Properties

Label 720.2.q.l.481.3
Level $720$
Weight $2$
Character 720.481
Analytic conductor $5.749$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,2,Mod(241,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.241"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,-4,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: 8.0.856615824.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 11x^{6} + 36x^{4} + 32x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 360)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 481.3
Root \(-2.06288i\) of defining polynomial
Character \(\chi\) \(=\) 720.481
Dual form 720.2.q.l.241.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.574618 + 1.63396i) q^{3} +(-0.500000 + 0.866025i) q^{5} +(-2.28651 - 3.96035i) q^{7} +(-2.33963 + 1.87780i) q^{9} +(-2.29604 - 3.97686i) q^{11} +(1.83963 - 3.18633i) q^{13} +(-1.70236 - 0.319344i) q^{15} -2.55395 q^{17} -4.76643 q^{19} +(5.15716 - 6.01174i) q^{21} +(-1.28651 + 2.22830i) q^{23} +(-0.500000 - 0.866025i) q^{25} +(-4.41264 - 2.74383i) q^{27} +(-0.956412 - 1.65655i) q^{29} +(1.73339 - 3.00231i) q^{31} +(5.17866 - 6.03680i) q^{33} +4.57301 q^{35} +5.46677 q^{37} +(6.26340 + 1.17495i) q^{39} +(-3.32056 + 5.75139i) q^{41} +(-3.27698 - 5.67589i) q^{43} +(-0.456412 - 2.96508i) q^{45} +(5.01989 + 8.69471i) q^{47} +(-6.95623 + 12.0485i) q^{49} +(-1.46755 - 4.17304i) q^{51} +4.03813 q^{53} +4.59208 q^{55} +(-2.73888 - 7.78814i) q^{57} +(6.13567 - 10.6273i) q^{59} +(-4.79604 - 8.30698i) q^{61} +(12.7863 + 4.97212i) q^{63} +(1.83963 + 3.18633i) q^{65} +(-5.66972 + 9.82025i) q^{67} +(-4.38019 - 0.821677i) q^{69} +1.67925 q^{71} +3.12530 q^{73} +(1.12774 - 1.31461i) q^{75} +(-10.4998 + 18.1862i) q^{77} +(-6.64113 - 11.5028i) q^{79} +(1.94771 - 8.78672i) q^{81} +(5.39275 + 9.34051i) q^{83} +(1.27698 - 2.21179i) q^{85} +(2.15716 - 2.51462i) q^{87} +4.04905 q^{89} -16.8253 q^{91} +(5.90169 + 1.10709i) q^{93} +(2.38322 - 4.12785i) q^{95} +(-8.68962 - 15.0509i) q^{97} +(12.8396 + 4.99285i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{5} - q^{7} + q^{11} - 4 q^{13} - 3 q^{15} + 10 q^{17} - 2 q^{19} + 7 q^{23} - 4 q^{25} + 18 q^{27} - 7 q^{29} - 2 q^{31} - 3 q^{33} + 2 q^{35} + 12 q^{37} + 6 q^{39} - 12 q^{41} - 11 q^{43}+ \cdots + 84 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.574618 + 1.63396i 0.331756 + 0.943365i
\(4\) 0 0
\(5\) −0.500000 + 0.866025i −0.223607 + 0.387298i
\(6\) 0 0
\(7\) −2.28651 3.96035i −0.864218 1.49687i −0.867821 0.496877i \(-0.834480\pi\)
0.00360263 0.999994i \(-0.498853\pi\)
\(8\) 0 0
\(9\) −2.33963 + 1.87780i −0.779876 + 0.625934i
\(10\) 0 0
\(11\) −2.29604 3.97686i −0.692282 1.19907i −0.971088 0.238720i \(-0.923272\pi\)
0.278807 0.960347i \(-0.410061\pi\)
\(12\) 0 0
\(13\) 1.83963 3.18633i 0.510221 0.883728i −0.489709 0.871886i \(-0.662897\pi\)
0.999930 0.0118424i \(-0.00376965\pi\)
\(14\) 0 0
\(15\) −1.70236 0.319344i −0.439547 0.0824543i
\(16\) 0 0
\(17\) −2.55395 −0.619424 −0.309712 0.950830i \(-0.600233\pi\)
−0.309712 + 0.950830i \(0.600233\pi\)
\(18\) 0 0
\(19\) −4.76643 −1.09349 −0.546747 0.837298i \(-0.684134\pi\)
−0.546747 + 0.837298i \(0.684134\pi\)
\(20\) 0 0
\(21\) 5.15716 6.01174i 1.12539 1.31187i
\(22\) 0 0
\(23\) −1.28651 + 2.22830i −0.268255 + 0.464632i −0.968411 0.249358i \(-0.919780\pi\)
0.700156 + 0.713990i \(0.253114\pi\)
\(24\) 0 0
\(25\) −0.500000 0.866025i −0.100000 0.173205i
\(26\) 0 0
\(27\) −4.41264 2.74383i −0.849213 0.528050i
\(28\) 0 0
\(29\) −0.956412 1.65655i −0.177601 0.307614i 0.763457 0.645858i \(-0.223500\pi\)
−0.941058 + 0.338244i \(0.890167\pi\)
\(30\) 0 0
\(31\) 1.73339 3.00231i 0.311326 0.539232i −0.667324 0.744767i \(-0.732560\pi\)
0.978650 + 0.205536i \(0.0658937\pi\)
\(32\) 0 0
\(33\) 5.17866 6.03680i 0.901489 1.05087i
\(34\) 0 0
\(35\) 4.57301 0.772980
\(36\) 0 0
\(37\) 5.46677 0.898732 0.449366 0.893348i \(-0.351650\pi\)
0.449366 + 0.893348i \(0.351650\pi\)
\(38\) 0 0
\(39\) 6.26340 + 1.17495i 1.00295 + 0.188142i
\(40\) 0 0
\(41\) −3.32056 + 5.75139i −0.518585 + 0.898215i 0.481182 + 0.876621i \(0.340208\pi\)
−0.999767 + 0.0215947i \(0.993126\pi\)
\(42\) 0 0
\(43\) −3.27698 5.67589i −0.499734 0.865565i 0.500266 0.865872i \(-0.333236\pi\)
−1.00000 0.000307033i \(0.999902\pi\)
\(44\) 0 0
\(45\) −0.456412 2.96508i −0.0680378 0.442008i
\(46\) 0 0
\(47\) 5.01989 + 8.69471i 0.732227 + 1.26825i 0.955929 + 0.293597i \(0.0948522\pi\)
−0.223703 + 0.974657i \(0.571814\pi\)
\(48\) 0 0
\(49\) −6.95623 + 12.0485i −0.993747 + 1.72122i
\(50\) 0 0
\(51\) −1.46755 4.17304i −0.205498 0.584343i
\(52\) 0 0
\(53\) 4.03813 0.554679 0.277340 0.960772i \(-0.410547\pi\)
0.277340 + 0.960772i \(0.410547\pi\)
\(54\) 0 0
\(55\) 4.59208 0.619196
\(56\) 0 0
\(57\) −2.73888 7.78814i −0.362773 1.03156i
\(58\) 0 0
\(59\) 6.13567 10.6273i 0.798796 1.38355i −0.121605 0.992579i \(-0.538804\pi\)
0.920401 0.390976i \(-0.127863\pi\)
\(60\) 0 0
\(61\) −4.79604 8.30698i −0.614070 1.06360i −0.990547 0.137174i \(-0.956198\pi\)
0.376477 0.926426i \(-0.377135\pi\)
\(62\) 0 0
\(63\) 12.7863 + 4.97212i 1.61093 + 0.626429i
\(64\) 0 0
\(65\) 1.83963 + 3.18633i 0.228178 + 0.395215i
\(66\) 0 0
\(67\) −5.66972 + 9.82025i −0.692667 + 1.19973i 0.278294 + 0.960496i \(0.410231\pi\)
−0.970961 + 0.239238i \(0.923102\pi\)
\(68\) 0 0
\(69\) −4.38019 0.821677i −0.527313 0.0989183i
\(70\) 0 0
\(71\) 1.67925 0.199291 0.0996454 0.995023i \(-0.468229\pi\)
0.0996454 + 0.995023i \(0.468229\pi\)
\(72\) 0 0
\(73\) 3.12530 0.365789 0.182895 0.983133i \(-0.441453\pi\)
0.182895 + 0.983133i \(0.441453\pi\)
\(74\) 0 0
\(75\) 1.12774 1.31461i 0.130220 0.151798i
\(76\) 0 0
\(77\) −10.4998 + 18.1862i −1.19657 + 2.07251i
\(78\) 0 0
\(79\) −6.64113 11.5028i −0.747185 1.29416i −0.949167 0.314773i \(-0.898071\pi\)
0.201982 0.979389i \(-0.435262\pi\)
\(80\) 0 0
\(81\) 1.94771 8.78672i 0.216412 0.976302i
\(82\) 0 0
\(83\) 5.39275 + 9.34051i 0.591931 + 1.02525i 0.993972 + 0.109633i \(0.0349675\pi\)
−0.402041 + 0.915622i \(0.631699\pi\)
\(84\) 0 0
\(85\) 1.27698 2.21179i 0.138507 0.239902i
\(86\) 0 0
\(87\) 2.15716 2.51462i 0.231272 0.269596i
\(88\) 0 0
\(89\) 4.04905 0.429198 0.214599 0.976702i \(-0.431155\pi\)
0.214599 + 0.976702i \(0.431155\pi\)
\(90\) 0 0
\(91\) −16.8253 −1.76377
\(92\) 0 0
\(93\) 5.90169 + 1.10709i 0.611976 + 0.114800i
\(94\) 0 0
\(95\) 2.38322 4.12785i 0.244513 0.423509i
\(96\) 0 0
\(97\) −8.68962 15.0509i −0.882297 1.52818i −0.848781 0.528745i \(-0.822663\pi\)
−0.0335162 0.999438i \(-0.510671\pi\)
\(98\) 0 0
\(99\) 12.8396 + 4.99285i 1.29043 + 0.501800i
\(100\) 0 0
\(101\) −6.57301 11.3848i −0.654039 1.13283i −0.982134 0.188184i \(-0.939740\pi\)
0.328094 0.944645i \(-0.393594\pi\)
\(102\) 0 0
\(103\) −5.75245 + 9.96354i −0.566806 + 0.981736i 0.430073 + 0.902794i \(0.358488\pi\)
−0.996879 + 0.0789425i \(0.974846\pi\)
\(104\) 0 0
\(105\) 2.62774 + 7.47211i 0.256441 + 0.729203i
\(106\) 0 0
\(107\) −5.52396 −0.534022 −0.267011 0.963694i \(-0.586036\pi\)
−0.267011 + 0.963694i \(0.586036\pi\)
\(108\) 0 0
\(109\) −16.7381 −1.60322 −0.801610 0.597847i \(-0.796023\pi\)
−0.801610 + 0.597847i \(0.796023\pi\)
\(110\) 0 0
\(111\) 3.14131 + 8.93247i 0.298160 + 0.847833i
\(112\) 0 0
\(113\) −1.89376 + 3.28009i −0.178150 + 0.308565i −0.941247 0.337719i \(-0.890345\pi\)
0.763097 + 0.646284i \(0.223678\pi\)
\(114\) 0 0
\(115\) −1.28651 2.22830i −0.119967 0.207790i
\(116\) 0 0
\(117\) 1.67925 + 10.9093i 0.155247 + 1.00856i
\(118\) 0 0
\(119\) 5.83963 + 10.1145i 0.535318 + 0.927198i
\(120\) 0 0
\(121\) −5.04359 + 8.73575i −0.458508 + 0.794159i
\(122\) 0 0
\(123\) −11.3056 2.12080i −1.01939 0.191226i
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 11.1444 0.988903 0.494451 0.869205i \(-0.335369\pi\)
0.494451 + 0.869205i \(0.335369\pi\)
\(128\) 0 0
\(129\) 7.39114 8.61591i 0.650754 0.758588i
\(130\) 0 0
\(131\) −10.9125 + 18.9009i −0.953426 + 1.65138i −0.215496 + 0.976505i \(0.569137\pi\)
−0.737930 + 0.674878i \(0.764196\pi\)
\(132\) 0 0
\(133\) 10.8985 + 18.8767i 0.945018 + 1.63682i
\(134\) 0 0
\(135\) 4.58255 2.44955i 0.394403 0.210823i
\(136\) 0 0
\(137\) 2.22284 + 3.85008i 0.189910 + 0.328934i 0.945220 0.326434i \(-0.105847\pi\)
−0.755310 + 0.655368i \(0.772514\pi\)
\(138\) 0 0
\(139\) 5.58338 9.67069i 0.473576 0.820257i −0.525967 0.850505i \(-0.676296\pi\)
0.999542 + 0.0302478i \(0.00962964\pi\)
\(140\) 0 0
\(141\) −11.3223 + 13.1984i −0.953506 + 1.11151i
\(142\) 0 0
\(143\) −16.8954 −1.41287
\(144\) 0 0
\(145\) 1.91282 0.158851
\(146\) 0 0
\(147\) −23.6840 4.44286i −1.95342 0.366441i
\(148\) 0 0
\(149\) 6.54341 11.3335i 0.536057 0.928478i −0.463055 0.886330i \(-0.653247\pi\)
0.999111 0.0421478i \(-0.0134200\pi\)
\(150\) 0 0
\(151\) −0.179436 0.310792i −0.0146023 0.0252919i 0.858632 0.512593i \(-0.171315\pi\)
−0.873234 + 0.487301i \(0.837982\pi\)
\(152\) 0 0
\(153\) 5.97529 4.79582i 0.483074 0.387719i
\(154\) 0 0
\(155\) 1.73339 + 3.00231i 0.139229 + 0.241152i
\(156\) 0 0
\(157\) 6.53489 11.3188i 0.521541 0.903335i −0.478145 0.878281i \(-0.658691\pi\)
0.999686 0.0250544i \(-0.00797591\pi\)
\(158\) 0 0
\(159\) 2.32038 + 6.59812i 0.184018 + 0.523265i
\(160\) 0 0
\(161\) 11.7664 0.927325
\(162\) 0 0
\(163\) 18.7872 1.47152 0.735762 0.677240i \(-0.236824\pi\)
0.735762 + 0.677240i \(0.236824\pi\)
\(164\) 0 0
\(165\) 2.63869 + 7.50325i 0.205422 + 0.584128i
\(166\) 0 0
\(167\) 7.12613 12.3428i 0.551437 0.955117i −0.446734 0.894667i \(-0.647413\pi\)
0.998171 0.0604500i \(-0.0192536\pi\)
\(168\) 0 0
\(169\) −0.268456 0.464980i −0.0206505 0.0357677i
\(170\) 0 0
\(171\) 11.1517 8.95042i 0.852790 0.684456i
\(172\) 0 0
\(173\) 4.59208 + 7.95371i 0.349129 + 0.604710i 0.986095 0.166183i \(-0.0531441\pi\)
−0.636966 + 0.770892i \(0.719811\pi\)
\(174\) 0 0
\(175\) −2.28651 + 3.96035i −0.172844 + 0.299374i
\(176\) 0 0
\(177\) 20.8902 + 3.91878i 1.57020 + 0.294553i
\(178\) 0 0
\(179\) −18.7872 −1.40422 −0.702109 0.712069i \(-0.747758\pi\)
−0.702109 + 0.712069i \(0.747758\pi\)
\(180\) 0 0
\(181\) 11.9128 0.885473 0.442737 0.896652i \(-0.354008\pi\)
0.442737 + 0.896652i \(0.354008\pi\)
\(182\) 0 0
\(183\) 10.8174 12.6099i 0.799642 0.932148i
\(184\) 0 0
\(185\) −2.73339 + 4.73437i −0.200963 + 0.348077i
\(186\) 0 0
\(187\) 5.86397 + 10.1567i 0.428816 + 0.742731i
\(188\) 0 0
\(189\) −0.776975 + 23.7494i −0.0565167 + 1.72751i
\(190\) 0 0
\(191\) 2.37285 + 4.10990i 0.171694 + 0.297382i 0.939012 0.343884i \(-0.111743\pi\)
−0.767318 + 0.641266i \(0.778409\pi\)
\(192\) 0 0
\(193\) −4.27698 + 7.40794i −0.307863 + 0.533235i −0.977895 0.209098i \(-0.932947\pi\)
0.670031 + 0.742333i \(0.266281\pi\)
\(194\) 0 0
\(195\) −4.14924 + 4.83679i −0.297133 + 0.346370i
\(196\) 0 0
\(197\) −12.2539 −0.873056 −0.436528 0.899691i \(-0.643792\pi\)
−0.436528 + 0.899691i \(0.643792\pi\)
\(198\) 0 0
\(199\) −1.71738 −0.121742 −0.0608710 0.998146i \(-0.519388\pi\)
−0.0608710 + 0.998146i \(0.519388\pi\)
\(200\) 0 0
\(201\) −19.3038 3.62118i −1.36158 0.255419i
\(202\) 0 0
\(203\) −4.37368 + 7.57544i −0.306972 + 0.531692i
\(204\) 0 0
\(205\) −3.32056 5.75139i −0.231918 0.401694i
\(206\) 0 0
\(207\) −1.17435 7.62919i −0.0816232 0.530265i
\(208\) 0 0
\(209\) 10.9439 + 18.9554i 0.757006 + 1.31117i
\(210\) 0 0
\(211\) 1.26661 2.19384i 0.0871972 0.151030i −0.819128 0.573611i \(-0.805542\pi\)
0.906325 + 0.422581i \(0.138876\pi\)
\(212\) 0 0
\(213\) 0.964931 + 2.74383i 0.0661160 + 0.188004i
\(214\) 0 0
\(215\) 6.55395 0.446976
\(216\) 0 0
\(217\) −15.8536 −1.07621
\(218\) 0 0
\(219\) 1.79586 + 5.10661i 0.121353 + 0.345073i
\(220\) 0 0
\(221\) −4.69832 + 8.13772i −0.316043 + 0.547403i
\(222\) 0 0
\(223\) 11.1659 + 19.3399i 0.747725 + 1.29510i 0.948911 + 0.315545i \(0.102187\pi\)
−0.201185 + 0.979553i \(0.564479\pi\)
\(224\) 0 0
\(225\) 2.79604 + 1.08728i 0.186403 + 0.0724850i
\(226\) 0 0
\(227\) −5.20886 9.02201i −0.345724 0.598812i 0.639761 0.768574i \(-0.279033\pi\)
−0.985485 + 0.169762i \(0.945700\pi\)
\(228\) 0 0
\(229\) 8.78169 15.2103i 0.580311 1.00513i −0.415132 0.909761i \(-0.636264\pi\)
0.995442 0.0953662i \(-0.0304022\pi\)
\(230\) 0 0
\(231\) −35.7489 6.70611i −2.35210 0.441230i
\(232\) 0 0
\(233\) 19.2328 1.25999 0.629993 0.776601i \(-0.283058\pi\)
0.629993 + 0.776601i \(0.283058\pi\)
\(234\) 0 0
\(235\) −10.0398 −0.654924
\(236\) 0 0
\(237\) 14.9789 17.4610i 0.972985 1.13422i
\(238\) 0 0
\(239\) −5.25227 + 9.09720i −0.339741 + 0.588449i −0.984384 0.176035i \(-0.943673\pi\)
0.644643 + 0.764484i \(0.277006\pi\)
\(240\) 0 0
\(241\) −4.66037 8.07200i −0.300201 0.519963i 0.675980 0.736920i \(-0.263720\pi\)
−0.976181 + 0.216956i \(0.930387\pi\)
\(242\) 0 0
\(243\) 15.4763 1.86654i 0.992805 0.119738i
\(244\) 0 0
\(245\) −6.95623 12.0485i −0.444417 0.769753i
\(246\) 0 0
\(247\) −8.76846 + 15.1874i −0.557924 + 0.966352i
\(248\) 0 0
\(249\) −12.1632 + 14.1787i −0.770813 + 0.898541i
\(250\) 0 0
\(251\) −19.9125 −1.25686 −0.628432 0.777865i \(-0.716303\pi\)
−0.628432 + 0.777865i \(0.716303\pi\)
\(252\) 0 0
\(253\) 11.8155 0.742833
\(254\) 0 0
\(255\) 4.34774 + 0.815589i 0.272266 + 0.0510742i
\(256\) 0 0
\(257\) 5.70868 9.88772i 0.356098 0.616779i −0.631207 0.775614i \(-0.717440\pi\)
0.987305 + 0.158835i \(0.0507737\pi\)
\(258\) 0 0
\(259\) −12.4998 21.6503i −0.776701 1.34529i
\(260\) 0 0
\(261\) 5.34833 + 2.07976i 0.331053 + 0.128734i
\(262\) 0 0
\(263\) 2.28568 + 3.95891i 0.140941 + 0.244117i 0.927851 0.372951i \(-0.121654\pi\)
−0.786910 + 0.617067i \(0.788321\pi\)
\(264\) 0 0
\(265\) −2.01906 + 3.49712i −0.124030 + 0.214826i
\(266\) 0 0
\(267\) 2.32666 + 6.61597i 0.142389 + 0.404891i
\(268\) 0 0
\(269\) 17.5954 1.07281 0.536405 0.843961i \(-0.319782\pi\)
0.536405 + 0.843961i \(0.319782\pi\)
\(270\) 0 0
\(271\) 9.64113 0.585657 0.292828 0.956165i \(-0.405404\pi\)
0.292828 + 0.956165i \(0.405404\pi\)
\(272\) 0 0
\(273\) −9.66812 27.4918i −0.585141 1.66388i
\(274\) 0 0
\(275\) −2.29604 + 3.97686i −0.138456 + 0.239813i
\(276\) 0 0
\(277\) −7.05211 12.2146i −0.423720 0.733905i 0.572580 0.819849i \(-0.305943\pi\)
−0.996300 + 0.0859443i \(0.972609\pi\)
\(278\) 0 0
\(279\) 1.58228 + 10.2793i 0.0947284 + 0.615403i
\(280\) 0 0
\(281\) −1.72793 2.99285i −0.103079 0.178539i 0.809873 0.586606i \(-0.199536\pi\)
−0.912952 + 0.408067i \(0.866203\pi\)
\(282\) 0 0
\(283\) 12.0911 20.9423i 0.718739 1.24489i −0.242760 0.970086i \(-0.578053\pi\)
0.961500 0.274807i \(-0.0886138\pi\)
\(284\) 0 0
\(285\) 8.11417 + 1.52213i 0.480642 + 0.0901633i
\(286\) 0 0
\(287\) 30.3700 1.79268
\(288\) 0 0
\(289\) −10.4773 −0.616314
\(290\) 0 0
\(291\) 19.5992 22.8470i 1.14893 1.33931i
\(292\) 0 0
\(293\) 2.62715 4.55035i 0.153480 0.265834i −0.779025 0.626993i \(-0.784285\pi\)
0.932504 + 0.361159i \(0.117619\pi\)
\(294\) 0 0
\(295\) 6.13567 + 10.6273i 0.357232 + 0.618744i
\(296\) 0 0
\(297\) −0.780214 + 23.8484i −0.0452726 + 1.38382i
\(298\) 0 0
\(299\) 4.73339 + 8.19847i 0.273739 + 0.474130i
\(300\) 0 0
\(301\) −14.9857 + 25.9559i −0.863759 + 1.49607i
\(302\) 0 0
\(303\) 14.8253 17.2819i 0.851690 0.992821i
\(304\) 0 0
\(305\) 9.59208 0.549241
\(306\) 0 0
\(307\) −1.31148 −0.0748503 −0.0374252 0.999299i \(-0.511916\pi\)
−0.0374252 + 0.999299i \(0.511916\pi\)
\(308\) 0 0
\(309\) −19.5854 3.67402i −1.11418 0.209008i
\(310\) 0 0
\(311\) 4.43170 7.67594i 0.251299 0.435263i −0.712585 0.701586i \(-0.752476\pi\)
0.963884 + 0.266324i \(0.0858089\pi\)
\(312\) 0 0
\(313\) −1.12169 1.94282i −0.0634014 0.109814i 0.832582 0.553901i \(-0.186862\pi\)
−0.895984 + 0.444087i \(0.853528\pi\)
\(314\) 0 0
\(315\) −10.6991 + 8.58722i −0.602829 + 0.483835i
\(316\) 0 0
\(317\) −10.2873 17.8182i −0.577794 1.00077i −0.995732 0.0922935i \(-0.970580\pi\)
0.417937 0.908476i \(-0.362753\pi\)
\(318\) 0 0
\(319\) −4.39192 + 7.60702i −0.245900 + 0.425911i
\(320\) 0 0
\(321\) −3.17417 9.02592i −0.177165 0.503778i
\(322\) 0 0
\(323\) 12.1732 0.677337
\(324\) 0 0
\(325\) −3.67925 −0.204088
\(326\) 0 0
\(327\) −9.61803 27.3493i −0.531878 1.51242i
\(328\) 0 0
\(329\) 22.9560 39.7610i 1.26561 2.19210i
\(330\) 0 0
\(331\) 10.8938 + 18.8685i 0.598775 + 1.03711i 0.993002 + 0.118096i \(0.0376790\pi\)
−0.394227 + 0.919013i \(0.628988\pi\)
\(332\) 0 0
\(333\) −12.7902 + 10.2655i −0.700899 + 0.562547i
\(334\) 0 0
\(335\) −5.66972 9.82025i −0.309770 0.536537i
\(336\) 0 0
\(337\) −6.22284 + 10.7783i −0.338980 + 0.587130i −0.984241 0.176832i \(-0.943415\pi\)
0.645261 + 0.763962i \(0.276749\pi\)
\(338\) 0 0
\(339\) −6.44771 1.20952i −0.350192 0.0656922i
\(340\) 0 0
\(341\) −15.9197 −0.862100
\(342\) 0 0
\(343\) 31.6108 1.70682
\(344\) 0 0
\(345\) 2.90169 3.38252i 0.156222 0.182109i
\(346\) 0 0
\(347\) 8.59736 14.8911i 0.461530 0.799394i −0.537507 0.843259i \(-0.680634\pi\)
0.999037 + 0.0438652i \(0.0139672\pi\)
\(348\) 0 0
\(349\) −4.74191 8.21322i −0.253828 0.439644i 0.710748 0.703446i \(-0.248357\pi\)
−0.964577 + 0.263803i \(0.915023\pi\)
\(350\) 0 0
\(351\) −16.8604 + 9.01250i −0.899939 + 0.481052i
\(352\) 0 0
\(353\) −6.70868 11.6198i −0.357067 0.618458i 0.630402 0.776268i \(-0.282890\pi\)
−0.987469 + 0.157810i \(0.949557\pi\)
\(354\) 0 0
\(355\) −0.839627 + 1.45428i −0.0445628 + 0.0771850i
\(356\) 0 0
\(357\) −13.1711 + 15.3537i −0.697091 + 0.812604i
\(358\) 0 0
\(359\) −12.3970 −0.654289 −0.327144 0.944974i \(-0.606086\pi\)
−0.327144 + 0.944974i \(0.606086\pi\)
\(360\) 0 0
\(361\) 3.71887 0.195730
\(362\) 0 0
\(363\) −17.1720 3.22128i −0.901295 0.169073i
\(364\) 0 0
\(365\) −1.56265 + 2.70659i −0.0817929 + 0.141670i
\(366\) 0 0
\(367\) −10.2857 17.8153i −0.536908 0.929952i −0.999068 0.0431555i \(-0.986259\pi\)
0.462160 0.886796i \(-0.347074\pi\)
\(368\) 0 0
\(369\) −3.03109 19.6915i −0.157792 1.02510i
\(370\) 0 0
\(371\) −9.23321 15.9924i −0.479364 0.830283i
\(372\) 0 0
\(373\) 2.23154 3.86515i 0.115545 0.200130i −0.802453 0.596716i \(-0.796472\pi\)
0.917997 + 0.396586i \(0.129805\pi\)
\(374\) 0 0
\(375\) 0.574618 + 1.63396i 0.0296732 + 0.0843771i
\(376\) 0 0
\(377\) −7.03776 −0.362463
\(378\) 0 0
\(379\) 8.77660 0.450823 0.225412 0.974264i \(-0.427627\pi\)
0.225412 + 0.974264i \(0.427627\pi\)
\(380\) 0 0
\(381\) 6.40376 + 18.2094i 0.328075 + 0.932896i
\(382\) 0 0
\(383\) −1.60606 + 2.78177i −0.0820658 + 0.142142i −0.904137 0.427242i \(-0.859485\pi\)
0.822071 + 0.569384i \(0.192818\pi\)
\(384\) 0 0
\(385\) −10.4998 18.1862i −0.535120 0.926856i
\(386\) 0 0
\(387\) 18.3251 + 7.12595i 0.931517 + 0.362232i
\(388\) 0 0
\(389\) −12.7957 22.1628i −0.648766 1.12370i −0.983418 0.181354i \(-0.941952\pi\)
0.334651 0.942342i \(-0.391381\pi\)
\(390\) 0 0
\(391\) 3.28568 5.69096i 0.166164 0.287804i
\(392\) 0 0
\(393\) −37.1538 6.96966i −1.87416 0.351573i
\(394\) 0 0
\(395\) 13.2823 0.668303
\(396\) 0 0
\(397\) 14.3902 0.722221 0.361111 0.932523i \(-0.382398\pi\)
0.361111 + 0.932523i \(0.382398\pi\)
\(398\) 0 0
\(399\) −24.5813 + 28.6546i −1.23060 + 1.43452i
\(400\) 0 0
\(401\) −13.0692 + 22.6365i −0.652645 + 1.13042i 0.329833 + 0.944039i \(0.393008\pi\)
−0.982479 + 0.186376i \(0.940326\pi\)
\(402\) 0 0
\(403\) −6.37757 11.0463i −0.317689 0.550254i
\(404\) 0 0
\(405\) 6.63567 + 6.08013i 0.329729 + 0.302124i
\(406\) 0 0
\(407\) −12.5519 21.7406i −0.622176 1.07764i
\(408\) 0 0
\(409\) −3.29096 + 5.70010i −0.162727 + 0.281852i −0.935846 0.352410i \(-0.885362\pi\)
0.773119 + 0.634262i \(0.218696\pi\)
\(410\) 0 0
\(411\) −5.01357 + 5.84435i −0.247301 + 0.288281i
\(412\) 0 0
\(413\) −56.1170 −2.76134
\(414\) 0 0
\(415\) −10.7855 −0.529439
\(416\) 0 0
\(417\) 19.0098 + 3.56604i 0.930914 + 0.174630i
\(418\) 0 0
\(419\) 6.37451 11.0410i 0.311415 0.539387i −0.667254 0.744831i \(-0.732530\pi\)
0.978669 + 0.205443i \(0.0658636\pi\)
\(420\) 0 0
\(421\) 0.641128 + 1.11047i 0.0312467 + 0.0541208i 0.881226 0.472695i \(-0.156719\pi\)
−0.849979 + 0.526816i \(0.823386\pi\)
\(422\) 0 0
\(423\) −28.0716 10.9160i −1.36489 0.530755i
\(424\) 0 0
\(425\) 1.27698 + 2.21179i 0.0619424 + 0.107287i
\(426\) 0 0
\(427\) −21.9324 + 37.9880i −1.06138 + 1.83837i
\(428\) 0 0
\(429\) −9.70842 27.6064i −0.468727 1.33285i
\(430\) 0 0
\(431\) −6.89137 −0.331946 −0.165973 0.986130i \(-0.553076\pi\)
−0.165973 + 0.986130i \(0.553076\pi\)
\(432\) 0 0
\(433\) 30.4551 1.46358 0.731790 0.681530i \(-0.238685\pi\)
0.731790 + 0.681530i \(0.238685\pi\)
\(434\) 0 0
\(435\) 1.09914 + 3.12547i 0.0526999 + 0.149855i
\(436\) 0 0
\(437\) 6.13205 10.6210i 0.293336 0.508072i
\(438\) 0 0
\(439\) −14.8654 25.7477i −0.709488 1.22887i −0.965047 0.262077i \(-0.915593\pi\)
0.255559 0.966794i \(-0.417741\pi\)
\(440\) 0 0
\(441\) −6.34981 41.2515i −0.302372 1.96436i
\(442\) 0 0
\(443\) −3.16482 5.48163i −0.150365 0.260440i 0.780997 0.624535i \(-0.214712\pi\)
−0.931362 + 0.364095i \(0.881378\pi\)
\(444\) 0 0
\(445\) −2.02453 + 3.50658i −0.0959717 + 0.166228i
\(446\) 0 0
\(447\) 22.2784 + 4.17920i 1.05373 + 0.197669i
\(448\) 0 0
\(449\) 25.8456 1.21973 0.609866 0.792505i \(-0.291223\pi\)
0.609866 + 0.792505i \(0.291223\pi\)
\(450\) 0 0
\(451\) 30.4966 1.43603
\(452\) 0 0
\(453\) 0.404714 0.471778i 0.0190151 0.0221661i
\(454\) 0 0
\(455\) 8.41264 14.5711i 0.394391 0.683105i
\(456\) 0 0
\(457\) 17.6545 + 30.5786i 0.825845 + 1.43041i 0.901272 + 0.433254i \(0.142635\pi\)
−0.0754270 + 0.997151i \(0.524032\pi\)
\(458\) 0 0
\(459\) 11.2697 + 7.00760i 0.526023 + 0.327087i
\(460\) 0 0
\(461\) −1.55941 2.70098i −0.0726291 0.125797i 0.827424 0.561578i \(-0.189806\pi\)
−0.900053 + 0.435781i \(0.856472\pi\)
\(462\) 0 0
\(463\) −1.58736 + 2.74939i −0.0737708 + 0.127775i −0.900551 0.434750i \(-0.856837\pi\)
0.826780 + 0.562525i \(0.190170\pi\)
\(464\) 0 0
\(465\) −3.90961 + 4.55746i −0.181304 + 0.211347i
\(466\) 0 0
\(467\) −20.2808 −0.938482 −0.469241 0.883070i \(-0.655472\pi\)
−0.469241 + 0.883070i \(0.655472\pi\)
\(468\) 0 0
\(469\) 51.8554 2.39446
\(470\) 0 0
\(471\) 22.2494 + 4.17375i 1.02520 + 0.192316i
\(472\) 0 0
\(473\) −15.0481 + 26.0641i −0.691914 + 1.19843i
\(474\) 0 0
\(475\) 2.38322 + 4.12785i 0.109349 + 0.189399i
\(476\) 0 0
\(477\) −9.44771 + 7.58281i −0.432581 + 0.347193i
\(478\) 0 0
\(479\) −5.03813 8.72629i −0.230198 0.398714i 0.727668 0.685929i \(-0.240604\pi\)
−0.957866 + 0.287215i \(0.907271\pi\)
\(480\) 0 0
\(481\) 10.0568 17.4189i 0.458552 0.794235i
\(482\) 0 0
\(483\) 6.76121 + 19.2258i 0.307646 + 0.874806i
\(484\) 0 0
\(485\) 17.3792 0.789150
\(486\) 0 0
\(487\) 28.3589 1.28506 0.642532 0.766259i \(-0.277884\pi\)
0.642532 + 0.766259i \(0.277884\pi\)
\(488\) 0 0
\(489\) 10.7954 + 30.6974i 0.488187 + 1.38818i
\(490\) 0 0
\(491\) 16.4560 28.5027i 0.742651 1.28631i −0.208633 0.977994i \(-0.566901\pi\)
0.951284 0.308315i \(-0.0997652\pi\)
\(492\) 0 0
\(493\) 2.44263 + 4.23076i 0.110010 + 0.190544i
\(494\) 0 0
\(495\) −10.7437 + 8.62302i −0.482896 + 0.387576i
\(496\) 0 0
\(497\) −3.83963 6.65043i −0.172231 0.298313i
\(498\) 0 0
\(499\) 2.50546 4.33959i 0.112160 0.194267i −0.804481 0.593978i \(-0.797556\pi\)
0.916641 + 0.399712i \(0.130890\pi\)
\(500\) 0 0
\(501\) 24.2624 + 4.55138i 1.08397 + 0.203341i
\(502\) 0 0
\(503\) −42.1916 −1.88123 −0.940615 0.339477i \(-0.889750\pi\)
−0.940615 + 0.339477i \(0.889750\pi\)
\(504\) 0 0
\(505\) 13.1460 0.584991
\(506\) 0 0
\(507\) 0.605497 0.705832i 0.0268911 0.0313471i
\(508\) 0 0
\(509\) 8.61660 14.9244i 0.381924 0.661512i −0.609413 0.792853i \(-0.708595\pi\)
0.991337 + 0.131341i \(0.0419282\pi\)
\(510\) 0 0
\(511\) −7.14603 12.3773i −0.316122 0.547539i
\(512\) 0 0
\(513\) 21.0326 + 13.0783i 0.928610 + 0.577420i
\(514\) 0 0
\(515\) −5.75245 9.96354i −0.253483 0.439046i
\(516\) 0 0
\(517\) 23.0517 39.9268i 1.01381 1.75598i
\(518\) 0 0
\(519\) −10.3573 + 12.0736i −0.454636 + 0.529972i
\(520\) 0 0
\(521\) −5.42901 −0.237849 −0.118925 0.992903i \(-0.537945\pi\)
−0.118925 + 0.992903i \(0.537945\pi\)
\(522\) 0 0
\(523\) −6.68128 −0.292152 −0.146076 0.989273i \(-0.546664\pi\)
−0.146076 + 0.989273i \(0.546664\pi\)
\(524\) 0 0
\(525\) −7.78490 1.46036i −0.339761 0.0637355i
\(526\) 0 0
\(527\) −4.42699 + 7.66776i −0.192843 + 0.334013i
\(528\) 0 0
\(529\) 8.18980 + 14.1851i 0.356078 + 0.616746i
\(530\) 0 0
\(531\) 5.60078 + 36.3855i 0.243053 + 1.57899i
\(532\) 0 0
\(533\) 12.2172 + 21.1608i 0.529186 + 0.916576i
\(534\) 0 0
\(535\) 2.76198 4.78389i 0.119411 0.206826i
\(536\) 0 0
\(537\) −10.7954 30.6974i −0.465858 1.32469i
\(538\) 0 0
\(539\) 63.8871 2.75181
\(540\) 0 0
\(541\) 35.3087 1.51804 0.759020 0.651067i \(-0.225678\pi\)
0.759020 + 0.651067i \(0.225678\pi\)
\(542\) 0 0
\(543\) 6.84533 + 19.4650i 0.293761 + 0.835325i
\(544\) 0 0
\(545\) 8.36905 14.4956i 0.358491 0.620924i
\(546\) 0 0
\(547\) 5.78105 + 10.0131i 0.247180 + 0.428128i 0.962742 0.270421i \(-0.0871629\pi\)
−0.715563 + 0.698549i \(0.753830\pi\)
\(548\) 0 0
\(549\) 26.8198 + 10.4292i 1.14464 + 0.445109i
\(550\) 0 0
\(551\) 4.55867 + 7.89585i 0.194206 + 0.336374i
\(552\) 0 0
\(553\) −30.3700 + 52.6023i −1.29146 + 2.23688i
\(554\) 0 0
\(555\) −9.30640 1.74578i −0.395035 0.0741043i
\(556\) 0 0
\(557\) −18.0415 −0.764441 −0.382220 0.924071i \(-0.624840\pi\)
−0.382220 + 0.924071i \(0.624840\pi\)
\(558\) 0 0
\(559\) −24.1137 −1.01990
\(560\) 0 0
\(561\) −13.2261 + 15.4177i −0.558404 + 0.650936i
\(562\) 0 0
\(563\) 1.28086 2.21852i 0.0539820 0.0934995i −0.837772 0.546021i \(-0.816142\pi\)
0.891754 + 0.452521i \(0.149475\pi\)
\(564\) 0 0
\(565\) −1.89376 3.28009i −0.0796711 0.137994i
\(566\) 0 0
\(567\) −39.2519 + 12.3773i −1.64843 + 0.519797i
\(568\) 0 0
\(569\) 10.3502 + 17.9270i 0.433902 + 0.751540i 0.997205 0.0747101i \(-0.0238032\pi\)
−0.563304 + 0.826250i \(0.690470\pi\)
\(570\) 0 0
\(571\) −3.58338 + 6.20659i −0.149960 + 0.259738i −0.931212 0.364477i \(-0.881248\pi\)
0.781253 + 0.624215i \(0.214581\pi\)
\(572\) 0 0
\(573\) −5.35192 + 6.23876i −0.223579 + 0.260628i
\(574\) 0 0
\(575\) 2.57301 0.107302
\(576\) 0 0
\(577\) −27.2463 −1.13428 −0.567140 0.823622i \(-0.691950\pi\)
−0.567140 + 0.823622i \(0.691950\pi\)
\(578\) 0 0
\(579\) −14.5619 2.73165i −0.605171 0.113524i
\(580\) 0 0
\(581\) 24.6611 42.7143i 1.02312 1.77209i
\(582\) 0 0
\(583\) −9.27170 16.0590i −0.383994 0.665098i
\(584\) 0 0
\(585\) −10.2873 4.00036i −0.425329 0.165395i
\(586\) 0 0
\(587\) 8.24746 + 14.2850i 0.340409 + 0.589606i 0.984509 0.175336i \(-0.0561012\pi\)
−0.644100 + 0.764942i \(0.722768\pi\)
\(588\) 0 0
\(589\) −8.26207 + 14.3103i −0.340433 + 0.589647i
\(590\) 0 0
\(591\) −7.04133 20.0224i −0.289642 0.823611i
\(592\) 0 0
\(593\) −14.2819 −0.586487 −0.293244 0.956038i \(-0.594735\pi\)
−0.293244 + 0.956038i \(0.594735\pi\)
\(594\) 0 0
\(595\) −11.6793 −0.478803
\(596\) 0 0
\(597\) −0.986839 2.80613i −0.0403886 0.114847i
\(598\) 0 0
\(599\) 11.1951 19.3904i 0.457419 0.792272i −0.541405 0.840762i \(-0.682107\pi\)
0.998824 + 0.0484897i \(0.0154408\pi\)
\(600\) 0 0
\(601\) 6.05015 + 10.4792i 0.246791 + 0.427454i 0.962634 0.270807i \(-0.0872906\pi\)
−0.715843 + 0.698262i \(0.753957\pi\)
\(602\) 0 0
\(603\) −5.17545 33.6223i −0.210761 1.36921i
\(604\) 0 0
\(605\) −5.04359 8.73575i −0.205051 0.355159i
\(606\) 0 0
\(607\) 10.1659 17.6079i 0.412622 0.714682i −0.582554 0.812792i \(-0.697946\pi\)
0.995176 + 0.0981100i \(0.0312797\pi\)
\(608\) 0 0
\(609\) −14.8911 2.79342i −0.603420 0.113195i
\(610\) 0 0
\(611\) 36.9389 1.49439
\(612\) 0 0
\(613\) 24.8853 1.00511 0.502553 0.864546i \(-0.332394\pi\)
0.502553 + 0.864546i \(0.332394\pi\)
\(614\) 0 0
\(615\) 7.48946 8.73051i 0.302004 0.352048i
\(616\) 0 0
\(617\) −22.6994 + 39.3165i −0.913844 + 1.58282i −0.105259 + 0.994445i \(0.533567\pi\)
−0.808585 + 0.588380i \(0.799766\pi\)
\(618\) 0 0
\(619\) 9.71376 + 16.8247i 0.390429 + 0.676243i 0.992506 0.122195i \(-0.0389933\pi\)
−0.602077 + 0.798438i \(0.705660\pi\)
\(620\) 0 0
\(621\) 11.7910 6.30272i 0.473155 0.252919i
\(622\) 0 0
\(623\) −9.25818 16.0356i −0.370921 0.642454i
\(624\) 0 0
\(625\) −0.500000 + 0.866025i −0.0200000 + 0.0346410i
\(626\) 0 0
\(627\) −24.6837 + 28.7740i −0.985774 + 1.14912i
\(628\) 0 0
\(629\) −13.9619 −0.556696
\(630\) 0 0
\(631\) −7.78752 −0.310016 −0.155008 0.987913i \(-0.549540\pi\)
−0.155008 + 0.987913i \(0.549540\pi\)
\(632\) 0 0
\(633\) 4.31245 + 0.808970i 0.171405 + 0.0321537i
\(634\) 0 0
\(635\) −5.57218 + 9.65130i −0.221125 + 0.383000i
\(636\) 0 0
\(637\) 25.5937 + 44.3297i 1.01406 + 1.75640i
\(638\) 0 0
\(639\) −3.92883 + 3.15331i −0.155422 + 0.124743i
\(640\) 0 0
\(641\) 14.6981 + 25.4579i 0.580541 + 1.00553i 0.995415 + 0.0956483i \(0.0304924\pi\)
−0.414874 + 0.909879i \(0.636174\pi\)
\(642\) 0 0
\(643\) 4.65066 8.05518i 0.183404 0.317665i −0.759633 0.650351i \(-0.774622\pi\)
0.943038 + 0.332686i \(0.107955\pi\)
\(644\) 0 0
\(645\) 3.76602 + 10.7089i 0.148287 + 0.421661i
\(646\) 0 0
\(647\) 40.4647 1.59083 0.795417 0.606063i \(-0.207252\pi\)
0.795417 + 0.606063i \(0.207252\pi\)
\(648\) 0 0
\(649\) −56.3509 −2.21197
\(650\) 0 0
\(651\) −9.10978 25.9041i −0.357040 1.01526i
\(652\) 0 0
\(653\) 7.32546 12.6881i 0.286668 0.496523i −0.686345 0.727276i \(-0.740786\pi\)
0.973012 + 0.230754i \(0.0741191\pi\)
\(654\) 0 0
\(655\) −10.9125 18.9009i −0.426385 0.738521i
\(656\) 0 0
\(657\) −7.31204 + 5.86870i −0.285270 + 0.228960i
\(658\) 0 0
\(659\) −2.51380 4.35403i −0.0979237 0.169609i 0.812901 0.582401i \(-0.197887\pi\)
−0.910825 + 0.412793i \(0.864553\pi\)
\(660\) 0 0
\(661\) −15.9128 + 27.5618i −0.618937 + 1.07203i 0.370743 + 0.928736i \(0.379103\pi\)
−0.989680 + 0.143295i \(0.954230\pi\)
\(662\) 0 0
\(663\) −15.9964 3.00076i −0.621250 0.116540i
\(664\) 0 0
\(665\) −21.7970 −0.845250
\(666\) 0 0
\(667\) 4.92172 0.190570
\(668\) 0 0
\(669\) −25.1845 + 29.3577i −0.973688 + 1.13504i
\(670\) 0 0
\(671\) −22.0238 + 38.1463i −0.850219 + 1.47262i
\(672\) 0 0
\(673\) −5.45077 9.44101i −0.210112 0.363924i 0.741638 0.670801i \(-0.234049\pi\)
−0.951749 + 0.306877i \(0.900716\pi\)
\(674\) 0 0
\(675\) −0.169904 + 5.19337i −0.00653963 + 0.199893i
\(676\) 0 0
\(677\) 14.0047 + 24.2569i 0.538245 + 0.932268i 0.998999 + 0.0447397i \(0.0142459\pi\)
−0.460754 + 0.887528i \(0.652421\pi\)
\(678\) 0 0
\(679\) −39.7377 + 68.8278i −1.52499 + 2.64137i
\(680\) 0 0
\(681\) 11.7485 13.6953i 0.450202 0.524804i
\(682\) 0 0
\(683\) 7.19544 0.275326 0.137663 0.990479i \(-0.456041\pi\)
0.137663 + 0.990479i \(0.456041\pi\)
\(684\) 0 0
\(685\) −4.44569 −0.169861
\(686\) 0 0
\(687\) 29.8992 + 5.60876i 1.14072 + 0.213988i
\(688\) 0 0
\(689\) 7.42865 12.8668i 0.283009 0.490186i
\(690\) 0 0
\(691\) 11.2713 + 19.5225i 0.428782 + 0.742672i 0.996765 0.0803682i \(-0.0256096\pi\)
−0.567984 + 0.823040i \(0.692276\pi\)
\(692\) 0 0
\(693\) −9.58448 62.2656i −0.364084 2.36527i
\(694\) 0 0
\(695\) 5.58338 + 9.67069i 0.211790 + 0.366830i
\(696\) 0 0
\(697\) 8.48056 14.6888i 0.321224 0.556376i
\(698\) 0 0
\(699\) 11.0515 + 31.4256i 0.418008 + 1.18863i
\(700\) 0 0
\(701\) −19.7098 −0.744428 −0.372214 0.928147i \(-0.621401\pi\)
−0.372214 + 0.928147i \(0.621401\pi\)
\(702\) 0 0
\(703\) −26.0570 −0.982758
\(704\) 0 0
\(705\) −5.76905 16.4046i −0.217275 0.617832i
\(706\) 0 0
\(707\) −30.0585 + 52.0628i −1.13047 + 1.95802i
\(708\) 0 0
\(709\) −12.0643 20.8960i −0.453085 0.784766i 0.545491 0.838117i \(-0.316343\pi\)
−0.998576 + 0.0533508i \(0.983010\pi\)
\(710\) 0 0
\(711\) 37.1377 + 14.4415i 1.39277 + 0.541597i
\(712\) 0 0
\(713\) 4.46003 + 7.72500i 0.167029 + 0.289303i
\(714\) 0 0
\(715\) 8.44771 14.6319i 0.315926 0.547201i
\(716\) 0 0
\(717\) −17.8825 3.35456i −0.667833 0.125278i
\(718\) 0 0
\(719\) −8.79732 −0.328085 −0.164042 0.986453i \(-0.552453\pi\)
−0.164042 + 0.986453i \(0.552453\pi\)
\(720\) 0 0
\(721\) 52.6121 1.95938
\(722\) 0 0
\(723\) 10.5114 12.2532i 0.390922 0.455700i
\(724\) 0 0
\(725\) −0.956412 + 1.65655i −0.0355202 + 0.0615229i
\(726\) 0 0
\(727\) −2.62123 4.54011i −0.0972162 0.168383i 0.813315 0.581823i \(-0.197660\pi\)
−0.910531 + 0.413440i \(0.864327\pi\)
\(728\) 0 0
\(729\) 11.9428 + 24.2151i 0.442326 + 0.896854i
\(730\) 0 0
\(731\) 8.36923 + 14.4959i 0.309547 + 0.536152i
\(732\) 0 0
\(733\) 17.0589 29.5468i 0.630083 1.09134i −0.357451 0.933932i \(-0.616354\pi\)
0.987534 0.157404i \(-0.0503125\pi\)
\(734\) 0 0
\(735\) 15.6896 18.2895i 0.578720 0.674618i
\(736\) 0 0
\(737\) 52.0716 1.91808
\(738\) 0 0
\(739\) 5.53174 0.203488 0.101744 0.994811i \(-0.467558\pi\)
0.101744 + 0.994811i \(0.467558\pi\)
\(740\) 0 0
\(741\) −29.8541 5.60031i −1.09672 0.205732i
\(742\) 0 0
\(743\) −7.77234 + 13.4621i −0.285140 + 0.493876i −0.972643 0.232305i \(-0.925373\pi\)
0.687503 + 0.726181i \(0.258707\pi\)
\(744\) 0 0
\(745\) 6.54341 + 11.3335i 0.239732 + 0.415228i
\(746\) 0 0
\(747\) −30.1567 11.7268i −1.10337 0.429061i
\(748\) 0 0
\(749\) 12.6306 + 21.8768i 0.461511 + 0.799361i
\(750\) 0 0
\(751\) 11.2472 19.4807i 0.410416 0.710861i −0.584519 0.811380i \(-0.698717\pi\)
0.994935 + 0.100519i \(0.0320503\pi\)
\(752\) 0 0
\(753\) −11.4421 32.5361i −0.416972 1.18568i
\(754\) 0 0
\(755\) 0.358872 0.0130607
\(756\) 0 0
\(757\) −14.5714 −0.529605 −0.264802 0.964303i \(-0.585307\pi\)
−0.264802 + 0.964303i \(0.585307\pi\)
\(758\) 0 0
\(759\) 6.78939 + 19.3060i 0.246439 + 0.700763i
\(760\) 0 0
\(761\) 6.90736 11.9639i 0.250392 0.433691i −0.713242 0.700918i \(-0.752774\pi\)
0.963634 + 0.267227i \(0.0861073\pi\)
\(762\) 0 0
\(763\) 38.2718 + 66.2887i 1.38553 + 2.39981i
\(764\) 0 0
\(765\) 1.16565 + 7.57266i 0.0421443 + 0.273790i
\(766\) 0 0
\(767\) −22.5747 39.1005i −0.815124 1.41184i
\(768\) 0 0
\(769\) 0.0643136 0.111394i 0.00231921 0.00401698i −0.864863 0.502007i \(-0.832595\pi\)
0.867183 + 0.497990i \(0.165928\pi\)
\(770\) 0 0
\(771\) 19.4364 + 3.64607i 0.699986 + 0.131310i
\(772\) 0 0
\(773\) −44.5427 −1.60209 −0.801044 0.598605i \(-0.795722\pi\)
−0.801044 + 0.598605i \(0.795722\pi\)
\(774\) 0 0
\(775\) −3.46677 −0.124530
\(776\) 0 0
\(777\) 28.1931 32.8648i 1.01142 1.17902i
\(778\) 0 0
\(779\) 15.8272 27.4136i 0.567070 0.982194i
\(780\) 0 0
\(781\) −3.85563 6.67815i −0.137965 0.238963i
\(782\) 0 0
\(783\) −0.324997 + 9.93401i −0.0116145 + 0.355012i
\(784\) 0 0
\(785\) 6.53489 + 11.3188i 0.233240 + 0.403984i
\(786\) 0 0
\(787\) 16.3932 28.3939i 0.584355 1.01213i −0.410601 0.911815i \(-0.634681\pi\)
0.994956 0.100317i \(-0.0319858\pi\)
\(788\) 0 0
\(789\) −5.15529 + 6.00956i −0.183533 + 0.213946i
\(790\) 0 0
\(791\) 17.3204 0.615842
\(792\) 0 0
\(793\) −35.2917 −1.25324
\(794\) 0 0
\(795\) −6.87433 1.28955i −0.243807 0.0457357i
\(796\) 0 0
\(797\) −26.9383 + 46.6584i −0.954202 + 1.65273i −0.218019 + 0.975944i \(0.569960\pi\)
−0.736183 + 0.676783i \(0.763374\pi\)
\(798\) 0 0
\(799\) −12.8206 22.2059i −0.453559 0.785587i
\(800\) 0 0
\(801\) −9.47327 + 7.60332i −0.334721 + 0.268650i
\(802\) 0 0
\(803\) −7.17582 12.4289i −0.253229 0.438606i
\(804\) 0 0
\(805\) −5.88322 + 10.1900i −0.207356 + 0.359151i
\(806\) 0 0
\(807\) 10.1106 + 28.7501i 0.355911 + 1.01205i
\(808\) 0 0
\(809\) −44.3890 −1.56064 −0.780318 0.625383i \(-0.784943\pi\)
−0.780318 + 0.625383i \(0.784943\pi\)
\(810\) 0 0
\(811\) −23.6339 −0.829898 −0.414949 0.909845i \(-0.636201\pi\)
−0.414949 + 0.909845i \(0.636201\pi\)
\(812\) 0 0
\(813\) 5.53997 + 15.7532i 0.194295 + 0.552488i
\(814\) 0 0
\(815\) −9.39358 + 16.2702i −0.329043 + 0.569919i
\(816\) 0 0
\(817\) 15.6195 + 27.0537i 0.546456 + 0.946490i
\(818\) 0 0
\(819\) 39.3649 31.5946i 1.37552 1.10400i
\(820\) 0 0
\(821\) 3.40921 + 5.90492i 0.118982 + 0.206083i 0.919365 0.393407i \(-0.128704\pi\)
−0.800382 + 0.599490i \(0.795370\pi\)
\(822\) 0 0
\(823\) −21.1656 + 36.6598i −0.737785 + 1.27788i 0.215706 + 0.976458i \(0.430795\pi\)
−0.953491 + 0.301423i \(0.902538\pi\)
\(824\) 0 0
\(825\) −7.81736 1.46645i −0.272165 0.0510553i
\(826\) 0 0
\(827\) 30.3700 1.05607 0.528034 0.849223i \(-0.322929\pi\)
0.528034 + 0.849223i \(0.322929\pi\)
\(828\) 0 0
\(829\) −45.8420 −1.59216 −0.796078 0.605193i \(-0.793096\pi\)
−0.796078 + 0.605193i \(0.793096\pi\)
\(830\) 0 0
\(831\) 15.9059 18.5416i 0.551768 0.643200i
\(832\) 0 0
\(833\) 17.7659 30.7714i 0.615551 1.06617i
\(834\) 0 0
\(835\) 7.12613 + 12.3428i 0.246610 + 0.427141i
\(836\) 0 0
\(837\) −15.8867 + 8.49202i −0.549123 + 0.293527i
\(838\) 0 0
\(839\) −5.62512 9.74300i −0.194201 0.336366i 0.752437 0.658664i \(-0.228878\pi\)
−0.946638 + 0.322298i \(0.895545\pi\)
\(840\) 0 0
\(841\) 12.6706 21.9460i 0.436916 0.756760i
\(842\) 0 0
\(843\) 3.89730 4.54310i 0.134230 0.156473i
\(844\) 0 0
\(845\) 0.536913 0.0184704
\(846\) 0 0
\(847\) 46.1288 1.58500
\(848\) 0 0
\(849\) 41.1666 + 7.72242i 1.41283 + 0.265033i
\(850\) 0 0
\(851\) −7.03304 + 12.1816i −0.241090 + 0.417580i
\(852\) 0 0
\(853\) −2.67417 4.63180i −0.0915619 0.158590i 0.816607 0.577195i \(-0.195853\pi\)
−0.908169 + 0.418605i \(0.862519\pi\)
\(854\) 0 0
\(855\) 2.17545 + 14.1328i 0.0743990 + 0.483333i
\(856\) 0 0
\(857\) −25.9646 44.9719i −0.886933 1.53621i −0.843482 0.537157i \(-0.819498\pi\)
−0.0434504 0.999056i \(-0.513835\pi\)
\(858\) 0 0
\(859\) 14.7117 25.4815i 0.501958 0.869417i −0.498039 0.867154i \(-0.665947\pi\)
0.999997 0.00226239i \(-0.000720142\pi\)
\(860\) 0 0
\(861\) 17.4511 + 49.6232i 0.594734 + 1.69115i
\(862\) 0 0
\(863\) −15.9635 −0.543405 −0.271703 0.962381i \(-0.587587\pi\)
−0.271703 + 0.962381i \(0.587587\pi\)
\(864\) 0 0
\(865\) −9.18416 −0.312271
\(866\) 0 0
\(867\) −6.02047 17.1195i −0.204466 0.581409i
\(868\) 0 0
\(869\) −30.4966 + 52.8216i −1.03453 + 1.79185i
\(870\) 0 0
\(871\) 20.8604 + 36.1312i 0.706826 + 1.22426i
\(872\) 0 0
\(873\) 48.5930 + 18.8960i 1.64462 + 0.639533i
\(874\) 0 0
\(875\) −2.28651 3.96035i −0.0772980 0.133884i
\(876\) 0 0
\(877\) −2.71432 + 4.70135i −0.0916562 + 0.158753i −0.908208 0.418519i \(-0.862549\pi\)
0.816552 + 0.577272i \(0.195883\pi\)
\(878\) 0 0
\(879\) 8.94468 + 1.67793i 0.301697 + 0.0565951i
\(880\) 0 0
\(881\) 10.2676 0.345926 0.172963 0.984928i \(-0.444666\pi\)
0.172963 + 0.984928i \(0.444666\pi\)
\(882\) 0 0
\(883\) −12.6184 −0.424642 −0.212321 0.977200i \(-0.568102\pi\)
−0.212321 + 0.977200i \(0.568102\pi\)
\(884\) 0 0
\(885\) −13.8389 + 16.1320i −0.465188 + 0.542273i
\(886\) 0 0
\(887\) −18.8015 + 32.5652i −0.631293 + 1.09343i 0.355995 + 0.934488i \(0.384142\pi\)
−0.987288 + 0.158943i \(0.949191\pi\)
\(888\) 0 0
\(889\) −25.4817 44.1356i −0.854628 1.48026i
\(890\) 0 0
\(891\) −39.4155 + 12.4289i −1.32047 + 0.416383i
\(892\) 0 0
\(893\) −23.9270 41.4427i −0.800686 1.38683i
\(894\) 0 0
\(895\) 9.39358 16.2702i 0.313993 0.543851i
\(896\) 0 0
\(897\) −10.6760 + 12.4451i −0.356463 + 0.415531i
\(898\) 0 0
\(899\) −6.63133 −0.221167
\(900\) 0 0
\(901\) −10.3132 −0.343582
\(902\) 0 0
\(903\) −51.0219 9.57116i −1.69790 0.318508i
\(904\) 0 0
\(905\) −5.95641 + 10.3168i −0.197998 + 0.342942i
\(906\) 0 0
\(907\) −14.1556 24.5181i −0.470028 0.814112i 0.529385 0.848382i \(-0.322423\pi\)
−0.999413 + 0.0342699i \(0.989089\pi\)
\(908\) 0 0
\(909\) 36.7568 + 14.2933i 1.21915 + 0.474080i
\(910\) 0 0
\(911\) −3.80658 6.59320i −0.126118 0.218442i 0.796052 0.605229i \(-0.206918\pi\)
−0.922169 + 0.386786i \(0.873585\pi\)
\(912\) 0 0
\(913\) 24.7639 42.8924i 0.819566 1.41953i
\(914\) 0 0
\(915\) 5.51179 + 15.6730i 0.182214 + 0.518135i
\(916\) 0 0
\(917\) 99.8057 3.29587
\(918\) 0 0
\(919\) 41.2182 1.35966 0.679832 0.733368i \(-0.262053\pi\)
0.679832 + 0.733368i \(0.262053\pi\)
\(920\) 0 0
\(921\) −0.753603 2.14291i −0.0248321 0.0706112i
\(922\) 0 0
\(923\) 3.08920 5.35065i 0.101682 0.176119i
\(924\) 0 0
\(925\) −2.73339 4.73437i −0.0898732 0.155665i
\(926\) 0 0
\(927\) −5.25097 34.1129i −0.172464 1.12042i
\(928\) 0 0
\(929\) −17.6128 30.5063i −0.577857 1.00088i −0.995725 0.0923702i \(-0.970556\pi\)
0.417867 0.908508i \(-0.362778\pi\)
\(930\) 0 0
\(931\) 33.1564 57.4286i 1.08666 1.88214i
\(932\) 0 0
\(933\) 15.0887 + 2.83048i 0.493981 + 0.0926656i
\(934\) 0 0
\(935\) −11.7279 −0.383545
\(936\) 0 0
\(937\) −15.7113 −0.513265 −0.256632 0.966509i \(-0.582613\pi\)
−0.256632 + 0.966509i \(0.582613\pi\)
\(938\) 0 0
\(939\) 2.52994 2.94916i 0.0825613 0.0962423i
\(940\) 0 0
\(941\) 20.2594 35.0903i 0.660437 1.14391i −0.320064 0.947396i \(-0.603704\pi\)
0.980501 0.196515i \(-0.0629624\pi\)
\(942\) 0 0
\(943\) −8.54386 14.7984i −0.278226 0.481902i
\(944\) 0 0
\(945\) −20.1791 12.5476i −0.656425 0.408172i
\(946\) 0 0
\(947\) 13.0266 + 22.5627i 0.423307 + 0.733189i 0.996261 0.0863989i \(-0.0275360\pi\)
−0.572954 + 0.819588i \(0.694203\pi\)
\(948\) 0 0
\(949\) 5.74939 9.95824i 0.186633 0.323258i
\(950\) 0 0
\(951\) 23.2029 27.0477i 0.752404 0.877083i
\(952\) 0 0
\(953\) 8.24264 0.267005 0.133503 0.991048i \(-0.457378\pi\)
0.133503 + 0.991048i \(0.457378\pi\)
\(954\) 0 0
\(955\) −4.74571 −0.153567
\(956\) 0 0
\(957\) −14.9532 2.80506i −0.483369 0.0906749i
\(958\) 0 0
\(959\) 10.1651 17.6065i 0.328248 0.568542i
\(960\) 0 0
\(961\) 9.49074 + 16.4384i 0.306153 + 0.530272i
\(962\) 0 0
\(963\) 12.9240 10.3729i 0.416471 0.334263i
\(964\) 0 0
\(965\) −4.27698 7.40794i −0.137681 0.238470i
\(966\) 0 0
\(967\) 6.25818 10.8395i 0.201250 0.348574i −0.747682 0.664057i \(-0.768833\pi\)
0.948931 + 0.315483i \(0.102166\pi\)
\(968\) 0 0
\(969\) 6.99496 + 19.8905i 0.224711 + 0.638976i
\(970\) 0 0
\(971\) −34.5180 −1.10774 −0.553868 0.832604i \(-0.686849\pi\)
−0.553868 + 0.832604i \(0.686849\pi\)
\(972\) 0 0
\(973\) −51.0657 −1.63709
\(974\) 0 0
\(975\) −2.11417 6.01174i −0.0677076 0.192530i
\(976\) 0 0
\(977\) 26.3164 45.5813i 0.841936 1.45828i −0.0463193 0.998927i \(-0.514749\pi\)
0.888256 0.459350i \(-0.151918\pi\)
\(978\) 0 0
\(979\) −9.29678 16.1025i −0.297126 0.514638i
\(980\) 0 0
\(981\) 39.1609 31.4309i 1.25031 1.00351i
\(982\) 0 0
\(983\) 17.9082 + 31.0179i 0.571183 + 0.989318i 0.996445 + 0.0842478i \(0.0268487\pi\)
−0.425262 + 0.905070i \(0.639818\pi\)
\(984\) 0 0
\(985\) 6.12697 10.6122i 0.195221 0.338133i
\(986\) 0 0
\(987\) 78.1588 + 14.6618i 2.48782 + 0.466689i
\(988\) 0 0
\(989\) 16.8634 0.536225
\(990\) 0 0
\(991\) −42.7203 −1.35706 −0.678528 0.734574i \(-0.737382\pi\)
−0.678528 + 0.734574i \(0.737382\pi\)
\(992\) 0 0
\(993\) −24.5706 + 28.6421i −0.779725 + 0.908931i
\(994\) 0 0
\(995\) 0.858691 1.48730i 0.0272223 0.0471504i
\(996\) 0 0
\(997\) −23.4571 40.6290i −0.742895 1.28673i −0.951172 0.308662i \(-0.900119\pi\)
0.208276 0.978070i \(-0.433215\pi\)
\(998\) 0 0
\(999\) −24.1229 14.9999i −0.763215 0.474576i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.q.l.481.3 8
3.2 odd 2 2160.2.q.l.1441.1 8
4.3 odd 2 360.2.q.e.121.2 8
9.2 odd 6 2160.2.q.l.721.1 8
9.4 even 3 6480.2.a.cb.1.4 4
9.5 odd 6 6480.2.a.bz.1.4 4
9.7 even 3 inner 720.2.q.l.241.3 8
12.11 even 2 1080.2.q.e.361.4 8
36.7 odd 6 360.2.q.e.241.2 yes 8
36.11 even 6 1080.2.q.e.721.4 8
36.23 even 6 3240.2.a.s.1.1 4
36.31 odd 6 3240.2.a.u.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
360.2.q.e.121.2 8 4.3 odd 2
360.2.q.e.241.2 yes 8 36.7 odd 6
720.2.q.l.241.3 8 9.7 even 3 inner
720.2.q.l.481.3 8 1.1 even 1 trivial
1080.2.q.e.361.4 8 12.11 even 2
1080.2.q.e.721.4 8 36.11 even 6
2160.2.q.l.721.1 8 9.2 odd 6
2160.2.q.l.1441.1 8 3.2 odd 2
3240.2.a.s.1.1 4 36.23 even 6
3240.2.a.u.1.1 4 36.31 odd 6
6480.2.a.bz.1.4 4 9.5 odd 6
6480.2.a.cb.1.4 4 9.4 even 3