Defining parameters
Level: | \( N \) | = | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | = | \( 21 \) |
Nonzero newspaces: | \( 6 \) | ||
Sturm bound: | \(6048\) | ||
Trace bound: | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{21}(\Gamma_1(72))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 2928 | 1289 | 1639 |
Cusp forms | 2832 | 1271 | 1561 |
Eisenstein series | 96 | 18 | 78 |
Trace form
Decomposition of \(S_{21}^{\mathrm{new}}(\Gamma_1(72))\)
We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.
Label | \(\chi\) | Newforms | Dimension | \(\chi\) degree |
---|---|---|---|---|
72.21.b | \(\chi_{72}(19, \cdot)\) | 72.21.b.a | 1 | 1 |
72.21.b.b | 18 | |||
72.21.b.c | 40 | |||
72.21.b.d | 40 | |||
72.21.e | \(\chi_{72}(17, \cdot)\) | 72.21.e.a | 10 | 1 |
72.21.e.b | 10 | |||
72.21.g | \(\chi_{72}(55, \cdot)\) | None | 0 | 1 |
72.21.h | \(\chi_{72}(53, \cdot)\) | 72.21.h.a | 80 | 1 |
72.21.j | \(\chi_{72}(5, \cdot)\) | n/a | 476 | 2 |
72.21.k | \(\chi_{72}(7, \cdot)\) | None | 0 | 2 |
72.21.m | \(\chi_{72}(41, \cdot)\) | n/a | 120 | 2 |
72.21.p | \(\chi_{72}(43, \cdot)\) | n/a | 476 | 2 |
"n/a" means that newforms for that character have not been added to the database yet
Decomposition of \(S_{21}^{\mathrm{old}}(\Gamma_1(72))\) into lower level spaces
\( S_{21}^{\mathrm{old}}(\Gamma_1(72)) \cong \) \(S_{21}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 12}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 9}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(3))\)\(^{\oplus 8}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 6}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(6))\)\(^{\oplus 6}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 3}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(9))\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(12))\)\(^{\oplus 4}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(18))\)\(^{\oplus 3}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(24))\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(36))\)\(^{\oplus 2}\)\(\oplus\)\(S_{21}^{\mathrm{new}}(\Gamma_1(72))\)\(^{\oplus 1}\)