \(-0.384168\pi\)
0.355918 + 0.934517i \(0.384168\pi\)
\(152\) 5.68498i 0.461113i
\(153\) − 2.51020i − 0.202938i
\(154\) −9.18484 −0.740136
\(155\) 0 0
\(156\) 10.6326 0.851293
\(157\) − 20.0971i − 1.60392i −0.597378 0.801960i \(-0.703791\pi\)
0.597378 0.801960i \(-0.296209\pi\)
\(158\) 17.6775i 1.40635i
\(159\) −2.32596 −0.184461
\(160\) 0 0
\(161\) 2.42950 0.191472
\(162\) 0.825852i 0.0648850i
\(163\) 3.21100i 0.251505i 0.992062 + 0.125753i \(0.0401346\pi\)
−0.992062 + 0.125753i \(0.959865\pi\)
\(164\) −9.81517 −0.766436
\(165\) 0 0
\(166\) −9.55117 −0.741315
\(167\) 6.83823i 0.529158i 0.964364 + 0.264579i \(0.0852330\pi\)
−0.964364 + 0.264579i \(0.914767\pi\)
\(168\) − 1.58686i − 0.122429i
\(169\) −25.7044 −1.97726
\(170\) 0 0
\(171\) −12.0525 −0.921681
\(172\) 9.37282i 0.714671i
\(173\) − 3.47907i − 0.264509i −0.991216 0.132254i \(-0.957778\pi\)
0.991216 0.132254i \(-0.0422216\pi\)
\(174\) 2.07489 0.157297
\(175\) 0 0
\(176\) 13.3861 1.00901
\(177\) − 11.0639i − 0.831615i
\(178\) − 3.31148i − 0.248206i
\(179\) 23.3359 1.74421 0.872105 0.489319i \(-0.162755\pi\)
0.872105 + 0.489319i \(0.162755\pi\)
\(180\) 0 0
\(181\) −3.34240 −0.248439 −0.124219 0.992255i \(-0.539643\pi\)
−0.124219 + 0.992255i \(0.539643\pi\)
\(182\) − 20.0405i − 1.48550i
\(183\) − 6.31045i − 0.466482i
\(184\) −1.19897 −0.0883891
\(185\) 0 0
\(186\) 2.68718 0.197034
\(187\) 4.00268i 0.292705i
\(188\) − 13.9345i − 1.01628i
\(189\) 9.00855 0.655275
\(190\) 0 0
\(191\) 4.61979 0.334276 0.167138 0.985934i \(-0.446547\pi\)
0.167138 + 0.985934i \(0.446547\pi\)
\(192\) − 4.52359i − 0.326462i
\(193\) − 24.9023i − 1.79251i −0.443542 0.896254i \(-0.646278\pi\)
0.443542 0.896254i \(-0.353722\pi\)
\(194\) 27.5252 1.97619
\(195\) 0 0
\(196\) −6.33278 −0.452342
\(197\) − 5.96322i − 0.424862i −0.977176 0.212431i \(-0.931862\pi\)
0.977176 0.212431i \(-0.0681380\pi\)
\(198\) 9.60972i 0.682933i
\(199\) 19.0033 1.34711 0.673555 0.739137i \(-0.264767\pi\)
0.673555 + 0.739137i \(0.264767\pi\)
\(200\) 0 0
\(201\) −2.70009 −0.190450
\(202\) − 29.9436i − 2.10682i
\(203\) − 1.70908i − 0.119954i
\(204\) 2.39922 0.167979
\(205\) 0 0
\(206\) −21.9245 −1.52755
\(207\) − 2.54189i − 0.176674i
\(208\) 29.2073i 2.02516i
\(209\) 19.2186 1.32938
\(210\) 0 0
\(211\) −8.60278 −0.592240 −0.296120 0.955151i \(-0.595693\pi\)
−0.296120 + 0.955151i \(0.595693\pi\)
\(212\) 3.28027i 0.225290i
\(213\) − 5.55138i − 0.380374i
\(214\) 24.6696 1.68638
\(215\) 0 0
\(216\) −4.44575 −0.302495
\(217\) − 2.21342i − 0.150257i
\(218\) 19.9100i 1.34847i
\(219\) −6.11706 −0.413352
\(220\) 0 0
\(221\) −8.73349 −0.587478
\(222\) 2.05379i 0.137841i
\(223\) 7.77513i 0.520661i 0.965520 + 0.260331i \(0.0838316\pi\)
−0.965520 + 0.260331i \(0.916168\pi\)
\(224\) −12.2401 −0.817825
\(225\) 0 0
\(226\) 34.8599 2.31885
\(227\) − 11.4310i − 0.758699i −0.925253 0.379349i \(-0.876148\pi\)
0.925253 0.379349i \(-0.123852\pi\)
\(228\) − 11.5197i − 0.762908i
\(229\) 6.14881 0.406325 0.203162 0.979145i \(-0.434878\pi\)
0.203162 + 0.979145i \(0.434878\pi\)
\(230\) 0 0
\(231\) −5.36452 −0.352960
\(232\) 0.843434i 0.0553742i
\(233\) 0.829745i 0.0543584i 0.999631 + 0.0271792i \(0.00865247\pi\)
−0.999631 + 0.0271792i \(0.991348\pi\)
\(234\) −20.9676 −1.37069
\(235\) 0 0
\(236\) −15.6033 −1.01569
\(237\) 10.3248i 0.670665i
\(238\) − 4.52207i − 0.293122i
\(239\) 0.473622 0.0306361 0.0153180 0.999883i \(-0.495124\pi\)
0.0153180 + 0.999883i \(0.495124\pi\)
\(240\) 0 0
\(241\) −22.0803 −1.42232 −0.711160 0.703030i \(-0.751830\pi\)
−0.711160 + 0.703030i \(0.751830\pi\)
\(242\) 5.40958i 0.347741i
\(243\) − 15.3307i − 0.983463i
\(244\) −8.89954 −0.569735
\(245\) 0 0
\(246\) −13.1177 −0.836355
\(247\) 41.9332i 2.66815i
\(248\) 1.09233i 0.0693630i
\(249\) −5.57848 −0.353522
\(250\) 0 0
\(251\) 6.98079 0.440624 0.220312 0.975429i \(-0.429292\pi\)
0.220312 + 0.975429i \(0.429292\pi\)
\(252\) − 4.74456i − 0.298879i
\(253\) 4.05321i 0.254823i
\(254\) −5.57333 −0.349702
\(255\) 0 0
\(256\) 20.6178 1.28861
\(257\) 5.35099i 0.333785i 0.985975 + 0.166893i \(0.0533734\pi\)
−0.985975 + 0.166893i \(0.946627\pi\)
\(258\) 12.5265i 0.779867i
\(259\) 1.69169 0.105117
\(260\) 0 0
\(261\) −1.78814 −0.110683
\(262\) 39.5405i 2.44282i
\(263\) − 8.56128i − 0.527911i −0.964535 0.263955i \(-0.914973\pi\)
0.964535 0.263955i \(-0.0850272\pi\)
\(264\) 2.64741 0.162937
\(265\) 0 0
\(266\) −21.7124 −1.33127
\(267\) − 1.93411i − 0.118366i
\(268\) 3.80790i 0.232604i
\(269\) 7.36998 0.449356 0.224678 0.974433i \(-0.427867\pi\)
0.224678 + 0.974433i \(0.427867\pi\)
\(270\) 0 0
\(271\) −5.49008 −0.333499 −0.166749 0.985999i \(-0.553327\pi\)
−0.166749 + 0.985999i \(0.553327\pi\)
\(272\) 6.59051i 0.399608i
\(273\) − 11.7049i − 0.708414i
\(274\) −36.9335 −2.23123
\(275\) 0 0
\(276\) 2.42950 0.146239
\(277\) − 24.0013i − 1.44210i −0.692882 0.721051i \(-0.743659\pi\)
0.692882 0.721051i \(-0.256341\pi\)
\(278\) − 40.1200i − 2.40624i
\(279\) −2.31581 −0.138644
\(280\) 0 0
\(281\) 10.0364 0.598722 0.299361 0.954140i \(-0.403227\pi\)
0.299361 + 0.954140i \(0.403227\pi\)
\(282\) − 18.6231i − 1.10899i
\(283\) 8.41013i 0.499930i 0.968255 + 0.249965i \(0.0804192\pi\)
−0.968255 + 0.249965i \(0.919581\pi\)
\(284\) −7.82903 −0.464568
\(285\) 0 0
\(286\) 33.4342 1.97700
\(287\) 10.8050i 0.637799i
\(288\) 12.8063i 0.754618i
\(289\) 15.0293 0.884078
\(290\) 0 0
\(291\) 16.0764 0.942416
\(292\) 8.62680i 0.504846i
\(293\) 6.38571i 0.373057i 0.982450 + 0.186529i \(0.0597237\pi\)
−0.982450 + 0.186529i \(0.940276\pi\)
\(294\) −8.46359 −0.493607
\(295\) 0 0
\(296\) −0.834856 −0.0485250
\(297\) 15.0292i 0.872083i
\(298\) − 31.3110i − 1.81380i
\(299\) −8.84375 −0.511447
\(300\) 0 0
\(301\) 10.3180 0.594722
\(302\) − 16.4868i − 0.948707i
\(303\) − 17.4889i − 1.00471i
\(304\) 31.6438 1.81490
\(305\) 0 0
\(306\) −4.73125 −0.270468
\(307\) 28.7573i 1.64126i 0.571458 + 0.820632i \(0.306378\pi\)
−0.571458 + 0.820632i \(0.693622\pi\)
\(308\) 7.56551i 0.431085i
\(309\) −12.8053 −0.728468
\(310\) 0 0
\(311\) 4.20464 0.238423 0.119211 0.992869i \(-0.461963\pi\)
0.119211 + 0.992869i \(0.461963\pi\)
\(312\) 5.77641i 0.327025i
\(313\) 18.2272i 1.03026i 0.857111 + 0.515132i \(0.172257\pi\)
−0.857111 + 0.515132i \(0.827743\pi\)
\(314\) −37.8791 −2.13764
\(315\) 0 0
\(316\) 14.5609 0.819113
\(317\) 13.4593i 0.755951i 0.925816 + 0.377975i \(0.123380\pi\)
−0.925816 + 0.377975i \(0.876620\pi\)
\(318\) 4.38400i 0.245842i
\(319\) 2.85130 0.159642
\(320\) 0 0
\(321\) 14.4086 0.804210
\(322\) − 4.57915i − 0.255186i
\(323\) 9.46207i 0.526483i
\(324\) 0.680250 0.0377917
\(325\) 0 0
\(326\) 6.05214 0.335197
\(327\) 11.6287i 0.643066i
\(328\) − 5.33230i − 0.294427i
\(329\) −15.3398 −0.845710
\(330\) 0 0
\(331\) 15.2501 0.838223 0.419112 0.907935i \(-0.362342\pi\)
0.419112 + 0.907935i \(0.362342\pi\)
\(332\) 7.86726i 0.431772i
\(333\) − 1.76995i − 0.0969927i
\(334\) 12.8888 0.705242
\(335\) 0 0
\(336\) −8.83281 −0.481870
\(337\) − 5.07452i − 0.276426i −0.990402 0.138213i \(-0.955864\pi\)
0.990402 0.138213i \(-0.0441359\pi\)
\(338\) 48.4479i 2.63522i
\(339\) 20.3604 1.10582
\(340\) 0 0
\(341\) 3.69271 0.199971
\(342\) 22.7168i 1.22838i
\(343\) 18.9350i 1.02239i
\(344\) −5.09198 −0.274541
\(345\) 0 0
\(346\) −6.55738 −0.352527
\(347\) 28.0386i 1.50519i 0.658482 + 0.752596i \(0.271199\pi\)
−0.658482 + 0.752596i \(0.728801\pi\)
\(348\) − 1.70908i − 0.0916161i
\(349\) 27.7759 1.48681 0.743406 0.668840i \(-0.233209\pi\)
0.743406 + 0.668840i \(0.233209\pi\)
\(350\) 0 0
\(351\) −32.7924 −1.75033
\(352\) − 20.4205i − 1.08841i
\(353\) 31.4223i 1.67244i 0.548392 + 0.836221i \(0.315240\pi\)
−0.548392 + 0.836221i \(0.684760\pi\)
\(354\) −20.8534 −1.10835
\(355\) 0 0
\(356\) −2.72765 −0.144565
\(357\) − 2.64117i − 0.139785i
\(358\) − 43.9838i − 2.32462i
\(359\) −27.0194 −1.42603 −0.713014 0.701150i \(-0.752671\pi\)
−0.713014 + 0.701150i \(0.752671\pi\)
\(360\) 0 0
\(361\) 26.4314 1.39113
\(362\) 6.29980i 0.331110i
\(363\) 3.15954i 0.165833i
\(364\) −16.5073 −0.865217
\(365\) 0 0
\(366\) −11.8940 −0.621709
\(367\) − 20.3243i − 1.06092i −0.847710 0.530460i \(-0.822019\pi\)
0.847710 0.530460i \(-0.177981\pi\)
\(368\) 6.67371i 0.347891i
\(369\) 11.3048 0.588506
\(370\) 0 0
\(371\) 3.61108 0.187478
\(372\) − 2.21342i − 0.114760i
\(373\) − 15.9724i − 0.827021i −0.910499 0.413511i \(-0.864302\pi\)
0.910499 0.413511i \(-0.135698\pi\)
\(374\) 7.54429 0.390106
\(375\) 0 0
\(376\) 7.57023 0.390405
\(377\) 6.22128i 0.320412i
\(378\) − 16.9794i − 0.873326i
\(379\) −29.4840 −1.51449 −0.757247 0.653129i \(-0.773456\pi\)
−0.757247 + 0.653129i \(0.773456\pi\)
\(380\) 0 0
\(381\) −3.25517 −0.166768
\(382\) − 8.70742i − 0.445510i
\(383\) 35.1376i 1.79545i 0.440560 + 0.897723i \(0.354780\pi\)
−0.440560 + 0.897723i \(0.645220\pi\)
\(384\) 7.24201 0.369567
\(385\) 0 0
\(386\) −46.9361 −2.38899
\(387\) − 10.7953i − 0.548758i
\(388\) − 22.6724i − 1.15101i
\(389\) −28.3776 −1.43880 −0.719401 0.694595i \(-0.755583\pi\)
−0.719401 + 0.694595i \(0.755583\pi\)
\(390\) 0 0
\(391\) −1.99556 −0.100920
\(392\) − 3.44042i − 0.173767i
\(393\) 23.0941i 1.16494i
\(394\) −11.2395 −0.566240
\(395\) 0 0
\(396\) 7.91549 0.397768
\(397\) 24.5435i 1.23180i 0.787823 + 0.615901i \(0.211208\pi\)
−0.787823 + 0.615901i \(0.788792\pi\)
\(398\) − 35.8176i − 1.79538i
\(399\) −12.6814 −0.634863
\(400\) 0 0
\(401\) 4.95811 0.247596 0.123798 0.992307i \(-0.460493\pi\)
0.123798 + 0.992307i \(0.460493\pi\)
\(402\) 5.08915i 0.253824i
\(403\) 8.05717i 0.401356i
\(404\) −24.6644 −1.22710
\(405\) 0 0
\(406\) −3.22128 −0.159870
\(407\) 2.82230i 0.139896i
\(408\) 1.30342i 0.0645291i
\(409\) 29.6350 1.46535 0.732677 0.680576i \(-0.238271\pi\)
0.732677 + 0.680576i \(0.238271\pi\)
\(410\) 0 0
\(411\) −21.5715 −1.06404
\(412\) 18.0591i 0.889710i
\(413\) 17.1769i 0.845218i
\(414\) −4.79098 −0.235464
\(415\) 0 0
\(416\) 44.5557 2.18452
\(417\) − 23.4326i − 1.14750i
\(418\) − 36.2233i − 1.77174i
\(419\) −27.1403 −1.32589 −0.662945 0.748668i \(-0.730694\pi\)
−0.662945 + 0.748668i \(0.730694\pi\)
\(420\) 0 0
\(421\) −27.0310 −1.31741 −0.658705 0.752401i \(-0.728896\pi\)
−0.658705 + 0.752401i \(0.728896\pi\)
\(422\) 16.2146i 0.789314i
\(423\) 16.0494i 0.780348i
\(424\) −1.78208 −0.0865454
\(425\) 0 0
\(426\) −10.4633 −0.506948
\(427\) 9.79703i 0.474112i
\(428\) − 20.3203i − 0.982217i
\(429\) 19.5276 0.942803
\(430\) 0 0
\(431\) −27.7496 −1.33665 −0.668327 0.743868i \(-0.732989\pi\)
−0.668327 + 0.743868i \(0.732989\pi\)
\(432\) 24.7460i 1.19059i
\(433\) 14.3507i 0.689649i 0.938667 + 0.344825i \(0.112062\pi\)
−0.938667 + 0.344825i \(0.887938\pi\)
\(434\) −4.17187 −0.200256
\(435\) 0 0
\(436\) 16.3997 0.785405
\(437\) 9.58152i 0.458346i
\(438\) 11.5295i 0.550900i
\(439\) −19.0540 −0.909398 −0.454699 0.890645i \(-0.650253\pi\)
−0.454699 + 0.890645i \(0.650253\pi\)
\(440\) 0 0
\(441\) 7.29391 0.347329
\(442\) 16.4610i 0.782969i
\(443\) − 36.2772i − 1.72358i −0.507263 0.861791i \(-0.669343\pi\)
0.507263 0.861791i \(-0.330657\pi\)
\(444\) 1.69169 0.0802843
\(445\) 0 0
\(446\) 14.6546 0.693918
\(447\) − 18.2876i − 0.864974i
\(448\) 7.02292i 0.331802i
\(449\) −3.04282 −0.143600 −0.0717998 0.997419i \(-0.522874\pi\)
−0.0717998 + 0.997419i \(0.522874\pi\)
\(450\) 0 0
\(451\) −18.0263 −0.848825
\(452\) − 28.7140i − 1.35059i
\(453\) − 9.62931i − 0.452424i
\(454\) −21.5452 −1.01117
\(455\) 0 0
\(456\) 6.25830 0.293072
\(457\) − 24.8217i − 1.16111i −0.814220 0.580556i \(-0.802835\pi\)
0.814220 0.580556i \(-0.197165\pi\)
\(458\) − 11.5893i − 0.541534i
\(459\) −7.39948 −0.345378
\(460\) 0 0
\(461\) −14.1662 −0.659786 −0.329893 0.944018i \(-0.607013\pi\)
−0.329893 + 0.944018i \(0.607013\pi\)
\(462\) 10.1111i 0.470411i
\(463\) − 9.03538i − 0.419910i −0.977711 0.209955i \(-0.932668\pi\)
0.977711 0.209955i \(-0.0673317\pi\)
\(464\) 4.69473 0.217948
\(465\) 0 0
\(466\) 1.56391 0.0724468
\(467\) − 5.28374i − 0.244503i −0.992499 0.122251i \(-0.960989\pi\)
0.992499 0.122251i \(-0.0390114\pi\)
\(468\) 17.2709i 0.798347i
\(469\) 4.19191 0.193565
\(470\) 0 0
\(471\) −22.1238 −1.01941
\(472\) − 8.47683i − 0.390178i
\(473\) 17.2139i 0.791495i
\(474\) 19.4602 0.893837
\(475\) 0 0
\(476\) −3.72481 −0.170726
\(477\) − 3.77812i − 0.172988i
\(478\) − 0.892688i − 0.0408306i
\(479\) 16.3846 0.748634 0.374317 0.927301i \(-0.377877\pi\)
0.374317 + 0.927301i \(0.377877\pi\)
\(480\) 0 0
\(481\) −6.15801 −0.280781
\(482\) 41.6173i 1.89561i
\(483\) − 2.67451i − 0.121695i
\(484\) 4.45585 0.202539
\(485\) 0 0
\(486\) −28.8954 −1.31072
\(487\) 2.74404i 0.124344i 0.998065 + 0.0621722i \(0.0198028\pi\)
−0.998065 + 0.0621722i \(0.980197\pi\)
\(488\) − 4.83487i − 0.218864i
\(489\) 3.53483 0.159850
\(490\) 0 0
\(491\) 9.46362 0.427087 0.213544 0.976934i \(-0.431499\pi\)
0.213544 + 0.976934i \(0.431499\pi\)
\(492\) 10.8050i 0.487127i
\(493\) 1.40381i 0.0632244i
\(494\) 79.0361 3.55600
\(495\) 0 0
\(496\) 6.08013 0.273006
\(497\) 8.61857i 0.386595i
\(498\) 10.5144i 0.471160i
\(499\) 36.0076 1.61192 0.805960 0.591970i \(-0.201650\pi\)
0.805960 + 0.591970i \(0.201650\pi\)
\(500\) 0 0
\(501\) 7.52784 0.336319
\(502\) − 13.1575i − 0.587247i
\(503\) − 21.6537i − 0.965490i −0.875761 0.482745i \(-0.839640\pi\)
0.875761 0.482745i \(-0.160360\pi\)
\(504\) 2.57759 0.114815
\(505\) 0 0
\(506\) 7.63953 0.339619
\(507\) 28.2966i 1.25669i
\(508\) 4.59073i 0.203681i
\(509\) −16.5219 −0.732321 −0.366160 0.930552i \(-0.619328\pi\)
−0.366160 + 0.930552i \(0.619328\pi\)
\(510\) 0 0
\(511\) 9.49679 0.420113
\(512\) − 25.7034i − 1.13594i
\(513\) 35.5281i 1.56860i
\(514\) 10.0856 0.444857
\(515\) 0 0
\(516\) 10.3180 0.454226
\(517\) − 25.5918i − 1.12553i
\(518\) − 3.18852i − 0.140096i
\(519\) −3.82992 −0.168115
\(520\) 0 0
\(521\) 4.77373 0.209141 0.104571 0.994517i \(-0.466653\pi\)
0.104571 + 0.994517i \(0.466653\pi\)
\(522\) 3.37030i 0.147514i
\(523\) − 18.4589i − 0.807150i −0.914947 0.403575i \(-0.867767\pi\)
0.914947 0.403575i \(-0.132233\pi\)
\(524\) 32.5693 1.42280
\(525\) 0 0
\(526\) −16.1364 −0.703580
\(527\) 1.81807i 0.0791963i
\(528\) − 14.7360i − 0.641303i
\(529\) 20.9792 0.912141
\(530\) 0 0
\(531\) 17.9714 0.779894
\(532\) 17.8844i 0.775386i
\(533\) − 39.3318i − 1.70365i
\(534\) −3.64543 −0.157753
\(535\) 0 0
\(536\) −2.06872 −0.0893552
\(537\) − 25.6893i − 1.10857i
\(538\) − 13.8910i − 0.598885i
\(539\) −11.6306 −0.500966
\(540\) 0 0
\(541\) −43.5067 −1.87050 −0.935250 0.353989i \(-0.884825\pi\)
−0.935250 + 0.353989i \(0.884825\pi\)
\(542\) 10.3478i 0.444474i
\(543\) 3.67948i 0.157901i
\(544\) 10.0538 0.431054
\(545\) 0 0
\(546\) −22.0615 −0.944147
\(547\) 5.97641i 0.255533i 0.991804 + 0.127766i \(0.0407808\pi\)
−0.991804 + 0.127766i \(0.959219\pi\)
\(548\) 30.4219i 1.29956i
\(549\) 10.2502 0.437469
\(550\) 0 0
\(551\) 6.74028 0.287146
\(552\) 1.31988i 0.0561778i
\(553\) − 16.0293i − 0.681635i
\(554\) −45.2380 −1.92198
\(555\) 0 0
\(556\) −33.0466 −1.40149
\(557\) − 30.0628i − 1.27380i −0.770946 0.636900i \(-0.780216\pi\)
0.770946 0.636900i \(-0.219784\pi\)
\(558\) 4.36486i 0.184779i
\(559\) −37.5592 −1.58858
\(560\) 0 0
\(561\) 4.40634 0.186036
\(562\) − 18.9167i − 0.797954i
\(563\) − 18.5651i − 0.782425i −0.920300 0.391212i \(-0.872056\pi\)
0.920300 0.391212i \(-0.127944\pi\)
\(564\) −15.3398 −0.645922
\(565\) 0 0
\(566\) 15.8515 0.666288
\(567\) − 0.748851i − 0.0314488i
\(568\) − 4.25329i − 0.178464i
\(569\) 30.6606 1.28536 0.642679 0.766135i \(-0.277823\pi\)
0.642679 + 0.766135i \(0.277823\pi\)
\(570\) 0 0
\(571\) −6.78472 −0.283932 −0.141966 0.989872i \(-0.545342\pi\)
−0.141966 + 0.989872i \(0.545342\pi\)
\(572\) − 27.5396i − 1.15149i
\(573\) − 5.08568i − 0.212457i
\(574\) 20.3654 0.850034
\(575\) 0 0
\(576\) 7.34779 0.306158
\(577\) 27.7326i 1.15453i 0.816559 + 0.577263i \(0.195879\pi\)
−0.816559 + 0.577263i \(0.804121\pi\)
\(578\) − 28.3274i − 1.17827i
\(579\) −27.4136 −1.13927
\(580\) 0 0
\(581\) 8.66064 0.359304
\(582\) − 30.3010i − 1.25602i
\(583\) 6.02446i 0.249508i
\(584\) −4.68670 −0.193937
\(585\) 0 0
\(586\) 12.0359 0.497197
\(587\) − 16.6049i − 0.685359i −0.939452 0.342679i \(-0.888666\pi\)
0.939452 0.342679i \(-0.111334\pi\)
\(588\) 6.97142i 0.287497i
\(589\) 8.72932 0.359685
\(590\) 0 0
\(591\) −6.56459 −0.270031
\(592\) 4.64699i 0.190990i
\(593\) 20.5406i 0.843499i 0.906712 + 0.421750i \(0.138584\pi\)
−0.906712 + 0.421750i \(0.861416\pi\)
\(594\) 28.3272 1.16228
\(595\) 0 0
\(596\) −25.7908 −1.05643
\(597\) − 20.9197i − 0.856188i
\(598\) 16.6688i 0.681637i
\(599\) −31.3560 −1.28117 −0.640586 0.767886i \(-0.721309\pi\)
−0.640586 + 0.767886i \(0.721309\pi\)
\(600\) 0 0
\(601\) 14.3674 0.586057 0.293029 0.956104i \(-0.405337\pi\)
0.293029 + 0.956104i \(0.405337\pi\)
\(602\) − 19.4475i − 0.792623i
\(603\) − 4.38583i − 0.178605i
\(604\) −13.5801 −0.552566
\(605\) 0 0
\(606\) −32.9633 −1.33904
\(607\) 25.1167i 1.01945i 0.860336 + 0.509727i \(0.170254\pi\)
−0.860336 + 0.509727i \(0.829746\pi\)
\(608\) − 48.2726i − 1.95771i
\(609\) −1.88143 −0.0762394
\(610\) 0 0
\(611\) 55.8390 2.25901
\(612\) 3.89711i 0.157531i
\(613\) 36.4069i 1.47046i 0.677818 + 0.735230i \(0.262926\pi\)
−0.677818 + 0.735230i \(0.737074\pi\)
\(614\) 54.2020 2.18741
\(615\) 0 0
\(616\) −4.11013 −0.165602
\(617\) − 28.9915i − 1.16715i −0.812058 0.583576i \(-0.801653\pi\)
0.812058 0.583576i \(-0.198347\pi\)
\(618\) 24.1356i 0.970874i
\(619\) 38.6097 1.55185 0.775927 0.630823i \(-0.217283\pi\)
0.775927 + 0.630823i \(0.217283\pi\)
\(620\) 0 0
\(621\) −7.49290 −0.300680
\(622\) − 7.92494i − 0.317761i
\(623\) 3.00273i 0.120302i
\(624\) 32.1527 1.28714
\(625\) 0 0
\(626\) 34.3549 1.37310
\(627\) − 21.1567i − 0.844917i
\(628\) 31.2009i 1.24505i
\(629\) −1.38953 −0.0554043
\(630\) 0 0
\(631\) 12.4946 0.497401 0.248700 0.968580i \(-0.419997\pi\)
0.248700 + 0.968580i \(0.419997\pi\)
\(632\) 7.91050i 0.314663i
\(633\) 9.47034i 0.376412i
\(634\) 25.3683 1.00750
\(635\) 0 0
\(636\) 3.61108 0.143189
\(637\) − 25.3770i − 1.00547i
\(638\) − 5.37416i − 0.212765i
\(639\) 9.01725 0.356717
\(640\) 0 0
\(641\) 18.6523 0.736723 0.368361 0.929683i \(-0.379919\pi\)
0.368361 + 0.929683i \(0.379919\pi\)
\(642\) − 27.1575i − 1.07182i
\(643\) − 9.99161i − 0.394030i −0.980400 0.197015i \(-0.936875\pi\)
0.980400 0.197015i \(-0.0631248\pi\)
\(644\) −3.77183 −0.148631
\(645\) 0 0
\(646\) 17.8342 0.701677
\(647\) − 6.59170i − 0.259146i −0.991570 0.129573i \(-0.958639\pi\)
0.991570 0.129573i \(-0.0413607\pi\)
\(648\) 0.369561i 0.0145177i
\(649\) −28.6566 −1.12487
\(650\) 0 0
\(651\) −2.43664 −0.0954993
\(652\) − 4.98512i − 0.195232i
\(653\) 47.5008i 1.85885i 0.369011 + 0.929425i \(0.379696\pi\)
−0.369011 + 0.929425i \(0.620304\pi\)
\(654\) 21.9178 0.857054
\(655\) 0 0
\(656\) −29.6807 −1.15884
\(657\) − 9.93610i − 0.387644i
\(658\) 28.9126i 1.12713i
\(659\) −32.7065 −1.27407 −0.637033 0.770837i \(-0.719838\pi\)
−0.637033 + 0.770837i \(0.719838\pi\)
\(660\) 0 0
\(661\) −37.6003 −1.46248 −0.731242 0.682119i \(-0.761059\pi\)
−0.731242 + 0.682119i \(0.761059\pi\)
\(662\) − 28.7436i − 1.11715i
\(663\) 9.61424i 0.373386i
\(664\) −4.27405 −0.165866
\(665\) 0 0
\(666\) −3.33602 −0.129268
\(667\) 1.42153i 0.0550419i
\(668\) − 10.6164i − 0.410762i
\(669\) 8.55923 0.330919
\(670\) 0 0
\(671\) −16.3447 −0.630979
\(672\) 13.4745i 0.519788i
\(673\) − 47.2395i − 1.82095i −0.413564 0.910475i \(-0.635716\pi\)
0.413564 0.910475i \(-0.364284\pi\)
\(674\) −9.56450 −0.368411
\(675\) 0 0
\(676\) 39.9063 1.53486
\(677\) 17.3323i 0.666134i 0.942903 + 0.333067i \(0.108083\pi\)
−0.942903 + 0.333067i \(0.891917\pi\)
\(678\) − 38.3754i − 1.47380i
\(679\) −24.9588 −0.957830
\(680\) 0 0
\(681\) −12.5837 −0.482209
\(682\) − 6.96005i − 0.266514i
\(683\) − 4.70774i − 0.180137i −0.995936 0.0900683i \(-0.971291\pi\)
0.995936 0.0900683i \(-0.0287085\pi\)
\(684\) 18.7117 0.715459
\(685\) 0 0
\(686\) 35.6888 1.36260
\(687\) − 6.76890i − 0.258250i
\(688\) 28.3431i 1.08057i
\(689\) −13.1449 −0.500779
\(690\) 0 0
\(691\) −2.88811 −0.109869 −0.0549345 0.998490i \(-0.517495\pi\)
−0.0549345 + 0.998490i \(0.517495\pi\)
\(692\) 5.40129i 0.205326i
\(693\) − 8.71374i − 0.331008i
\(694\) 52.8475 2.00606
\(695\) 0 0
\(696\) 0.928492 0.0351944
\(697\) − 8.87506i − 0.336167i
\(698\) − 52.3524i − 1.98157i
\(699\) 0.913422 0.0345488
\(700\) 0 0
\(701\) 39.1914 1.48024 0.740120 0.672475i \(-0.234769\pi\)
0.740120 + 0.672475i \(0.234769\pi\)
\(702\) 61.8075i 2.33277i
\(703\) 6.67173i 0.251629i
\(704\) −11.7165 −0.441584
\(705\) 0 0
\(706\) 59.2251 2.22897
\(707\) 27.1517i 1.02115i
\(708\) 17.1769i 0.645546i
\(709\) −35.0367 −1.31583 −0.657915 0.753092i \(-0.728561\pi\)
−0.657915 + 0.753092i \(0.728561\pi\)
\(710\) 0 0
\(711\) −16.7708 −0.628954
\(712\) − 1.48185i − 0.0555349i
\(713\) 1.84102i 0.0689468i
\(714\) −4.97810 −0.186301
\(715\) 0 0
\(716\) −36.2293 −1.35395
\(717\) − 0.521385i − 0.0194715i
\(718\) 50.9264i 1.90056i
\(719\) −9.93705 −0.370590 −0.185295 0.982683i \(-0.559324\pi\)
−0.185295 + 0.982683i \(0.559324\pi\)
\(720\) 0 0
\(721\) 19.8804 0.740383
\(722\) − 49.8182i − 1.85404i
\(723\) 24.3071i 0.903990i
\(724\) 5.18912 0.192852
\(725\) 0 0
\(726\) 5.95513 0.221015
\(727\) 2.37679i 0.0881504i 0.999028 + 0.0440752i \(0.0140341\pi\)
−0.999028 + 0.0440752i \(0.985966\pi\)
\(728\) − 8.96793i − 0.332374i
\(729\) −18.1912 −0.673748
\(730\) 0 0
\(731\) −8.47508 −0.313462
\(732\) 9.79703i 0.362109i
\(733\) 32.6214i 1.20490i 0.798157 + 0.602450i \(0.205809\pi\)
−0.798157 + 0.602450i \(0.794191\pi\)
\(734\) −38.3075 −1.41396
\(735\) 0 0
\(736\) 10.1807 0.375267
\(737\) 6.99349i 0.257608i
\(738\) − 21.3075i − 0.784338i
\(739\) −16.6544 −0.612642 −0.306321 0.951928i \(-0.599098\pi\)
−0.306321 + 0.951928i \(0.599098\pi\)
\(740\) 0 0
\(741\) 46.1620 1.69580
\(742\) − 6.80620i − 0.249863i
\(743\) 35.2240i 1.29224i 0.763235 + 0.646121i \(0.223610\pi\)
−0.763235 + 0.646121i \(0.776390\pi\)
\(744\) 1.20249 0.0440853
\(745\) 0 0
\(746\) −30.1050 −1.10222
\(747\) − 9.06128i − 0.331535i
\(748\) − 6.21420i − 0.227214i
\(749\) −22.3695 −0.817364
\(750\) 0 0
\(751\) −46.9948 −1.71487 −0.857433 0.514596i \(-0.827942\pi\)
−0.857433 + 0.514596i \(0.827942\pi\)
\(752\) − 42.1375i − 1.53660i
\(753\) − 7.68479i − 0.280049i
\(754\) 11.7259 0.427034
\(755\) 0 0
\(756\) −13.9859 −0.508661
\(757\) 16.5681i 0.602179i 0.953596 + 0.301089i \(0.0973502\pi\)
−0.953596 + 0.301089i \(0.902650\pi\)
\(758\) 55.5718i 2.01846i
\(759\) 4.46196 0.161959
\(760\) 0 0
\(761\) 43.1593 1.56453 0.782263 0.622949i \(-0.214066\pi\)
0.782263 + 0.622949i \(0.214066\pi\)
\(762\) 6.13538i 0.222262i
\(763\) − 18.0536i − 0.653585i
\(764\) −7.17226 −0.259483
\(765\) 0 0
\(766\) 66.2277 2.39290
\(767\) − 62.5262i − 2.25769i
\(768\) − 22.6970i − 0.819007i
\(769\) 16.7337 0.603434 0.301717 0.953398i \(-0.402440\pi\)
0.301717 + 0.953398i \(0.402440\pi\)
\(770\) 0 0
\(771\) 5.89062 0.212145
\(772\) 38.6611i 1.39144i
\(773\) − 8.41758i − 0.302759i −0.988476 0.151380i \(-0.951628\pi\)
0.988476 0.151380i \(-0.0483716\pi\)
\(774\) −20.3472 −0.731364
\(775\) 0 0
\(776\) 12.3172 0.442163
\(777\) − 1.86230i − 0.0668095i
\(778\) 53.4864i 1.91758i
\(779\) −42.6129 −1.52677
\(780\) 0 0
\(781\) −14.3786 −0.514507
\(782\) 3.76125i 0.134502i
\(783\) 5.27100i 0.188370i
\(784\) −19.1501 −0.683932
\(785\) 0 0
\(786\) 43.5280 1.55259
\(787\) 50.6781i 1.80648i 0.429136 + 0.903240i \(0.358818\pi\)
−0.429136 + 0.903240i \(0.641182\pi\)
\(788\) 9.25795i 0.329801i
\(789\) −9.42465 −0.335527
\(790\) 0 0
\(791\) −31.6097 −1.12391
\(792\) 4.30026i 0.152803i
\(793\) − 35.6626i − 1.26642i
\(794\) 46.2598 1.64170
\(795\) 0 0
\(796\) −29.5028 −1.04570
\(797\) − 21.8932i − 0.775498i −0.921765 0.387749i \(-0.873253\pi\)
0.921765 0.387749i \(-0.126747\pi\)
\(798\) 23.9020i 0.846121i
\(799\) 12.5999 0.445751
\(800\) 0 0
\(801\) 3.14163 0.111004
\(802\) − 9.34509i − 0.329987i
\(803\) 15.8438i 0.559114i
\(804\) 4.19191 0.147837
\(805\) 0 0
\(806\) 15.1862 0.534912
\(807\) − 8.11323i − 0.285599i
\(808\) − 13.3995i − 0.471391i
\(809\) 8.70213 0.305951 0.152975 0.988230i \(-0.451115\pi\)
0.152975 + 0.988230i \(0.451115\pi\)
\(810\) 0 0
\(811\) 39.0632 1.37170 0.685848 0.727745i \(-0.259431\pi\)
0.685848 + 0.727745i \(0.259431\pi\)
\(812\) 2.65336i 0.0931146i
\(813\) 6.04374i 0.211963i
\(814\) 5.31950 0.186448
\(815\) 0 0
\(816\) 7.25514 0.253981
\(817\) 40.6925i 1.42365i
\(818\) − 55.8563i − 1.95297i
\(819\) 19.0126 0.664354
\(820\) 0 0
\(821\) 16.7509 0.584612 0.292306 0.956325i \(-0.405577\pi\)
0.292306 + 0.956325i \(0.405577\pi\)
\(822\) 40.6581i 1.41811i
\(823\) − 38.3755i − 1.33768i −0.743405 0.668842i \(-0.766790\pi\)
0.743405 0.668842i \(-0.233210\pi\)
\(824\) −9.81101 −0.341783
\(825\) 0 0
\(826\) 32.3751 1.12647
\(827\) 6.70137i 0.233029i 0.993189 + 0.116515i \(0.0371722\pi\)
−0.993189 + 0.116515i \(0.962828\pi\)
\(828\) 3.94631i 0.137144i
\(829\) −7.98795 −0.277433 −0.138716 0.990332i \(-0.544298\pi\)
−0.138716 + 0.990332i \(0.544298\pi\)
\(830\) 0 0
\(831\) −26.4218 −0.916562
\(832\) − 25.5644i − 0.886288i
\(833\) − 5.72622i − 0.198402i
\(834\) −44.1659 −1.52934
\(835\) 0 0
\(836\) −29.8370 −1.03193
\(837\) 6.82646i 0.235957i
\(838\) 51.1543i 1.76710i
\(839\) 13.9407 0.481286 0.240643 0.970614i \(-0.422642\pi\)
0.240643 + 0.970614i \(0.422642\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) 50.9483i 1.75580i
\(843\) − 11.0485i − 0.380532i
\(844\) 13.3559 0.459729
\(845\) 0 0
\(846\) 30.2501 1.04002
\(847\) − 4.90521i − 0.168545i
\(848\) 9.91943i 0.340635i
\(849\) 9.25827 0.317743
\(850\) 0 0
\(851\) −1.40707 −0.0482339
\(852\) 8.61857i 0.295267i
\(853\) 5.78046i 0.197919i 0.995091 + 0.0989597i \(0.0315515\pi\)
−0.995091 + 0.0989597i \(0.968449\pi\)
\(854\) 18.4655 0.631878
\(855\) 0 0
\(856\) 11.0394 0.377319
\(857\) − 33.2410i − 1.13549i −0.823205 0.567745i \(-0.807816\pi\)
0.823205 0.567745i \(-0.192184\pi\)
\(858\) − 36.8059i − 1.25653i
\(859\) −1.19425 −0.0407473 −0.0203736 0.999792i \(-0.506486\pi\)
−0.0203736 + 0.999792i \(0.506486\pi\)
\(860\) 0 0
\(861\) 11.8947 0.405369
\(862\) 52.3028i 1.78144i
\(863\) 42.0216i 1.43043i 0.698904 + 0.715215i \(0.253671\pi\)
−0.698904 + 0.715215i \(0.746329\pi\)
\(864\) 37.7499 1.28428
\(865\) 0 0
\(866\) 27.0483 0.919138
\(867\) − 16.5450i − 0.561897i
\(868\) 3.43635i 0.116637i
\(869\) 26.7421 0.907164
\(870\) 0 0
\(871\) −15.2592 −0.517037
\(872\) 8.90951i 0.301714i
\(873\) 26.1134i 0.883803i
\(874\) 18.0593 0.610866
\(875\) 0 0
\(876\) 9.49679 0.320867
\(877\) − 22.8893i − 0.772917i −0.922307 0.386458i \(-0.873698\pi\)
0.922307 0.386458i \(-0.126302\pi\)
\(878\) 35.9132i 1.21201i
\(879\) 7.02969 0.237106
\(880\) 0 0
\(881\) 13.6751 0.460727 0.230363 0.973105i \(-0.426009\pi\)
0.230363 + 0.973105i \(0.426009\pi\)
\(882\) − 13.7476i − 0.462907i
\(883\) − 1.49072i − 0.0501668i −0.999685 0.0250834i \(-0.992015\pi\)
0.999685 0.0250834i \(-0.00798513\pi\)
\(884\) 13.5588 0.456033
\(885\) 0 0
\(886\) −68.3757 −2.29713
\(887\) − 2.58705i − 0.0868646i −0.999056 0.0434323i \(-0.986171\pi\)
0.999056 0.0434323i \(-0.0138293\pi\)
\(888\) 0.919049i 0.0308413i
\(889\) 5.05369 0.169495
\(890\) 0 0
\(891\) 1.24933 0.0418541
\(892\) − 12.0710i − 0.404166i
\(893\) − 60.4973i − 2.02447i
\(894\) −34.4687 −1.15280
\(895\) 0 0
\(896\) −11.2433 −0.375612
\(897\) 9.73561i 0.325063i
\(898\) 5.73514i 0.191384i
\(899\) 1.29510 0.0431939
\(900\) 0 0
\(901\) −2.96609 −0.0988146
\(902\) 33.9761i 1.13128i
\(903\) − 11.3586i − 0.377990i
\(904\) 15.5995 0.518831
\(905\) 0 0
\(906\) −18.1494 −0.602974
\(907\) 18.3747i 0.610121i 0.952333 + 0.305060i \(0.0986767\pi\)
−0.952333 + 0.305060i \(0.901323\pi\)
\(908\) 17.7467i 0.588944i
\(909\) 28.4077 0.942225
\(910\) 0 0
\(911\) 32.8875 1.08961 0.544806 0.838562i \(-0.316603\pi\)
0.544806 + 0.838562i \(0.316603\pi\)
\(912\) − 34.8350i − 1.15350i
\(913\) 14.4488i 0.478185i
\(914\) −46.7843 −1.54749
\(915\) 0 0
\(916\) −9.54608 −0.315412
\(917\) − 35.8538i − 1.18400i
\(918\) 13.9466i 0.460307i
\(919\) −28.2361 −0.931422 −0.465711 0.884937i \(-0.654201\pi\)
−0.465711 + 0.884937i \(0.654201\pi\)
\(920\) 0 0
\(921\) 31.6573 1.04314
\(922\) 26.7006i 0.879337i
\(923\) − 31.3728i − 1.03265i
\(924\) 8.32847 0.273987
\(925\) 0 0
\(926\) −17.0300 −0.559640
\(927\) − 20.8000i − 0.683162i
\(928\) − 7.16181i − 0.235098i
\(929\) 44.5794 1.46260 0.731301 0.682055i \(-0.238913\pi\)
0.731301 + 0.682055i \(0.238913\pi\)
\(930\) 0 0
\(931\) −27.4940 −0.901080
\(932\) − 1.28819i − 0.0421960i
\(933\) − 4.62866i − 0.151536i
\(934\) −9.95886 −0.325864
\(935\) 0 0
\(936\) −9.38278 −0.306686
\(937\) − 47.0602i − 1.53739i −0.639615 0.768695i \(-0.720906\pi\)
0.639615 0.768695i \(-0.279094\pi\)
\(938\) − 7.90096i − 0.257976i
\(939\) 20.0654 0.654809
\(940\) 0 0
\(941\) −45.5100 −1.48358 −0.741792 0.670630i \(-0.766024\pi\)
−0.741792 + 0.670630i \(0.766024\pi\)
\(942\) 41.6991i 1.35863i
\(943\) − 8.98710i − 0.292660i
\(944\) −47.1838 −1.53570
\(945\) 0 0
\(946\) 32.4449 1.05487
\(947\) 9.26597i 0.301104i 0.988602 + 0.150552i \(0.0481050\pi\)
−0.988602 + 0.150552i \(0.951895\pi\)
\(948\) − 16.0293i − 0.520607i
\(949\) −34.5697 −1.12218
\(950\) 0 0
\(951\) 14.8167 0.480463
\(952\) − 2.02358i − 0.0655846i
\(953\) 17.7750i 0.575788i 0.957662 + 0.287894i \(0.0929550\pi\)
−0.957662 + 0.287894i \(0.907045\pi\)
\(954\) −7.12105 −0.230552
\(955\) 0 0
\(956\) −0.735303 −0.0237814
\(957\) − 3.13884i − 0.101464i
\(958\) − 30.8820i − 0.997751i
\(959\) 33.4899 1.08145
\(960\) 0 0
\(961\) −29.3227 −0.945894
\(962\) 11.6067i 0.374215i
\(963\) 23.4043i 0.754193i
\(964\) 34.2800 1.10408
\(965\) 0 0
\(966\) −5.04095 −0.162190
\(967\) − 45.7913i − 1.47255i −0.676683 0.736275i \(-0.736583\pi\)
0.676683 0.736275i \(-0.263417\pi\)
\(968\) 2.42074i 0.0778054i
\(969\) 10.4163 0.334619
\(970\) 0 0
\(971\) −14.0095 −0.449587 −0.224794 0.974406i \(-0.572171\pi\)
−0.224794 + 0.974406i \(0.572171\pi\)
\(972\) 23.8010i 0.763418i
\(973\) 36.3793i 1.16627i
\(974\) 5.17199 0.165721
\(975\) 0 0
\(976\) −26.9119 −0.861428
\(977\) 51.0534i 1.63334i 0.577103 + 0.816671i \(0.304183\pi\)
−0.577103 + 0.816671i \(0.695817\pi\)
\(978\) − 6.66247i − 0.213042i
\(979\) −5.00953 −0.160105
\(980\) 0 0
\(981\) −18.8888 −0.603071
\(982\) − 17.8371i − 0.569206i
\(983\) − 4.02331i − 0.128324i −0.997940 0.0641618i \(-0.979563\pi\)
0.997940 0.0641618i \(-0.0204374\pi\)
\(984\) −5.87005 −0.187130
\(985\) 0 0
\(986\) 2.64591 0.0842630
\(987\) 16.8868i 0.537511i
\(988\) − 65.1017i − 2.07116i
\(989\) −8.58207 −0.272894
\(990\) 0 0
\(991\) −49.5829 −1.57505 −0.787526 0.616282i \(-0.788638\pi\)
−0.787526 + 0.616282i \(0.788638\pi\)
\(992\) − 9.27524i − 0.294489i
\(993\) − 16.7881i − 0.532753i
\(994\) 16.2444 0.515240
\(995\) 0 0
\(996\) 8.66064 0.274423
\(997\) 34.8740i 1.10447i 0.833688 + 0.552235i \(0.186225\pi\)
−0.833688 + 0.552235i \(0.813775\pi\)
\(998\) − 67.8674i − 2.14831i
\(999\) −5.21740 −0.165071
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.b.f.349.2 10
5.2 odd 4 725.2.a.h.1.5 5
5.3 odd 4 725.2.a.k.1.1 yes 5
5.4 even 2 inner 725.2.b.f.349.9 10
15.2 even 4 6525.2.a.bq.1.1 5
15.8 even 4 6525.2.a.bm.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.a.h.1.5 5 5.2 odd 4
725.2.a.k.1.1 yes 5 5.3 odd 4
725.2.b.f.349.2 10 1.1 even 1 trivial
725.2.b.f.349.9 10 5.4 even 2 inner
6525.2.a.bm.1.5 5 15.8 even 4
6525.2.a.bq.1.1 5 15.2 even 4