Properties

Label 7225.2.a.bo.1.9
Level $7225$
Weight $2$
Character 7225.1
Self dual yes
Analytic conductor $57.692$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7225,2,Mod(1,7225)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7225.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7225, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7225 = 5^{2} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7225.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-3,3,21,0,9,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6919154604\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} - 18 x^{10} + 55 x^{9} + 114 x^{8} - 354 x^{7} - 309 x^{6} + 936 x^{5} + 396 x^{4} + \cdots + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1445)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-1.02921\) of defining polynomial
Character \(\chi\) \(=\) 7225.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.02921 q^{2} +1.23410 q^{3} -0.940729 q^{4} +1.27015 q^{6} +0.979236 q^{7} -3.02662 q^{8} -1.47699 q^{9} -6.35575 q^{11} -1.16096 q^{12} +2.29653 q^{13} +1.00784 q^{14} -1.23357 q^{16} -1.52013 q^{18} -1.91355 q^{19} +1.20848 q^{21} -6.54140 q^{22} +8.96509 q^{23} -3.73517 q^{24} +2.36361 q^{26} -5.52507 q^{27} -0.921196 q^{28} -2.21557 q^{29} +5.74037 q^{31} +4.78365 q^{32} -7.84366 q^{33} +1.38945 q^{36} +5.49260 q^{37} -1.96944 q^{38} +2.83416 q^{39} -9.14368 q^{41} +1.24378 q^{42} +4.57764 q^{43} +5.97904 q^{44} +9.22695 q^{46} +1.95008 q^{47} -1.52235 q^{48} -6.04110 q^{49} -2.16041 q^{52} +4.00762 q^{53} -5.68645 q^{54} -2.96378 q^{56} -2.36152 q^{57} -2.28028 q^{58} +12.6197 q^{59} -5.87984 q^{61} +5.90804 q^{62} -1.44632 q^{63} +7.39051 q^{64} -8.07276 q^{66} -6.72054 q^{67} +11.0638 q^{69} +5.08034 q^{71} +4.47029 q^{72} +3.68032 q^{73} +5.65303 q^{74} +1.80013 q^{76} -6.22378 q^{77} +2.91694 q^{78} +1.08356 q^{79} -2.38754 q^{81} -9.41075 q^{82} -3.74449 q^{83} -1.13685 q^{84} +4.71135 q^{86} -2.73424 q^{87} +19.2365 q^{88} +9.03669 q^{89} +2.24885 q^{91} -8.43372 q^{92} +7.08421 q^{93} +2.00704 q^{94} +5.90351 q^{96} +2.17633 q^{97} -6.21755 q^{98} +9.38737 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 3 q^{2} + 3 q^{3} + 21 q^{4} + 9 q^{6} + 6 q^{7} - 12 q^{8} + 21 q^{9} + 6 q^{11} + 6 q^{12} - 9 q^{13} + 18 q^{14} + 39 q^{16} + 9 q^{18} + 27 q^{19} + 6 q^{21} + 15 q^{22} + 18 q^{23} + 36 q^{24}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.02921 0.727761 0.363880 0.931446i \(-0.381452\pi\)
0.363880 + 0.931446i \(0.381452\pi\)
\(3\) 1.23410 0.712510 0.356255 0.934389i \(-0.384053\pi\)
0.356255 + 0.934389i \(0.384053\pi\)
\(4\) −0.940729 −0.470364
\(5\) 0 0
\(6\) 1.27015 0.518537
\(7\) 0.979236 0.370116 0.185058 0.982728i \(-0.440753\pi\)
0.185058 + 0.982728i \(0.440753\pi\)
\(8\) −3.02662 −1.07007
\(9\) −1.47699 −0.492330
\(10\) 0 0
\(11\) −6.35575 −1.91633 −0.958166 0.286214i \(-0.907603\pi\)
−0.958166 + 0.286214i \(0.907603\pi\)
\(12\) −1.16096 −0.335139
\(13\) 2.29653 0.636943 0.318472 0.947932i \(-0.396830\pi\)
0.318472 + 0.947932i \(0.396830\pi\)
\(14\) 1.00784 0.269356
\(15\) 0 0
\(16\) −1.23357 −0.308393
\(17\) 0 0
\(18\) −1.52013 −0.358298
\(19\) −1.91355 −0.438999 −0.219499 0.975613i \(-0.570442\pi\)
−0.219499 + 0.975613i \(0.570442\pi\)
\(20\) 0 0
\(21\) 1.20848 0.263712
\(22\) −6.54140 −1.39463
\(23\) 8.96509 1.86935 0.934675 0.355503i \(-0.115690\pi\)
0.934675 + 0.355503i \(0.115690\pi\)
\(24\) −3.73517 −0.762438
\(25\) 0 0
\(26\) 2.36361 0.463542
\(27\) −5.52507 −1.06330
\(28\) −0.921196 −0.174090
\(29\) −2.21557 −0.411421 −0.205710 0.978613i \(-0.565950\pi\)
−0.205710 + 0.978613i \(0.565950\pi\)
\(30\) 0 0
\(31\) 5.74037 1.03100 0.515501 0.856889i \(-0.327606\pi\)
0.515501 + 0.856889i \(0.327606\pi\)
\(32\) 4.78365 0.845637
\(33\) −7.84366 −1.36541
\(34\) 0 0
\(35\) 0 0
\(36\) 1.38945 0.231574
\(37\) 5.49260 0.902977 0.451489 0.892277i \(-0.350893\pi\)
0.451489 + 0.892277i \(0.350893\pi\)
\(38\) −1.96944 −0.319486
\(39\) 2.83416 0.453828
\(40\) 0 0
\(41\) −9.14368 −1.42800 −0.714001 0.700144i \(-0.753119\pi\)
−0.714001 + 0.700144i \(0.753119\pi\)
\(42\) 1.24378 0.191919
\(43\) 4.57764 0.698083 0.349042 0.937107i \(-0.386507\pi\)
0.349042 + 0.937107i \(0.386507\pi\)
\(44\) 5.97904 0.901374
\(45\) 0 0
\(46\) 9.22695 1.36044
\(47\) 1.95008 0.284449 0.142224 0.989834i \(-0.454575\pi\)
0.142224 + 0.989834i \(0.454575\pi\)
\(48\) −1.52235 −0.219733
\(49\) −6.04110 −0.863014
\(50\) 0 0
\(51\) 0 0
\(52\) −2.16041 −0.299595
\(53\) 4.00762 0.550488 0.275244 0.961374i \(-0.411241\pi\)
0.275244 + 0.961374i \(0.411241\pi\)
\(54\) −5.68645 −0.773828
\(55\) 0 0
\(56\) −2.96378 −0.396052
\(57\) −2.36152 −0.312791
\(58\) −2.28028 −0.299416
\(59\) 12.6197 1.64294 0.821471 0.570250i \(-0.193154\pi\)
0.821471 + 0.570250i \(0.193154\pi\)
\(60\) 0 0
\(61\) −5.87984 −0.752837 −0.376418 0.926450i \(-0.622844\pi\)
−0.376418 + 0.926450i \(0.622844\pi\)
\(62\) 5.90804 0.750322
\(63\) −1.44632 −0.182219
\(64\) 7.39051 0.923814
\(65\) 0 0
\(66\) −8.07276 −0.993688
\(67\) −6.72054 −0.821044 −0.410522 0.911851i \(-0.634654\pi\)
−0.410522 + 0.911851i \(0.634654\pi\)
\(68\) 0 0
\(69\) 11.0638 1.33193
\(70\) 0 0
\(71\) 5.08034 0.602926 0.301463 0.953478i \(-0.402525\pi\)
0.301463 + 0.953478i \(0.402525\pi\)
\(72\) 4.47029 0.526829
\(73\) 3.68032 0.430749 0.215374 0.976532i \(-0.430903\pi\)
0.215374 + 0.976532i \(0.430903\pi\)
\(74\) 5.65303 0.657151
\(75\) 0 0
\(76\) 1.80013 0.206489
\(77\) −6.22378 −0.709266
\(78\) 2.91694 0.330278
\(79\) 1.08356 0.121910 0.0609548 0.998141i \(-0.480585\pi\)
0.0609548 + 0.998141i \(0.480585\pi\)
\(80\) 0 0
\(81\) −2.38754 −0.265282
\(82\) −9.41075 −1.03924
\(83\) −3.74449 −0.411011 −0.205506 0.978656i \(-0.565884\pi\)
−0.205506 + 0.978656i \(0.565884\pi\)
\(84\) −1.13685 −0.124041
\(85\) 0 0
\(86\) 4.71135 0.508038
\(87\) −2.73424 −0.293141
\(88\) 19.2365 2.05062
\(89\) 9.03669 0.957888 0.478944 0.877846i \(-0.341020\pi\)
0.478944 + 0.877846i \(0.341020\pi\)
\(90\) 0 0
\(91\) 2.24885 0.235743
\(92\) −8.43372 −0.879276
\(93\) 7.08421 0.734599
\(94\) 2.00704 0.207011
\(95\) 0 0
\(96\) 5.90351 0.602525
\(97\) 2.17633 0.220973 0.110487 0.993878i \(-0.464759\pi\)
0.110487 + 0.993878i \(0.464759\pi\)
\(98\) −6.21755 −0.628067
\(99\) 9.38737 0.943467
\(100\) 0 0
\(101\) 15.2485 1.51729 0.758644 0.651506i \(-0.225862\pi\)
0.758644 + 0.651506i \(0.225862\pi\)
\(102\) 0 0
\(103\) 7.04871 0.694530 0.347265 0.937767i \(-0.387110\pi\)
0.347265 + 0.937767i \(0.387110\pi\)
\(104\) −6.95074 −0.681576
\(105\) 0 0
\(106\) 4.12467 0.400624
\(107\) −10.1983 −0.985911 −0.492956 0.870054i \(-0.664084\pi\)
−0.492956 + 0.870054i \(0.664084\pi\)
\(108\) 5.19759 0.500138
\(109\) 6.04775 0.579269 0.289635 0.957137i \(-0.406466\pi\)
0.289635 + 0.957137i \(0.406466\pi\)
\(110\) 0 0
\(111\) 6.77843 0.643380
\(112\) −1.20796 −0.114141
\(113\) 15.5915 1.46673 0.733363 0.679838i \(-0.237950\pi\)
0.733363 + 0.679838i \(0.237950\pi\)
\(114\) −2.43050 −0.227637
\(115\) 0 0
\(116\) 2.08425 0.193518
\(117\) −3.39195 −0.313586
\(118\) 12.9883 1.19567
\(119\) 0 0
\(120\) 0 0
\(121\) 29.3956 2.67233
\(122\) −6.05159 −0.547885
\(123\) −11.2842 −1.01747
\(124\) −5.40013 −0.484946
\(125\) 0 0
\(126\) −1.48857 −0.132612
\(127\) −18.7365 −1.66259 −0.831296 0.555830i \(-0.812401\pi\)
−0.831296 + 0.555830i \(0.812401\pi\)
\(128\) −1.96091 −0.173322
\(129\) 5.64928 0.497391
\(130\) 0 0
\(131\) 1.78563 0.156011 0.0780055 0.996953i \(-0.475145\pi\)
0.0780055 + 0.996953i \(0.475145\pi\)
\(132\) 7.37875 0.642238
\(133\) −1.87382 −0.162481
\(134\) −6.91684 −0.597524
\(135\) 0 0
\(136\) 0 0
\(137\) 18.7053 1.59810 0.799051 0.601263i \(-0.205336\pi\)
0.799051 + 0.601263i \(0.205336\pi\)
\(138\) 11.3870 0.969327
\(139\) 20.7640 1.76118 0.880590 0.473880i \(-0.157147\pi\)
0.880590 + 0.473880i \(0.157147\pi\)
\(140\) 0 0
\(141\) 2.40660 0.202673
\(142\) 5.22873 0.438786
\(143\) −14.5962 −1.22059
\(144\) 1.82197 0.151831
\(145\) 0 0
\(146\) 3.78782 0.313482
\(147\) −7.45534 −0.614906
\(148\) −5.16705 −0.424729
\(149\) −10.5671 −0.865692 −0.432846 0.901468i \(-0.642491\pi\)
−0.432846 + 0.901468i \(0.642491\pi\)
\(150\) 0 0
\(151\) 0.726074 0.0590871 0.0295435 0.999563i \(-0.490595\pi\)
0.0295435 + 0.999563i \(0.490595\pi\)
\(152\) 5.79160 0.469761
\(153\) 0 0
\(154\) −6.40557 −0.516176
\(155\) 0 0
\(156\) −2.66617 −0.213465
\(157\) −15.5125 −1.23803 −0.619016 0.785378i \(-0.712469\pi\)
−0.619016 + 0.785378i \(0.712469\pi\)
\(158\) 1.11521 0.0887211
\(159\) 4.94581 0.392228
\(160\) 0 0
\(161\) 8.77894 0.691877
\(162\) −2.45728 −0.193062
\(163\) 20.3277 1.59219 0.796094 0.605173i \(-0.206896\pi\)
0.796094 + 0.605173i \(0.206896\pi\)
\(164\) 8.60172 0.671682
\(165\) 0 0
\(166\) −3.85386 −0.299118
\(167\) 14.0573 1.08779 0.543894 0.839154i \(-0.316949\pi\)
0.543894 + 0.839154i \(0.316949\pi\)
\(168\) −3.65761 −0.282191
\(169\) −7.72594 −0.594303
\(170\) 0 0
\(171\) 2.82629 0.216132
\(172\) −4.30632 −0.328354
\(173\) 23.1932 1.76335 0.881674 0.471858i \(-0.156417\pi\)
0.881674 + 0.471858i \(0.156417\pi\)
\(174\) −2.81410 −0.213337
\(175\) 0 0
\(176\) 7.84027 0.590983
\(177\) 15.5740 1.17061
\(178\) 9.30064 0.697113
\(179\) −13.1808 −0.985176 −0.492588 0.870263i \(-0.663949\pi\)
−0.492588 + 0.870263i \(0.663949\pi\)
\(180\) 0 0
\(181\) 19.6975 1.46410 0.732052 0.681249i \(-0.238563\pi\)
0.732052 + 0.681249i \(0.238563\pi\)
\(182\) 2.31453 0.171565
\(183\) −7.25633 −0.536404
\(184\) −27.1340 −2.00034
\(185\) 0 0
\(186\) 7.29114 0.534612
\(187\) 0 0
\(188\) −1.83450 −0.133795
\(189\) −5.41035 −0.393545
\(190\) 0 0
\(191\) −20.7793 −1.50354 −0.751768 0.659427i \(-0.770799\pi\)
−0.751768 + 0.659427i \(0.770799\pi\)
\(192\) 9.12066 0.658227
\(193\) 1.42071 0.102265 0.0511326 0.998692i \(-0.483717\pi\)
0.0511326 + 0.998692i \(0.483717\pi\)
\(194\) 2.23990 0.160816
\(195\) 0 0
\(196\) 5.68303 0.405931
\(197\) 8.19934 0.584179 0.292089 0.956391i \(-0.405649\pi\)
0.292089 + 0.956391i \(0.405649\pi\)
\(198\) 9.66157 0.686618
\(199\) −11.9339 −0.845972 −0.422986 0.906136i \(-0.639018\pi\)
−0.422986 + 0.906136i \(0.639018\pi\)
\(200\) 0 0
\(201\) −8.29384 −0.585002
\(202\) 15.6939 1.10422
\(203\) −2.16956 −0.152274
\(204\) 0 0
\(205\) 0 0
\(206\) 7.25460 0.505452
\(207\) −13.2413 −0.920336
\(208\) −2.83293 −0.196429
\(209\) 12.1621 0.841267
\(210\) 0 0
\(211\) −1.88689 −0.129899 −0.0649494 0.997889i \(-0.520689\pi\)
−0.0649494 + 0.997889i \(0.520689\pi\)
\(212\) −3.77008 −0.258930
\(213\) 6.26967 0.429591
\(214\) −10.4962 −0.717508
\(215\) 0 0
\(216\) 16.7223 1.13781
\(217\) 5.62118 0.381591
\(218\) 6.22439 0.421569
\(219\) 4.54190 0.306913
\(220\) 0 0
\(221\) 0 0
\(222\) 6.97642 0.468227
\(223\) 7.42720 0.497362 0.248681 0.968585i \(-0.420003\pi\)
0.248681 + 0.968585i \(0.420003\pi\)
\(224\) 4.68432 0.312984
\(225\) 0 0
\(226\) 16.0469 1.06742
\(227\) −13.3575 −0.886568 −0.443284 0.896381i \(-0.646187\pi\)
−0.443284 + 0.896381i \(0.646187\pi\)
\(228\) 2.22155 0.147126
\(229\) −4.04244 −0.267132 −0.133566 0.991040i \(-0.542643\pi\)
−0.133566 + 0.991040i \(0.542643\pi\)
\(230\) 0 0
\(231\) −7.68079 −0.505359
\(232\) 6.70569 0.440250
\(233\) 16.8618 1.10465 0.552327 0.833628i \(-0.313740\pi\)
0.552327 + 0.833628i \(0.313740\pi\)
\(234\) −3.49103 −0.228216
\(235\) 0 0
\(236\) −11.8717 −0.772782
\(237\) 1.33722 0.0868619
\(238\) 0 0
\(239\) 11.6307 0.752325 0.376162 0.926554i \(-0.377243\pi\)
0.376162 + 0.926554i \(0.377243\pi\)
\(240\) 0 0
\(241\) 17.1784 1.10656 0.553280 0.832996i \(-0.313376\pi\)
0.553280 + 0.832996i \(0.313376\pi\)
\(242\) 30.2542 1.94481
\(243\) 13.6287 0.874284
\(244\) 5.53134 0.354108
\(245\) 0 0
\(246\) −11.6138 −0.740472
\(247\) −4.39453 −0.279617
\(248\) −17.3740 −1.10325
\(249\) −4.62109 −0.292850
\(250\) 0 0
\(251\) 7.44998 0.470239 0.235119 0.971967i \(-0.424452\pi\)
0.235119 + 0.971967i \(0.424452\pi\)
\(252\) 1.36060 0.0857095
\(253\) −56.9799 −3.58230
\(254\) −19.2837 −1.20997
\(255\) 0 0
\(256\) −16.7992 −1.04995
\(257\) −3.73906 −0.233236 −0.116618 0.993177i \(-0.537205\pi\)
−0.116618 + 0.993177i \(0.537205\pi\)
\(258\) 5.81429 0.361982
\(259\) 5.37855 0.334207
\(260\) 0 0
\(261\) 3.27237 0.202555
\(262\) 1.83778 0.113539
\(263\) 15.1304 0.932979 0.466489 0.884527i \(-0.345519\pi\)
0.466489 + 0.884527i \(0.345519\pi\)
\(264\) 23.7398 1.46108
\(265\) 0 0
\(266\) −1.92855 −0.118247
\(267\) 11.1522 0.682504
\(268\) 6.32220 0.386190
\(269\) 16.0552 0.978902 0.489451 0.872031i \(-0.337197\pi\)
0.489451 + 0.872031i \(0.337197\pi\)
\(270\) 0 0
\(271\) −13.1259 −0.797343 −0.398671 0.917094i \(-0.630529\pi\)
−0.398671 + 0.917094i \(0.630529\pi\)
\(272\) 0 0
\(273\) 2.77531 0.167969
\(274\) 19.2517 1.16304
\(275\) 0 0
\(276\) −10.4081 −0.626493
\(277\) −5.65874 −0.340001 −0.170000 0.985444i \(-0.554377\pi\)
−0.170000 + 0.985444i \(0.554377\pi\)
\(278\) 21.3705 1.28172
\(279\) −8.47847 −0.507592
\(280\) 0 0
\(281\) −20.3992 −1.21691 −0.608456 0.793588i \(-0.708211\pi\)
−0.608456 + 0.793588i \(0.708211\pi\)
\(282\) 2.47690 0.147497
\(283\) −9.85417 −0.585770 −0.292885 0.956148i \(-0.594615\pi\)
−0.292885 + 0.956148i \(0.594615\pi\)
\(284\) −4.77923 −0.283595
\(285\) 0 0
\(286\) −15.0225 −0.888301
\(287\) −8.95382 −0.528527
\(288\) −7.06539 −0.416332
\(289\) 0 0
\(290\) 0 0
\(291\) 2.68582 0.157446
\(292\) −3.46218 −0.202609
\(293\) 21.7306 1.26952 0.634758 0.772711i \(-0.281100\pi\)
0.634758 + 0.772711i \(0.281100\pi\)
\(294\) −7.67310 −0.447504
\(295\) 0 0
\(296\) −16.6240 −0.966252
\(297\) 35.1160 2.03763
\(298\) −10.8758 −0.630016
\(299\) 20.5886 1.19067
\(300\) 0 0
\(301\) 4.48259 0.258372
\(302\) 0.747282 0.0430012
\(303\) 18.8183 1.08108
\(304\) 2.36050 0.135384
\(305\) 0 0
\(306\) 0 0
\(307\) −24.1970 −1.38100 −0.690499 0.723333i \(-0.742609\pi\)
−0.690499 + 0.723333i \(0.742609\pi\)
\(308\) 5.85489 0.333613
\(309\) 8.69884 0.494860
\(310\) 0 0
\(311\) 16.7204 0.948126 0.474063 0.880491i \(-0.342787\pi\)
0.474063 + 0.880491i \(0.342787\pi\)
\(312\) −8.57793 −0.485630
\(313\) −31.1252 −1.75930 −0.879649 0.475623i \(-0.842223\pi\)
−0.879649 + 0.475623i \(0.842223\pi\)
\(314\) −15.9656 −0.900991
\(315\) 0 0
\(316\) −1.01933 −0.0573420
\(317\) −5.43596 −0.305314 −0.152657 0.988279i \(-0.548783\pi\)
−0.152657 + 0.988279i \(0.548783\pi\)
\(318\) 5.09028 0.285448
\(319\) 14.0816 0.788418
\(320\) 0 0
\(321\) −12.5858 −0.702472
\(322\) 9.03536 0.503521
\(323\) 0 0
\(324\) 2.24603 0.124779
\(325\) 0 0
\(326\) 20.9214 1.15873
\(327\) 7.46354 0.412735
\(328\) 27.6745 1.52807
\(329\) 1.90959 0.105279
\(330\) 0 0
\(331\) −5.45030 −0.299575 −0.149788 0.988718i \(-0.547859\pi\)
−0.149788 + 0.988718i \(0.547859\pi\)
\(332\) 3.52255 0.193325
\(333\) −8.11250 −0.444562
\(334\) 14.4679 0.791649
\(335\) 0 0
\(336\) −1.49074 −0.0813268
\(337\) 11.9722 0.652170 0.326085 0.945340i \(-0.394270\pi\)
0.326085 + 0.945340i \(0.394270\pi\)
\(338\) −7.95161 −0.432511
\(339\) 19.2415 1.04506
\(340\) 0 0
\(341\) −36.4844 −1.97574
\(342\) 2.90885 0.157292
\(343\) −12.7703 −0.689532
\(344\) −13.8548 −0.747001
\(345\) 0 0
\(346\) 23.8707 1.28330
\(347\) 9.78974 0.525541 0.262770 0.964858i \(-0.415364\pi\)
0.262770 + 0.964858i \(0.415364\pi\)
\(348\) 2.57218 0.137883
\(349\) −27.6429 −1.47969 −0.739846 0.672776i \(-0.765102\pi\)
−0.739846 + 0.672776i \(0.765102\pi\)
\(350\) 0 0
\(351\) −12.6885 −0.677262
\(352\) −30.4037 −1.62052
\(353\) −5.25206 −0.279539 −0.139769 0.990184i \(-0.544636\pi\)
−0.139769 + 0.990184i \(0.544636\pi\)
\(354\) 16.0289 0.851926
\(355\) 0 0
\(356\) −8.50108 −0.450556
\(357\) 0 0
\(358\) −13.5658 −0.716972
\(359\) −15.2594 −0.805360 −0.402680 0.915341i \(-0.631921\pi\)
−0.402680 + 0.915341i \(0.631921\pi\)
\(360\) 0 0
\(361\) −15.3383 −0.807280
\(362\) 20.2728 1.06552
\(363\) 36.2772 1.90406
\(364\) −2.11556 −0.110885
\(365\) 0 0
\(366\) −7.46828 −0.390373
\(367\) 20.0338 1.04575 0.522877 0.852408i \(-0.324859\pi\)
0.522877 + 0.852408i \(0.324859\pi\)
\(368\) −11.0591 −0.576494
\(369\) 13.5051 0.703048
\(370\) 0 0
\(371\) 3.92440 0.203745
\(372\) −6.66432 −0.345529
\(373\) 6.72325 0.348117 0.174058 0.984735i \(-0.444312\pi\)
0.174058 + 0.984735i \(0.444312\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) −5.90217 −0.304381
\(377\) −5.08812 −0.262052
\(378\) −5.56838 −0.286406
\(379\) −4.93364 −0.253424 −0.126712 0.991940i \(-0.540442\pi\)
−0.126712 + 0.991940i \(0.540442\pi\)
\(380\) 0 0
\(381\) −23.1227 −1.18461
\(382\) −21.3862 −1.09421
\(383\) 23.0814 1.17940 0.589702 0.807621i \(-0.299245\pi\)
0.589702 + 0.807621i \(0.299245\pi\)
\(384\) −2.41997 −0.123493
\(385\) 0 0
\(386\) 1.46221 0.0744246
\(387\) −6.76112 −0.343687
\(388\) −2.04734 −0.103938
\(389\) 0.937529 0.0475346 0.0237673 0.999718i \(-0.492434\pi\)
0.0237673 + 0.999718i \(0.492434\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 18.2841 0.923488
\(393\) 2.20365 0.111159
\(394\) 8.43884 0.425142
\(395\) 0 0
\(396\) −8.83098 −0.443773
\(397\) −26.1623 −1.31305 −0.656525 0.754304i \(-0.727974\pi\)
−0.656525 + 0.754304i \(0.727974\pi\)
\(398\) −12.2825 −0.615665
\(399\) −2.31249 −0.115769
\(400\) 0 0
\(401\) −10.5093 −0.524811 −0.262405 0.964958i \(-0.584516\pi\)
−0.262405 + 0.964958i \(0.584516\pi\)
\(402\) −8.53609 −0.425742
\(403\) 13.1829 0.656689
\(404\) −14.3448 −0.713678
\(405\) 0 0
\(406\) −2.23293 −0.110819
\(407\) −34.9096 −1.73040
\(408\) 0 0
\(409\) −26.3801 −1.30441 −0.652206 0.758042i \(-0.726156\pi\)
−0.652206 + 0.758042i \(0.726156\pi\)
\(410\) 0 0
\(411\) 23.0843 1.13866
\(412\) −6.63093 −0.326682
\(413\) 12.3576 0.608080
\(414\) −13.6281 −0.669785
\(415\) 0 0
\(416\) 10.9858 0.538623
\(417\) 25.6249 1.25486
\(418\) 12.5173 0.612241
\(419\) −3.97802 −0.194339 −0.0971695 0.995268i \(-0.530979\pi\)
−0.0971695 + 0.995268i \(0.530979\pi\)
\(420\) 0 0
\(421\) −11.0109 −0.536638 −0.268319 0.963330i \(-0.586468\pi\)
−0.268319 + 0.963330i \(0.586468\pi\)
\(422\) −1.94200 −0.0945352
\(423\) −2.88025 −0.140043
\(424\) −12.1295 −0.589063
\(425\) 0 0
\(426\) 6.45280 0.312639
\(427\) −5.75775 −0.278637
\(428\) 9.59388 0.463738
\(429\) −18.0132 −0.869686
\(430\) 0 0
\(431\) 35.6219 1.71585 0.857923 0.513779i \(-0.171755\pi\)
0.857923 + 0.513779i \(0.171755\pi\)
\(432\) 6.81556 0.327914
\(433\) 8.53691 0.410258 0.205129 0.978735i \(-0.434239\pi\)
0.205129 + 0.978735i \(0.434239\pi\)
\(434\) 5.78537 0.277707
\(435\) 0 0
\(436\) −5.68929 −0.272468
\(437\) −17.1552 −0.820642
\(438\) 4.67456 0.223359
\(439\) −15.6854 −0.748625 −0.374313 0.927303i \(-0.622121\pi\)
−0.374313 + 0.927303i \(0.622121\pi\)
\(440\) 0 0
\(441\) 8.92263 0.424887
\(442\) 0 0
\(443\) 1.36560 0.0648815 0.0324408 0.999474i \(-0.489672\pi\)
0.0324408 + 0.999474i \(0.489672\pi\)
\(444\) −6.37667 −0.302623
\(445\) 0 0
\(446\) 7.64414 0.361961
\(447\) −13.0409 −0.616814
\(448\) 7.23706 0.341919
\(449\) −7.14027 −0.336970 −0.168485 0.985704i \(-0.553888\pi\)
−0.168485 + 0.985704i \(0.553888\pi\)
\(450\) 0 0
\(451\) 58.1150 2.73653
\(452\) −14.6674 −0.689895
\(453\) 0.896051 0.0421001
\(454\) −13.7477 −0.645209
\(455\) 0 0
\(456\) 7.14743 0.334709
\(457\) 29.4258 1.37648 0.688240 0.725483i \(-0.258383\pi\)
0.688240 + 0.725483i \(0.258383\pi\)
\(458\) −4.16052 −0.194408
\(459\) 0 0
\(460\) 0 0
\(461\) −13.1230 −0.611197 −0.305599 0.952160i \(-0.598857\pi\)
−0.305599 + 0.952160i \(0.598857\pi\)
\(462\) −7.90514 −0.367780
\(463\) −24.8827 −1.15640 −0.578198 0.815896i \(-0.696244\pi\)
−0.578198 + 0.815896i \(0.696244\pi\)
\(464\) 2.73306 0.126879
\(465\) 0 0
\(466\) 17.3543 0.803923
\(467\) 33.2280 1.53761 0.768805 0.639483i \(-0.220852\pi\)
0.768805 + 0.639483i \(0.220852\pi\)
\(468\) 3.19091 0.147500
\(469\) −6.58099 −0.303882
\(470\) 0 0
\(471\) −19.1440 −0.882111
\(472\) −38.1950 −1.75807
\(473\) −29.0943 −1.33776
\(474\) 1.37628 0.0632146
\(475\) 0 0
\(476\) 0 0
\(477\) −5.91920 −0.271022
\(478\) 11.9704 0.547512
\(479\) 1.31256 0.0599722 0.0299861 0.999550i \(-0.490454\pi\)
0.0299861 + 0.999550i \(0.490454\pi\)
\(480\) 0 0
\(481\) 12.6139 0.575145
\(482\) 17.6802 0.805310
\(483\) 10.8341 0.492970
\(484\) −27.6533 −1.25697
\(485\) 0 0
\(486\) 14.0268 0.636269
\(487\) −23.1429 −1.04870 −0.524352 0.851502i \(-0.675692\pi\)
−0.524352 + 0.851502i \(0.675692\pi\)
\(488\) 17.7961 0.805591
\(489\) 25.0865 1.13445
\(490\) 0 0
\(491\) −7.02201 −0.316899 −0.158449 0.987367i \(-0.550649\pi\)
−0.158449 + 0.987367i \(0.550649\pi\)
\(492\) 10.6154 0.478580
\(493\) 0 0
\(494\) −4.52289 −0.203494
\(495\) 0 0
\(496\) −7.08116 −0.317953
\(497\) 4.97485 0.223153
\(498\) −4.75606 −0.213124
\(499\) 1.20807 0.0540806 0.0270403 0.999634i \(-0.491392\pi\)
0.0270403 + 0.999634i \(0.491392\pi\)
\(500\) 0 0
\(501\) 17.3482 0.775059
\(502\) 7.66759 0.342221
\(503\) −18.5304 −0.826229 −0.413114 0.910679i \(-0.635559\pi\)
−0.413114 + 0.910679i \(0.635559\pi\)
\(504\) 4.37747 0.194988
\(505\) 0 0
\(506\) −58.6442 −2.60705
\(507\) −9.53461 −0.423447
\(508\) 17.6259 0.782024
\(509\) 1.45296 0.0644015 0.0322008 0.999481i \(-0.489748\pi\)
0.0322008 + 0.999481i \(0.489748\pi\)
\(510\) 0 0
\(511\) 3.60390 0.159427
\(512\) −13.3681 −0.590791
\(513\) 10.5725 0.466787
\(514\) −3.84827 −0.169740
\(515\) 0 0
\(516\) −5.31444 −0.233955
\(517\) −12.3942 −0.545098
\(518\) 5.53565 0.243223
\(519\) 28.6229 1.25640
\(520\) 0 0
\(521\) −12.9375 −0.566802 −0.283401 0.959001i \(-0.591463\pi\)
−0.283401 + 0.959001i \(0.591463\pi\)
\(522\) 3.36795 0.147411
\(523\) −29.1271 −1.27364 −0.636819 0.771013i \(-0.719750\pi\)
−0.636819 + 0.771013i \(0.719750\pi\)
\(524\) −1.67979 −0.0733820
\(525\) 0 0
\(526\) 15.5723 0.678985
\(527\) 0 0
\(528\) 9.67571 0.421081
\(529\) 57.3728 2.49447
\(530\) 0 0
\(531\) −18.6391 −0.808869
\(532\) 1.76275 0.0764251
\(533\) −20.9987 −0.909557
\(534\) 11.4780 0.496700
\(535\) 0 0
\(536\) 20.3405 0.878578
\(537\) −16.2664 −0.701948
\(538\) 16.5241 0.712406
\(539\) 38.3957 1.65382
\(540\) 0 0
\(541\) 12.9238 0.555639 0.277820 0.960633i \(-0.410388\pi\)
0.277820 + 0.960633i \(0.410388\pi\)
\(542\) −13.5093 −0.580275
\(543\) 24.3087 1.04319
\(544\) 0 0
\(545\) 0 0
\(546\) 2.85637 0.122241
\(547\) 3.74868 0.160282 0.0801410 0.996784i \(-0.474463\pi\)
0.0801410 + 0.996784i \(0.474463\pi\)
\(548\) −17.5966 −0.751690
\(549\) 8.68446 0.370644
\(550\) 0 0
\(551\) 4.23960 0.180613
\(552\) −33.4861 −1.42526
\(553\) 1.06106 0.0451208
\(554\) −5.82403 −0.247439
\(555\) 0 0
\(556\) −19.5333 −0.828396
\(557\) 39.1300 1.65799 0.828996 0.559255i \(-0.188913\pi\)
0.828996 + 0.559255i \(0.188913\pi\)
\(558\) −8.72611 −0.369406
\(559\) 10.5127 0.444640
\(560\) 0 0
\(561\) 0 0
\(562\) −20.9950 −0.885621
\(563\) 39.8934 1.68131 0.840653 0.541574i \(-0.182171\pi\)
0.840653 + 0.541574i \(0.182171\pi\)
\(564\) −2.26396 −0.0953300
\(565\) 0 0
\(566\) −10.1420 −0.426300
\(567\) −2.33796 −0.0981853
\(568\) −15.3763 −0.645175
\(569\) 29.7213 1.24598 0.622991 0.782229i \(-0.285917\pi\)
0.622991 + 0.782229i \(0.285917\pi\)
\(570\) 0 0
\(571\) 16.8380 0.704650 0.352325 0.935878i \(-0.385391\pi\)
0.352325 + 0.935878i \(0.385391\pi\)
\(572\) 13.7311 0.574124
\(573\) −25.6438 −1.07128
\(574\) −9.21535 −0.384641
\(575\) 0 0
\(576\) −10.9157 −0.454821
\(577\) 0.136830 0.00569631 0.00284816 0.999996i \(-0.499093\pi\)
0.00284816 + 0.999996i \(0.499093\pi\)
\(578\) 0 0
\(579\) 1.75331 0.0728650
\(580\) 0 0
\(581\) −3.66674 −0.152122
\(582\) 2.76427 0.114583
\(583\) −25.4714 −1.05492
\(584\) −11.1389 −0.460933
\(585\) 0 0
\(586\) 22.3654 0.923904
\(587\) −23.8523 −0.984492 −0.492246 0.870456i \(-0.663824\pi\)
−0.492246 + 0.870456i \(0.663824\pi\)
\(588\) 7.01345 0.289230
\(589\) −10.9845 −0.452608
\(590\) 0 0
\(591\) 10.1188 0.416233
\(592\) −6.77551 −0.278472
\(593\) 1.47081 0.0603990 0.0301995 0.999544i \(-0.490386\pi\)
0.0301995 + 0.999544i \(0.490386\pi\)
\(594\) 36.1417 1.48291
\(595\) 0 0
\(596\) 9.94079 0.407191
\(597\) −14.7277 −0.602763
\(598\) 21.1900 0.866523
\(599\) 25.1103 1.02598 0.512990 0.858394i \(-0.328538\pi\)
0.512990 + 0.858394i \(0.328538\pi\)
\(600\) 0 0
\(601\) −17.1247 −0.698529 −0.349265 0.937024i \(-0.613569\pi\)
−0.349265 + 0.937024i \(0.613569\pi\)
\(602\) 4.61352 0.188033
\(603\) 9.92616 0.404224
\(604\) −0.683039 −0.0277925
\(605\) 0 0
\(606\) 19.3679 0.786769
\(607\) 16.7901 0.681487 0.340744 0.940156i \(-0.389321\pi\)
0.340744 + 0.940156i \(0.389321\pi\)
\(608\) −9.15375 −0.371234
\(609\) −2.67747 −0.108496
\(610\) 0 0
\(611\) 4.47843 0.181178
\(612\) 0 0
\(613\) −22.7069 −0.917125 −0.458562 0.888662i \(-0.651635\pi\)
−0.458562 + 0.888662i \(0.651635\pi\)
\(614\) −24.9038 −1.00504
\(615\) 0 0
\(616\) 18.8371 0.758966
\(617\) 6.33001 0.254837 0.127418 0.991849i \(-0.459331\pi\)
0.127418 + 0.991849i \(0.459331\pi\)
\(618\) 8.95292 0.360139
\(619\) 17.9393 0.721043 0.360522 0.932751i \(-0.382599\pi\)
0.360522 + 0.932751i \(0.382599\pi\)
\(620\) 0 0
\(621\) −49.5327 −1.98768
\(622\) 17.2088 0.690009
\(623\) 8.84906 0.354530
\(624\) −3.49613 −0.139957
\(625\) 0 0
\(626\) −32.0343 −1.28035
\(627\) 15.0092 0.599411
\(628\) 14.5931 0.582327
\(629\) 0 0
\(630\) 0 0
\(631\) 17.4118 0.693152 0.346576 0.938022i \(-0.387344\pi\)
0.346576 + 0.938022i \(0.387344\pi\)
\(632\) −3.27952 −0.130452
\(633\) −2.32862 −0.0925542
\(634\) −5.59474 −0.222195
\(635\) 0 0
\(636\) −4.65267 −0.184490
\(637\) −13.8736 −0.549691
\(638\) 14.4929 0.573780
\(639\) −7.50361 −0.296838
\(640\) 0 0
\(641\) −39.1880 −1.54783 −0.773917 0.633287i \(-0.781705\pi\)
−0.773917 + 0.633287i \(0.781705\pi\)
\(642\) −12.9534 −0.511231
\(643\) 18.5219 0.730432 0.365216 0.930923i \(-0.380995\pi\)
0.365216 + 0.930923i \(0.380995\pi\)
\(644\) −8.25860 −0.325435
\(645\) 0 0
\(646\) 0 0
\(647\) −35.7438 −1.40523 −0.702617 0.711569i \(-0.747985\pi\)
−0.702617 + 0.711569i \(0.747985\pi\)
\(648\) 7.22618 0.283871
\(649\) −80.2075 −3.14842
\(650\) 0 0
\(651\) 6.93712 0.271887
\(652\) −19.1229 −0.748909
\(653\) 12.8668 0.503516 0.251758 0.967790i \(-0.418991\pi\)
0.251758 + 0.967790i \(0.418991\pi\)
\(654\) 7.68155 0.300372
\(655\) 0 0
\(656\) 11.2794 0.440386
\(657\) −5.43579 −0.212070
\(658\) 1.96537 0.0766181
\(659\) 10.2310 0.398542 0.199271 0.979944i \(-0.436143\pi\)
0.199271 + 0.979944i \(0.436143\pi\)
\(660\) 0 0
\(661\) −8.64646 −0.336309 −0.168154 0.985761i \(-0.553781\pi\)
−0.168154 + 0.985761i \(0.553781\pi\)
\(662\) −5.60949 −0.218019
\(663\) 0 0
\(664\) 11.3332 0.439812
\(665\) 0 0
\(666\) −8.34946 −0.323535
\(667\) −19.8628 −0.769089
\(668\) −13.2241 −0.511657
\(669\) 9.16594 0.354376
\(670\) 0 0
\(671\) 37.3708 1.44268
\(672\) 5.78094 0.223004
\(673\) 11.8516 0.456846 0.228423 0.973562i \(-0.426643\pi\)
0.228423 + 0.973562i \(0.426643\pi\)
\(674\) 12.3219 0.474624
\(675\) 0 0
\(676\) 7.26802 0.279539
\(677\) −11.8491 −0.455400 −0.227700 0.973731i \(-0.573121\pi\)
−0.227700 + 0.973731i \(0.573121\pi\)
\(678\) 19.8035 0.760551
\(679\) 2.13115 0.0817858
\(680\) 0 0
\(681\) −16.4845 −0.631689
\(682\) −37.5501 −1.43787
\(683\) −9.39813 −0.359610 −0.179805 0.983702i \(-0.557547\pi\)
−0.179805 + 0.983702i \(0.557547\pi\)
\(684\) −2.65878 −0.101661
\(685\) 0 0
\(686\) −13.1433 −0.501814
\(687\) −4.98879 −0.190334
\(688\) −5.64684 −0.215284
\(689\) 9.20362 0.350630
\(690\) 0 0
\(691\) 20.8031 0.791385 0.395693 0.918383i \(-0.370505\pi\)
0.395693 + 0.918383i \(0.370505\pi\)
\(692\) −21.8185 −0.829417
\(693\) 9.19246 0.349193
\(694\) 10.0757 0.382468
\(695\) 0 0
\(696\) 8.27552 0.313683
\(697\) 0 0
\(698\) −28.4504 −1.07686
\(699\) 20.8092 0.787076
\(700\) 0 0
\(701\) 20.1807 0.762214 0.381107 0.924531i \(-0.375543\pi\)
0.381107 + 0.924531i \(0.375543\pi\)
\(702\) −13.0591 −0.492884
\(703\) −10.5104 −0.396406
\(704\) −46.9723 −1.77033
\(705\) 0 0
\(706\) −5.40547 −0.203437
\(707\) 14.9319 0.561573
\(708\) −14.6509 −0.550615
\(709\) 40.7711 1.53119 0.765595 0.643323i \(-0.222445\pi\)
0.765595 + 0.643323i \(0.222445\pi\)
\(710\) 0 0
\(711\) −1.60040 −0.0600197
\(712\) −27.3507 −1.02501
\(713\) 51.4630 1.92730
\(714\) 0 0
\(715\) 0 0
\(716\) 12.3995 0.463392
\(717\) 14.3534 0.536039
\(718\) −15.7051 −0.586109
\(719\) 10.3493 0.385964 0.192982 0.981202i \(-0.438184\pi\)
0.192982 + 0.981202i \(0.438184\pi\)
\(720\) 0 0
\(721\) 6.90235 0.257057
\(722\) −15.7863 −0.587507
\(723\) 21.1999 0.788435
\(724\) −18.5300 −0.688662
\(725\) 0 0
\(726\) 37.3368 1.38570
\(727\) −3.42797 −0.127136 −0.0635682 0.997977i \(-0.520248\pi\)
−0.0635682 + 0.997977i \(0.520248\pi\)
\(728\) −6.80641 −0.252262
\(729\) 23.9819 0.888218
\(730\) 0 0
\(731\) 0 0
\(732\) 6.82624 0.252305
\(733\) −10.9959 −0.406144 −0.203072 0.979164i \(-0.565092\pi\)
−0.203072 + 0.979164i \(0.565092\pi\)
\(734\) 20.6189 0.761058
\(735\) 0 0
\(736\) 42.8858 1.58079
\(737\) 42.7141 1.57339
\(738\) 13.8996 0.511651
\(739\) 33.9094 1.24738 0.623690 0.781672i \(-0.285633\pi\)
0.623690 + 0.781672i \(0.285633\pi\)
\(740\) 0 0
\(741\) −5.42330 −0.199230
\(742\) 4.03903 0.148277
\(743\) −7.10950 −0.260822 −0.130411 0.991460i \(-0.541630\pi\)
−0.130411 + 0.991460i \(0.541630\pi\)
\(744\) −21.4413 −0.786075
\(745\) 0 0
\(746\) 6.91963 0.253346
\(747\) 5.53057 0.202353
\(748\) 0 0
\(749\) −9.98659 −0.364902
\(750\) 0 0
\(751\) 1.52759 0.0557427 0.0278714 0.999612i \(-0.491127\pi\)
0.0278714 + 0.999612i \(0.491127\pi\)
\(752\) −2.40557 −0.0877220
\(753\) 9.19405 0.335050
\(754\) −5.23674 −0.190711
\(755\) 0 0
\(756\) 5.08967 0.185109
\(757\) −41.2064 −1.49767 −0.748835 0.662756i \(-0.769387\pi\)
−0.748835 + 0.662756i \(0.769387\pi\)
\(758\) −5.07774 −0.184432
\(759\) −70.3191 −2.55242
\(760\) 0 0
\(761\) 29.5046 1.06954 0.534771 0.844997i \(-0.320398\pi\)
0.534771 + 0.844997i \(0.320398\pi\)
\(762\) −23.7981 −0.862115
\(763\) 5.92217 0.214397
\(764\) 19.5477 0.707210
\(765\) 0 0
\(766\) 23.7556 0.858323
\(767\) 28.9815 1.04646
\(768\) −20.7320 −0.748100
\(769\) 36.3744 1.31170 0.655848 0.754893i \(-0.272311\pi\)
0.655848 + 0.754893i \(0.272311\pi\)
\(770\) 0 0
\(771\) −4.61439 −0.166183
\(772\) −1.33651 −0.0481019
\(773\) −14.6994 −0.528700 −0.264350 0.964427i \(-0.585157\pi\)
−0.264350 + 0.964427i \(0.585157\pi\)
\(774\) −6.95861 −0.250122
\(775\) 0 0
\(776\) −6.58695 −0.236458
\(777\) 6.63769 0.238126
\(778\) 0.964913 0.0345938
\(779\) 17.4969 0.626891
\(780\) 0 0
\(781\) −32.2894 −1.15541
\(782\) 0 0
\(783\) 12.2412 0.437463
\(784\) 7.45212 0.266147
\(785\) 0 0
\(786\) 2.26801 0.0808974
\(787\) 21.2080 0.755983 0.377991 0.925809i \(-0.376615\pi\)
0.377991 + 0.925809i \(0.376615\pi\)
\(788\) −7.71336 −0.274777
\(789\) 18.6724 0.664756
\(790\) 0 0
\(791\) 15.2678 0.542859
\(792\) −28.4121 −1.00958
\(793\) −13.5032 −0.479514
\(794\) −26.9265 −0.955586
\(795\) 0 0
\(796\) 11.2266 0.397915
\(797\) 28.5869 1.01260 0.506300 0.862358i \(-0.331013\pi\)
0.506300 + 0.862358i \(0.331013\pi\)
\(798\) −2.38003 −0.0842522
\(799\) 0 0
\(800\) 0 0
\(801\) −13.3471 −0.471596
\(802\) −10.8163 −0.381937
\(803\) −23.3912 −0.825458
\(804\) 7.80225 0.275164
\(805\) 0 0
\(806\) 13.5680 0.477913
\(807\) 19.8138 0.697477
\(808\) −46.1516 −1.62361
\(809\) 5.51809 0.194006 0.0970028 0.995284i \(-0.469074\pi\)
0.0970028 + 0.995284i \(0.469074\pi\)
\(810\) 0 0
\(811\) 30.7170 1.07862 0.539309 0.842108i \(-0.318685\pi\)
0.539309 + 0.842108i \(0.318685\pi\)
\(812\) 2.04097 0.0716241
\(813\) −16.1987 −0.568115
\(814\) −35.9293 −1.25932
\(815\) 0 0
\(816\) 0 0
\(817\) −8.75955 −0.306458
\(818\) −27.1506 −0.949299
\(819\) −3.32152 −0.116063
\(820\) 0 0
\(821\) −3.81816 −0.133255 −0.0666274 0.997778i \(-0.521224\pi\)
−0.0666274 + 0.997778i \(0.521224\pi\)
\(822\) 23.7585 0.828674
\(823\) −3.04341 −0.106087 −0.0530434 0.998592i \(-0.516892\pi\)
−0.0530434 + 0.998592i \(0.516892\pi\)
\(824\) −21.3338 −0.743198
\(825\) 0 0
\(826\) 12.7186 0.442537
\(827\) 47.0851 1.63731 0.818654 0.574287i \(-0.194721\pi\)
0.818654 + 0.574287i \(0.194721\pi\)
\(828\) 12.4565 0.432894
\(829\) −43.3282 −1.50485 −0.752425 0.658678i \(-0.771116\pi\)
−0.752425 + 0.658678i \(0.771116\pi\)
\(830\) 0 0
\(831\) −6.98347 −0.242254
\(832\) 16.9725 0.588417
\(833\) 0 0
\(834\) 26.3734 0.913236
\(835\) 0 0
\(836\) −11.4412 −0.395702
\(837\) −31.7159 −1.09626
\(838\) −4.09421 −0.141432
\(839\) −18.8359 −0.650289 −0.325145 0.945664i \(-0.605413\pi\)
−0.325145 + 0.945664i \(0.605413\pi\)
\(840\) 0 0
\(841\) −24.0913 −0.830733
\(842\) −11.3325 −0.390544
\(843\) −25.1747 −0.867062
\(844\) 1.77505 0.0610998
\(845\) 0 0
\(846\) −2.96438 −0.101917
\(847\) 28.7852 0.989072
\(848\) −4.94368 −0.169767
\(849\) −12.1611 −0.417367
\(850\) 0 0
\(851\) 49.2416 1.68798
\(852\) −5.89806 −0.202064
\(853\) −5.51855 −0.188951 −0.0944757 0.995527i \(-0.530117\pi\)
−0.0944757 + 0.995527i \(0.530117\pi\)
\(854\) −5.92593 −0.202781
\(855\) 0 0
\(856\) 30.8666 1.05500
\(857\) 56.0071 1.91317 0.956583 0.291460i \(-0.0941410\pi\)
0.956583 + 0.291460i \(0.0941410\pi\)
\(858\) −18.5394 −0.632923
\(859\) −4.95424 −0.169036 −0.0845182 0.996422i \(-0.526935\pi\)
−0.0845182 + 0.996422i \(0.526935\pi\)
\(860\) 0 0
\(861\) −11.0499 −0.376581
\(862\) 36.6624 1.24872
\(863\) −16.6702 −0.567461 −0.283730 0.958904i \(-0.591572\pi\)
−0.283730 + 0.958904i \(0.591572\pi\)
\(864\) −26.4300 −0.899166
\(865\) 0 0
\(866\) 8.78626 0.298569
\(867\) 0 0
\(868\) −5.28801 −0.179487
\(869\) −6.88682 −0.233619
\(870\) 0 0
\(871\) −15.4339 −0.522959
\(872\) −18.3043 −0.619860
\(873\) −3.21442 −0.108792
\(874\) −17.6562 −0.597231
\(875\) 0 0
\(876\) −4.27269 −0.144361
\(877\) −0.897652 −0.0303116 −0.0151558 0.999885i \(-0.504824\pi\)
−0.0151558 + 0.999885i \(0.504824\pi\)
\(878\) −16.1436 −0.544820
\(879\) 26.8178 0.904543
\(880\) 0 0
\(881\) 41.9218 1.41238 0.706191 0.708022i \(-0.250412\pi\)
0.706191 + 0.708022i \(0.250412\pi\)
\(882\) 9.18325 0.309216
\(883\) −33.8488 −1.13910 −0.569552 0.821956i \(-0.692883\pi\)
−0.569552 + 0.821956i \(0.692883\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 1.40549 0.0472182
\(887\) 24.3798 0.818594 0.409297 0.912401i \(-0.365774\pi\)
0.409297 + 0.912401i \(0.365774\pi\)
\(888\) −20.5158 −0.688464
\(889\) −18.3474 −0.615353
\(890\) 0 0
\(891\) 15.1746 0.508368
\(892\) −6.98699 −0.233942
\(893\) −3.73158 −0.124873
\(894\) −13.4218 −0.448893
\(895\) 0 0
\(896\) −1.92019 −0.0641492
\(897\) 25.4085 0.848364
\(898\) −7.34883 −0.245234
\(899\) −12.7182 −0.424175
\(900\) 0 0
\(901\) 0 0
\(902\) 59.8124 1.99154
\(903\) 5.53198 0.184093
\(904\) −47.1896 −1.56950
\(905\) 0 0
\(906\) 0.922223 0.0306388
\(907\) −26.5406 −0.881267 −0.440633 0.897687i \(-0.645246\pi\)
−0.440633 + 0.897687i \(0.645246\pi\)
\(908\) 12.5658 0.417010
\(909\) −22.5219 −0.747005
\(910\) 0 0
\(911\) −3.08111 −0.102082 −0.0510408 0.998697i \(-0.516254\pi\)
−0.0510408 + 0.998697i \(0.516254\pi\)
\(912\) 2.91310 0.0964624
\(913\) 23.7990 0.787634
\(914\) 30.2853 1.00175
\(915\) 0 0
\(916\) 3.80284 0.125650
\(917\) 1.74855 0.0577422
\(918\) 0 0
\(919\) −24.4292 −0.805844 −0.402922 0.915234i \(-0.632005\pi\)
−0.402922 + 0.915234i \(0.632005\pi\)
\(920\) 0 0
\(921\) −29.8617 −0.983975
\(922\) −13.5063 −0.444805
\(923\) 11.6672 0.384029
\(924\) 7.22554 0.237703
\(925\) 0 0
\(926\) −25.6095 −0.841580
\(927\) −10.4109 −0.341938
\(928\) −10.5985 −0.347913
\(929\) 22.7545 0.746551 0.373275 0.927721i \(-0.378235\pi\)
0.373275 + 0.927721i \(0.378235\pi\)
\(930\) 0 0
\(931\) 11.5599 0.378862
\(932\) −15.8624 −0.519590
\(933\) 20.6347 0.675549
\(934\) 34.1986 1.11901
\(935\) 0 0
\(936\) 10.2662 0.335560
\(937\) 44.9890 1.46973 0.734863 0.678216i \(-0.237246\pi\)
0.734863 + 0.678216i \(0.237246\pi\)
\(938\) −6.77322 −0.221153
\(939\) −38.4117 −1.25352
\(940\) 0 0
\(941\) 12.9456 0.422015 0.211008 0.977484i \(-0.432326\pi\)
0.211008 + 0.977484i \(0.432326\pi\)
\(942\) −19.7032 −0.641965
\(943\) −81.9739 −2.66944
\(944\) −15.5673 −0.506671
\(945\) 0 0
\(946\) −29.9442 −0.973569
\(947\) −26.7281 −0.868545 −0.434273 0.900781i \(-0.642995\pi\)
−0.434273 + 0.900781i \(0.642995\pi\)
\(948\) −1.25796 −0.0408567
\(949\) 8.45197 0.274363
\(950\) 0 0
\(951\) −6.70853 −0.217539
\(952\) 0 0
\(953\) −49.4696 −1.60248 −0.801239 0.598344i \(-0.795825\pi\)
−0.801239 + 0.598344i \(0.795825\pi\)
\(954\) −6.09210 −0.197239
\(955\) 0 0
\(956\) −10.9413 −0.353867
\(957\) 17.3782 0.561756
\(958\) 1.35089 0.0436454
\(959\) 18.3169 0.591484
\(960\) 0 0
\(961\) 1.95188 0.0629637
\(962\) 12.9824 0.418568
\(963\) 15.0628 0.485393
\(964\) −16.1602 −0.520486
\(965\) 0 0
\(966\) 11.1506 0.358764
\(967\) −14.3279 −0.460754 −0.230377 0.973101i \(-0.573996\pi\)
−0.230377 + 0.973101i \(0.573996\pi\)
\(968\) −88.9694 −2.85959
\(969\) 0 0
\(970\) 0 0
\(971\) −33.6600 −1.08020 −0.540101 0.841600i \(-0.681614\pi\)
−0.540101 + 0.841600i \(0.681614\pi\)
\(972\) −12.8209 −0.411232
\(973\) 20.3329 0.651841
\(974\) −23.8189 −0.763205
\(975\) 0 0
\(976\) 7.25320 0.232169
\(977\) 28.6485 0.916545 0.458273 0.888812i \(-0.348468\pi\)
0.458273 + 0.888812i \(0.348468\pi\)
\(978\) 25.8192 0.825608
\(979\) −57.4350 −1.83563
\(980\) 0 0
\(981\) −8.93245 −0.285191
\(982\) −7.22711 −0.230626
\(983\) 29.9884 0.956482 0.478241 0.878229i \(-0.341274\pi\)
0.478241 + 0.878229i \(0.341274\pi\)
\(984\) 34.1532 1.08876
\(985\) 0 0
\(986\) 0 0
\(987\) 2.35663 0.0750125
\(988\) 4.13406 0.131522
\(989\) 41.0389 1.30496
\(990\) 0 0
\(991\) −26.1900 −0.831951 −0.415976 0.909376i \(-0.636560\pi\)
−0.415976 + 0.909376i \(0.636560\pi\)
\(992\) 27.4599 0.871853
\(993\) −6.72623 −0.213450
\(994\) 5.12016 0.162402
\(995\) 0 0
\(996\) 4.34719 0.137746
\(997\) −36.2778 −1.14893 −0.574464 0.818530i \(-0.694789\pi\)
−0.574464 + 0.818530i \(0.694789\pi\)
\(998\) 1.24335 0.0393577
\(999\) −30.3470 −0.960136
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7225.2.a.bo.1.9 12
5.4 even 2 1445.2.a.r.1.4 12
17.16 even 2 7225.2.a.bn.1.9 12
85.4 even 4 1445.2.d.i.866.17 24
85.64 even 4 1445.2.d.i.866.18 24
85.84 even 2 1445.2.a.s.1.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1445.2.a.r.1.4 12 5.4 even 2
1445.2.a.s.1.4 yes 12 85.84 even 2
1445.2.d.i.866.17 24 85.4 even 4
1445.2.d.i.866.18 24 85.64 even 4
7225.2.a.bn.1.9 12 17.16 even 2
7225.2.a.bo.1.9 12 1.1 even 1 trivial