Properties

Label 7203.2.a.g.1.14
Level $7203$
Weight $2$
Character 7203.1
Self dual yes
Analytic conductor $57.516$
Analytic rank $0$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7203,2,Mod(1,7203)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7203, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7203.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7203 = 3 \cdot 7^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7203.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [18,3,-18,27] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.5162445759\)
Analytic rank: \(0\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 3 x^{17} - 27 x^{16} + 85 x^{15} + 287 x^{14} - 973 x^{13} - 1504 x^{12} + 5775 x^{11} + \cdots + 351 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 147)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Root \(1.98596\) of defining polynomial
Character \(\chi\) \(=\) 7203.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.98596 q^{2} -1.00000 q^{3} +1.94405 q^{4} -3.52654 q^{5} -1.98596 q^{6} -0.111122 q^{8} +1.00000 q^{9} -7.00357 q^{10} -4.16832 q^{11} -1.94405 q^{12} -5.71756 q^{13} +3.52654 q^{15} -4.10878 q^{16} -3.10640 q^{17} +1.98596 q^{18} +2.60172 q^{19} -6.85576 q^{20} -8.27812 q^{22} -0.118359 q^{23} +0.111122 q^{24} +7.43648 q^{25} -11.3549 q^{26} -1.00000 q^{27} +5.45091 q^{29} +7.00357 q^{30} -8.12903 q^{31} -7.93763 q^{32} +4.16832 q^{33} -6.16919 q^{34} +1.94405 q^{36} +2.42275 q^{37} +5.16691 q^{38} +5.71756 q^{39} +0.391876 q^{40} -4.05753 q^{41} -10.3247 q^{43} -8.10340 q^{44} -3.52654 q^{45} -0.235057 q^{46} -4.02730 q^{47} +4.10878 q^{48} +14.7686 q^{50} +3.10640 q^{51} -11.1152 q^{52} +4.86574 q^{53} -1.98596 q^{54} +14.6997 q^{55} -2.60172 q^{57} +10.8253 q^{58} +9.28785 q^{59} +6.85576 q^{60} -6.09812 q^{61} -16.1439 q^{62} -7.54628 q^{64} +20.1632 q^{65} +8.27812 q^{66} +2.57419 q^{67} -6.03898 q^{68} +0.118359 q^{69} +2.06205 q^{71} -0.111122 q^{72} +9.63811 q^{73} +4.81149 q^{74} -7.43648 q^{75} +5.05786 q^{76} +11.3549 q^{78} +8.80338 q^{79} +14.4898 q^{80} +1.00000 q^{81} -8.05809 q^{82} +2.26826 q^{83} +10.9548 q^{85} -20.5045 q^{86} -5.45091 q^{87} +0.463192 q^{88} +9.72942 q^{89} -7.00357 q^{90} -0.230096 q^{92} +8.12903 q^{93} -7.99807 q^{94} -9.17505 q^{95} +7.93763 q^{96} -10.8774 q^{97} -4.16832 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 3 q^{2} - 18 q^{3} + 27 q^{4} + 2 q^{5} - 3 q^{6} + 3 q^{8} + 18 q^{9} + 2 q^{10} - 27 q^{12} - q^{13} - 2 q^{15} + 37 q^{16} + 5 q^{17} + 3 q^{18} - 3 q^{19} + 19 q^{20} + 4 q^{23} - 3 q^{24} + 34 q^{25}+ \cdots - 86 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.98596 1.40429 0.702144 0.712035i \(-0.252226\pi\)
0.702144 + 0.712035i \(0.252226\pi\)
\(3\) −1.00000 −0.577350
\(4\) 1.94405 0.972023
\(5\) −3.52654 −1.57712 −0.788558 0.614960i \(-0.789172\pi\)
−0.788558 + 0.614960i \(0.789172\pi\)
\(6\) −1.98596 −0.810766
\(7\) 0 0
\(8\) −0.111122 −0.0392876
\(9\) 1.00000 0.333333
\(10\) −7.00357 −2.21472
\(11\) −4.16832 −1.25679 −0.628397 0.777893i \(-0.716289\pi\)
−0.628397 + 0.777893i \(0.716289\pi\)
\(12\) −1.94405 −0.561198
\(13\) −5.71756 −1.58577 −0.792884 0.609373i \(-0.791421\pi\)
−0.792884 + 0.609373i \(0.791421\pi\)
\(14\) 0 0
\(15\) 3.52654 0.910548
\(16\) −4.10878 −1.02719
\(17\) −3.10640 −0.753412 −0.376706 0.926333i \(-0.622943\pi\)
−0.376706 + 0.926333i \(0.622943\pi\)
\(18\) 1.98596 0.468096
\(19\) 2.60172 0.596874 0.298437 0.954429i \(-0.403535\pi\)
0.298437 + 0.954429i \(0.403535\pi\)
\(20\) −6.85576 −1.53299
\(21\) 0 0
\(22\) −8.27812 −1.76490
\(23\) −0.118359 −0.0246796 −0.0123398 0.999924i \(-0.503928\pi\)
−0.0123398 + 0.999924i \(0.503928\pi\)
\(24\) 0.111122 0.0226827
\(25\) 7.43648 1.48730
\(26\) −11.3549 −2.22687
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 5.45091 1.01221 0.506104 0.862472i \(-0.331085\pi\)
0.506104 + 0.862472i \(0.331085\pi\)
\(30\) 7.00357 1.27867
\(31\) −8.12903 −1.46002 −0.730008 0.683438i \(-0.760484\pi\)
−0.730008 + 0.683438i \(0.760484\pi\)
\(32\) −7.93763 −1.40319
\(33\) 4.16832 0.725611
\(34\) −6.16919 −1.05801
\(35\) 0 0
\(36\) 1.94405 0.324008
\(37\) 2.42275 0.398298 0.199149 0.979969i \(-0.436182\pi\)
0.199149 + 0.979969i \(0.436182\pi\)
\(38\) 5.16691 0.838183
\(39\) 5.71756 0.915543
\(40\) 0.391876 0.0619610
\(41\) −4.05753 −0.633679 −0.316840 0.948479i \(-0.602622\pi\)
−0.316840 + 0.948479i \(0.602622\pi\)
\(42\) 0 0
\(43\) −10.3247 −1.57450 −0.787251 0.616633i \(-0.788496\pi\)
−0.787251 + 0.616633i \(0.788496\pi\)
\(44\) −8.10340 −1.22163
\(45\) −3.52654 −0.525705
\(46\) −0.235057 −0.0346573
\(47\) −4.02730 −0.587442 −0.293721 0.955891i \(-0.594894\pi\)
−0.293721 + 0.955891i \(0.594894\pi\)
\(48\) 4.10878 0.593051
\(49\) 0 0
\(50\) 14.7686 2.08859
\(51\) 3.10640 0.434983
\(52\) −11.1152 −1.54140
\(53\) 4.86574 0.668361 0.334181 0.942509i \(-0.391540\pi\)
0.334181 + 0.942509i \(0.391540\pi\)
\(54\) −1.98596 −0.270255
\(55\) 14.6997 1.98211
\(56\) 0 0
\(57\) −2.60172 −0.344606
\(58\) 10.8253 1.42143
\(59\) 9.28785 1.20917 0.604587 0.796539i \(-0.293338\pi\)
0.604587 + 0.796539i \(0.293338\pi\)
\(60\) 6.85576 0.885074
\(61\) −6.09812 −0.780784 −0.390392 0.920649i \(-0.627660\pi\)
−0.390392 + 0.920649i \(0.627660\pi\)
\(62\) −16.1439 −2.05028
\(63\) 0 0
\(64\) −7.54628 −0.943285
\(65\) 20.1632 2.50094
\(66\) 8.27812 1.01897
\(67\) 2.57419 0.314488 0.157244 0.987560i \(-0.449739\pi\)
0.157244 + 0.987560i \(0.449739\pi\)
\(68\) −6.03898 −0.732334
\(69\) 0.118359 0.0142488
\(70\) 0 0
\(71\) 2.06205 0.244720 0.122360 0.992486i \(-0.460954\pi\)
0.122360 + 0.992486i \(0.460954\pi\)
\(72\) −0.111122 −0.0130959
\(73\) 9.63811 1.12806 0.564028 0.825756i \(-0.309251\pi\)
0.564028 + 0.825756i \(0.309251\pi\)
\(74\) 4.81149 0.559325
\(75\) −7.43648 −0.858690
\(76\) 5.05786 0.580176
\(77\) 0 0
\(78\) 11.3549 1.28569
\(79\) 8.80338 0.990458 0.495229 0.868763i \(-0.335084\pi\)
0.495229 + 0.868763i \(0.335084\pi\)
\(80\) 14.4898 1.62000
\(81\) 1.00000 0.111111
\(82\) −8.05809 −0.889868
\(83\) 2.26826 0.248974 0.124487 0.992221i \(-0.460271\pi\)
0.124487 + 0.992221i \(0.460271\pi\)
\(84\) 0 0
\(85\) 10.9548 1.18822
\(86\) −20.5045 −2.21105
\(87\) −5.45091 −0.584399
\(88\) 0.463192 0.0493764
\(89\) 9.72942 1.03132 0.515658 0.856794i \(-0.327547\pi\)
0.515658 + 0.856794i \(0.327547\pi\)
\(90\) −7.00357 −0.738241
\(91\) 0 0
\(92\) −0.230096 −0.0239892
\(93\) 8.12903 0.842941
\(94\) −7.99807 −0.824938
\(95\) −9.17505 −0.941340
\(96\) 7.93763 0.810131
\(97\) −10.8774 −1.10443 −0.552217 0.833701i \(-0.686218\pi\)
−0.552217 + 0.833701i \(0.686218\pi\)
\(98\) 0 0
\(99\) −4.16832 −0.418931
\(100\) 14.4569 1.44569
\(101\) −0.704625 −0.0701128 −0.0350564 0.999385i \(-0.511161\pi\)
−0.0350564 + 0.999385i \(0.511161\pi\)
\(102\) 6.16919 0.610841
\(103\) −7.32688 −0.721939 −0.360970 0.932578i \(-0.617554\pi\)
−0.360970 + 0.932578i \(0.617554\pi\)
\(104\) 0.635347 0.0623009
\(105\) 0 0
\(106\) 9.66318 0.938571
\(107\) 11.6278 1.12410 0.562050 0.827103i \(-0.310013\pi\)
0.562050 + 0.827103i \(0.310013\pi\)
\(108\) −1.94405 −0.187066
\(109\) −12.5490 −1.20197 −0.600986 0.799260i \(-0.705225\pi\)
−0.600986 + 0.799260i \(0.705225\pi\)
\(110\) 29.1931 2.78345
\(111\) −2.42275 −0.229957
\(112\) 0 0
\(113\) −11.4631 −1.07836 −0.539178 0.842192i \(-0.681265\pi\)
−0.539178 + 0.842192i \(0.681265\pi\)
\(114\) −5.16691 −0.483925
\(115\) 0.417399 0.0389226
\(116\) 10.5968 0.983890
\(117\) −5.71756 −0.528589
\(118\) 18.4453 1.69803
\(119\) 0 0
\(120\) −0.391876 −0.0357732
\(121\) 6.37485 0.579532
\(122\) −12.1106 −1.09644
\(123\) 4.05753 0.365855
\(124\) −15.8032 −1.41917
\(125\) −8.59233 −0.768522
\(126\) 0 0
\(127\) −5.98431 −0.531021 −0.265511 0.964108i \(-0.585541\pi\)
−0.265511 + 0.964108i \(0.585541\pi\)
\(128\) 0.888628 0.0785444
\(129\) 10.3247 0.909039
\(130\) 40.0434 3.51204
\(131\) −7.00691 −0.612197 −0.306098 0.952000i \(-0.599024\pi\)
−0.306098 + 0.952000i \(0.599024\pi\)
\(132\) 8.10340 0.705310
\(133\) 0 0
\(134\) 5.11225 0.441631
\(135\) 3.52654 0.303516
\(136\) 0.345189 0.0295997
\(137\) −4.48500 −0.383180 −0.191590 0.981475i \(-0.561364\pi\)
−0.191590 + 0.981475i \(0.561364\pi\)
\(138\) 0.235057 0.0200094
\(139\) 4.72976 0.401173 0.200586 0.979676i \(-0.435715\pi\)
0.200586 + 0.979676i \(0.435715\pi\)
\(140\) 0 0
\(141\) 4.02730 0.339160
\(142\) 4.09515 0.343658
\(143\) 23.8326 1.99298
\(144\) −4.10878 −0.342398
\(145\) −19.2229 −1.59637
\(146\) 19.1409 1.58411
\(147\) 0 0
\(148\) 4.70994 0.387155
\(149\) 15.2896 1.25257 0.626285 0.779594i \(-0.284575\pi\)
0.626285 + 0.779594i \(0.284575\pi\)
\(150\) −14.7686 −1.20585
\(151\) −6.17019 −0.502123 −0.251061 0.967971i \(-0.580780\pi\)
−0.251061 + 0.967971i \(0.580780\pi\)
\(152\) −0.289108 −0.0234497
\(153\) −3.10640 −0.251137
\(154\) 0 0
\(155\) 28.6673 2.30262
\(156\) 11.1152 0.889929
\(157\) 0.837470 0.0668374 0.0334187 0.999441i \(-0.489361\pi\)
0.0334187 + 0.999441i \(0.489361\pi\)
\(158\) 17.4832 1.39089
\(159\) −4.86574 −0.385879
\(160\) 27.9924 2.21299
\(161\) 0 0
\(162\) 1.98596 0.156032
\(163\) 4.09767 0.320954 0.160477 0.987040i \(-0.448697\pi\)
0.160477 + 0.987040i \(0.448697\pi\)
\(164\) −7.88802 −0.615951
\(165\) −14.6997 −1.14437
\(166\) 4.50468 0.349631
\(167\) 4.68621 0.362630 0.181315 0.983425i \(-0.441965\pi\)
0.181315 + 0.983425i \(0.441965\pi\)
\(168\) 0 0
\(169\) 19.6905 1.51466
\(170\) 21.7559 1.66860
\(171\) 2.60172 0.198958
\(172\) −20.0717 −1.53045
\(173\) 15.9360 1.21159 0.605794 0.795621i \(-0.292856\pi\)
0.605794 + 0.795621i \(0.292856\pi\)
\(174\) −10.8253 −0.820664
\(175\) 0 0
\(176\) 17.1267 1.29097
\(177\) −9.28785 −0.698117
\(178\) 19.3223 1.44826
\(179\) −20.0238 −1.49665 −0.748325 0.663333i \(-0.769141\pi\)
−0.748325 + 0.663333i \(0.769141\pi\)
\(180\) −6.85576 −0.510998
\(181\) 5.59510 0.415880 0.207940 0.978142i \(-0.433324\pi\)
0.207940 + 0.978142i \(0.433324\pi\)
\(182\) 0 0
\(183\) 6.09812 0.450786
\(184\) 0.0131523 0.000969602 0
\(185\) −8.54393 −0.628162
\(186\) 16.1439 1.18373
\(187\) 12.9485 0.946884
\(188\) −7.82926 −0.571008
\(189\) 0 0
\(190\) −18.2213 −1.32191
\(191\) −4.69789 −0.339927 −0.169964 0.985450i \(-0.554365\pi\)
−0.169964 + 0.985450i \(0.554365\pi\)
\(192\) 7.54628 0.544606
\(193\) 19.9171 1.43366 0.716831 0.697247i \(-0.245592\pi\)
0.716831 + 0.697247i \(0.245592\pi\)
\(194\) −21.6021 −1.55094
\(195\) −20.1632 −1.44392
\(196\) 0 0
\(197\) −2.76013 −0.196651 −0.0983257 0.995154i \(-0.531349\pi\)
−0.0983257 + 0.995154i \(0.531349\pi\)
\(198\) −8.27812 −0.588300
\(199\) −16.7577 −1.18792 −0.593962 0.804493i \(-0.702437\pi\)
−0.593962 + 0.804493i \(0.702437\pi\)
\(200\) −0.826356 −0.0584322
\(201\) −2.57419 −0.181570
\(202\) −1.39936 −0.0984585
\(203\) 0 0
\(204\) 6.03898 0.422813
\(205\) 14.3090 0.999386
\(206\) −14.5509 −1.01381
\(207\) −0.118359 −0.00822654
\(208\) 23.4922 1.62889
\(209\) −10.8448 −0.750149
\(210\) 0 0
\(211\) −16.6114 −1.14358 −0.571789 0.820401i \(-0.693750\pi\)
−0.571789 + 0.820401i \(0.693750\pi\)
\(212\) 9.45923 0.649663
\(213\) −2.06205 −0.141289
\(214\) 23.0923 1.57856
\(215\) 36.4105 2.48317
\(216\) 0.111122 0.00756089
\(217\) 0 0
\(218\) −24.9217 −1.68791
\(219\) −9.63811 −0.651283
\(220\) 28.5769 1.92666
\(221\) 17.7610 1.19474
\(222\) −4.81149 −0.322926
\(223\) 14.6457 0.980750 0.490375 0.871512i \(-0.336860\pi\)
0.490375 + 0.871512i \(0.336860\pi\)
\(224\) 0 0
\(225\) 7.43648 0.495765
\(226\) −22.7653 −1.51432
\(227\) 29.8391 1.98049 0.990246 0.139330i \(-0.0444950\pi\)
0.990246 + 0.139330i \(0.0444950\pi\)
\(228\) −5.05786 −0.334965
\(229\) 26.6518 1.76120 0.880600 0.473861i \(-0.157140\pi\)
0.880600 + 0.473861i \(0.157140\pi\)
\(230\) 0.828938 0.0546586
\(231\) 0 0
\(232\) −0.605716 −0.0397672
\(233\) 13.6897 0.896841 0.448421 0.893823i \(-0.351987\pi\)
0.448421 + 0.893823i \(0.351987\pi\)
\(234\) −11.3549 −0.742291
\(235\) 14.2024 0.926465
\(236\) 18.0560 1.17535
\(237\) −8.80338 −0.571841
\(238\) 0 0
\(239\) −24.8498 −1.60740 −0.803701 0.595034i \(-0.797139\pi\)
−0.803701 + 0.595034i \(0.797139\pi\)
\(240\) −14.4898 −0.935310
\(241\) −16.5102 −1.06351 −0.531757 0.846897i \(-0.678468\pi\)
−0.531757 + 0.846897i \(0.678468\pi\)
\(242\) 12.6602 0.813830
\(243\) −1.00000 −0.0641500
\(244\) −11.8550 −0.758940
\(245\) 0 0
\(246\) 8.05809 0.513765
\(247\) −14.8755 −0.946504
\(248\) 0.903314 0.0573605
\(249\) −2.26826 −0.143745
\(250\) −17.0640 −1.07923
\(251\) −10.5468 −0.665705 −0.332853 0.942979i \(-0.608011\pi\)
−0.332853 + 0.942979i \(0.608011\pi\)
\(252\) 0 0
\(253\) 0.493359 0.0310172
\(254\) −11.8846 −0.745707
\(255\) −10.9548 −0.686018
\(256\) 16.8573 1.05358
\(257\) 2.10588 0.131361 0.0656806 0.997841i \(-0.479078\pi\)
0.0656806 + 0.997841i \(0.479078\pi\)
\(258\) 20.5045 1.27655
\(259\) 0 0
\(260\) 39.1982 2.43097
\(261\) 5.45091 0.337403
\(262\) −13.9155 −0.859700
\(263\) −6.22719 −0.383985 −0.191993 0.981396i \(-0.561495\pi\)
−0.191993 + 0.981396i \(0.561495\pi\)
\(264\) −0.463192 −0.0285075
\(265\) −17.1592 −1.05408
\(266\) 0 0
\(267\) −9.72942 −0.595431
\(268\) 5.00435 0.305690
\(269\) 19.8838 1.21234 0.606170 0.795335i \(-0.292705\pi\)
0.606170 + 0.795335i \(0.292705\pi\)
\(270\) 7.00357 0.426224
\(271\) −5.79241 −0.351864 −0.175932 0.984402i \(-0.556294\pi\)
−0.175932 + 0.984402i \(0.556294\pi\)
\(272\) 12.7635 0.773901
\(273\) 0 0
\(274\) −8.90705 −0.538094
\(275\) −30.9976 −1.86922
\(276\) 0.230096 0.0138501
\(277\) −6.35047 −0.381562 −0.190781 0.981633i \(-0.561102\pi\)
−0.190781 + 0.981633i \(0.561102\pi\)
\(278\) 9.39312 0.563362
\(279\) −8.12903 −0.486672
\(280\) 0 0
\(281\) −30.3985 −1.81342 −0.906711 0.421753i \(-0.861415\pi\)
−0.906711 + 0.421753i \(0.861415\pi\)
\(282\) 7.99807 0.476278
\(283\) 16.4389 0.977190 0.488595 0.872511i \(-0.337510\pi\)
0.488595 + 0.872511i \(0.337510\pi\)
\(284\) 4.00872 0.237874
\(285\) 9.17505 0.543483
\(286\) 47.3307 2.79872
\(287\) 0 0
\(288\) −7.93763 −0.467729
\(289\) −7.35029 −0.432370
\(290\) −38.1759 −2.24176
\(291\) 10.8774 0.637645
\(292\) 18.7369 1.09650
\(293\) 1.83585 0.107251 0.0536256 0.998561i \(-0.482922\pi\)
0.0536256 + 0.998561i \(0.482922\pi\)
\(294\) 0 0
\(295\) −32.7540 −1.90701
\(296\) −0.269221 −0.0156482
\(297\) 4.16832 0.241870
\(298\) 30.3645 1.75897
\(299\) 0.676727 0.0391361
\(300\) −14.4569 −0.834667
\(301\) 0 0
\(302\) −12.2538 −0.705124
\(303\) 0.704625 0.0404796
\(304\) −10.6899 −0.613106
\(305\) 21.5052 1.23139
\(306\) −6.16919 −0.352669
\(307\) −21.2566 −1.21318 −0.606588 0.795016i \(-0.707462\pi\)
−0.606588 + 0.795016i \(0.707462\pi\)
\(308\) 0 0
\(309\) 7.32688 0.416812
\(310\) 56.9322 3.23353
\(311\) 26.3448 1.49388 0.746940 0.664892i \(-0.231522\pi\)
0.746940 + 0.664892i \(0.231522\pi\)
\(312\) −0.635347 −0.0359695
\(313\) −24.4409 −1.38148 −0.690740 0.723103i \(-0.742715\pi\)
−0.690740 + 0.723103i \(0.742715\pi\)
\(314\) 1.66318 0.0938589
\(315\) 0 0
\(316\) 17.1142 0.962748
\(317\) 17.2881 0.970995 0.485498 0.874238i \(-0.338638\pi\)
0.485498 + 0.874238i \(0.338638\pi\)
\(318\) −9.66318 −0.541884
\(319\) −22.7211 −1.27214
\(320\) 26.6123 1.48767
\(321\) −11.6278 −0.648999
\(322\) 0 0
\(323\) −8.08197 −0.449693
\(324\) 1.94405 0.108003
\(325\) −42.5185 −2.35850
\(326\) 8.13781 0.450712
\(327\) 12.5490 0.693959
\(328\) 0.450880 0.0248957
\(329\) 0 0
\(330\) −29.1931 −1.60703
\(331\) −7.32284 −0.402500 −0.201250 0.979540i \(-0.564500\pi\)
−0.201250 + 0.979540i \(0.564500\pi\)
\(332\) 4.40961 0.242009
\(333\) 2.42275 0.132766
\(334\) 9.30664 0.509237
\(335\) −9.07800 −0.495984
\(336\) 0 0
\(337\) −33.8858 −1.84588 −0.922939 0.384946i \(-0.874220\pi\)
−0.922939 + 0.384946i \(0.874220\pi\)
\(338\) 39.1047 2.12701
\(339\) 11.4631 0.622589
\(340\) 21.2967 1.15498
\(341\) 33.8844 1.83494
\(342\) 5.16691 0.279394
\(343\) 0 0
\(344\) 1.14730 0.0618583
\(345\) −0.417399 −0.0224720
\(346\) 31.6482 1.70142
\(347\) 31.5084 1.69146 0.845731 0.533610i \(-0.179165\pi\)
0.845731 + 0.533610i \(0.179165\pi\)
\(348\) −10.5968 −0.568049
\(349\) −8.72164 −0.466859 −0.233429 0.972374i \(-0.574995\pi\)
−0.233429 + 0.972374i \(0.574995\pi\)
\(350\) 0 0
\(351\) 5.71756 0.305181
\(352\) 33.0866 1.76352
\(353\) −10.6065 −0.564529 −0.282265 0.959337i \(-0.591086\pi\)
−0.282265 + 0.959337i \(0.591086\pi\)
\(354\) −18.4453 −0.980357
\(355\) −7.27190 −0.385952
\(356\) 18.9144 1.00246
\(357\) 0 0
\(358\) −39.7665 −2.10173
\(359\) 14.3884 0.759390 0.379695 0.925112i \(-0.376029\pi\)
0.379695 + 0.925112i \(0.376029\pi\)
\(360\) 0.391876 0.0206537
\(361\) −12.2311 −0.643741
\(362\) 11.1117 0.584015
\(363\) −6.37485 −0.334593
\(364\) 0 0
\(365\) −33.9892 −1.77907
\(366\) 12.1106 0.633033
\(367\) 11.6523 0.608243 0.304122 0.952633i \(-0.401637\pi\)
0.304122 + 0.952633i \(0.401637\pi\)
\(368\) 0.486312 0.0253508
\(369\) −4.05753 −0.211226
\(370\) −16.9679 −0.882120
\(371\) 0 0
\(372\) 15.8032 0.819358
\(373\) 14.7340 0.762898 0.381449 0.924390i \(-0.375425\pi\)
0.381449 + 0.924390i \(0.375425\pi\)
\(374\) 25.7151 1.32970
\(375\) 8.59233 0.443706
\(376\) 0.447522 0.0230792
\(377\) −31.1659 −1.60513
\(378\) 0 0
\(379\) 14.0556 0.721989 0.360995 0.932568i \(-0.382437\pi\)
0.360995 + 0.932568i \(0.382437\pi\)
\(380\) −17.8367 −0.915005
\(381\) 5.98431 0.306585
\(382\) −9.32983 −0.477356
\(383\) −23.1430 −1.18255 −0.591275 0.806470i \(-0.701375\pi\)
−0.591275 + 0.806470i \(0.701375\pi\)
\(384\) −0.888628 −0.0453476
\(385\) 0 0
\(386\) 39.5545 2.01327
\(387\) −10.3247 −0.524834
\(388\) −21.1462 −1.07354
\(389\) 19.5845 0.992976 0.496488 0.868044i \(-0.334623\pi\)
0.496488 + 0.868044i \(0.334623\pi\)
\(390\) −40.0434 −2.02768
\(391\) 0.367671 0.0185939
\(392\) 0 0
\(393\) 7.00691 0.353452
\(394\) −5.48152 −0.276155
\(395\) −31.0455 −1.56207
\(396\) −8.10340 −0.407211
\(397\) 3.70821 0.186110 0.0930548 0.995661i \(-0.470337\pi\)
0.0930548 + 0.995661i \(0.470337\pi\)
\(398\) −33.2802 −1.66819
\(399\) 0 0
\(400\) −30.5548 −1.52774
\(401\) −4.93680 −0.246532 −0.123266 0.992374i \(-0.539337\pi\)
−0.123266 + 0.992374i \(0.539337\pi\)
\(402\) −5.11225 −0.254976
\(403\) 46.4782 2.31525
\(404\) −1.36982 −0.0681512
\(405\) −3.52654 −0.175235
\(406\) 0 0
\(407\) −10.0988 −0.500579
\(408\) −0.345189 −0.0170894
\(409\) −27.4372 −1.35668 −0.678342 0.734746i \(-0.737301\pi\)
−0.678342 + 0.734746i \(0.737301\pi\)
\(410\) 28.4172 1.40342
\(411\) 4.48500 0.221229
\(412\) −14.2438 −0.701742
\(413\) 0 0
\(414\) −0.235057 −0.0115524
\(415\) −7.99911 −0.392661
\(416\) 45.3839 2.22513
\(417\) −4.72976 −0.231617
\(418\) −21.5373 −1.05342
\(419\) 1.52279 0.0743932 0.0371966 0.999308i \(-0.488157\pi\)
0.0371966 + 0.999308i \(0.488157\pi\)
\(420\) 0 0
\(421\) −26.0481 −1.26951 −0.634754 0.772714i \(-0.718899\pi\)
−0.634754 + 0.772714i \(0.718899\pi\)
\(422\) −32.9897 −1.60591
\(423\) −4.02730 −0.195814
\(424\) −0.540691 −0.0262583
\(425\) −23.1007 −1.12055
\(426\) −4.09515 −0.198411
\(427\) 0 0
\(428\) 22.6049 1.09265
\(429\) −23.8326 −1.15065
\(430\) 72.3098 3.48709
\(431\) 8.48143 0.408536 0.204268 0.978915i \(-0.434519\pi\)
0.204268 + 0.978915i \(0.434519\pi\)
\(432\) 4.10878 0.197684
\(433\) 34.9258 1.67843 0.839215 0.543800i \(-0.183015\pi\)
0.839215 + 0.543800i \(0.183015\pi\)
\(434\) 0 0
\(435\) 19.2229 0.921665
\(436\) −24.3957 −1.16834
\(437\) −0.307937 −0.0147306
\(438\) −19.1409 −0.914588
\(439\) 11.7717 0.561832 0.280916 0.959732i \(-0.409362\pi\)
0.280916 + 0.959732i \(0.409362\pi\)
\(440\) −1.63346 −0.0778723
\(441\) 0 0
\(442\) 35.2728 1.67775
\(443\) 28.6386 1.36066 0.680330 0.732906i \(-0.261837\pi\)
0.680330 + 0.732906i \(0.261837\pi\)
\(444\) −4.70994 −0.223524
\(445\) −34.3112 −1.62651
\(446\) 29.0859 1.37726
\(447\) −15.2896 −0.723172
\(448\) 0 0
\(449\) −37.5359 −1.77143 −0.885714 0.464232i \(-0.846330\pi\)
−0.885714 + 0.464232i \(0.846330\pi\)
\(450\) 14.7686 0.696197
\(451\) 16.9131 0.796404
\(452\) −22.2848 −1.04819
\(453\) 6.17019 0.289901
\(454\) 59.2594 2.78118
\(455\) 0 0
\(456\) 0.289108 0.0135387
\(457\) −16.4790 −0.770855 −0.385428 0.922738i \(-0.625946\pi\)
−0.385428 + 0.922738i \(0.625946\pi\)
\(458\) 52.9294 2.47323
\(459\) 3.10640 0.144994
\(460\) 0.811442 0.0378337
\(461\) −6.56643 −0.305829 −0.152914 0.988239i \(-0.548866\pi\)
−0.152914 + 0.988239i \(0.548866\pi\)
\(462\) 0 0
\(463\) −17.2216 −0.800354 −0.400177 0.916438i \(-0.631051\pi\)
−0.400177 + 0.916438i \(0.631051\pi\)
\(464\) −22.3966 −1.03974
\(465\) −28.6673 −1.32942
\(466\) 27.1872 1.25942
\(467\) 9.74748 0.451060 0.225530 0.974236i \(-0.427589\pi\)
0.225530 + 0.974236i \(0.427589\pi\)
\(468\) −11.1152 −0.513801
\(469\) 0 0
\(470\) 28.2055 1.30102
\(471\) −0.837470 −0.0385886
\(472\) −1.03208 −0.0475055
\(473\) 43.0366 1.97882
\(474\) −17.4832 −0.803029
\(475\) 19.3476 0.887729
\(476\) 0 0
\(477\) 4.86574 0.222787
\(478\) −49.3508 −2.25725
\(479\) 14.6514 0.669440 0.334720 0.942318i \(-0.391358\pi\)
0.334720 + 0.942318i \(0.391358\pi\)
\(480\) −27.9924 −1.27767
\(481\) −13.8522 −0.631608
\(482\) −32.7886 −1.49348
\(483\) 0 0
\(484\) 12.3930 0.563319
\(485\) 38.3596 1.74182
\(486\) −1.98596 −0.0900851
\(487\) −31.6142 −1.43258 −0.716289 0.697804i \(-0.754161\pi\)
−0.716289 + 0.697804i \(0.754161\pi\)
\(488\) 0.677635 0.0306751
\(489\) −4.09767 −0.185303
\(490\) 0 0
\(491\) −16.2732 −0.734399 −0.367200 0.930142i \(-0.619683\pi\)
−0.367200 + 0.930142i \(0.619683\pi\)
\(492\) 7.88802 0.355619
\(493\) −16.9327 −0.762611
\(494\) −29.5421 −1.32916
\(495\) 14.6997 0.660704
\(496\) 33.4004 1.49972
\(497\) 0 0
\(498\) −4.50468 −0.201860
\(499\) −18.0542 −0.808218 −0.404109 0.914711i \(-0.632418\pi\)
−0.404109 + 0.914711i \(0.632418\pi\)
\(500\) −16.7039 −0.747021
\(501\) −4.68621 −0.209365
\(502\) −20.9455 −0.934842
\(503\) 12.3552 0.550891 0.275446 0.961317i \(-0.411175\pi\)
0.275446 + 0.961317i \(0.411175\pi\)
\(504\) 0 0
\(505\) 2.48489 0.110576
\(506\) 0.979792 0.0435571
\(507\) −19.6905 −0.874488
\(508\) −11.6338 −0.516165
\(509\) −5.12371 −0.227104 −0.113552 0.993532i \(-0.536223\pi\)
−0.113552 + 0.993532i \(0.536223\pi\)
\(510\) −21.7559 −0.963367
\(511\) 0 0
\(512\) 31.7008 1.40099
\(513\) −2.60172 −0.114869
\(514\) 4.18220 0.184469
\(515\) 25.8385 1.13858
\(516\) 20.0717 0.883607
\(517\) 16.7871 0.738294
\(518\) 0 0
\(519\) −15.9360 −0.699511
\(520\) −2.24058 −0.0982558
\(521\) −22.7067 −0.994799 −0.497399 0.867522i \(-0.665712\pi\)
−0.497399 + 0.867522i \(0.665712\pi\)
\(522\) 10.8253 0.473811
\(523\) −21.3782 −0.934805 −0.467403 0.884045i \(-0.654810\pi\)
−0.467403 + 0.884045i \(0.654810\pi\)
\(524\) −13.6218 −0.595069
\(525\) 0 0
\(526\) −12.3670 −0.539226
\(527\) 25.2520 1.09999
\(528\) −17.1267 −0.745343
\(529\) −22.9860 −0.999391
\(530\) −34.0776 −1.48024
\(531\) 9.28785 0.403058
\(532\) 0 0
\(533\) 23.1992 1.00487
\(534\) −19.3223 −0.836156
\(535\) −41.0058 −1.77284
\(536\) −0.286050 −0.0123555
\(537\) 20.0238 0.864091
\(538\) 39.4886 1.70247
\(539\) 0 0
\(540\) 6.85576 0.295025
\(541\) 1.26681 0.0544644 0.0272322 0.999629i \(-0.491331\pi\)
0.0272322 + 0.999629i \(0.491331\pi\)
\(542\) −11.5035 −0.494118
\(543\) −5.59510 −0.240109
\(544\) 24.6574 1.05718
\(545\) 44.2544 1.89565
\(546\) 0 0
\(547\) 23.9982 1.02609 0.513044 0.858362i \(-0.328518\pi\)
0.513044 + 0.858362i \(0.328518\pi\)
\(548\) −8.71905 −0.372459
\(549\) −6.09812 −0.260261
\(550\) −61.5600 −2.62493
\(551\) 14.1817 0.604162
\(552\) −0.0131523 −0.000559800 0
\(553\) 0 0
\(554\) −12.6118 −0.535823
\(555\) 8.54393 0.362670
\(556\) 9.19487 0.389949
\(557\) −12.9557 −0.548950 −0.274475 0.961594i \(-0.588504\pi\)
−0.274475 + 0.961594i \(0.588504\pi\)
\(558\) −16.1439 −0.683428
\(559\) 59.0321 2.49679
\(560\) 0 0
\(561\) −12.9485 −0.546684
\(562\) −60.3703 −2.54657
\(563\) −31.9986 −1.34858 −0.674289 0.738467i \(-0.735550\pi\)
−0.674289 + 0.738467i \(0.735550\pi\)
\(564\) 7.82926 0.329671
\(565\) 40.4250 1.70069
\(566\) 32.6470 1.37225
\(567\) 0 0
\(568\) −0.229139 −0.00961446
\(569\) 43.0360 1.80416 0.902081 0.431566i \(-0.142039\pi\)
0.902081 + 0.431566i \(0.142039\pi\)
\(570\) 18.2213 0.763207
\(571\) −37.4553 −1.56746 −0.783728 0.621105i \(-0.786684\pi\)
−0.783728 + 0.621105i \(0.786684\pi\)
\(572\) 46.3317 1.93723
\(573\) 4.69789 0.196257
\(574\) 0 0
\(575\) −0.880176 −0.0367059
\(576\) −7.54628 −0.314428
\(577\) −11.5447 −0.480613 −0.240306 0.970697i \(-0.577248\pi\)
−0.240306 + 0.970697i \(0.577248\pi\)
\(578\) −14.5974 −0.607171
\(579\) −19.9171 −0.827725
\(580\) −37.3701 −1.55171
\(581\) 0 0
\(582\) 21.6021 0.895437
\(583\) −20.2820 −0.839993
\(584\) −1.07101 −0.0443185
\(585\) 20.1632 0.833646
\(586\) 3.64592 0.150612
\(587\) 7.80179 0.322014 0.161007 0.986953i \(-0.448526\pi\)
0.161007 + 0.986953i \(0.448526\pi\)
\(588\) 0 0
\(589\) −21.1494 −0.871447
\(590\) −65.0481 −2.67799
\(591\) 2.76013 0.113537
\(592\) −9.95455 −0.409129
\(593\) 28.3443 1.16396 0.581981 0.813202i \(-0.302278\pi\)
0.581981 + 0.813202i \(0.302278\pi\)
\(594\) 8.27812 0.339655
\(595\) 0 0
\(596\) 29.7236 1.21753
\(597\) 16.7577 0.685848
\(598\) 1.34395 0.0549584
\(599\) 29.9724 1.22464 0.612320 0.790610i \(-0.290236\pi\)
0.612320 + 0.790610i \(0.290236\pi\)
\(600\) 0.826356 0.0337359
\(601\) −22.8402 −0.931670 −0.465835 0.884872i \(-0.654246\pi\)
−0.465835 + 0.884872i \(0.654246\pi\)
\(602\) 0 0
\(603\) 2.57419 0.104829
\(604\) −11.9951 −0.488075
\(605\) −22.4812 −0.913990
\(606\) 1.39936 0.0568450
\(607\) 16.6281 0.674915 0.337457 0.941341i \(-0.390433\pi\)
0.337457 + 0.941341i \(0.390433\pi\)
\(608\) −20.6515 −0.837527
\(609\) 0 0
\(610\) 42.7086 1.72922
\(611\) 23.0264 0.931547
\(612\) −6.03898 −0.244111
\(613\) 32.0242 1.29345 0.646724 0.762724i \(-0.276139\pi\)
0.646724 + 0.762724i \(0.276139\pi\)
\(614\) −42.2147 −1.70365
\(615\) −14.3090 −0.576996
\(616\) 0 0
\(617\) −18.9118 −0.761360 −0.380680 0.924707i \(-0.624310\pi\)
−0.380680 + 0.924707i \(0.624310\pi\)
\(618\) 14.5509 0.585324
\(619\) 31.6066 1.27038 0.635189 0.772357i \(-0.280922\pi\)
0.635189 + 0.772357i \(0.280922\pi\)
\(620\) 55.7306 2.23820
\(621\) 0.118359 0.00474960
\(622\) 52.3199 2.09784
\(623\) 0 0
\(624\) −23.4922 −0.940441
\(625\) −6.88119 −0.275248
\(626\) −48.5386 −1.93999
\(627\) 10.8448 0.433098
\(628\) 1.62808 0.0649675
\(629\) −7.52603 −0.300083
\(630\) 0 0
\(631\) 38.7774 1.54370 0.771852 0.635802i \(-0.219331\pi\)
0.771852 + 0.635802i \(0.219331\pi\)
\(632\) −0.978249 −0.0389127
\(633\) 16.6114 0.660245
\(634\) 34.3335 1.36356
\(635\) 21.1039 0.837483
\(636\) −9.45923 −0.375083
\(637\) 0 0
\(638\) −45.1233 −1.78645
\(639\) 2.06205 0.0815734
\(640\) −3.13378 −0.123874
\(641\) 31.3003 1.23629 0.618143 0.786066i \(-0.287885\pi\)
0.618143 + 0.786066i \(0.287885\pi\)
\(642\) −23.0923 −0.911381
\(643\) 12.1692 0.479908 0.239954 0.970784i \(-0.422868\pi\)
0.239954 + 0.970784i \(0.422868\pi\)
\(644\) 0 0
\(645\) −36.4105 −1.43366
\(646\) −16.0505 −0.631498
\(647\) 0.765117 0.0300798 0.0150399 0.999887i \(-0.495212\pi\)
0.0150399 + 0.999887i \(0.495212\pi\)
\(648\) −0.111122 −0.00436528
\(649\) −38.7147 −1.51968
\(650\) −84.4402 −3.31202
\(651\) 0 0
\(652\) 7.96605 0.311975
\(653\) −19.6609 −0.769392 −0.384696 0.923043i \(-0.625694\pi\)
−0.384696 + 0.923043i \(0.625694\pi\)
\(654\) 24.9217 0.974517
\(655\) 24.7102 0.965505
\(656\) 16.6715 0.650912
\(657\) 9.63811 0.376018
\(658\) 0 0
\(659\) −5.59156 −0.217816 −0.108908 0.994052i \(-0.534735\pi\)
−0.108908 + 0.994052i \(0.534735\pi\)
\(660\) −28.5769 −1.11236
\(661\) 17.1141 0.665663 0.332831 0.942986i \(-0.391996\pi\)
0.332831 + 0.942986i \(0.391996\pi\)
\(662\) −14.5429 −0.565225
\(663\) −17.7610 −0.689782
\(664\) −0.252054 −0.00978158
\(665\) 0 0
\(666\) 4.81149 0.186442
\(667\) −0.645166 −0.0249809
\(668\) 9.11021 0.352485
\(669\) −14.6457 −0.566236
\(670\) −18.0286 −0.696504
\(671\) 25.4189 0.981285
\(672\) 0 0
\(673\) 44.5719 1.71812 0.859060 0.511875i \(-0.171049\pi\)
0.859060 + 0.511875i \(0.171049\pi\)
\(674\) −67.2959 −2.59214
\(675\) −7.43648 −0.286230
\(676\) 38.2793 1.47228
\(677\) 26.0351 1.00061 0.500305 0.865849i \(-0.333221\pi\)
0.500305 + 0.865849i \(0.333221\pi\)
\(678\) 22.7653 0.874294
\(679\) 0 0
\(680\) −1.21732 −0.0466822
\(681\) −29.8391 −1.14344
\(682\) 67.2930 2.57678
\(683\) −17.0152 −0.651070 −0.325535 0.945530i \(-0.605544\pi\)
−0.325535 + 0.945530i \(0.605544\pi\)
\(684\) 5.05786 0.193392
\(685\) 15.8165 0.604319
\(686\) 0 0
\(687\) −26.6518 −1.01683
\(688\) 42.4219 1.61732
\(689\) −27.8202 −1.05987
\(690\) −0.828938 −0.0315571
\(691\) −9.99238 −0.380128 −0.190064 0.981772i \(-0.560870\pi\)
−0.190064 + 0.981772i \(0.560870\pi\)
\(692\) 30.9802 1.17769
\(693\) 0 0
\(694\) 62.5746 2.37530
\(695\) −16.6797 −0.632696
\(696\) 0.605716 0.0229596
\(697\) 12.6043 0.477422
\(698\) −17.3208 −0.655604
\(699\) −13.6897 −0.517792
\(700\) 0 0
\(701\) 26.4336 0.998382 0.499191 0.866492i \(-0.333631\pi\)
0.499191 + 0.866492i \(0.333631\pi\)
\(702\) 11.3549 0.428562
\(703\) 6.30331 0.237734
\(704\) 31.4553 1.18552
\(705\) −14.2024 −0.534895
\(706\) −21.0642 −0.792761
\(707\) 0 0
\(708\) −18.0560 −0.678586
\(709\) 35.3387 1.32717 0.663586 0.748100i \(-0.269034\pi\)
0.663586 + 0.748100i \(0.269034\pi\)
\(710\) −14.4417 −0.541988
\(711\) 8.80338 0.330153
\(712\) −1.08115 −0.0405179
\(713\) 0.962146 0.0360327
\(714\) 0 0
\(715\) −84.0466 −3.14317
\(716\) −38.9272 −1.45478
\(717\) 24.8498 0.928034
\(718\) 28.5748 1.06640
\(719\) 6.55726 0.244545 0.122272 0.992497i \(-0.460982\pi\)
0.122272 + 0.992497i \(0.460982\pi\)
\(720\) 14.4898 0.540002
\(721\) 0 0
\(722\) −24.2905 −0.903997
\(723\) 16.5102 0.614020
\(724\) 10.8771 0.404245
\(725\) 40.5356 1.50545
\(726\) −12.6602 −0.469865
\(727\) −10.9664 −0.406720 −0.203360 0.979104i \(-0.565186\pi\)
−0.203360 + 0.979104i \(0.565186\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −67.5012 −2.49833
\(731\) 32.0726 1.18625
\(732\) 11.8550 0.438174
\(733\) 10.8463 0.400616 0.200308 0.979733i \(-0.435806\pi\)
0.200308 + 0.979733i \(0.435806\pi\)
\(734\) 23.1410 0.854148
\(735\) 0 0
\(736\) 0.939493 0.0346302
\(737\) −10.7301 −0.395247
\(738\) −8.05809 −0.296623
\(739\) 25.6956 0.945228 0.472614 0.881270i \(-0.343310\pi\)
0.472614 + 0.881270i \(0.343310\pi\)
\(740\) −16.6098 −0.610588
\(741\) 14.8755 0.546464
\(742\) 0 0
\(743\) −30.4544 −1.11726 −0.558632 0.829416i \(-0.688674\pi\)
−0.558632 + 0.829416i \(0.688674\pi\)
\(744\) −0.903314 −0.0331171
\(745\) −53.9193 −1.97545
\(746\) 29.2612 1.07133
\(747\) 2.26826 0.0829913
\(748\) 25.1724 0.920394
\(749\) 0 0
\(750\) 17.0640 0.623091
\(751\) −29.3770 −1.07198 −0.535991 0.844224i \(-0.680062\pi\)
−0.535991 + 0.844224i \(0.680062\pi\)
\(752\) 16.5473 0.603417
\(753\) 10.5468 0.384345
\(754\) −61.8944 −2.25406
\(755\) 21.7594 0.791906
\(756\) 0 0
\(757\) 34.3651 1.24902 0.624511 0.781016i \(-0.285298\pi\)
0.624511 + 0.781016i \(0.285298\pi\)
\(758\) 27.9139 1.01388
\(759\) −0.493359 −0.0179078
\(760\) 1.01955 0.0369830
\(761\) −2.85152 −0.103368 −0.0516838 0.998664i \(-0.516459\pi\)
−0.0516838 + 0.998664i \(0.516459\pi\)
\(762\) 11.8846 0.430534
\(763\) 0 0
\(764\) −9.13292 −0.330417
\(765\) 10.9548 0.396073
\(766\) −45.9610 −1.66064
\(767\) −53.1039 −1.91747
\(768\) −16.8573 −0.608287
\(769\) −18.4814 −0.666456 −0.333228 0.942846i \(-0.608138\pi\)
−0.333228 + 0.942846i \(0.608138\pi\)
\(770\) 0 0
\(771\) −2.10588 −0.0758414
\(772\) 38.7197 1.39355
\(773\) −18.1065 −0.651244 −0.325622 0.945500i \(-0.605574\pi\)
−0.325622 + 0.945500i \(0.605574\pi\)
\(774\) −20.5045 −0.737018
\(775\) −60.4513 −2.17148
\(776\) 1.20872 0.0433905
\(777\) 0 0
\(778\) 38.8942 1.39442
\(779\) −10.5565 −0.378227
\(780\) −39.1982 −1.40352
\(781\) −8.59527 −0.307563
\(782\) 0.730181 0.0261112
\(783\) −5.45091 −0.194800
\(784\) 0 0
\(785\) −2.95337 −0.105410
\(786\) 13.9155 0.496348
\(787\) 26.0136 0.927286 0.463643 0.886022i \(-0.346542\pi\)
0.463643 + 0.886022i \(0.346542\pi\)
\(788\) −5.36583 −0.191150
\(789\) 6.22719 0.221694
\(790\) −61.6551 −2.19359
\(791\) 0 0
\(792\) 0.463192 0.0164588
\(793\) 34.8664 1.23814
\(794\) 7.36436 0.261351
\(795\) 17.1592 0.608575
\(796\) −32.5778 −1.15469
\(797\) −33.3245 −1.18041 −0.590206 0.807252i \(-0.700954\pi\)
−0.590206 + 0.807252i \(0.700954\pi\)
\(798\) 0 0
\(799\) 12.5104 0.442586
\(800\) −59.0280 −2.08696
\(801\) 9.72942 0.343772
\(802\) −9.80429 −0.346202
\(803\) −40.1747 −1.41773
\(804\) −5.00435 −0.176490
\(805\) 0 0
\(806\) 92.3040 3.25127
\(807\) −19.8838 −0.699944
\(808\) 0.0782993 0.00275456
\(809\) −33.5506 −1.17958 −0.589788 0.807558i \(-0.700789\pi\)
−0.589788 + 0.807558i \(0.700789\pi\)
\(810\) −7.00357 −0.246080
\(811\) −29.0009 −1.01836 −0.509179 0.860661i \(-0.670051\pi\)
−0.509179 + 0.860661i \(0.670051\pi\)
\(812\) 0 0
\(813\) 5.79241 0.203149
\(814\) −20.0558 −0.702956
\(815\) −14.4506 −0.506182
\(816\) −12.7635 −0.446812
\(817\) −26.8619 −0.939780
\(818\) −54.4893 −1.90517
\(819\) 0 0
\(820\) 27.8174 0.971426
\(821\) −50.1067 −1.74874 −0.874368 0.485263i \(-0.838724\pi\)
−0.874368 + 0.485263i \(0.838724\pi\)
\(822\) 8.90705 0.310669
\(823\) −54.4376 −1.89758 −0.948788 0.315913i \(-0.897689\pi\)
−0.948788 + 0.315913i \(0.897689\pi\)
\(824\) 0.814178 0.0283632
\(825\) 30.9976 1.07920
\(826\) 0 0
\(827\) 23.7589 0.826179 0.413090 0.910690i \(-0.364450\pi\)
0.413090 + 0.910690i \(0.364450\pi\)
\(828\) −0.230096 −0.00799639
\(829\) −50.3522 −1.74880 −0.874402 0.485202i \(-0.838746\pi\)
−0.874402 + 0.485202i \(0.838746\pi\)
\(830\) −15.8859 −0.551409
\(831\) 6.35047 0.220295
\(832\) 43.1464 1.49583
\(833\) 0 0
\(834\) −9.39312 −0.325257
\(835\) −16.5261 −0.571910
\(836\) −21.0827 −0.729162
\(837\) 8.12903 0.280980
\(838\) 3.02420 0.104469
\(839\) 13.0501 0.450540 0.225270 0.974296i \(-0.427674\pi\)
0.225270 + 0.974296i \(0.427674\pi\)
\(840\) 0 0
\(841\) 0.712440 0.0245669
\(842\) −51.7306 −1.78275
\(843\) 30.3985 1.04698
\(844\) −32.2934 −1.11158
\(845\) −69.4395 −2.38879
\(846\) −7.99807 −0.274979
\(847\) 0 0
\(848\) −19.9923 −0.686537
\(849\) −16.4389 −0.564181
\(850\) −45.8771 −1.57357
\(851\) −0.286755 −0.00982984
\(852\) −4.00872 −0.137337
\(853\) 12.7386 0.436163 0.218081 0.975931i \(-0.430020\pi\)
0.218081 + 0.975931i \(0.430020\pi\)
\(854\) 0 0
\(855\) −9.17505 −0.313780
\(856\) −1.29210 −0.0441631
\(857\) 0.897232 0.0306489 0.0153244 0.999883i \(-0.495122\pi\)
0.0153244 + 0.999883i \(0.495122\pi\)
\(858\) −47.3307 −1.61584
\(859\) 15.7189 0.536322 0.268161 0.963374i \(-0.413584\pi\)
0.268161 + 0.963374i \(0.413584\pi\)
\(860\) 70.7836 2.41370
\(861\) 0 0
\(862\) 16.8438 0.573702
\(863\) −24.6747 −0.839935 −0.419968 0.907539i \(-0.637959\pi\)
−0.419968 + 0.907539i \(0.637959\pi\)
\(864\) 7.93763 0.270044
\(865\) −56.1988 −1.91082
\(866\) 69.3614 2.35700
\(867\) 7.35029 0.249629
\(868\) 0 0
\(869\) −36.6953 −1.24480
\(870\) 38.1759 1.29428
\(871\) −14.7181 −0.498705
\(872\) 1.39446 0.0472225
\(873\) −10.8774 −0.368145
\(874\) −0.611552 −0.0206860
\(875\) 0 0
\(876\) −18.7369 −0.633062
\(877\) 12.9006 0.435622 0.217811 0.975991i \(-0.430108\pi\)
0.217811 + 0.975991i \(0.430108\pi\)
\(878\) 23.3781 0.788973
\(879\) −1.83585 −0.0619215
\(880\) −60.3979 −2.03601
\(881\) −14.7712 −0.497654 −0.248827 0.968548i \(-0.580045\pi\)
−0.248827 + 0.968548i \(0.580045\pi\)
\(882\) 0 0
\(883\) 42.3259 1.42438 0.712190 0.701986i \(-0.247703\pi\)
0.712190 + 0.701986i \(0.247703\pi\)
\(884\) 34.5283 1.16131
\(885\) 32.7540 1.10101
\(886\) 56.8751 1.91076
\(887\) −6.80265 −0.228411 −0.114205 0.993457i \(-0.536432\pi\)
−0.114205 + 0.993457i \(0.536432\pi\)
\(888\) 0.269221 0.00903447
\(889\) 0 0
\(890\) −68.1407 −2.28408
\(891\) −4.16832 −0.139644
\(892\) 28.4720 0.953312
\(893\) −10.4779 −0.350629
\(894\) −30.3645 −1.01554
\(895\) 70.6147 2.36039
\(896\) 0 0
\(897\) −0.676727 −0.0225953
\(898\) −74.5448 −2.48759
\(899\) −44.3106 −1.47784
\(900\) 14.4569 0.481895
\(901\) −15.1149 −0.503552
\(902\) 33.5887 1.11838
\(903\) 0 0
\(904\) 1.27380 0.0423660
\(905\) −19.7313 −0.655892
\(906\) 12.2538 0.407104
\(907\) 14.0009 0.464891 0.232445 0.972609i \(-0.425327\pi\)
0.232445 + 0.972609i \(0.425327\pi\)
\(908\) 58.0086 1.92508
\(909\) −0.704625 −0.0233709
\(910\) 0 0
\(911\) 24.6238 0.815822 0.407911 0.913022i \(-0.366257\pi\)
0.407911 + 0.913022i \(0.366257\pi\)
\(912\) 10.6899 0.353977
\(913\) −9.45483 −0.312909
\(914\) −32.7267 −1.08250
\(915\) −21.5052 −0.710942
\(916\) 51.8123 1.71193
\(917\) 0 0
\(918\) 6.16919 0.203614
\(919\) 44.8940 1.48092 0.740459 0.672102i \(-0.234608\pi\)
0.740459 + 0.672102i \(0.234608\pi\)
\(920\) −0.0463822 −0.00152918
\(921\) 21.2566 0.700428
\(922\) −13.0407 −0.429472
\(923\) −11.7899 −0.388069
\(924\) 0 0
\(925\) 18.0167 0.592387
\(926\) −34.2014 −1.12393
\(927\) −7.32688 −0.240646
\(928\) −43.2673 −1.42032
\(929\) 30.9750 1.01626 0.508129 0.861281i \(-0.330337\pi\)
0.508129 + 0.861281i \(0.330337\pi\)
\(930\) −56.9322 −1.86688
\(931\) 0 0
\(932\) 26.6134 0.871750
\(933\) −26.3448 −0.862492
\(934\) 19.3581 0.633417
\(935\) −45.6632 −1.49335
\(936\) 0.635347 0.0207670
\(937\) 46.3133 1.51299 0.756495 0.653999i \(-0.226910\pi\)
0.756495 + 0.653999i \(0.226910\pi\)
\(938\) 0 0
\(939\) 24.4409 0.797598
\(940\) 27.6102 0.900545
\(941\) −25.1150 −0.818725 −0.409362 0.912372i \(-0.634249\pi\)
−0.409362 + 0.912372i \(0.634249\pi\)
\(942\) −1.66318 −0.0541895
\(943\) 0.480246 0.0156390
\(944\) −38.1617 −1.24206
\(945\) 0 0
\(946\) 85.4691 2.77884
\(947\) 17.2026 0.559010 0.279505 0.960144i \(-0.409830\pi\)
0.279505 + 0.960144i \(0.409830\pi\)
\(948\) −17.1142 −0.555843
\(949\) −55.1065 −1.78883
\(950\) 38.4236 1.24663
\(951\) −17.2881 −0.560604
\(952\) 0 0
\(953\) −15.8945 −0.514874 −0.257437 0.966295i \(-0.582878\pi\)
−0.257437 + 0.966295i \(0.582878\pi\)
\(954\) 9.66318 0.312857
\(955\) 16.5673 0.536105
\(956\) −48.3092 −1.56243
\(957\) 22.7211 0.734470
\(958\) 29.0972 0.940086
\(959\) 0 0
\(960\) −26.6123 −0.858907
\(961\) 35.0811 1.13165
\(962\) −27.5100 −0.886959
\(963\) 11.6278 0.374700
\(964\) −32.0966 −1.03376
\(965\) −70.2383 −2.26105
\(966\) 0 0
\(967\) −14.5849 −0.469018 −0.234509 0.972114i \(-0.575348\pi\)
−0.234509 + 0.972114i \(0.575348\pi\)
\(968\) −0.708386 −0.0227684
\(969\) 8.08197 0.259630
\(970\) 76.1807 2.44602
\(971\) −18.5281 −0.594596 −0.297298 0.954785i \(-0.596085\pi\)
−0.297298 + 0.954785i \(0.596085\pi\)
\(972\) −1.94405 −0.0623553
\(973\) 0 0
\(974\) −62.7847 −2.01175
\(975\) 42.5185 1.36168
\(976\) 25.0558 0.802017
\(977\) 7.82128 0.250225 0.125112 0.992143i \(-0.460071\pi\)
0.125112 + 0.992143i \(0.460071\pi\)
\(978\) −8.13781 −0.260218
\(979\) −40.5553 −1.29615
\(980\) 0 0
\(981\) −12.5490 −0.400657
\(982\) −32.3180 −1.03131
\(983\) 52.3256 1.66893 0.834463 0.551064i \(-0.185778\pi\)
0.834463 + 0.551064i \(0.185778\pi\)
\(984\) −0.450880 −0.0143735
\(985\) 9.73372 0.310142
\(986\) −33.6277 −1.07092
\(987\) 0 0
\(988\) −28.9186 −0.920024
\(989\) 1.22202 0.0388581
\(990\) 29.1931 0.927818
\(991\) −5.56223 −0.176690 −0.0883451 0.996090i \(-0.528158\pi\)
−0.0883451 + 0.996090i \(0.528158\pi\)
\(992\) 64.5252 2.04868
\(993\) 7.32284 0.232383
\(994\) 0 0
\(995\) 59.0968 1.87349
\(996\) −4.40961 −0.139724
\(997\) 24.2559 0.768192 0.384096 0.923293i \(-0.374513\pi\)
0.384096 + 0.923293i \(0.374513\pi\)
\(998\) −35.8550 −1.13497
\(999\) −2.42275 −0.0766525
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7203.2.a.g.1.14 18
7.6 odd 2 7203.2.a.h.1.14 18
49.6 odd 14 147.2.i.b.85.2 yes 36
49.41 odd 14 147.2.i.b.64.2 36
147.41 even 14 441.2.u.d.64.5 36
147.104 even 14 441.2.u.d.379.5 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
147.2.i.b.64.2 36 49.41 odd 14
147.2.i.b.85.2 yes 36 49.6 odd 14
441.2.u.d.64.5 36 147.41 even 14
441.2.u.d.379.5 36 147.104 even 14
7203.2.a.g.1.14 18 1.1 even 1 trivial
7203.2.a.h.1.14 18 7.6 odd 2