Properties

Label 2-7203-1.1-c1-0-12
Degree $2$
Conductor $7203$
Sign $1$
Analytic cond. $57.5162$
Root an. cond. $7.58394$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.98·2-s − 3-s + 1.94·4-s − 3.52·5-s − 1.98·6-s − 0.111·8-s + 9-s − 7.00·10-s − 4.16·11-s − 1.94·12-s − 5.71·13-s + 3.52·15-s − 4.10·16-s − 3.10·17-s + 1.98·18-s + 2.60·19-s − 6.85·20-s − 8.27·22-s − 0.118·23-s + 0.111·24-s + 7.43·25-s − 11.3·26-s − 27-s + 5.45·29-s + 7.00·30-s − 8.12·31-s − 7.93·32-s + ⋯
L(s)  = 1  + 1.40·2-s − 0.577·3-s + 0.972·4-s − 1.57·5-s − 0.810·6-s − 0.0392·8-s + 0.333·9-s − 2.21·10-s − 1.25·11-s − 0.561·12-s − 1.58·13-s + 0.910·15-s − 1.02·16-s − 0.753·17-s + 0.468·18-s + 0.596·19-s − 1.53·20-s − 1.76·22-s − 0.0246·23-s + 0.0226·24-s + 1.48·25-s − 2.22·26-s − 0.192·27-s + 1.01·29-s + 1.27·30-s − 1.46·31-s − 1.40·32-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 7203 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 7203 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(7203\)    =    \(3 \cdot 7^{4}\)
Sign: $1$
Analytic conductor: \(57.5162\)
Root analytic conductor: \(7.58394\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 7203,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6755972237\)
\(L(\frac12)\) \(\approx\) \(0.6755972237\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad3 \( 1 + T \)
7 \( 1 \)
good2 \( 1 - 1.98T + 2T^{2} \)
5 \( 1 + 3.52T + 5T^{2} \)
11 \( 1 + 4.16T + 11T^{2} \)
13 \( 1 + 5.71T + 13T^{2} \)
17 \( 1 + 3.10T + 17T^{2} \)
19 \( 1 - 2.60T + 19T^{2} \)
23 \( 1 + 0.118T + 23T^{2} \)
29 \( 1 - 5.45T + 29T^{2} \)
31 \( 1 + 8.12T + 31T^{2} \)
37 \( 1 - 2.42T + 37T^{2} \)
41 \( 1 + 4.05T + 41T^{2} \)
43 \( 1 + 10.3T + 43T^{2} \)
47 \( 1 + 4.02T + 47T^{2} \)
53 \( 1 - 4.86T + 53T^{2} \)
59 \( 1 - 9.28T + 59T^{2} \)
61 \( 1 + 6.09T + 61T^{2} \)
67 \( 1 - 2.57T + 67T^{2} \)
71 \( 1 - 2.06T + 71T^{2} \)
73 \( 1 - 9.63T + 73T^{2} \)
79 \( 1 - 8.80T + 79T^{2} \)
83 \( 1 - 2.26T + 83T^{2} \)
89 \( 1 - 9.72T + 89T^{2} \)
97 \( 1 + 10.8T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−7.71776178019846860109199987887, −7.03210306736605662563431034651, −6.57768696302657737025793855647, −5.30461892861175022491223445875, −5.11603536287608500580387190883, −4.48261452352846935951617035655, −3.73723567208627839326368071876, −3.01365022742536575978559954282, −2.22374085328209888672440412461, −0.31909326068888189698857626626, 0.31909326068888189698857626626, 2.22374085328209888672440412461, 3.01365022742536575978559954282, 3.73723567208627839326368071876, 4.48261452352846935951617035655, 5.11603536287608500580387190883, 5.30461892861175022491223445875, 6.57768696302657737025793855647, 7.03210306736605662563431034651, 7.71776178019846860109199987887

Graph of the $Z$-function along the critical line