Properties

Label 6525.2.a.bm.1.5
Level $6525$
Weight $2$
Character 6525.1
Self dual yes
Analytic conductor $52.102$
Analytic rank $0$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [6525,2,Mod(1,6525)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("6525.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6525, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 6525 = 3^{2} \cdot 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 6525.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [5,-2,0,4,0,0,6,-3,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(52.1023873189\)
Analytic rank: \(0\)
Dimension: \(5\)
Coefficient field: 5.5.240881.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - 2x^{4} - 5x^{3} + 9x^{2} + 5x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 725)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(-1.88481\) of defining polynomial
Character \(\chi\) \(=\) 6525.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.88481 q^{2} +1.55251 q^{4} +1.70908 q^{7} -0.843434 q^{8} +2.85130 q^{11} +6.22128 q^{13} +3.22128 q^{14} -4.69473 q^{16} +1.40381 q^{17} +6.74028 q^{19} +5.37416 q^{22} -1.42153 q^{23} +11.7259 q^{26} +2.65336 q^{28} -1.00000 q^{29} -1.29510 q^{31} -7.16181 q^{32} +2.64591 q^{34} -0.989830 q^{37} +12.7042 q^{38} -6.32213 q^{41} +6.03720 q^{43} +4.42667 q^{44} -2.67932 q^{46} -8.97549 q^{47} -4.07906 q^{49} +9.65860 q^{52} -2.11288 q^{53} -1.44149 q^{56} -1.88481 q^{58} +10.0504 q^{59} +5.73236 q^{61} -2.44101 q^{62} -4.10919 q^{64} -2.45274 q^{67} +2.17943 q^{68} -5.04282 q^{71} +5.55668 q^{73} -1.86564 q^{74} +10.4644 q^{76} +4.87309 q^{77} +9.37892 q^{79} -11.9160 q^{82} -5.06744 q^{83} +11.3790 q^{86} -2.40488 q^{88} +1.75693 q^{89} +10.6326 q^{91} -2.20694 q^{92} -16.9171 q^{94} +14.6037 q^{97} -7.68825 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 2 q^{2} + 4 q^{4} + 6 q^{7} - 3 q^{8} + 2 q^{11} + 4 q^{13} - 11 q^{14} - 10 q^{16} - 9 q^{17} + 2 q^{19} + 4 q^{22} - q^{23} + 16 q^{26} + 10 q^{28} - 5 q^{29} - q^{31} + 2 q^{32} + 3 q^{34} + 14 q^{37}+ \cdots - 3 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.88481 1.33276 0.666381 0.745611i \(-0.267842\pi\)
0.666381 + 0.745611i \(0.267842\pi\)
\(3\) 0 0
\(4\) 1.55251 0.776255
\(5\) 0 0
\(6\) 0 0
\(7\) 1.70908 0.645970 0.322985 0.946404i \(-0.395314\pi\)
0.322985 + 0.946404i \(0.395314\pi\)
\(8\) −0.843434 −0.298199
\(9\) 0 0
\(10\) 0 0
\(11\) 2.85130 0.859699 0.429849 0.902901i \(-0.358567\pi\)
0.429849 + 0.902901i \(0.358567\pi\)
\(12\) 0 0
\(13\) 6.22128 1.72547 0.862737 0.505653i \(-0.168748\pi\)
0.862737 + 0.505653i \(0.168748\pi\)
\(14\) 3.22128 0.860924
\(15\) 0 0
\(16\) −4.69473 −1.17368
\(17\) 1.40381 0.340474 0.170237 0.985403i \(-0.445547\pi\)
0.170237 + 0.985403i \(0.445547\pi\)
\(18\) 0 0
\(19\) 6.74028 1.54633 0.773163 0.634207i \(-0.218673\pi\)
0.773163 + 0.634207i \(0.218673\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 5.37416 1.14577
\(23\) −1.42153 −0.296410 −0.148205 0.988957i \(-0.547349\pi\)
−0.148205 + 0.988957i \(0.547349\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 11.7259 2.29965
\(27\) 0 0
\(28\) 2.65336 0.501437
\(29\) −1.00000 −0.185695
\(30\) 0 0
\(31\) −1.29510 −0.232606 −0.116303 0.993214i \(-0.537104\pi\)
−0.116303 + 0.993214i \(0.537104\pi\)
\(32\) −7.16181 −1.26604
\(33\) 0 0
\(34\) 2.64591 0.453770
\(35\) 0 0
\(36\) 0 0
\(37\) −0.989830 −0.162727 −0.0813635 0.996684i \(-0.525927\pi\)
−0.0813635 + 0.996684i \(0.525927\pi\)
\(38\) 12.7042 2.06089
\(39\) 0 0
\(40\) 0 0
\(41\) −6.32213 −0.987351 −0.493675 0.869646i \(-0.664347\pi\)
−0.493675 + 0.869646i \(0.664347\pi\)
\(42\) 0 0
\(43\) 6.03720 0.920665 0.460332 0.887747i \(-0.347730\pi\)
0.460332 + 0.887747i \(0.347730\pi\)
\(44\) 4.42667 0.667346
\(45\) 0 0
\(46\) −2.67932 −0.395044
\(47\) −8.97549 −1.30921 −0.654605 0.755971i \(-0.727165\pi\)
−0.654605 + 0.755971i \(0.727165\pi\)
\(48\) 0 0
\(49\) −4.07906 −0.582723
\(50\) 0 0
\(51\) 0 0
\(52\) 9.65860 1.33941
\(53\) −2.11288 −0.290227 −0.145113 0.989415i \(-0.546355\pi\)
−0.145113 + 0.989415i \(0.546355\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −1.44149 −0.192628
\(57\) 0 0
\(58\) −1.88481 −0.247488
\(59\) 10.0504 1.30845 0.654224 0.756301i \(-0.272995\pi\)
0.654224 + 0.756301i \(0.272995\pi\)
\(60\) 0 0
\(61\) 5.73236 0.733953 0.366977 0.930230i \(-0.380393\pi\)
0.366977 + 0.930230i \(0.380393\pi\)
\(62\) −2.44101 −0.310009
\(63\) 0 0
\(64\) −4.10919 −0.513649
\(65\) 0 0
\(66\) 0 0
\(67\) −2.45274 −0.299650 −0.149825 0.988713i \(-0.547871\pi\)
−0.149825 + 0.988713i \(0.547871\pi\)
\(68\) 2.17943 0.264294
\(69\) 0 0
\(70\) 0 0
\(71\) −5.04282 −0.598473 −0.299236 0.954179i \(-0.596732\pi\)
−0.299236 + 0.954179i \(0.596732\pi\)
\(72\) 0 0
\(73\) 5.55668 0.650360 0.325180 0.945652i \(-0.394575\pi\)
0.325180 + 0.945652i \(0.394575\pi\)
\(74\) −1.86564 −0.216876
\(75\) 0 0
\(76\) 10.4644 1.20034
\(77\) 4.87309 0.555340
\(78\) 0 0
\(79\) 9.37892 1.05521 0.527606 0.849489i \(-0.323090\pi\)
0.527606 + 0.849489i \(0.323090\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) −11.9160 −1.31590
\(83\) −5.06744 −0.556224 −0.278112 0.960549i \(-0.589709\pi\)
−0.278112 + 0.960549i \(0.589709\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 11.3790 1.22703
\(87\) 0 0
\(88\) −2.40488 −0.256361
\(89\) 1.75693 0.186234 0.0931171 0.995655i \(-0.470317\pi\)
0.0931171 + 0.995655i \(0.470317\pi\)
\(90\) 0 0
\(91\) 10.6326 1.11460
\(92\) −2.20694 −0.230089
\(93\) 0 0
\(94\) −16.9171 −1.74486
\(95\) 0 0
\(96\) 0 0
\(97\) 14.6037 1.48278 0.741389 0.671075i \(-0.234167\pi\)
0.741389 + 0.671075i \(0.234167\pi\)
\(98\) −7.68825 −0.776631
\(99\) 0 0
\(100\) 0 0
\(101\) −15.8868 −1.58079 −0.790397 0.612595i \(-0.790126\pi\)
−0.790397 + 0.612595i \(0.790126\pi\)
\(102\) 0 0
\(103\) 11.6322 1.14616 0.573079 0.819500i \(-0.305749\pi\)
0.573079 + 0.819500i \(0.305749\pi\)
\(104\) −5.24724 −0.514534
\(105\) 0 0
\(106\) −3.98239 −0.386804
\(107\) −13.0887 −1.26533 −0.632664 0.774426i \(-0.718039\pi\)
−0.632664 + 0.774426i \(0.718039\pi\)
\(108\) 0 0
\(109\) 10.5634 1.01179 0.505894 0.862596i \(-0.331163\pi\)
0.505894 + 0.862596i \(0.331163\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −8.02365 −0.758164
\(113\) 18.4952 1.73988 0.869940 0.493157i \(-0.164157\pi\)
0.869940 + 0.493157i \(0.164157\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −1.55251 −0.144147
\(117\) 0 0
\(118\) 18.9430 1.74385
\(119\) 2.39922 0.219936
\(120\) 0 0
\(121\) −2.87010 −0.260918
\(122\) 10.8044 0.978185
\(123\) 0 0
\(124\) −2.01065 −0.180562
\(125\) 0 0
\(126\) 0 0
\(127\) −2.95697 −0.262389 −0.131194 0.991357i \(-0.541881\pi\)
−0.131194 + 0.991357i \(0.541881\pi\)
\(128\) 6.57858 0.581470
\(129\) 0 0
\(130\) 0 0
\(131\) 20.9785 1.83290 0.916450 0.400150i \(-0.131042\pi\)
0.916450 + 0.400150i \(0.131042\pi\)
\(132\) 0 0
\(133\) 11.5197 0.998880
\(134\) −4.62294 −0.399362
\(135\) 0 0
\(136\) −1.18402 −0.101529
\(137\) 19.5953 1.67414 0.837071 0.547094i \(-0.184266\pi\)
0.837071 + 0.547094i \(0.184266\pi\)
\(138\) 0 0
\(139\) −21.2859 −1.80545 −0.902725 0.430218i \(-0.858437\pi\)
−0.902725 + 0.430218i \(0.858437\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −9.50476 −0.797622
\(143\) 17.7387 1.48339
\(144\) 0 0
\(145\) 0 0
\(146\) 10.4733 0.866776
\(147\) 0 0
\(148\) −1.53672 −0.126318
\(149\) 16.6123 1.36093 0.680466 0.732779i \(-0.261777\pi\)
0.680466 + 0.732779i \(0.261777\pi\)
\(150\) 0 0
\(151\) 8.74718 0.711835 0.355918 0.934517i \(-0.384168\pi\)
0.355918 + 0.934517i \(0.384168\pi\)
\(152\) −5.68498 −0.461113
\(153\) 0 0
\(154\) 9.18484 0.740136
\(155\) 0 0
\(156\) 0 0
\(157\) −20.0971 −1.60392 −0.801960 0.597378i \(-0.796209\pi\)
−0.801960 + 0.597378i \(0.796209\pi\)
\(158\) 17.6775 1.40635
\(159\) 0 0
\(160\) 0 0
\(161\) −2.42950 −0.191472
\(162\) 0 0
\(163\) −3.21100 −0.251505 −0.125753 0.992062i \(-0.540135\pi\)
−0.125753 + 0.992062i \(0.540135\pi\)
\(164\) −9.81517 −0.766436
\(165\) 0 0
\(166\) −9.55117 −0.741315
\(167\) −6.83823 −0.529158 −0.264579 0.964364i \(-0.585233\pi\)
−0.264579 + 0.964364i \(0.585233\pi\)
\(168\) 0 0
\(169\) 25.7044 1.97726
\(170\) 0 0
\(171\) 0 0
\(172\) 9.37282 0.714671
\(173\) −3.47907 −0.264509 −0.132254 0.991216i \(-0.542222\pi\)
−0.132254 + 0.991216i \(0.542222\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −13.3861 −1.00901
\(177\) 0 0
\(178\) 3.31148 0.248206
\(179\) 23.3359 1.74421 0.872105 0.489319i \(-0.162755\pi\)
0.872105 + 0.489319i \(0.162755\pi\)
\(180\) 0 0
\(181\) −3.34240 −0.248439 −0.124219 0.992255i \(-0.539643\pi\)
−0.124219 + 0.992255i \(0.539643\pi\)
\(182\) 20.0405 1.48550
\(183\) 0 0
\(184\) 1.19897 0.0883891
\(185\) 0 0
\(186\) 0 0
\(187\) 4.00268 0.292705
\(188\) −13.9345 −1.01628
\(189\) 0 0
\(190\) 0 0
\(191\) −4.61979 −0.334276 −0.167138 0.985934i \(-0.553453\pi\)
−0.167138 + 0.985934i \(0.553453\pi\)
\(192\) 0 0
\(193\) 24.9023 1.79251 0.896254 0.443542i \(-0.146278\pi\)
0.896254 + 0.443542i \(0.146278\pi\)
\(194\) 27.5252 1.97619
\(195\) 0 0
\(196\) −6.33278 −0.452342
\(197\) 5.96322 0.424862 0.212431 0.977176i \(-0.431862\pi\)
0.212431 + 0.977176i \(0.431862\pi\)
\(198\) 0 0
\(199\) −19.0033 −1.34711 −0.673555 0.739137i \(-0.735233\pi\)
−0.673555 + 0.739137i \(0.735233\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) −29.9436 −2.10682
\(203\) −1.70908 −0.119954
\(204\) 0 0
\(205\) 0 0
\(206\) 21.9245 1.52755
\(207\) 0 0
\(208\) −29.2073 −2.02516
\(209\) 19.2186 1.32938
\(210\) 0 0
\(211\) −8.60278 −0.592240 −0.296120 0.955151i \(-0.595693\pi\)
−0.296120 + 0.955151i \(0.595693\pi\)
\(212\) −3.28027 −0.225290
\(213\) 0 0
\(214\) −24.6696 −1.68638
\(215\) 0 0
\(216\) 0 0
\(217\) −2.21342 −0.150257
\(218\) 19.9100 1.34847
\(219\) 0 0
\(220\) 0 0
\(221\) 8.73349 0.587478
\(222\) 0 0
\(223\) −7.77513 −0.520661 −0.260331 0.965520i \(-0.583832\pi\)
−0.260331 + 0.965520i \(0.583832\pi\)
\(224\) −12.2401 −0.817825
\(225\) 0 0
\(226\) 34.8599 2.31885
\(227\) 11.4310 0.758699 0.379349 0.925253i \(-0.376148\pi\)
0.379349 + 0.925253i \(0.376148\pi\)
\(228\) 0 0
\(229\) −6.14881 −0.406325 −0.203162 0.979145i \(-0.565122\pi\)
−0.203162 + 0.979145i \(0.565122\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0.843434 0.0553742
\(233\) 0.829745 0.0543584 0.0271792 0.999631i \(-0.491348\pi\)
0.0271792 + 0.999631i \(0.491348\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 15.6033 1.01569
\(237\) 0 0
\(238\) 4.52207 0.293122
\(239\) 0.473622 0.0306361 0.0153180 0.999883i \(-0.495124\pi\)
0.0153180 + 0.999883i \(0.495124\pi\)
\(240\) 0 0
\(241\) −22.0803 −1.42232 −0.711160 0.703030i \(-0.751830\pi\)
−0.711160 + 0.703030i \(0.751830\pi\)
\(242\) −5.40958 −0.347741
\(243\) 0 0
\(244\) 8.89954 0.569735
\(245\) 0 0
\(246\) 0 0
\(247\) 41.9332 2.66815
\(248\) 1.09233 0.0693630
\(249\) 0 0
\(250\) 0 0
\(251\) −6.98079 −0.440624 −0.220312 0.975429i \(-0.570708\pi\)
−0.220312 + 0.975429i \(0.570708\pi\)
\(252\) 0 0
\(253\) −4.05321 −0.254823
\(254\) −5.57333 −0.349702
\(255\) 0 0
\(256\) 20.6178 1.28861
\(257\) −5.35099 −0.333785 −0.166893 0.985975i \(-0.553373\pi\)
−0.166893 + 0.985975i \(0.553373\pi\)
\(258\) 0 0
\(259\) −1.69169 −0.105117
\(260\) 0 0
\(261\) 0 0
\(262\) 39.5405 2.44282
\(263\) −8.56128 −0.527911 −0.263955 0.964535i \(-0.585027\pi\)
−0.263955 + 0.964535i \(0.585027\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 21.7124 1.33127
\(267\) 0 0
\(268\) −3.80790 −0.232604
\(269\) 7.36998 0.449356 0.224678 0.974433i \(-0.427867\pi\)
0.224678 + 0.974433i \(0.427867\pi\)
\(270\) 0 0
\(271\) −5.49008 −0.333499 −0.166749 0.985999i \(-0.553327\pi\)
−0.166749 + 0.985999i \(0.553327\pi\)
\(272\) −6.59051 −0.399608
\(273\) 0 0
\(274\) 36.9335 2.23123
\(275\) 0 0
\(276\) 0 0
\(277\) −24.0013 −1.44210 −0.721051 0.692882i \(-0.756341\pi\)
−0.721051 + 0.692882i \(0.756341\pi\)
\(278\) −40.1200 −2.40624
\(279\) 0 0
\(280\) 0 0
\(281\) −10.0364 −0.598722 −0.299361 0.954140i \(-0.596773\pi\)
−0.299361 + 0.954140i \(0.596773\pi\)
\(282\) 0 0
\(283\) −8.41013 −0.499930 −0.249965 0.968255i \(-0.580419\pi\)
−0.249965 + 0.968255i \(0.580419\pi\)
\(284\) −7.82903 −0.464568
\(285\) 0 0
\(286\) 33.4342 1.97700
\(287\) −10.8050 −0.637799
\(288\) 0 0
\(289\) −15.0293 −0.884078
\(290\) 0 0
\(291\) 0 0
\(292\) 8.62680 0.504846
\(293\) 6.38571 0.373057 0.186529 0.982450i \(-0.440276\pi\)
0.186529 + 0.982450i \(0.440276\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0.834856 0.0485250
\(297\) 0 0
\(298\) 31.3110 1.81380
\(299\) −8.84375 −0.511447
\(300\) 0 0
\(301\) 10.3180 0.594722
\(302\) 16.4868 0.948707
\(303\) 0 0
\(304\) −31.6438 −1.81490
\(305\) 0 0
\(306\) 0 0
\(307\) 28.7573 1.64126 0.820632 0.571458i \(-0.193622\pi\)
0.820632 + 0.571458i \(0.193622\pi\)
\(308\) 7.56551 0.431085
\(309\) 0 0
\(310\) 0 0
\(311\) −4.20464 −0.238423 −0.119211 0.992869i \(-0.538037\pi\)
−0.119211 + 0.992869i \(0.538037\pi\)
\(312\) 0 0
\(313\) −18.2272 −1.03026 −0.515132 0.857111i \(-0.672257\pi\)
−0.515132 + 0.857111i \(0.672257\pi\)
\(314\) −37.8791 −2.13764
\(315\) 0 0
\(316\) 14.5609 0.819113
\(317\) −13.4593 −0.755951 −0.377975 0.925816i \(-0.623380\pi\)
−0.377975 + 0.925816i \(0.623380\pi\)
\(318\) 0 0
\(319\) −2.85130 −0.159642
\(320\) 0 0
\(321\) 0 0
\(322\) −4.57915 −0.255186
\(323\) 9.46207 0.526483
\(324\) 0 0
\(325\) 0 0
\(326\) −6.05214 −0.335197
\(327\) 0 0
\(328\) 5.33230 0.294427
\(329\) −15.3398 −0.845710
\(330\) 0 0
\(331\) 15.2501 0.838223 0.419112 0.907935i \(-0.362342\pi\)
0.419112 + 0.907935i \(0.362342\pi\)
\(332\) −7.86726 −0.431772
\(333\) 0 0
\(334\) −12.8888 −0.705242
\(335\) 0 0
\(336\) 0 0
\(337\) −5.07452 −0.276426 −0.138213 0.990402i \(-0.544136\pi\)
−0.138213 + 0.990402i \(0.544136\pi\)
\(338\) 48.4479 2.63522
\(339\) 0 0
\(340\) 0 0
\(341\) −3.69271 −0.199971
\(342\) 0 0
\(343\) −18.9350 −1.02239
\(344\) −5.09198 −0.274541
\(345\) 0 0
\(346\) −6.55738 −0.352527
\(347\) −28.0386 −1.50519 −0.752596 0.658482i \(-0.771199\pi\)
−0.752596 + 0.658482i \(0.771199\pi\)
\(348\) 0 0
\(349\) −27.7759 −1.48681 −0.743406 0.668840i \(-0.766791\pi\)
−0.743406 + 0.668840i \(0.766791\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −20.4205 −1.08841
\(353\) 31.4223 1.67244 0.836221 0.548392i \(-0.184760\pi\)
0.836221 + 0.548392i \(0.184760\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 2.72765 0.144565
\(357\) 0 0
\(358\) 43.9838 2.32462
\(359\) −27.0194 −1.42603 −0.713014 0.701150i \(-0.752671\pi\)
−0.713014 + 0.701150i \(0.752671\pi\)
\(360\) 0 0
\(361\) 26.4314 1.39113
\(362\) −6.29980 −0.331110
\(363\) 0 0
\(364\) 16.5073 0.865217
\(365\) 0 0
\(366\) 0 0
\(367\) −20.3243 −1.06092 −0.530460 0.847710i \(-0.677981\pi\)
−0.530460 + 0.847710i \(0.677981\pi\)
\(368\) 6.67371 0.347891
\(369\) 0 0
\(370\) 0 0
\(371\) −3.61108 −0.187478
\(372\) 0 0
\(373\) 15.9724 0.827021 0.413511 0.910499i \(-0.364302\pi\)
0.413511 + 0.910499i \(0.364302\pi\)
\(374\) 7.54429 0.390106
\(375\) 0 0
\(376\) 7.57023 0.390405
\(377\) −6.22128 −0.320412
\(378\) 0 0
\(379\) 29.4840 1.51449 0.757247 0.653129i \(-0.226544\pi\)
0.757247 + 0.653129i \(0.226544\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) −8.70742 −0.445510
\(383\) 35.1376 1.79545 0.897723 0.440560i \(-0.145220\pi\)
0.897723 + 0.440560i \(0.145220\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 46.9361 2.38899
\(387\) 0 0
\(388\) 22.6724 1.15101
\(389\) −28.3776 −1.43880 −0.719401 0.694595i \(-0.755583\pi\)
−0.719401 + 0.694595i \(0.755583\pi\)
\(390\) 0 0
\(391\) −1.99556 −0.100920
\(392\) 3.44042 0.173767
\(393\) 0 0
\(394\) 11.2395 0.566240
\(395\) 0 0
\(396\) 0 0
\(397\) 24.5435 1.23180 0.615901 0.787823i \(-0.288792\pi\)
0.615901 + 0.787823i \(0.288792\pi\)
\(398\) −35.8176 −1.79538
\(399\) 0 0
\(400\) 0 0
\(401\) −4.95811 −0.247596 −0.123798 0.992307i \(-0.539507\pi\)
−0.123798 + 0.992307i \(0.539507\pi\)
\(402\) 0 0
\(403\) −8.05717 −0.401356
\(404\) −24.6644 −1.22710
\(405\) 0 0
\(406\) −3.22128 −0.159870
\(407\) −2.82230 −0.139896
\(408\) 0 0
\(409\) −29.6350 −1.46535 −0.732677 0.680576i \(-0.761729\pi\)
−0.732677 + 0.680576i \(0.761729\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 18.0591 0.889710
\(413\) 17.1769 0.845218
\(414\) 0 0
\(415\) 0 0
\(416\) −44.5557 −2.18452
\(417\) 0 0
\(418\) 36.2233 1.77174
\(419\) −27.1403 −1.32589 −0.662945 0.748668i \(-0.730694\pi\)
−0.662945 + 0.748668i \(0.730694\pi\)
\(420\) 0 0
\(421\) −27.0310 −1.31741 −0.658705 0.752401i \(-0.728896\pi\)
−0.658705 + 0.752401i \(0.728896\pi\)
\(422\) −16.2146 −0.789314
\(423\) 0 0
\(424\) 1.78208 0.0865454
\(425\) 0 0
\(426\) 0 0
\(427\) 9.79703 0.474112
\(428\) −20.3203 −0.982217
\(429\) 0 0
\(430\) 0 0
\(431\) 27.7496 1.33665 0.668327 0.743868i \(-0.267011\pi\)
0.668327 + 0.743868i \(0.267011\pi\)
\(432\) 0 0
\(433\) −14.3507 −0.689649 −0.344825 0.938667i \(-0.612062\pi\)
−0.344825 + 0.938667i \(0.612062\pi\)
\(434\) −4.17187 −0.200256
\(435\) 0 0
\(436\) 16.3997 0.785405
\(437\) −9.58152 −0.458346
\(438\) 0 0
\(439\) 19.0540 0.909398 0.454699 0.890645i \(-0.349747\pi\)
0.454699 + 0.890645i \(0.349747\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 16.4610 0.782969
\(443\) −36.2772 −1.72358 −0.861791 0.507263i \(-0.830657\pi\)
−0.861791 + 0.507263i \(0.830657\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) −14.6546 −0.693918
\(447\) 0 0
\(448\) −7.02292 −0.331802
\(449\) −3.04282 −0.143600 −0.0717998 0.997419i \(-0.522874\pi\)
−0.0717998 + 0.997419i \(0.522874\pi\)
\(450\) 0 0
\(451\) −18.0263 −0.848825
\(452\) 28.7140 1.35059
\(453\) 0 0
\(454\) 21.5452 1.01117
\(455\) 0 0
\(456\) 0 0
\(457\) −24.8217 −1.16111 −0.580556 0.814220i \(-0.697165\pi\)
−0.580556 + 0.814220i \(0.697165\pi\)
\(458\) −11.5893 −0.541534
\(459\) 0 0
\(460\) 0 0
\(461\) 14.1662 0.659786 0.329893 0.944018i \(-0.392987\pi\)
0.329893 + 0.944018i \(0.392987\pi\)
\(462\) 0 0
\(463\) 9.03538 0.419910 0.209955 0.977711i \(-0.432668\pi\)
0.209955 + 0.977711i \(0.432668\pi\)
\(464\) 4.69473 0.217948
\(465\) 0 0
\(466\) 1.56391 0.0724468
\(467\) 5.28374 0.244503 0.122251 0.992499i \(-0.460989\pi\)
0.122251 + 0.992499i \(0.460989\pi\)
\(468\) 0 0
\(469\) −4.19191 −0.193565
\(470\) 0 0
\(471\) 0 0
\(472\) −8.47683 −0.390178
\(473\) 17.2139 0.791495
\(474\) 0 0
\(475\) 0 0
\(476\) 3.72481 0.170726
\(477\) 0 0
\(478\) 0.892688 0.0408306
\(479\) 16.3846 0.748634 0.374317 0.927301i \(-0.377877\pi\)
0.374317 + 0.927301i \(0.377877\pi\)
\(480\) 0 0
\(481\) −6.15801 −0.280781
\(482\) −41.6173 −1.89561
\(483\) 0 0
\(484\) −4.45585 −0.202539
\(485\) 0 0
\(486\) 0 0
\(487\) 2.74404 0.124344 0.0621722 0.998065i \(-0.480197\pi\)
0.0621722 + 0.998065i \(0.480197\pi\)
\(488\) −4.83487 −0.218864
\(489\) 0 0
\(490\) 0 0
\(491\) −9.46362 −0.427087 −0.213544 0.976934i \(-0.568501\pi\)
−0.213544 + 0.976934i \(0.568501\pi\)
\(492\) 0 0
\(493\) −1.40381 −0.0632244
\(494\) 79.0361 3.55600
\(495\) 0 0
\(496\) 6.08013 0.273006
\(497\) −8.61857 −0.386595
\(498\) 0 0
\(499\) −36.0076 −1.61192 −0.805960 0.591970i \(-0.798350\pi\)
−0.805960 + 0.591970i \(0.798350\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) −13.1575 −0.587247
\(503\) −21.6537 −0.965490 −0.482745 0.875761i \(-0.660360\pi\)
−0.482745 + 0.875761i \(0.660360\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) −7.63953 −0.339619
\(507\) 0 0
\(508\) −4.59073 −0.203681
\(509\) −16.5219 −0.732321 −0.366160 0.930552i \(-0.619328\pi\)
−0.366160 + 0.930552i \(0.619328\pi\)
\(510\) 0 0
\(511\) 9.49679 0.420113
\(512\) 25.7034 1.13594
\(513\) 0 0
\(514\) −10.0856 −0.444857
\(515\) 0 0
\(516\) 0 0
\(517\) −25.5918 −1.12553
\(518\) −3.18852 −0.140096
\(519\) 0 0
\(520\) 0 0
\(521\) −4.77373 −0.209141 −0.104571 0.994517i \(-0.533347\pi\)
−0.104571 + 0.994517i \(0.533347\pi\)
\(522\) 0 0
\(523\) 18.4589 0.807150 0.403575 0.914947i \(-0.367767\pi\)
0.403575 + 0.914947i \(0.367767\pi\)
\(524\) 32.5693 1.42280
\(525\) 0 0
\(526\) −16.1364 −0.703580
\(527\) −1.81807 −0.0791963
\(528\) 0 0
\(529\) −20.9792 −0.912141
\(530\) 0 0
\(531\) 0 0
\(532\) 17.8844 0.775386
\(533\) −39.3318 −1.70365
\(534\) 0 0
\(535\) 0 0
\(536\) 2.06872 0.0893552
\(537\) 0 0
\(538\) 13.8910 0.598885
\(539\) −11.6306 −0.500966
\(540\) 0 0
\(541\) −43.5067 −1.87050 −0.935250 0.353989i \(-0.884825\pi\)
−0.935250 + 0.353989i \(0.884825\pi\)
\(542\) −10.3478 −0.444474
\(543\) 0 0
\(544\) −10.0538 −0.431054
\(545\) 0 0
\(546\) 0 0
\(547\) 5.97641 0.255533 0.127766 0.991804i \(-0.459219\pi\)
0.127766 + 0.991804i \(0.459219\pi\)
\(548\) 30.4219 1.29956
\(549\) 0 0
\(550\) 0 0
\(551\) −6.74028 −0.287146
\(552\) 0 0
\(553\) 16.0293 0.681635
\(554\) −45.2380 −1.92198
\(555\) 0 0
\(556\) −33.0466 −1.40149
\(557\) 30.0628 1.27380 0.636900 0.770946i \(-0.280216\pi\)
0.636900 + 0.770946i \(0.280216\pi\)
\(558\) 0 0
\(559\) 37.5592 1.58858
\(560\) 0 0
\(561\) 0 0
\(562\) −18.9167 −0.797954
\(563\) −18.5651 −0.782425 −0.391212 0.920300i \(-0.627944\pi\)
−0.391212 + 0.920300i \(0.627944\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) −15.8515 −0.666288
\(567\) 0 0
\(568\) 4.25329 0.178464
\(569\) 30.6606 1.28536 0.642679 0.766135i \(-0.277823\pi\)
0.642679 + 0.766135i \(0.277823\pi\)
\(570\) 0 0
\(571\) −6.78472 −0.283932 −0.141966 0.989872i \(-0.545342\pi\)
−0.141966 + 0.989872i \(0.545342\pi\)
\(572\) 27.5396 1.15149
\(573\) 0 0
\(574\) −20.3654 −0.850034
\(575\) 0 0
\(576\) 0 0
\(577\) 27.7326 1.15453 0.577263 0.816559i \(-0.304121\pi\)
0.577263 + 0.816559i \(0.304121\pi\)
\(578\) −28.3274 −1.17827
\(579\) 0 0
\(580\) 0 0
\(581\) −8.66064 −0.359304
\(582\) 0 0
\(583\) −6.02446 −0.249508
\(584\) −4.68670 −0.193937
\(585\) 0 0
\(586\) 12.0359 0.497197
\(587\) 16.6049 0.685359 0.342679 0.939452i \(-0.388666\pi\)
0.342679 + 0.939452i \(0.388666\pi\)
\(588\) 0 0
\(589\) −8.72932 −0.359685
\(590\) 0 0
\(591\) 0 0
\(592\) 4.64699 0.190990
\(593\) 20.5406 0.843499 0.421750 0.906712i \(-0.361416\pi\)
0.421750 + 0.906712i \(0.361416\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 25.7908 1.05643
\(597\) 0 0
\(598\) −16.6688 −0.681637
\(599\) −31.3560 −1.28117 −0.640586 0.767886i \(-0.721309\pi\)
−0.640586 + 0.767886i \(0.721309\pi\)
\(600\) 0 0
\(601\) 14.3674 0.586057 0.293029 0.956104i \(-0.405337\pi\)
0.293029 + 0.956104i \(0.405337\pi\)
\(602\) 19.4475 0.792623
\(603\) 0 0
\(604\) 13.5801 0.552566
\(605\) 0 0
\(606\) 0 0
\(607\) 25.1167 1.01945 0.509727 0.860336i \(-0.329746\pi\)
0.509727 + 0.860336i \(0.329746\pi\)
\(608\) −48.2726 −1.95771
\(609\) 0 0
\(610\) 0 0
\(611\) −55.8390 −2.25901
\(612\) 0 0
\(613\) −36.4069 −1.47046 −0.735230 0.677818i \(-0.762926\pi\)
−0.735230 + 0.677818i \(0.762926\pi\)
\(614\) 54.2020 2.18741
\(615\) 0 0
\(616\) −4.11013 −0.165602
\(617\) 28.9915 1.16715 0.583576 0.812058i \(-0.301653\pi\)
0.583576 + 0.812058i \(0.301653\pi\)
\(618\) 0 0
\(619\) −38.6097 −1.55185 −0.775927 0.630823i \(-0.782717\pi\)
−0.775927 + 0.630823i \(0.782717\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) −7.92494 −0.317761
\(623\) 3.00273 0.120302
\(624\) 0 0
\(625\) 0 0
\(626\) −34.3549 −1.37310
\(627\) 0 0
\(628\) −31.2009 −1.24505
\(629\) −1.38953 −0.0554043
\(630\) 0 0
\(631\) 12.4946 0.497401 0.248700 0.968580i \(-0.419997\pi\)
0.248700 + 0.968580i \(0.419997\pi\)
\(632\) −7.91050 −0.314663
\(633\) 0 0
\(634\) −25.3683 −1.00750
\(635\) 0 0
\(636\) 0 0
\(637\) −25.3770 −1.00547
\(638\) −5.37416 −0.212765
\(639\) 0 0
\(640\) 0 0
\(641\) −18.6523 −0.736723 −0.368361 0.929683i \(-0.620081\pi\)
−0.368361 + 0.929683i \(0.620081\pi\)
\(642\) 0 0
\(643\) 9.99161 0.394030 0.197015 0.980400i \(-0.436875\pi\)
0.197015 + 0.980400i \(0.436875\pi\)
\(644\) −3.77183 −0.148631
\(645\) 0 0
\(646\) 17.8342 0.701677
\(647\) 6.59170 0.259146 0.129573 0.991570i \(-0.458639\pi\)
0.129573 + 0.991570i \(0.458639\pi\)
\(648\) 0 0
\(649\) 28.6566 1.12487
\(650\) 0 0
\(651\) 0 0
\(652\) −4.98512 −0.195232
\(653\) 47.5008 1.85885 0.929425 0.369011i \(-0.120304\pi\)
0.929425 + 0.369011i \(0.120304\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 29.6807 1.15884
\(657\) 0 0
\(658\) −28.9126 −1.12713
\(659\) −32.7065 −1.27407 −0.637033 0.770837i \(-0.719838\pi\)
−0.637033 + 0.770837i \(0.719838\pi\)
\(660\) 0 0
\(661\) −37.6003 −1.46248 −0.731242 0.682119i \(-0.761059\pi\)
−0.731242 + 0.682119i \(0.761059\pi\)
\(662\) 28.7436 1.11715
\(663\) 0 0
\(664\) 4.27405 0.165866
\(665\) 0 0
\(666\) 0 0
\(667\) 1.42153 0.0550419
\(668\) −10.6164 −0.410762
\(669\) 0 0
\(670\) 0 0
\(671\) 16.3447 0.630979
\(672\) 0 0
\(673\) 47.2395 1.82095 0.910475 0.413564i \(-0.135716\pi\)
0.910475 + 0.413564i \(0.135716\pi\)
\(674\) −9.56450 −0.368411
\(675\) 0 0
\(676\) 39.9063 1.53486
\(677\) −17.3323 −0.666134 −0.333067 0.942903i \(-0.608083\pi\)
−0.333067 + 0.942903i \(0.608083\pi\)
\(678\) 0 0
\(679\) 24.9588 0.957830
\(680\) 0 0
\(681\) 0 0
\(682\) −6.96005 −0.266514
\(683\) −4.70774 −0.180137 −0.0900683 0.995936i \(-0.528709\pi\)
−0.0900683 + 0.995936i \(0.528709\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) −35.6888 −1.36260
\(687\) 0 0
\(688\) −28.3431 −1.08057
\(689\) −13.1449 −0.500779
\(690\) 0 0
\(691\) −2.88811 −0.109869 −0.0549345 0.998490i \(-0.517495\pi\)
−0.0549345 + 0.998490i \(0.517495\pi\)
\(692\) −5.40129 −0.205326
\(693\) 0 0
\(694\) −52.8475 −2.00606
\(695\) 0 0
\(696\) 0 0
\(697\) −8.87506 −0.336167
\(698\) −52.3524 −1.98157
\(699\) 0 0
\(700\) 0 0
\(701\) −39.1914 −1.48024 −0.740120 0.672475i \(-0.765231\pi\)
−0.740120 + 0.672475i \(0.765231\pi\)
\(702\) 0 0
\(703\) −6.67173 −0.251629
\(704\) −11.7165 −0.441584
\(705\) 0 0
\(706\) 59.2251 2.22897
\(707\) −27.1517 −1.02115
\(708\) 0 0
\(709\) 35.0367 1.31583 0.657915 0.753092i \(-0.271439\pi\)
0.657915 + 0.753092i \(0.271439\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1.48185 −0.0555349
\(713\) 1.84102 0.0689468
\(714\) 0 0
\(715\) 0 0
\(716\) 36.2293 1.35395
\(717\) 0 0
\(718\) −50.9264 −1.90056
\(719\) −9.93705 −0.370590 −0.185295 0.982683i \(-0.559324\pi\)
−0.185295 + 0.982683i \(0.559324\pi\)
\(720\) 0 0
\(721\) 19.8804 0.740383
\(722\) 49.8182 1.85404
\(723\) 0 0
\(724\) −5.18912 −0.192852
\(725\) 0 0
\(726\) 0 0
\(727\) 2.37679 0.0881504 0.0440752 0.999028i \(-0.485966\pi\)
0.0440752 + 0.999028i \(0.485966\pi\)
\(728\) −8.96793 −0.332374
\(729\) 0 0
\(730\) 0 0
\(731\) 8.47508 0.313462
\(732\) 0 0
\(733\) −32.6214 −1.20490 −0.602450 0.798157i \(-0.705809\pi\)
−0.602450 + 0.798157i \(0.705809\pi\)
\(734\) −38.3075 −1.41396
\(735\) 0 0
\(736\) 10.1807 0.375267
\(737\) −6.99349 −0.257608
\(738\) 0 0
\(739\) 16.6544 0.612642 0.306321 0.951928i \(-0.400902\pi\)
0.306321 + 0.951928i \(0.400902\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −6.80620 −0.249863
\(743\) 35.2240 1.29224 0.646121 0.763235i \(-0.276390\pi\)
0.646121 + 0.763235i \(0.276390\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 30.1050 1.10222
\(747\) 0 0
\(748\) 6.21420 0.227214
\(749\) −22.3695 −0.817364
\(750\) 0 0
\(751\) −46.9948 −1.71487 −0.857433 0.514596i \(-0.827942\pi\)
−0.857433 + 0.514596i \(0.827942\pi\)
\(752\) 42.1375 1.53660
\(753\) 0 0
\(754\) −11.7259 −0.427034
\(755\) 0 0
\(756\) 0 0
\(757\) 16.5681 0.602179 0.301089 0.953596i \(-0.402650\pi\)
0.301089 + 0.953596i \(0.402650\pi\)
\(758\) 55.5718 2.01846
\(759\) 0 0
\(760\) 0 0
\(761\) −43.1593 −1.56453 −0.782263 0.622949i \(-0.785934\pi\)
−0.782263 + 0.622949i \(0.785934\pi\)
\(762\) 0 0
\(763\) 18.0536 0.653585
\(764\) −7.17226 −0.259483
\(765\) 0 0
\(766\) 66.2277 2.39290
\(767\) 62.5262 2.25769
\(768\) 0 0
\(769\) −16.7337 −0.603434 −0.301717 0.953398i \(-0.597560\pi\)
−0.301717 + 0.953398i \(0.597560\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 38.6611 1.39144
\(773\) −8.41758 −0.302759 −0.151380 0.988476i \(-0.548372\pi\)
−0.151380 + 0.988476i \(0.548372\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) −12.3172 −0.442163
\(777\) 0 0
\(778\) −53.4864 −1.91758
\(779\) −42.6129 −1.52677
\(780\) 0 0
\(781\) −14.3786 −0.514507
\(782\) −3.76125 −0.134502
\(783\) 0 0
\(784\) 19.1501 0.683932
\(785\) 0 0
\(786\) 0 0
\(787\) 50.6781 1.80648 0.903240 0.429136i \(-0.141182\pi\)
0.903240 + 0.429136i \(0.141182\pi\)
\(788\) 9.25795 0.329801
\(789\) 0 0
\(790\) 0 0
\(791\) 31.6097 1.12391
\(792\) 0 0
\(793\) 35.6626 1.26642
\(794\) 46.2598 1.64170
\(795\) 0 0
\(796\) −29.5028 −1.04570
\(797\) 21.8932 0.775498 0.387749 0.921765i \(-0.373253\pi\)
0.387749 + 0.921765i \(0.373253\pi\)
\(798\) 0 0
\(799\) −12.5999 −0.445751
\(800\) 0 0
\(801\) 0 0
\(802\) −9.34509 −0.329987
\(803\) 15.8438 0.559114
\(804\) 0 0
\(805\) 0 0
\(806\) −15.1862 −0.534912
\(807\) 0 0
\(808\) 13.3995 0.471391
\(809\) 8.70213 0.305951 0.152975 0.988230i \(-0.451115\pi\)
0.152975 + 0.988230i \(0.451115\pi\)
\(810\) 0 0
\(811\) 39.0632 1.37170 0.685848 0.727745i \(-0.259431\pi\)
0.685848 + 0.727745i \(0.259431\pi\)
\(812\) −2.65336 −0.0931146
\(813\) 0 0
\(814\) −5.31950 −0.186448
\(815\) 0 0
\(816\) 0 0
\(817\) 40.6925 1.42365
\(818\) −55.8563 −1.95297
\(819\) 0 0
\(820\) 0 0
\(821\) −16.7509 −0.584612 −0.292306 0.956325i \(-0.594423\pi\)
−0.292306 + 0.956325i \(0.594423\pi\)
\(822\) 0 0
\(823\) 38.3755 1.33768 0.668842 0.743405i \(-0.266790\pi\)
0.668842 + 0.743405i \(0.266790\pi\)
\(824\) −9.81101 −0.341783
\(825\) 0 0
\(826\) 32.3751 1.12647
\(827\) −6.70137 −0.233029 −0.116515 0.993189i \(-0.537172\pi\)
−0.116515 + 0.993189i \(0.537172\pi\)
\(828\) 0 0
\(829\) 7.98795 0.277433 0.138716 0.990332i \(-0.455702\pi\)
0.138716 + 0.990332i \(0.455702\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) −25.5644 −0.886288
\(833\) −5.72622 −0.198402
\(834\) 0 0
\(835\) 0 0
\(836\) 29.8370 1.03193
\(837\) 0 0
\(838\) −51.1543 −1.76710
\(839\) 13.9407 0.481286 0.240643 0.970614i \(-0.422642\pi\)
0.240643 + 0.970614i \(0.422642\pi\)
\(840\) 0 0
\(841\) 1.00000 0.0344828
\(842\) −50.9483 −1.75580
\(843\) 0 0
\(844\) −13.3559 −0.459729
\(845\) 0 0
\(846\) 0 0
\(847\) −4.90521 −0.168545
\(848\) 9.91943 0.340635
\(849\) 0 0
\(850\) 0 0
\(851\) 1.40707 0.0482339
\(852\) 0 0
\(853\) −5.78046 −0.197919 −0.0989597 0.995091i \(-0.531551\pi\)
−0.0989597 + 0.995091i \(0.531551\pi\)
\(854\) 18.4655 0.631878
\(855\) 0 0
\(856\) 11.0394 0.377319
\(857\) 33.2410 1.13549 0.567745 0.823205i \(-0.307816\pi\)
0.567745 + 0.823205i \(0.307816\pi\)
\(858\) 0 0
\(859\) 1.19425 0.0407473 0.0203736 0.999792i \(-0.493514\pi\)
0.0203736 + 0.999792i \(0.493514\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 52.3028 1.78144
\(863\) 42.0216 1.43043 0.715215 0.698904i \(-0.246329\pi\)
0.715215 + 0.698904i \(0.246329\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) −27.0483 −0.919138
\(867\) 0 0
\(868\) −3.43635 −0.116637
\(869\) 26.7421 0.907164
\(870\) 0 0
\(871\) −15.2592 −0.517037
\(872\) −8.90951 −0.301714
\(873\) 0 0
\(874\) −18.0593 −0.610866
\(875\) 0 0
\(876\) 0 0
\(877\) −22.8893 −0.772917 −0.386458 0.922307i \(-0.626302\pi\)
−0.386458 + 0.922307i \(0.626302\pi\)
\(878\) 35.9132 1.21201
\(879\) 0 0
\(880\) 0 0
\(881\) −13.6751 −0.460727 −0.230363 0.973105i \(-0.573991\pi\)
−0.230363 + 0.973105i \(0.573991\pi\)
\(882\) 0 0
\(883\) 1.49072 0.0501668 0.0250834 0.999685i \(-0.492015\pi\)
0.0250834 + 0.999685i \(0.492015\pi\)
\(884\) 13.5588 0.456033
\(885\) 0 0
\(886\) −68.3757 −2.29713
\(887\) 2.58705 0.0868646 0.0434323 0.999056i \(-0.486171\pi\)
0.0434323 + 0.999056i \(0.486171\pi\)
\(888\) 0 0
\(889\) −5.05369 −0.169495
\(890\) 0 0
\(891\) 0 0
\(892\) −12.0710 −0.404166
\(893\) −60.4973 −2.02447
\(894\) 0 0
\(895\) 0 0
\(896\) 11.2433 0.375612
\(897\) 0 0
\(898\) −5.73514 −0.191384
\(899\) 1.29510 0.0431939
\(900\) 0 0
\(901\) −2.96609 −0.0988146
\(902\) −33.9761 −1.13128
\(903\) 0 0
\(904\) −15.5995 −0.518831
\(905\) 0 0
\(906\) 0 0
\(907\) 18.3747 0.610121 0.305060 0.952333i \(-0.401323\pi\)
0.305060 + 0.952333i \(0.401323\pi\)
\(908\) 17.7467 0.588944
\(909\) 0 0
\(910\) 0 0
\(911\) −32.8875 −1.08961 −0.544806 0.838562i \(-0.683397\pi\)
−0.544806 + 0.838562i \(0.683397\pi\)
\(912\) 0 0
\(913\) −14.4488 −0.478185
\(914\) −46.7843 −1.54749
\(915\) 0 0
\(916\) −9.54608 −0.315412
\(917\) 35.8538 1.18400
\(918\) 0 0
\(919\) 28.2361 0.931422 0.465711 0.884937i \(-0.345799\pi\)
0.465711 + 0.884937i \(0.345799\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 26.7006 0.879337
\(923\) −31.3728 −1.03265
\(924\) 0 0
\(925\) 0 0
\(926\) 17.0300 0.559640
\(927\) 0 0
\(928\) 7.16181 0.235098
\(929\) 44.5794 1.46260 0.731301 0.682055i \(-0.238913\pi\)
0.731301 + 0.682055i \(0.238913\pi\)
\(930\) 0 0
\(931\) −27.4940 −0.901080
\(932\) 1.28819 0.0421960
\(933\) 0 0
\(934\) 9.95886 0.325864
\(935\) 0 0
\(936\) 0 0
\(937\) −47.0602 −1.53739 −0.768695 0.639615i \(-0.779094\pi\)
−0.768695 + 0.639615i \(0.779094\pi\)
\(938\) −7.90096 −0.257976
\(939\) 0 0
\(940\) 0 0
\(941\) 45.5100 1.48358 0.741792 0.670630i \(-0.233976\pi\)
0.741792 + 0.670630i \(0.233976\pi\)
\(942\) 0 0
\(943\) 8.98710 0.292660
\(944\) −47.1838 −1.53570
\(945\) 0 0
\(946\) 32.4449 1.05487
\(947\) −9.26597 −0.301104 −0.150552 0.988602i \(-0.548105\pi\)
−0.150552 + 0.988602i \(0.548105\pi\)
\(948\) 0 0
\(949\) 34.5697 1.12218
\(950\) 0 0
\(951\) 0 0
\(952\) −2.02358 −0.0655846
\(953\) 17.7750 0.575788 0.287894 0.957662i \(-0.407045\pi\)
0.287894 + 0.957662i \(0.407045\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0.735303 0.0237814
\(957\) 0 0
\(958\) 30.8820 0.997751
\(959\) 33.4899 1.08145
\(960\) 0 0
\(961\) −29.3227 −0.945894
\(962\) −11.6067 −0.374215
\(963\) 0 0
\(964\) −34.2800 −1.10408
\(965\) 0 0
\(966\) 0 0
\(967\) −45.7913 −1.47255 −0.736275 0.676683i \(-0.763417\pi\)
−0.736275 + 0.676683i \(0.763417\pi\)
\(968\) 2.42074 0.0778054
\(969\) 0 0
\(970\) 0 0
\(971\) 14.0095 0.449587 0.224794 0.974406i \(-0.427829\pi\)
0.224794 + 0.974406i \(0.427829\pi\)
\(972\) 0 0
\(973\) −36.3793 −1.16627
\(974\) 5.17199 0.165721
\(975\) 0 0
\(976\) −26.9119 −0.861428
\(977\) −51.0534 −1.63334 −0.816671 0.577103i \(-0.804183\pi\)
−0.816671 + 0.577103i \(0.804183\pi\)
\(978\) 0 0
\(979\) 5.00953 0.160105
\(980\) 0 0
\(981\) 0 0
\(982\) −17.8371 −0.569206
\(983\) −4.02331 −0.128324 −0.0641618 0.997940i \(-0.520437\pi\)
−0.0641618 + 0.997940i \(0.520437\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) −2.64591 −0.0842630
\(987\) 0 0
\(988\) 65.1017 2.07116
\(989\) −8.58207 −0.272894
\(990\) 0 0
\(991\) −49.5829 −1.57505 −0.787526 0.616282i \(-0.788638\pi\)
−0.787526 + 0.616282i \(0.788638\pi\)
\(992\) 9.27524 0.294489
\(993\) 0 0
\(994\) −16.2444 −0.515240
\(995\) 0 0
\(996\) 0 0
\(997\) 34.8740 1.10447 0.552235 0.833688i \(-0.313775\pi\)
0.552235 + 0.833688i \(0.313775\pi\)
\(998\) −67.8674 −2.14831
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 6525.2.a.bm.1.5 5
3.2 odd 2 725.2.a.k.1.1 yes 5
5.4 even 2 6525.2.a.bq.1.1 5
15.2 even 4 725.2.b.f.349.2 10
15.8 even 4 725.2.b.f.349.9 10
15.14 odd 2 725.2.a.h.1.5 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.a.h.1.5 5 15.14 odd 2
725.2.a.k.1.1 yes 5 3.2 odd 2
725.2.b.f.349.2 10 15.2 even 4
725.2.b.f.349.9 10 15.8 even 4
6525.2.a.bm.1.5 5 1.1 even 1 trivial
6525.2.a.bq.1.1 5 5.4 even 2