Properties

Label 72.3.p.a.43.2
Level $72$
Weight $3$
Character 72.43
Analytic conductor $1.962$
Analytic rank $0$
Dimension $4$
CM discriminant -8
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [72,3,Mod(43,72)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("72.43"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(72, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([3, 3, 4])) N = Newforms(chi, 3, names="a")
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 72.p (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.96185790339\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-2}, \sqrt{-3})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{2} + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

Embedding invariants

Embedding label 43.2
Root \(1.22474 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 72.43
Dual form 72.3.p.a.67.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(2.94949 + 0.548188i) q^{3} +(-2.00000 - 3.46410i) q^{4} +(3.89898 - 4.56048i) q^{6} -8.00000 q^{8} +(8.39898 + 3.23375i) q^{9} +(-3.84847 + 6.66574i) q^{11} +(-4.00000 - 11.3137i) q^{12} +(-8.00000 + 13.8564i) q^{16} -30.3939 q^{17} +(14.0000 - 11.3137i) q^{18} +31.6969 q^{19} +(7.69694 + 13.3315i) q^{22} +(-23.5959 - 4.38551i) q^{24} +(-12.5000 + 21.6506i) q^{25} +(23.0000 + 14.1421i) q^{27} +(16.0000 + 27.7128i) q^{32} +(-15.0051 + 17.5509i) q^{33} +(-30.3939 + 52.6437i) q^{34} +(-5.59592 - 35.5624i) q^{36} +(31.6969 - 54.9007i) q^{38} +(-40.8939 - 70.8303i) q^{41} +(40.2423 - 69.7018i) q^{43} +30.7878 q^{44} +(-31.1918 + 36.4838i) q^{48} +(-24.5000 - 42.4352i) q^{49} +(25.0000 + 43.3013i) q^{50} +(-89.6464 - 16.6616i) q^{51} +(47.4949 - 25.6950i) q^{54} +(93.4898 + 17.3759i) q^{57} +(16.2423 + 28.1326i) q^{59} +64.0000 q^{64} +(15.3939 + 43.5405i) q^{66} +(-35.9393 - 62.2487i) q^{67} +(60.7878 + 105.287i) q^{68} +(-67.1918 - 25.8700i) q^{72} +41.6061 q^{73} +(-48.7372 + 57.0060i) q^{75} +(-63.3939 - 109.801i) q^{76} +(60.0857 + 54.3204i) q^{81} -163.576 q^{82} +(-79.0000 + 136.832i) q^{83} +(-80.4847 - 139.404i) q^{86} +(30.7878 - 53.3260i) q^{88} +146.000 q^{89} +(32.0000 + 90.5097i) q^{96} +(-96.9847 + 167.982i) q^{97} -98.0000 q^{98} +(-53.8786 + 43.5405i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 2 q^{3} - 8 q^{4} - 4 q^{6} - 32 q^{8} + 14 q^{9} + 14 q^{11} - 16 q^{12} - 32 q^{16} - 4 q^{17} + 56 q^{18} + 68 q^{19} - 28 q^{22} - 16 q^{24} - 50 q^{25} + 92 q^{27} + 64 q^{32} - 158 q^{33}+ \cdots + 196 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(-1\) \(-1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.500000 0.866025i
\(3\) 2.94949 + 0.548188i 0.983163 + 0.182729i
\(4\) −2.00000 3.46410i −0.500000 0.866025i
\(5\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(6\) 3.89898 4.56048i 0.649830 0.760080i
\(7\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(8\) −8.00000 −1.00000
\(9\) 8.39898 + 3.23375i 0.933220 + 0.359306i
\(10\) 0 0
\(11\) −3.84847 + 6.66574i −0.349861 + 0.605977i −0.986224 0.165412i \(-0.947104\pi\)
0.636364 + 0.771389i \(0.280438\pi\)
\(12\) −4.00000 11.3137i −0.333333 0.942809i
\(13\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(17\) −30.3939 −1.78788 −0.893938 0.448192i \(-0.852068\pi\)
−0.893938 + 0.448192i \(0.852068\pi\)
\(18\) 14.0000 11.3137i 0.777778 0.628539i
\(19\) 31.6969 1.66826 0.834130 0.551568i \(-0.185970\pi\)
0.834130 + 0.551568i \(0.185970\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 7.69694 + 13.3315i 0.349861 + 0.605977i
\(23\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(24\) −23.5959 4.38551i −0.983163 0.182729i
\(25\) −12.5000 + 21.6506i −0.500000 + 0.866025i
\(26\) 0 0
\(27\) 23.0000 + 14.1421i 0.851852 + 0.523783i
\(28\) 0 0
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0 0
\(31\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(32\) 16.0000 + 27.7128i 0.500000 + 0.866025i
\(33\) −15.0051 + 17.5509i −0.454700 + 0.531844i
\(34\) −30.3939 + 52.6437i −0.893938 + 1.54835i
\(35\) 0 0
\(36\) −5.59592 35.5624i −0.155442 0.987845i
\(37\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(38\) 31.6969 54.9007i 0.834130 1.44476i
\(39\) 0 0
\(40\) 0 0
\(41\) −40.8939 70.8303i −0.997412 1.72757i −0.560976 0.827832i \(-0.689574\pi\)
−0.436436 0.899735i \(-0.643759\pi\)
\(42\) 0 0
\(43\) 40.2423 69.7018i 0.935869 1.62097i 0.162791 0.986661i \(-0.447950\pi\)
0.773078 0.634311i \(-0.218716\pi\)
\(44\) 30.7878 0.699722
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(48\) −31.1918 + 36.4838i −0.649830 + 0.760080i
\(49\) −24.5000 42.4352i −0.500000 0.866025i
\(50\) 25.0000 + 43.3013i 0.500000 + 0.866025i
\(51\) −89.6464 16.6616i −1.75777 0.326697i
\(52\) 0 0
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 47.4949 25.6950i 0.879535 0.475834i
\(55\) 0 0
\(56\) 0 0
\(57\) 93.4898 + 17.3759i 1.64017 + 0.304840i
\(58\) 0 0
\(59\) 16.2423 + 28.1326i 0.275294 + 0.476823i 0.970209 0.242268i \(-0.0778915\pi\)
−0.694915 + 0.719092i \(0.744558\pi\)
\(60\) 0 0
\(61\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 64.0000 1.00000
\(65\) 0 0
\(66\) 15.3939 + 43.5405i 0.233241 + 0.659704i
\(67\) −35.9393 62.2487i −0.536407 0.929085i −0.999094 0.0425626i \(-0.986448\pi\)
0.462687 0.886522i \(-0.346886\pi\)
\(68\) 60.7878 + 105.287i 0.893938 + 1.54835i
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) −67.1918 25.8700i −0.933220 0.359306i
\(73\) 41.6061 0.569947 0.284973 0.958535i \(-0.408015\pi\)
0.284973 + 0.958535i \(0.408015\pi\)
\(74\) 0 0
\(75\) −48.7372 + 57.0060i −0.649830 + 0.760080i
\(76\) −63.3939 109.801i −0.834130 1.44476i
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(80\) 0 0
\(81\) 60.0857 + 54.3204i 0.741799 + 0.670622i
\(82\) −163.576 −1.99482
\(83\) −79.0000 + 136.832i −0.951807 + 1.64858i −0.210296 + 0.977638i \(0.567443\pi\)
−0.741511 + 0.670941i \(0.765890\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −80.4847 139.404i −0.935869 1.62097i
\(87\) 0 0
\(88\) 30.7878 53.3260i 0.349861 0.605977i
\(89\) 146.000 1.64045 0.820225 0.572041i \(-0.193848\pi\)
0.820225 + 0.572041i \(0.193848\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 32.0000 + 90.5097i 0.333333 + 0.942809i
\(97\) −96.9847 + 167.982i −0.999842 + 1.73178i −0.484536 + 0.874771i \(0.661012\pi\)
−0.515306 + 0.857006i \(0.672322\pi\)
\(98\) −98.0000 −1.00000
\(99\) −53.8786 + 43.5405i −0.544228 + 0.439803i
\(100\) 100.000 1.00000
\(101\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(102\) −118.505 + 138.611i −1.16181 + 1.35893i
\(103\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 191.879 1.79326 0.896629 0.442783i \(-0.146009\pi\)
0.896629 + 0.442783i \(0.146009\pi\)
\(108\) 2.98979 107.959i 0.0276833 0.999617i
\(109\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −49.0000 84.8705i −0.433628 0.751066i 0.563554 0.826079i \(-0.309434\pi\)
−0.997183 + 0.0750128i \(0.976100\pi\)
\(114\) 123.586 144.553i 1.08409 1.26801i
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 64.9694 0.550588
\(119\) 0 0
\(120\) 0 0
\(121\) 30.8786 + 53.4833i 0.255195 + 0.442010i
\(122\) 0 0
\(123\) −81.7878 231.331i −0.664941 1.88074i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 64.0000 110.851i 0.500000 0.866025i
\(129\) 156.904 183.524i 1.21631 1.42267i
\(130\) 0 0
\(131\) −31.0000 53.6936i −0.236641 0.409875i 0.723107 0.690736i \(-0.242713\pi\)
−0.959748 + 0.280861i \(0.909380\pi\)
\(132\) 90.8082 + 16.8775i 0.687941 + 0.127860i
\(133\) 0 0
\(134\) −143.757 −1.07281
\(135\) 0 0
\(136\) 243.151 1.78788
\(137\) −0.712246 + 1.23365i −0.00519888 + 0.00900472i −0.868613 0.495491i \(-0.834988\pi\)
0.863414 + 0.504496i \(0.168322\pi\)
\(138\) 0 0
\(139\) 132.333 + 229.208i 0.952037 + 1.64898i 0.741007 + 0.671497i \(0.234348\pi\)
0.211030 + 0.977480i \(0.432318\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) −112.000 + 90.5097i −0.777778 + 0.628539i
\(145\) 0 0
\(146\) 41.6061 72.0639i 0.284973 0.493588i
\(147\) −49.0000 138.593i −0.333333 0.942809i
\(148\) 0 0
\(149\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(150\) 50.0000 + 141.421i 0.333333 + 0.942809i
\(151\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(152\) −253.576 −1.66826
\(153\) −255.278 98.2862i −1.66848 0.642394i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 154.171 49.7511i 0.951675 0.307106i
\(163\) −322.000 −1.97546 −0.987730 0.156171i \(-0.950085\pi\)
−0.987730 + 0.156171i \(0.950085\pi\)
\(164\) −163.576 + 283.321i −0.997412 + 1.72757i
\(165\) 0 0
\(166\) 158.000 + 273.664i 0.951807 + 1.64858i
\(167\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(168\) 0 0
\(169\) −84.5000 + 146.358i −0.500000 + 0.866025i
\(170\) 0 0
\(171\) 266.222 + 102.500i 1.55685 + 0.599415i
\(172\) −321.939 −1.87174
\(173\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −61.5755 106.652i −0.349861 0.605977i
\(177\) 32.4847 + 91.8806i 0.183529 + 0.519099i
\(178\) 146.000 252.879i 0.820225 1.42067i
\(179\) −34.0000 −0.189944 −0.0949721 0.995480i \(-0.530276\pi\)
−0.0949721 + 0.995480i \(0.530276\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 116.970 202.598i 0.625507 1.08341i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(192\) 188.767 + 35.0840i 0.983163 + 0.182729i
\(193\) −137.166 237.579i −0.710706 1.23098i −0.964592 0.263745i \(-0.915042\pi\)
0.253886 0.967234i \(-0.418291\pi\)
\(194\) 193.969 + 335.965i 0.999842 + 1.73178i
\(195\) 0 0
\(196\) −98.0000 + 169.741i −0.500000 + 0.866025i
\(197\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(198\) 21.5357 + 136.861i 0.108766 + 0.691217i
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) 100.000 173.205i 0.500000 0.866025i
\(201\) −71.8786 203.303i −0.357605 1.01146i
\(202\) 0 0
\(203\) 0 0
\(204\) 121.576 + 343.867i 0.595958 + 1.68562i
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −121.985 + 211.284i −0.583659 + 1.01093i
\(210\) 0 0
\(211\) 113.000 + 195.722i 0.535545 + 0.927591i 0.999137 + 0.0415423i \(0.0132271\pi\)
−0.463592 + 0.886049i \(0.653440\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 191.879 332.343i 0.896629 1.55301i
\(215\) 0 0
\(216\) −184.000 113.137i −0.851852 0.523783i
\(217\) 0 0
\(218\) 0 0
\(219\) 122.717 + 22.8080i 0.560351 + 0.104146i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(224\) 0 0
\(225\) −175.000 + 141.421i −0.777778 + 0.628539i
\(226\) −196.000 −0.867257
\(227\) 148.242 256.763i 0.653050 1.13112i −0.329329 0.944215i \(-0.606822\pi\)
0.982379 0.186900i \(-0.0598442\pi\)
\(228\) −126.788 358.610i −0.556087 1.57285i
\(229\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −70.0306 −0.300561 −0.150280 0.988643i \(-0.548018\pi\)
−0.150280 + 0.988643i \(0.548018\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 64.9694 112.530i 0.275294 0.476823i
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(240\) 0 0
\(241\) 239.560 414.930i 0.994026 1.72170i 0.402490 0.915425i \(-0.368145\pi\)
0.591536 0.806279i \(-0.298522\pi\)
\(242\) 123.514 0.510390
\(243\) 147.444 + 193.156i 0.606767 + 0.794880i
\(244\) 0 0
\(245\) 0 0
\(246\) −482.464 89.6702i −1.96124 0.364513i
\(247\) 0 0
\(248\) 0 0
\(249\) −308.019 + 360.278i −1.23703 + 1.44690i
\(250\) 0 0
\(251\) 71.3337 0.284198 0.142099 0.989852i \(-0.454615\pi\)
0.142099 + 0.989852i \(0.454615\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) −128.000 221.703i −0.500000 0.866025i
\(257\) 243.469 + 421.701i 0.947352 + 1.64086i 0.750973 + 0.660333i \(0.229585\pi\)
0.196379 + 0.980528i \(0.437082\pi\)
\(258\) −160.969 455.290i −0.623912 1.76469i
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) −124.000 −0.473282
\(263\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(264\) 120.041 140.407i 0.454700 0.531844i
\(265\) 0 0
\(266\) 0 0
\(267\) 430.626 + 80.0355i 1.61283 + 0.299758i
\(268\) −143.757 + 248.995i −0.536407 + 0.929085i
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 243.151 421.150i 0.893938 1.54835i
\(273\) 0 0
\(274\) 1.42449 + 2.46729i 0.00519888 + 0.00900472i
\(275\) −96.2117 166.644i −0.349861 0.605977i
\(276\) 0 0
\(277\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(278\) 529.333 1.90407
\(279\) 0 0
\(280\) 0 0
\(281\) 119.000 206.114i 0.423488 0.733502i −0.572790 0.819702i \(-0.694139\pi\)
0.996278 + 0.0862000i \(0.0274724\pi\)
\(282\) 0 0
\(283\) 41.0000 + 71.0141i 0.144876 + 0.250933i 0.929327 0.369258i \(-0.120388\pi\)
−0.784450 + 0.620191i \(0.787055\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 44.7673 + 284.499i 0.155442 + 0.987845i
\(289\) 634.788 2.19650
\(290\) 0 0
\(291\) −378.141 + 442.297i −1.29945 + 1.51992i
\(292\) −83.2122 144.128i −0.284973 0.493588i
\(293\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) −289.050 53.7224i −0.983163 0.182729i
\(295\) 0 0
\(296\) 0 0
\(297\) −182.783 + 98.8865i −0.615430 + 0.332951i
\(298\) 0 0
\(299\) 0 0
\(300\) 294.949 + 54.8188i 0.983163 + 0.182729i
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) −253.576 + 439.206i −0.834130 + 1.44476i
\(305\) 0 0
\(306\) −425.514 + 343.867i −1.39057 + 1.12375i
\(307\) −520.848 −1.69657 −0.848287 0.529537i \(-0.822366\pi\)
−0.848287 + 0.529537i \(0.822366\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(312\) 0 0
\(313\) 15.4694 26.7938i 0.0494230 0.0856031i −0.840256 0.542191i \(-0.817595\pi\)
0.889679 + 0.456587i \(0.150928\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 565.944 + 105.186i 1.76307 + 0.327681i
\(322\) 0 0
\(323\) −963.393 −2.98264
\(324\) 68.0000 316.784i 0.209877 0.977728i
\(325\) 0 0
\(326\) −322.000 + 557.720i −0.987730 + 1.71080i
\(327\) 0 0
\(328\) 327.151 + 566.642i 0.997412 + 1.72757i
\(329\) 0 0
\(330\) 0 0
\(331\) −7.00000 + 12.1244i −0.0211480 + 0.0366295i −0.876406 0.481573i \(-0.840065\pi\)
0.855258 + 0.518203i \(0.173399\pi\)
\(332\) 632.000 1.90361
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −325.257 563.362i −0.965155 1.67170i −0.709199 0.705009i \(-0.750943\pi\)
−0.255956 0.966688i \(-0.582390\pi\)
\(338\) 169.000 + 292.717i 0.500000 + 0.866025i
\(339\) −98.0000 277.186i −0.289086 0.817657i
\(340\) 0 0
\(341\) 0 0
\(342\) 443.757 358.610i 1.29754 1.04857i
\(343\) 0 0
\(344\) −321.939 + 557.614i −0.935869 + 1.62097i
\(345\) 0 0
\(346\) 0 0
\(347\) −260.030 450.385i −0.749366 1.29794i −0.948127 0.317892i \(-0.897025\pi\)
0.198761 0.980048i \(-0.436308\pi\)
\(348\) 0 0
\(349\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −246.302 −0.699722
\(353\) −245.439 + 425.112i −0.695294 + 1.20428i 0.274788 + 0.961505i \(0.411392\pi\)
−0.970081 + 0.242779i \(0.921941\pi\)
\(354\) 191.627 + 35.6154i 0.541318 + 0.100609i
\(355\) 0 0
\(356\) −292.000 505.759i −0.820225 1.42067i
\(357\) 0 0
\(358\) −34.0000 + 58.8897i −0.0949721 + 0.164496i
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) 643.696 1.78309
\(362\) 0 0
\(363\) 61.7571 + 174.676i 0.170130 + 0.481200i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 0 0
\(369\) −114.419 727.143i −0.310080 1.97058i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) −233.940 405.196i −0.625507 1.08341i
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −63.7582 −0.168227 −0.0841137 0.996456i \(-0.526806\pi\)
−0.0841137 + 0.996456i \(0.526806\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(384\) 249.535 291.871i 0.649830 0.760080i
\(385\) 0 0
\(386\) −548.665 −1.42141
\(387\) 563.393 455.290i 1.45580 1.17646i
\(388\) 775.878 1.99968
\(389\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 196.000 + 339.482i 0.500000 + 0.866025i
\(393\) −62.0000 175.362i −0.157761 0.446215i
\(394\) 0 0
\(395\) 0 0
\(396\) 258.586 + 99.5599i 0.652994 + 0.251414i
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) −200.000 346.410i −0.500000 0.866025i
\(401\) −88.6214 153.497i −0.221001 0.382785i 0.734111 0.679029i \(-0.237599\pi\)
−0.955112 + 0.296244i \(0.904266\pi\)
\(402\) −424.010 78.8060i −1.05475 0.196035i
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 717.171 + 133.293i 1.75777 + 0.326697i
\(409\) 239.833 + 415.402i 0.586388 + 1.01565i 0.994701 + 0.102812i \(0.0327839\pi\)
−0.408313 + 0.912842i \(0.633883\pi\)
\(410\) 0 0
\(411\) −2.77703 + 3.24818i −0.00675677 + 0.00790312i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 264.666 + 748.589i 0.634691 + 1.79518i
\(418\) 243.969 + 422.567i 0.583659 + 1.01093i
\(419\) 257.000 + 445.137i 0.613365 + 1.06238i 0.990669 + 0.136290i \(0.0435179\pi\)
−0.377304 + 0.926090i \(0.623149\pi\)
\(420\) 0 0
\(421\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(422\) 452.000 1.07109
\(423\) 0 0
\(424\) 0 0
\(425\) 379.923 658.047i 0.893938 1.54835i
\(426\) 0 0
\(427\) 0 0
\(428\) −383.757 664.687i −0.896629 1.55301i
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) −379.959 + 205.560i −0.879535 + 0.475834i
\(433\) −847.484 −1.95724 −0.978619 0.205684i \(-0.934058\pi\)
−0.978619 + 0.205684i \(0.934058\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 162.221 189.744i 0.370369 0.433205i
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) −68.5500 435.640i −0.155442 0.987845i
\(442\) 0 0
\(443\) 168.061 291.090i 0.379370 0.657087i −0.611601 0.791166i \(-0.709474\pi\)
0.990971 + 0.134079i \(0.0428076\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −638.757 −1.42262 −0.711311 0.702878i \(-0.751898\pi\)
−0.711311 + 0.702878i \(0.751898\pi\)
\(450\) 69.9490 + 444.530i 0.155442 + 0.987845i
\(451\) 629.515 1.39582
\(452\) −196.000 + 339.482i −0.433628 + 0.751066i
\(453\) 0 0
\(454\) −296.485 513.527i −0.653050 1.13112i
\(455\) 0 0
\(456\) −747.918 139.007i −1.64017 0.304840i
\(457\) −441.620 + 764.909i −0.966347 + 1.67376i −0.260394 + 0.965502i \(0.583852\pi\)
−0.705953 + 0.708259i \(0.749481\pi\)
\(458\) 0 0
\(459\) −699.059 429.834i −1.52300 0.936458i
\(460\) 0 0
\(461\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(462\) 0 0
\(463\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −70.0306 + 121.297i −0.150280 + 0.260293i
\(467\) 825.332 1.76731 0.883653 0.468143i \(-0.155077\pi\)
0.883653 + 0.468143i \(0.155077\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) −129.939 225.061i −0.275294 0.476823i
\(473\) 309.743 + 536.490i 0.654847 + 1.13423i
\(474\) 0 0
\(475\) −396.212 + 686.259i −0.834130 + 1.44476i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −479.120 829.861i −0.994026 1.72170i
\(483\) 0 0
\(484\) 123.514 213.933i 0.255195 0.442010i
\(485\) 0 0
\(486\) 482.000 62.2254i 0.991770 0.128036i
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) −949.736 176.517i −1.94220 0.360975i
\(490\) 0 0
\(491\) 452.696 + 784.093i 0.921989 + 1.59693i 0.796334 + 0.604857i \(0.206770\pi\)
0.125655 + 0.992074i \(0.459897\pi\)
\(492\) −637.778 + 745.982i −1.29630 + 1.51622i
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 316.000 + 893.783i 0.634538 + 1.79474i
\(499\) 56.6964 + 98.2011i 0.113620 + 0.196796i 0.917227 0.398364i \(-0.130422\pi\)
−0.803607 + 0.595160i \(0.797089\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 71.3337 123.554i 0.142099 0.246123i
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) −329.464 + 385.360i −0.649830 + 0.760080i
\(508\) 0 0
\(509\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −512.000 −1.00000
\(513\) 729.030 + 448.262i 1.42111 + 0.873806i
\(514\) 973.878 1.89470
\(515\) 0 0
\(516\) −949.555 176.483i −1.84022 0.342021i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 738.151 1.41680 0.708398 0.705813i \(-0.249418\pi\)
0.708398 + 0.705813i \(0.249418\pi\)
\(522\) 0 0
\(523\) 398.000 0.760994 0.380497 0.924782i \(-0.375753\pi\)
0.380497 + 0.924782i \(0.375753\pi\)
\(524\) −124.000 + 214.774i −0.236641 + 0.409875i
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) −123.151 348.324i −0.233241 0.659704i
\(529\) −264.500 + 458.127i −0.500000 + 0.866025i
\(530\) 0 0
\(531\) 45.4454 + 288.809i 0.0855846 + 0.543896i
\(532\) 0 0
\(533\) 0 0
\(534\) 569.251 665.830i 1.06601 1.24687i
\(535\) 0 0
\(536\) 287.514 + 497.989i 0.536407 + 0.929085i
\(537\) −100.283 18.6384i −0.186746 0.0347084i
\(538\) 0 0
\(539\) 377.150 0.699722
\(540\) 0 0
\(541\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) −486.302 842.300i −0.893938 1.54835i
\(545\) 0 0
\(546\) 0 0
\(547\) 424.515 735.281i 0.776078 1.34421i −0.158108 0.987422i \(-0.550539\pi\)
0.934186 0.356785i \(-0.116127\pi\)
\(548\) 5.69797 0.0103978
\(549\) 0 0
\(550\) −384.847 −0.699722
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 529.333 916.831i 0.952037 1.64898i
\(557\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 456.063 533.439i 0.812947 0.950871i
\(562\) −238.000 412.228i −0.423488 0.733502i
\(563\) 421.150 + 729.454i 0.748047 + 1.29566i 0.948758 + 0.316005i \(0.102342\pi\)
−0.200710 + 0.979651i \(0.564325\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 164.000 0.289753
\(567\) 0 0
\(568\) 0 0
\(569\) 568.014 983.830i 0.998268 1.72905i 0.448180 0.893943i \(-0.352072\pi\)
0.550088 0.835107i \(-0.314594\pi\)
\(570\) 0 0
\(571\) −568.666 984.958i −0.995912 1.72497i −0.576182 0.817321i \(-0.695458\pi\)
−0.419730 0.907649i \(-0.637875\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 537.535 + 206.960i 0.933220 + 0.359306i
\(577\) −1000.39 −1.73378 −0.866891 0.498498i \(-0.833885\pi\)
−0.866891 + 0.498498i \(0.833885\pi\)
\(578\) 634.788 1099.48i 1.09825 1.90222i
\(579\) −274.333 775.930i −0.473804 1.34012i
\(580\) 0 0
\(581\) 0 0
\(582\) 387.939 + 1097.26i 0.666561 + 1.88532i
\(583\) 0 0
\(584\) −332.849 −0.569947
\(585\) 0 0
\(586\) 0 0
\(587\) −159.576 + 276.394i −0.271850 + 0.470858i −0.969336 0.245741i \(-0.920969\pi\)
0.697485 + 0.716599i \(0.254302\pi\)
\(588\) −382.100 + 446.927i −0.649830 + 0.760080i
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −862.000 −1.45363 −0.726813 0.686836i \(-0.758999\pi\)
−0.726813 + 0.686836i \(0.758999\pi\)
\(594\) −11.5061 + 415.475i −0.0193706 + 0.699454i
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(600\) 389.898 456.048i 0.649830 0.760080i
\(601\) −109.530 + 189.711i −0.182246 + 0.315659i −0.942645 0.333797i \(-0.891670\pi\)
0.760399 + 0.649456i \(0.225003\pi\)
\(602\) 0 0
\(603\) −100.557 639.044i −0.166761 1.05977i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 507.151 + 878.411i 0.834130 + 1.44476i
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 170.082 + 1080.88i 0.277911 + 1.76614i
\(613\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(614\) −520.848 + 902.135i −0.848287 + 1.46928i
\(615\) 0 0
\(616\) 0 0
\(617\) −597.893 1035.58i −0.969032 1.67841i −0.698368 0.715739i \(-0.746090\pi\)
−0.270665 0.962674i \(-0.587243\pi\)
\(618\) 0 0
\(619\) 337.150 583.962i 0.544670 0.943395i −0.453958 0.891023i \(-0.649988\pi\)
0.998628 0.0523724i \(-0.0166783\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −312.500 541.266i −0.500000 0.866025i
\(626\) −30.9388 53.5875i −0.0494230 0.0856031i
\(627\) −475.616 + 556.308i −0.758558 + 0.887254i
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 226.000 + 639.225i 0.357030 + 1.00983i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −393.893 + 682.242i −0.614497 + 1.06434i 0.375975 + 0.926630i \(0.377308\pi\)
−0.990472 + 0.137711i \(0.956025\pi\)
\(642\) 748.131 875.058i 1.16531 1.36302i
\(643\) 119.788 + 207.479i 0.186296 + 0.322674i 0.944012 0.329910i \(-0.107018\pi\)
−0.757717 + 0.652584i \(0.773685\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −963.393 + 1668.65i −1.49132 + 2.58304i
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −480.686 434.563i −0.741799 0.670622i
\(649\) −250.033 −0.385258
\(650\) 0 0
\(651\) 0 0
\(652\) 644.000 + 1115.44i 0.987730 + 1.71080i
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 1308.60 1.99482
\(657\) 349.449 + 134.544i 0.531886 + 0.204785i
\(658\) 0 0
\(659\) 497.000 860.829i 0.754173 1.30627i −0.191611 0.981471i \(-0.561371\pi\)
0.945784 0.324795i \(-0.105295\pi\)
\(660\) 0 0
\(661\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(662\) 14.0000 + 24.2487i 0.0211480 + 0.0366295i
\(663\) 0 0
\(664\) 632.000 1094.66i 0.951807 1.64858i
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 623.000 1079.07i 0.925706 1.60337i 0.135284 0.990807i \(-0.456805\pi\)
0.790422 0.612563i \(-0.209861\pi\)
\(674\) −1301.03 −1.93031
\(675\) −593.686 + 321.188i −0.879535 + 0.475834i
\(676\) 676.000 1.00000
\(677\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(678\) −578.100 107.445i −0.852655 0.158473i
\(679\) 0 0
\(680\) 0 0
\(681\) 577.994 676.056i 0.848743 0.992740i
\(682\) 0 0
\(683\) −1330.66 −1.94826 −0.974132 0.225980i \(-0.927442\pi\)
−0.974132 + 0.225980i \(0.927442\pi\)
\(684\) −177.373 1127.22i −0.259318 1.64798i
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 643.878 + 1115.23i 0.935869 + 1.62097i
\(689\) 0 0
\(690\) 0 0
\(691\) −367.000 + 635.663i −0.531114 + 0.919917i 0.468226 + 0.883609i \(0.344893\pi\)
−0.999341 + 0.0363084i \(0.988440\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) −1040.12 −1.49873
\(695\) 0 0
\(696\) 0 0
\(697\) 1242.92 + 2152.81i 1.78325 + 3.08868i
\(698\) 0 0
\(699\) −206.555 38.3900i −0.295500 0.0549213i
\(700\) 0 0
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) −246.302 + 426.608i −0.349861 + 0.605977i
\(705\) 0 0
\(706\) 490.878 + 850.225i 0.695294 + 1.20428i
\(707\) 0 0
\(708\) 253.314 296.291i 0.357789 0.418491i
\(709\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −1168.00 −1.64045
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 68.0000 + 117.779i 0.0949721 + 0.164496i
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 643.696 1114.91i 0.891546 1.54420i
\(723\) 934.040 1092.51i 1.29190 1.51108i
\(724\) 0 0
\(725\) 0 0
\(726\) 364.304 + 67.7091i 0.501796 + 0.0932632i
\(727\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(728\) 0 0
\(729\) 329.000 + 650.538i 0.451303 + 0.892371i
\(730\) 0 0
\(731\) −1223.12 + 2118.51i −1.67322 + 2.89810i
\(732\) 0 0
\(733\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 553.245 0.750672
\(738\) −1373.87 528.962i −1.86161 0.716751i
\(739\) 1410.24 1.90831 0.954154 0.299316i \(-0.0967584\pi\)
0.954154 + 0.299316i \(0.0967584\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −1106.00 + 893.783i −1.48059 + 1.19650i
\(748\) −935.759 −1.25101
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(752\) 0 0
\(753\) 210.398 + 39.1043i 0.279413 + 0.0519313i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(758\) −63.7582 + 110.432i −0.0841137 + 0.145689i
\(759\) 0 0
\(760\) 0 0
\(761\) −697.000 1207.24i −0.915900 1.58639i −0.805578 0.592490i \(-0.798145\pi\)
−0.110322 0.993896i \(-0.535188\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) −256.000 724.077i −0.333333 0.942809i
\(769\) 527.000 + 912.791i 0.685306 + 1.18698i 0.973341 + 0.229364i \(0.0736647\pi\)
−0.288035 + 0.957620i \(0.593002\pi\)
\(770\) 0 0
\(771\) 486.939 + 1377.27i 0.631568 + 1.78634i
\(772\) −548.665 + 950.316i −0.710706 + 1.23098i
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) −225.193 1431.12i −0.290947 1.84899i
\(775\) 0 0
\(776\) 775.878 1343.86i 0.999842 1.73178i
\(777\) 0 0
\(778\) 0 0
\(779\) −1296.21 2245.10i −1.66394 2.88203i
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 784.000 1.00000
\(785\) 0 0
\(786\) −365.737 67.9753i −0.465314 0.0864826i
\(787\) −463.000 801.940i −0.588310 1.01898i −0.994454 0.105174i \(-0.966460\pi\)
0.406144 0.913809i \(-0.366873\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 431.029 348.324i 0.544228 0.439803i
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −800.000 −1.00000
\(801\) 1226.25 + 472.128i 1.53090 + 0.589423i
\(802\) −354.486 −0.442002
\(803\) −160.120 + 277.336i −0.199402 + 0.345375i
\(804\) −560.506 + 655.601i −0.697147 + 0.815424i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 497.061 0.614414 0.307207 0.951643i \(-0.400606\pi\)
0.307207 + 0.951643i \(0.400606\pi\)
\(810\) 0 0
\(811\) −1307.21 −1.61185 −0.805924 0.592019i \(-0.798331\pi\)
−0.805924 + 0.592019i \(0.798331\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 948.041 1108.88i 1.16181 1.35893i
\(817\) 1275.56 2209.33i 1.56127 2.70420i
\(818\) 959.331 1.17278
\(819\) 0 0
\(820\) 0 0
\(821\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(822\) 2.84898 + 8.05815i 0.00346592 + 0.00980310i
\(823\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(824\) 0 0
\(825\) −192.423 544.256i −0.233241 0.659704i
\(826\) 0 0
\(827\) 1262.00 1.52600 0.762999 0.646400i \(-0.223726\pi\)
0.762999 + 0.646400i \(0.223726\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 744.650 + 1289.77i 0.893938 + 1.54835i
\(834\) 1561.26 + 290.174i 1.87202 + 0.347930i
\(835\) 0 0
\(836\) 975.878 1.16732
\(837\) 0 0
\(838\) 1028.00 1.22673
\(839\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(840\) 0 0
\(841\) −420.500 728.327i −0.500000 0.866025i
\(842\) 0 0
\(843\) 463.979 542.697i 0.550390 0.643769i
\(844\) 452.000 782.887i 0.535545 0.927591i
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 82.0000 + 231.931i 0.0965842 + 0.273181i
\(850\) −759.847 1316.09i −0.893938 1.54835i
\(851\) 0 0
\(852\) 0 0
\(853\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −1535.03 −1.79326
\(857\) −601.000 + 1040.96i −0.701284 + 1.21466i 0.266733 + 0.963771i \(0.414056\pi\)
−0.968016 + 0.250888i \(0.919277\pi\)
\(858\) 0 0
\(859\) 624.606 + 1081.85i 0.727131 + 1.25943i 0.958091 + 0.286465i \(0.0924801\pi\)
−0.230960 + 0.972963i \(0.574187\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) −23.9184 + 863.669i −0.0276833 + 0.999617i
\(865\) 0 0
\(866\) −847.484 + 1467.88i −0.978619 + 1.69502i
\(867\) 1872.30 + 347.983i 2.15952 + 0.401365i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −1357.79 + 1097.26i −1.55531 + 1.25688i
\(874\) 0 0
\(875\) 0 0
\(876\) −166.424 470.720i −0.189982 0.537351i
\(877\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1438.00 −1.63224 −0.816118 0.577885i \(-0.803878\pi\)
−0.816118 + 0.577885i \(0.803878\pi\)
\(882\) −823.100 316.908i −0.933220 0.359306i
\(883\) 983.879 1.11425 0.557123 0.830430i \(-0.311905\pi\)
0.557123 + 0.830430i \(0.311905\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −336.121 582.179i −0.379370 0.657087i
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −593.324 + 191.466i −0.665908 + 0.214888i
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) −638.757 + 1106.36i −0.711311 + 1.23203i
\(899\) 0 0
\(900\) 839.898 + 323.375i 0.933220 + 0.359306i
\(901\) 0 0
\(902\) 629.515 1090.35i 0.697911 1.20882i
\(903\) 0 0
\(904\) 392.000 + 678.964i 0.433628 + 0.751066i
\(905\) 0 0
\(906\) 0 0
\(907\) −171.304 + 296.706i −0.188868 + 0.327130i −0.944873 0.327436i \(-0.893815\pi\)
0.756005 + 0.654566i \(0.227149\pi\)
\(908\) −1185.94 −1.30610
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(912\) −988.686 + 1156.43i −1.08409 + 1.26801i
\(913\) −608.058 1053.19i −0.666000 1.15355i
\(914\) 883.241 + 1529.82i 0.966347 + 1.67376i
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) −1443.55 + 780.972i −1.57250 + 0.850732i
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) −1536.24 285.523i −1.66801 0.310014i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −529.000 + 916.255i −0.569429 + 0.986281i 0.427193 + 0.904160i \(0.359503\pi\)
−0.996622 + 0.0821203i \(0.973831\pi\)
\(930\) 0 0
\(931\) −776.575 1345.07i −0.834130 1.44476i
\(932\) 140.061 + 242.593i 0.150280 + 0.260293i
\(933\) 0 0
\(934\) 825.332 1429.52i 0.883653 1.53053i
\(935\) 0 0
\(936\) 0 0
\(937\) −718.000 −0.766275 −0.383138 0.923691i \(-0.625157\pi\)
−0.383138 + 0.923691i \(0.625157\pi\)
\(938\) 0 0
\(939\) 60.3148 70.5478i 0.0642330 0.0751308i
\(940\) 0 0
\(941\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) −519.755 −0.550588
\(945\) 0 0
\(946\) 1238.97 1.30969
\(947\) 449.605 778.738i 0.474767 0.822321i −0.524815 0.851216i \(-0.675866\pi\)
0.999582 + 0.0288952i \(0.00919891\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 792.423 + 1372.52i 0.834130 + 1.44476i
\(951\) 0 0
\(952\) 0 0
\(953\) 1717.06 1.80174 0.900869 0.434090i \(-0.142930\pi\)
0.900869 + 0.434090i \(0.142930\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −480.500 + 832.250i −0.500000 + 0.866025i
\(962\) 0 0
\(963\) 1611.58 + 620.487i 1.67350 + 0.644328i
\(964\) −1916.48 −1.98805
\(965\) 0 0
\(966\) 0 0
\(967\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(968\) −247.029 427.866i −0.255195 0.442010i
\(969\) −2841.52 528.121i −2.93242 0.545016i
\(970\) 0 0
\(971\) 974.000 1.00309 0.501545 0.865132i \(-0.332765\pi\)
0.501545 + 0.865132i \(0.332765\pi\)
\(972\) 374.222 897.074i 0.385003 0.922916i
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −641.166 1110.53i −0.656260 1.13668i −0.981576 0.191071i \(-0.938804\pi\)
0.325316 0.945605i \(-0.394529\pi\)
\(978\) −1255.47 + 1468.47i −1.28371 + 1.50151i
\(979\) −561.877 + 973.199i −0.573929 + 0.994074i
\(980\) 0 0
\(981\) 0 0
\(982\) 1810.79 1.84398
\(983\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(984\) 654.302 + 1850.65i 0.664941 + 1.88074i
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) −27.2929 + 31.9233i −0.0274853 + 0.0321484i
\(994\) 0 0
\(995\) 0 0
\(996\) 1864.08 + 346.455i 1.87156 + 0.347846i
\(997\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(998\) 226.786 0.227240
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.3.p.a.43.2 4
3.2 odd 2 216.3.p.a.19.2 4
4.3 odd 2 288.3.t.a.79.1 4
8.3 odd 2 CM 72.3.p.a.43.2 4
8.5 even 2 288.3.t.a.79.1 4
9.2 odd 6 648.3.b.b.163.1 2
9.4 even 3 inner 72.3.p.a.67.2 yes 4
9.5 odd 6 216.3.p.a.91.2 4
9.7 even 3 648.3.b.a.163.2 2
12.11 even 2 864.3.t.a.559.1 4
24.5 odd 2 864.3.t.a.559.1 4
24.11 even 2 216.3.p.a.19.2 4
36.7 odd 6 2592.3.b.b.1135.1 2
36.11 even 6 2592.3.b.a.1135.2 2
36.23 even 6 864.3.t.a.847.1 4
36.31 odd 6 288.3.t.a.175.1 4
72.5 odd 6 864.3.t.a.847.1 4
72.11 even 6 648.3.b.b.163.1 2
72.13 even 6 288.3.t.a.175.1 4
72.29 odd 6 2592.3.b.a.1135.2 2
72.43 odd 6 648.3.b.a.163.2 2
72.59 even 6 216.3.p.a.91.2 4
72.61 even 6 2592.3.b.b.1135.1 2
72.67 odd 6 inner 72.3.p.a.67.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.3.p.a.43.2 4 1.1 even 1 trivial
72.3.p.a.43.2 4 8.3 odd 2 CM
72.3.p.a.67.2 yes 4 9.4 even 3 inner
72.3.p.a.67.2 yes 4 72.67 odd 6 inner
216.3.p.a.19.2 4 3.2 odd 2
216.3.p.a.19.2 4 24.11 even 2
216.3.p.a.91.2 4 9.5 odd 6
216.3.p.a.91.2 4 72.59 even 6
288.3.t.a.79.1 4 4.3 odd 2
288.3.t.a.79.1 4 8.5 even 2
288.3.t.a.175.1 4 36.31 odd 6
288.3.t.a.175.1 4 72.13 even 6
648.3.b.a.163.2 2 9.7 even 3
648.3.b.a.163.2 2 72.43 odd 6
648.3.b.b.163.1 2 9.2 odd 6
648.3.b.b.163.1 2 72.11 even 6
864.3.t.a.559.1 4 12.11 even 2
864.3.t.a.559.1 4 24.5 odd 2
864.3.t.a.847.1 4 36.23 even 6
864.3.t.a.847.1 4 72.5 odd 6
2592.3.b.a.1135.2 2 36.11 even 6
2592.3.b.a.1135.2 2 72.29 odd 6
2592.3.b.b.1135.1 2 36.7 odd 6
2592.3.b.b.1135.1 2 72.61 even 6