Properties

Label 72.21
Level 72
Weight 21
Dimension 1271
Nonzero newspaces 6
Sturm bound 6048
Trace bound 2

Downloads

Learn more

Defining parameters

Level: N N = 72=2332 72 = 2^{3} \cdot 3^{2}
Weight: k k = 21 21
Nonzero newspaces: 6 6
Sturm bound: 60486048
Trace bound: 22

Dimensions

The following table gives the dimensions of various subspaces of M21(Γ1(72))M_{21}(\Gamma_1(72)).

Total New Old
Modular forms 2928 1289 1639
Cusp forms 2832 1271 1561
Eisenstein series 96 18 78

Trace form

1271q+624q210608q3+1773554q4+2097148q6+187327246q7+3250902426q84614984444q9+2485208888q10+17204979084q11+43764724066q12164244011776q13++44 ⁣ ⁣94q99+O(q100) 1271 q + 624 q^{2} - 10608 q^{3} + 1773554 q^{4} + 2097148 q^{6} + 187327246 q^{7} + 3250902426 q^{8} - 4614984444 q^{9} + 2485208888 q^{10} + 17204979084 q^{11} + 43764724066 q^{12} - 164244011776 q^{13}+ \cdots + 44\!\cdots\!94 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S21new(Γ1(72))S_{21}^{\mathrm{new}}(\Gamma_1(72))

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space Sknew(N,χ) S_k^{\mathrm{new}}(N, \chi) we list available newforms together with their dimension.

Label χ\chi Newforms Dimension χ\chi degree
72.21.b χ72(19,)\chi_{72}(19, \cdot) 72.21.b.a 1 1
72.21.b.b 18
72.21.b.c 40
72.21.b.d 40
72.21.e χ72(17,)\chi_{72}(17, \cdot) 72.21.e.a 10 1
72.21.e.b 10
72.21.g χ72(55,)\chi_{72}(55, \cdot) None 0 1
72.21.h χ72(53,)\chi_{72}(53, \cdot) 72.21.h.a 80 1
72.21.j χ72(5,)\chi_{72}(5, \cdot) n/a 476 2
72.21.k χ72(7,)\chi_{72}(7, \cdot) None 0 2
72.21.m χ72(41,)\chi_{72}(41, \cdot) n/a 120 2
72.21.p χ72(43,)\chi_{72}(43, \cdot) n/a 476 2

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of S21old(Γ1(72))S_{21}^{\mathrm{old}}(\Gamma_1(72)) into lower level spaces