Properties

Label 72.21.b
Level $72$
Weight $21$
Character orbit 72.b
Rep. character $\chi_{72}(19,\cdot)$
Character field $\Q$
Dimension $99$
Newform subspaces $4$
Sturm bound $252$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 21 \)
Character orbit: \([\chi]\) \(=\) 72.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 8 \)
Character field: \(\Q\)
Newform subspaces: \( 4 \)
Sturm bound: \(252\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{21}(72, [\chi])\).

Total New Old
Modular forms 244 101 143
Cusp forms 236 99 137
Eisenstein series 8 2 6

Trace form

\( 99 q + 628 q^{2} - 267504 q^{4} + 609676444 q^{8} - 10300080972 q^{10} - 14520628702 q^{11} + 347346537852 q^{14} + 3184617175248 q^{16} + 990389375402 q^{17} + 1375336086078 q^{19} - 16712772648648 q^{20}+ \cdots - 64\!\cdots\!08 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{21}^{\mathrm{new}}(72, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
72.21.b.a 72.b 8.d $1$ $182.530$ \(\Q\) \(\Q(\sqrt{-2}) \) 8.21.d.a \(-1024\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{2}]$ \(q-2^{10}q^{2}+2^{20}q^{4}-2^{30}q^{8}+42383023726q^{11}+\cdots\)
72.21.b.b 72.b 8.d $18$ $182.530$ \(\mathbb{Q}[x]/(x^{18} + \cdots)\) None 8.21.d.b \(398\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(22+\beta _{1})q^{2}+(40275+21\beta _{1}-\beta _{2}+\cdots)q^{4}+\cdots\)
72.21.b.c 72.b 8.d $40$ $182.530$ None 72.21.b.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$
72.21.b.d 72.b 8.d $40$ $182.530$ None 24.21.b.a \(1254\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$

Decomposition of \(S_{21}^{\mathrm{old}}(72, [\chi])\) into lower level spaces

\( S_{21}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{21}^{\mathrm{new}}(8, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(24, [\chi])\)\(^{\oplus 2}\)