Properties

Label 720.2.x.g
Level $720$
Weight $2$
Character orbit 720.x
Analytic conductor $5.749$
Analytic rank $0$
Dimension $8$
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(127,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.127");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.x (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(i)\)
Coefficient field: 8.0.3317760000.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 25x^{4} + 625 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_{3} q^{5} + \beta_{6} q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + \beta_{3} q^{5} + \beta_{6} q^{7} - \beta_{7} q^{11} + (2 \beta_{2} - 2) q^{13} + 2 \beta_1 q^{17} + ( - \beta_{6} - \beta_{4}) q^{19} + ( - \beta_{7} - \beta_{5}) q^{23} - 5 \beta_{2} q^{25} + (\beta_{3} - \beta_1) q^{29} + ( - 2 \beta_{6} + 2 \beta_{4}) q^{31} - \beta_{7} q^{35} + (2 \beta_{2} + 2) q^{37} + (2 \beta_{3} + 2 \beta_1) q^{41} + 2 \beta_{4} q^{43} + ( - \beta_{7} + \beta_{5}) q^{47} + \beta_{2} q^{49} + 4 \beta_{3} q^{53} - 5 \beta_{4} q^{55} - \beta_{5} q^{59} - 6 q^{61} + ( - 2 \beta_{3} + 2 \beta_1) q^{65} + 6 \beta_{6} q^{67} + (\beta_{2} - 1) q^{73} - 6 \beta_1 q^{77} + (\beta_{7} + \beta_{5}) q^{83} + 10 q^{85} + ( - 4 \beta_{3} + 4 \beta_1) q^{89} + ( - 2 \beta_{6} + 2 \beta_{4}) q^{91} + (\beta_{7} - \beta_{5}) q^{95} + (11 \beta_{2} + 11) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q+O(q^{10}) \) Copy content Toggle raw display \( 8 q - 16 q^{13} + 16 q^{37} - 48 q^{61} - 8 q^{73} + 80 q^{85} + 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 25x^{4} + 625 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{3} ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{6} ) / 125 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{5} + 25\nu ) / 25 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -\nu^{6} + 10\nu^{4} + 50\nu^{2} - 125 ) / 125 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -2\nu^{7} + 5\nu^{5} + 25\nu^{3} + 125\nu ) / 125 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( -\nu^{6} - 10\nu^{4} + 50\nu^{2} + 125 ) / 125 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( 2\nu^{7} + 5\nu^{5} - 25\nu^{3} + 125\nu ) / 125 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{7} + \beta_{5} + 2\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 5\beta_{6} + 5\beta_{4} + 10\beta_{2} ) / 4 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -25\beta_{6} + 25\beta_{4} + 50 ) / 4 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 25\beta_{7} + 25\beta_{5} - 50\beta_{3} ) / 4 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 125\beta_{2} \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 125\beta_{7} - 125\beta_{5} + 250\beta_1 ) / 4 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(-1\) \(\beta_{2}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
127.1
0.578737 + 2.15988i
−2.15988 0.578737i
−0.578737 2.15988i
2.15988 + 0.578737i
0.578737 2.15988i
−2.15988 + 0.578737i
−0.578737 + 2.15988i
2.15988 0.578737i
0 0 0 −1.58114 + 1.58114i 0 −1.73205 + 1.73205i 0 0 0
127.2 0 0 0 −1.58114 + 1.58114i 0 1.73205 1.73205i 0 0 0
127.3 0 0 0 1.58114 1.58114i 0 −1.73205 + 1.73205i 0 0 0
127.4 0 0 0 1.58114 1.58114i 0 1.73205 1.73205i 0 0 0
703.1 0 0 0 −1.58114 1.58114i 0 −1.73205 1.73205i 0 0 0
703.2 0 0 0 −1.58114 1.58114i 0 1.73205 + 1.73205i 0 0 0
703.3 0 0 0 1.58114 + 1.58114i 0 −1.73205 1.73205i 0 0 0
703.4 0 0 0 1.58114 + 1.58114i 0 1.73205 + 1.73205i 0 0 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 127.4
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
4.b odd 2 1 inner
5.c odd 4 1 inner
12.b even 2 1 inner
15.e even 4 1 inner
20.e even 4 1 inner
60.l odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 720.2.x.g 8
3.b odd 2 1 inner 720.2.x.g 8
4.b odd 2 1 inner 720.2.x.g 8
5.b even 2 1 3600.2.x.o 8
5.c odd 4 1 inner 720.2.x.g 8
5.c odd 4 1 3600.2.x.o 8
12.b even 2 1 inner 720.2.x.g 8
15.d odd 2 1 3600.2.x.o 8
15.e even 4 1 inner 720.2.x.g 8
15.e even 4 1 3600.2.x.o 8
20.d odd 2 1 3600.2.x.o 8
20.e even 4 1 inner 720.2.x.g 8
20.e even 4 1 3600.2.x.o 8
60.h even 2 1 3600.2.x.o 8
60.l odd 4 1 inner 720.2.x.g 8
60.l odd 4 1 3600.2.x.o 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
720.2.x.g 8 1.a even 1 1 trivial
720.2.x.g 8 3.b odd 2 1 inner
720.2.x.g 8 4.b odd 2 1 inner
720.2.x.g 8 5.c odd 4 1 inner
720.2.x.g 8 12.b even 2 1 inner
720.2.x.g 8 15.e even 4 1 inner
720.2.x.g 8 20.e even 4 1 inner
720.2.x.g 8 60.l odd 4 1 inner
3600.2.x.o 8 5.b even 2 1
3600.2.x.o 8 5.c odd 4 1
3600.2.x.o 8 15.d odd 2 1
3600.2.x.o 8 15.e even 4 1
3600.2.x.o 8 20.d odd 2 1
3600.2.x.o 8 20.e even 4 1
3600.2.x.o 8 60.h even 2 1
3600.2.x.o 8 60.l odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(720, [\chi])\):

\( T_{7}^{4} + 36 \) Copy content Toggle raw display
\( T_{11}^{2} + 30 \) Copy content Toggle raw display
\( T_{13}^{2} + 4T_{13} + 8 \) Copy content Toggle raw display
\( T_{17}^{4} + 400 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 25)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 36)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 30)^{4} \) Copy content Toggle raw display
$13$ \( (T^{2} + 4 T + 8)^{4} \) Copy content Toggle raw display
$17$ \( (T^{4} + 400)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} - 12)^{4} \) Copy content Toggle raw display
$23$ \( (T^{4} + 3600)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 10)^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + 48)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 4 T + 8)^{4} \) Copy content Toggle raw display
$41$ \( (T^{2} - 40)^{4} \) Copy content Toggle raw display
$43$ \( (T^{4} + 576)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 3600)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 6400)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} - 30)^{4} \) Copy content Toggle raw display
$61$ \( (T + 6)^{8} \) Copy content Toggle raw display
$67$ \( (T^{4} + 46656)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} \) Copy content Toggle raw display
$73$ \( (T^{2} + 2 T + 2)^{4} \) Copy content Toggle raw display
$79$ \( T^{8} \) Copy content Toggle raw display
$83$ \( (T^{4} + 3600)^{2} \) Copy content Toggle raw display
$89$ \( (T^{2} + 160)^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - 22 T + 242)^{4} \) Copy content Toggle raw display
show more
show less