Properties

Label 72.18.a.g.1.2
Level $72$
Weight $18$
Character 72.1
Self dual yes
Analytic conductor $131.920$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [72,18,Mod(1,72)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("72.1"); S:= CuspForms(chi, 18); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(72, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 18, names="a")
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 72.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-677824] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(131.919902888\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 43098290x^{2} - 18986612040x + 22664628899989 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(6739.18\) of defining polynomial
Character \(\chi\) \(=\) 72.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-484700. q^{5} -8.65967e6 q^{7} -8.03812e8 q^{11} +3.35794e9 q^{13} +5.67063e9 q^{17} +4.90853e10 q^{19} +4.86301e11 q^{23} -5.28005e11 q^{25} -1.40330e12 q^{29} +6.17478e12 q^{31} +4.19734e12 q^{35} +1.32855e13 q^{37} -1.72014e13 q^{41} -1.30978e13 q^{43} -1.21244e14 q^{47} -1.57641e14 q^{49} +6.27430e14 q^{53} +3.89608e14 q^{55} -2.36373e14 q^{59} -1.19575e15 q^{61} -1.62760e15 q^{65} -1.66133e15 q^{67} -1.72305e15 q^{71} +8.76286e15 q^{73} +6.96075e15 q^{77} +3.76431e15 q^{79} -7.79697e15 q^{83} -2.74856e15 q^{85} +5.61821e15 q^{89} -2.90787e16 q^{91} -2.37916e16 q^{95} -5.36057e16 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 677824 q^{5} + 9632880 q^{7} + 603687680 q^{11} - 2476119800 q^{13} - 7423708544 q^{17} - 19551988960 q^{19} - 458239426048 q^{23} + 1015542005996 q^{25} + 844849583040 q^{29} + 1246685956208 q^{31}+ \cdots - 17\!\cdots\!60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −484700. −0.554917 −0.277459 0.960738i \(-0.589492\pi\)
−0.277459 + 0.960738i \(0.589492\pi\)
\(6\) 0 0
\(7\) −8.65967e6 −0.567764 −0.283882 0.958859i \(-0.591622\pi\)
−0.283882 + 0.958859i \(0.591622\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −8.03812e8 −1.13062 −0.565310 0.824878i \(-0.691244\pi\)
−0.565310 + 0.824878i \(0.691244\pi\)
\(12\) 0 0
\(13\) 3.35794e9 1.14171 0.570853 0.821052i \(-0.306612\pi\)
0.570853 + 0.821052i \(0.306612\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.67063e9 0.197159 0.0985793 0.995129i \(-0.468570\pi\)
0.0985793 + 0.995129i \(0.468570\pi\)
\(18\) 0 0
\(19\) 4.90853e10 0.663049 0.331524 0.943447i \(-0.392437\pi\)
0.331524 + 0.943447i \(0.392437\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.86301e11 1.29485 0.647423 0.762131i \(-0.275847\pi\)
0.647423 + 0.762131i \(0.275847\pi\)
\(24\) 0 0
\(25\) −5.28005e11 −0.692067
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −1.40330e12 −0.520916 −0.260458 0.965485i \(-0.583874\pi\)
−0.260458 + 0.965485i \(0.583874\pi\)
\(30\) 0 0
\(31\) 6.17478e12 1.30031 0.650155 0.759802i \(-0.274704\pi\)
0.650155 + 0.759802i \(0.274704\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 4.19734e12 0.315062
\(36\) 0 0
\(37\) 1.32855e13 0.621820 0.310910 0.950439i \(-0.399366\pi\)
0.310910 + 0.950439i \(0.399366\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.72014e13 −0.336435 −0.168218 0.985750i \(-0.553801\pi\)
−0.168218 + 0.985750i \(0.553801\pi\)
\(42\) 0 0
\(43\) −1.30978e13 −0.170890 −0.0854449 0.996343i \(-0.527231\pi\)
−0.0854449 + 0.996343i \(0.527231\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −1.21244e14 −0.742724 −0.371362 0.928488i \(-0.621109\pi\)
−0.371362 + 0.928488i \(0.621109\pi\)
\(48\) 0 0
\(49\) −1.57641e14 −0.677644
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.27430e14 1.38427 0.692134 0.721769i \(-0.256671\pi\)
0.692134 + 0.721769i \(0.256671\pi\)
\(54\) 0 0
\(55\) 3.89608e14 0.627401
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −2.36373e14 −0.209583 −0.104792 0.994494i \(-0.533418\pi\)
−0.104792 + 0.994494i \(0.533418\pi\)
\(60\) 0 0
\(61\) −1.19575e15 −0.798612 −0.399306 0.916818i \(-0.630749\pi\)
−0.399306 + 0.916818i \(0.630749\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −1.62760e15 −0.633553
\(66\) 0 0
\(67\) −1.66133e15 −0.499827 −0.249913 0.968268i \(-0.580402\pi\)
−0.249913 + 0.968268i \(0.580402\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.72305e15 −0.316665 −0.158333 0.987386i \(-0.550612\pi\)
−0.158333 + 0.987386i \(0.550612\pi\)
\(72\) 0 0
\(73\) 8.76286e15 1.27175 0.635875 0.771792i \(-0.280640\pi\)
0.635875 + 0.771792i \(0.280640\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 6.96075e15 0.641926
\(78\) 0 0
\(79\) 3.76431e15 0.279161 0.139581 0.990211i \(-0.455425\pi\)
0.139581 + 0.990211i \(0.455425\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −7.79697e15 −0.379981 −0.189991 0.981786i \(-0.560846\pi\)
−0.189991 + 0.981786i \(0.560846\pi\)
\(84\) 0 0
\(85\) −2.74856e15 −0.109407
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 5.61821e15 0.151281 0.0756403 0.997135i \(-0.475900\pi\)
0.0756403 + 0.997135i \(0.475900\pi\)
\(90\) 0 0
\(91\) −2.90787e16 −0.648220
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.37916e16 −0.367937
\(96\) 0 0
\(97\) −5.36057e16 −0.694466 −0.347233 0.937779i \(-0.612879\pi\)
−0.347233 + 0.937779i \(0.612879\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −5.91320e16 −0.543364 −0.271682 0.962387i \(-0.587580\pi\)
−0.271682 + 0.962387i \(0.587580\pi\)
\(102\) 0 0
\(103\) 1.10336e17 0.858223 0.429112 0.903251i \(-0.358827\pi\)
0.429112 + 0.903251i \(0.358827\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 5.83279e16 0.328182 0.164091 0.986445i \(-0.447531\pi\)
0.164091 + 0.986445i \(0.447531\pi\)
\(108\) 0 0
\(109\) 4.60722e16 0.221469 0.110735 0.993850i \(-0.464680\pi\)
0.110735 + 0.993850i \(0.464680\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −5.21794e17 −1.84643 −0.923215 0.384285i \(-0.874448\pi\)
−0.923215 + 0.384285i \(0.874448\pi\)
\(114\) 0 0
\(115\) −2.35710e17 −0.718533
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.91058e16 −0.111940
\(120\) 0 0
\(121\) 1.40667e17 0.278303
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 6.25721e17 0.938957
\(126\) 0 0
\(127\) 7.24759e17 0.950302 0.475151 0.879904i \(-0.342393\pi\)
0.475151 + 0.879904i \(0.342393\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −1.34265e18 −1.35256 −0.676281 0.736644i \(-0.736409\pi\)
−0.676281 + 0.736644i \(0.736409\pi\)
\(132\) 0 0
\(133\) −4.25062e17 −0.376455
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −2.52098e18 −1.73558 −0.867789 0.496933i \(-0.834460\pi\)
−0.867789 + 0.496933i \(0.834460\pi\)
\(138\) 0 0
\(139\) −6.31107e17 −0.384129 −0.192065 0.981382i \(-0.561518\pi\)
−0.192065 + 0.981382i \(0.561518\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −2.69915e18 −1.29084
\(144\) 0 0
\(145\) 6.80180e17 0.289065
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.83545e18 −0.618955 −0.309478 0.950907i \(-0.600154\pi\)
−0.309478 + 0.950907i \(0.600154\pi\)
\(150\) 0 0
\(151\) −4.25971e18 −1.28255 −0.641277 0.767309i \(-0.721595\pi\)
−0.641277 + 0.767309i \(0.721595\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −2.99292e18 −0.721565
\(156\) 0 0
\(157\) −8.39662e17 −0.181534 −0.0907668 0.995872i \(-0.528932\pi\)
−0.0907668 + 0.995872i \(0.528932\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −4.21120e18 −0.735167
\(162\) 0 0
\(163\) 9.65278e18 1.51725 0.758626 0.651526i \(-0.225871\pi\)
0.758626 + 0.651526i \(0.225871\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.02649e19 −1.31301 −0.656503 0.754324i \(-0.727965\pi\)
−0.656503 + 0.754324i \(0.727965\pi\)
\(168\) 0 0
\(169\) 2.62535e18 0.303494
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −1.76779e19 −1.67509 −0.837544 0.546370i \(-0.816009\pi\)
−0.837544 + 0.546370i \(0.816009\pi\)
\(174\) 0 0
\(175\) 4.57235e18 0.392931
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −1.58852e19 −1.12653 −0.563263 0.826278i \(-0.690454\pi\)
−0.563263 + 0.826278i \(0.690454\pi\)
\(180\) 0 0
\(181\) −1.94307e19 −1.25378 −0.626890 0.779107i \(-0.715673\pi\)
−0.626890 + 0.779107i \(0.715673\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −6.43951e18 −0.345059
\(186\) 0 0
\(187\) −4.55812e18 −0.222912
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −2.89973e19 −1.18461 −0.592303 0.805715i \(-0.701781\pi\)
−0.592303 + 0.805715i \(0.701781\pi\)
\(192\) 0 0
\(193\) 1.66625e19 0.623022 0.311511 0.950243i \(-0.399165\pi\)
0.311511 + 0.950243i \(0.399165\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −5.09257e19 −1.59946 −0.799731 0.600358i \(-0.795025\pi\)
−0.799731 + 0.600358i \(0.795025\pi\)
\(198\) 0 0
\(199\) −1.37945e19 −0.397608 −0.198804 0.980039i \(-0.563706\pi\)
−0.198804 + 0.980039i \(0.563706\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.21521e19 0.295757
\(204\) 0 0
\(205\) 8.33753e18 0.186694
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −3.94553e19 −0.749657
\(210\) 0 0
\(211\) −2.56156e18 −0.0448852 −0.0224426 0.999748i \(-0.507144\pi\)
−0.0224426 + 0.999748i \(0.507144\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 6.34851e18 0.0948297
\(216\) 0 0
\(217\) −5.34715e19 −0.738269
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.90416e19 0.225097
\(222\) 0 0
\(223\) 1.00011e20 1.09510 0.547552 0.836772i \(-0.315560\pi\)
0.547552 + 0.836772i \(0.315560\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −4.87714e19 −0.459140 −0.229570 0.973292i \(-0.573732\pi\)
−0.229570 + 0.973292i \(0.573732\pi\)
\(228\) 0 0
\(229\) −6.62366e19 −0.578757 −0.289378 0.957215i \(-0.593449\pi\)
−0.289378 + 0.957215i \(0.593449\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.21332e20 0.915059 0.457529 0.889195i \(-0.348734\pi\)
0.457529 + 0.889195i \(0.348734\pi\)
\(234\) 0 0
\(235\) 5.87669e19 0.412151
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.85803e20 −1.12894 −0.564468 0.825455i \(-0.690919\pi\)
−0.564468 + 0.825455i \(0.690919\pi\)
\(240\) 0 0
\(241\) 9.24458e19 0.523290 0.261645 0.965164i \(-0.415735\pi\)
0.261645 + 0.965164i \(0.415735\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 7.64085e19 0.376036
\(246\) 0 0
\(247\) 1.64825e20 0.757008
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 4.40465e20 1.76476 0.882379 0.470540i \(-0.155941\pi\)
0.882379 + 0.470540i \(0.155941\pi\)
\(252\) 0 0
\(253\) −3.90895e20 −1.46398
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 2.56765e20 0.841596 0.420798 0.907154i \(-0.361750\pi\)
0.420798 + 0.907154i \(0.361750\pi\)
\(258\) 0 0
\(259\) −1.15048e20 −0.353047
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 4.56488e20 1.22972 0.614859 0.788637i \(-0.289213\pi\)
0.614859 + 0.788637i \(0.289213\pi\)
\(264\) 0 0
\(265\) −3.04115e20 −0.768154
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.09953e20 1.13406 0.567030 0.823697i \(-0.308092\pi\)
0.567030 + 0.823697i \(0.308092\pi\)
\(270\) 0 0
\(271\) 1.89742e20 0.396208 0.198104 0.980181i \(-0.436522\pi\)
0.198104 + 0.980181i \(0.436522\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.24417e20 0.782465
\(276\) 0 0
\(277\) 6.66487e19 0.115535 0.0577675 0.998330i \(-0.481602\pi\)
0.0577675 + 0.998330i \(0.481602\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −4.65270e20 −0.714005 −0.357002 0.934104i \(-0.616201\pi\)
−0.357002 + 0.934104i \(0.616201\pi\)
\(282\) 0 0
\(283\) 1.21470e21 1.75503 0.877516 0.479547i \(-0.159199\pi\)
0.877516 + 0.479547i \(0.159199\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 1.48959e20 0.191016
\(288\) 0 0
\(289\) −7.95084e20 −0.961129
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.48758e21 1.59995 0.799974 0.600034i \(-0.204846\pi\)
0.799974 + 0.600034i \(0.204846\pi\)
\(294\) 0 0
\(295\) 1.14570e20 0.116301
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 1.63297e21 1.47834
\(300\) 0 0
\(301\) 1.13423e20 0.0970251
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 5.79579e20 0.443163
\(306\) 0 0
\(307\) 9.19688e20 0.665219 0.332609 0.943065i \(-0.392071\pi\)
0.332609 + 0.943065i \(0.392071\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −7.98715e20 −0.517522 −0.258761 0.965941i \(-0.583314\pi\)
−0.258761 + 0.965941i \(0.583314\pi\)
\(312\) 0 0
\(313\) −2.67228e21 −1.63967 −0.819834 0.572602i \(-0.805934\pi\)
−0.819834 + 0.572602i \(0.805934\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3.22165e20 −0.177449 −0.0887247 0.996056i \(-0.528279\pi\)
−0.0887247 + 0.996056i \(0.528279\pi\)
\(318\) 0 0
\(319\) 1.12799e21 0.588958
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 2.78345e20 0.130726
\(324\) 0 0
\(325\) −1.77301e21 −0.790137
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.04993e21 0.421692
\(330\) 0 0
\(331\) 3.47549e21 1.32580 0.662899 0.748709i \(-0.269326\pi\)
0.662899 + 0.748709i \(0.269326\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 8.05246e20 0.277362
\(336\) 0 0
\(337\) −2.00621e21 −0.656933 −0.328467 0.944516i \(-0.606532\pi\)
−0.328467 + 0.944516i \(0.606532\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.96336e21 −1.47016
\(342\) 0 0
\(343\) 3.37962e21 0.952506
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −3.82696e21 −0.977357 −0.488678 0.872464i \(-0.662521\pi\)
−0.488678 + 0.872464i \(0.662521\pi\)
\(348\) 0 0
\(349\) −6.91280e21 −1.68127 −0.840636 0.541601i \(-0.817818\pi\)
−0.840636 + 0.541601i \(0.817818\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 1.75477e21 0.387379 0.193689 0.981063i \(-0.437955\pi\)
0.193689 + 0.981063i \(0.437955\pi\)
\(354\) 0 0
\(355\) 8.35160e20 0.175723
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −8.77038e21 −1.67770 −0.838852 0.544359i \(-0.816773\pi\)
−0.838852 + 0.544359i \(0.816773\pi\)
\(360\) 0 0
\(361\) −3.07102e21 −0.560366
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.24736e21 −0.705716
\(366\) 0 0
\(367\) 1.07483e22 1.70482 0.852408 0.522878i \(-0.175142\pi\)
0.852408 + 0.522878i \(0.175142\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −5.43333e21 −0.785938
\(372\) 0 0
\(373\) 7.28664e21 1.00694 0.503469 0.864013i \(-0.332057\pi\)
0.503469 + 0.864013i \(0.332057\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −4.71220e21 −0.594734
\(378\) 0 0
\(379\) −4.43749e21 −0.535432 −0.267716 0.963498i \(-0.586269\pi\)
−0.267716 + 0.963498i \(0.586269\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 4.29560e21 0.474061 0.237031 0.971502i \(-0.423826\pi\)
0.237031 + 0.971502i \(0.423826\pi\)
\(384\) 0 0
\(385\) −3.37388e21 −0.356216
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −6.37121e21 −0.616099 −0.308049 0.951370i \(-0.599676\pi\)
−0.308049 + 0.951370i \(0.599676\pi\)
\(390\) 0 0
\(391\) 2.75763e21 0.255290
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −1.82456e21 −0.154911
\(396\) 0 0
\(397\) −2.40790e22 −1.95848 −0.979239 0.202707i \(-0.935026\pi\)
−0.979239 + 0.202707i \(0.935026\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.41636e22 −1.80482 −0.902411 0.430876i \(-0.858205\pi\)
−0.902411 + 0.430876i \(0.858205\pi\)
\(402\) 0 0
\(403\) 2.07345e22 1.48457
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.06791e22 −0.703042
\(408\) 0 0
\(409\) −1.99243e22 −1.25816 −0.629080 0.777341i \(-0.716568\pi\)
−0.629080 + 0.777341i \(0.716568\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 2.04692e21 0.118994
\(414\) 0 0
\(415\) 3.77919e21 0.210858
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −1.06785e22 −0.549152 −0.274576 0.961565i \(-0.588538\pi\)
−0.274576 + 0.961565i \(0.588538\pi\)
\(420\) 0 0
\(421\) −5.98402e21 −0.295526 −0.147763 0.989023i \(-0.547207\pi\)
−0.147763 + 0.989023i \(0.547207\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.99412e21 −0.136447
\(426\) 0 0
\(427\) 1.03548e22 0.453423
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 2.12033e22 0.857721 0.428861 0.903371i \(-0.358915\pi\)
0.428861 + 0.903371i \(0.358915\pi\)
\(432\) 0 0
\(433\) 3.63320e22 1.41300 0.706499 0.707714i \(-0.250273\pi\)
0.706499 + 0.707714i \(0.250273\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 2.38702e22 0.858547
\(438\) 0 0
\(439\) −7.82190e21 −0.270622 −0.135311 0.990803i \(-0.543203\pi\)
−0.135311 + 0.990803i \(0.543203\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.85063e20 −0.00913080 −0.00456540 0.999990i \(-0.501453\pi\)
−0.00456540 + 0.999990i \(0.501453\pi\)
\(444\) 0 0
\(445\) −2.72315e21 −0.0839482
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 4.51942e22 1.29119 0.645593 0.763682i \(-0.276610\pi\)
0.645593 + 0.763682i \(0.276610\pi\)
\(450\) 0 0
\(451\) 1.38267e22 0.380380
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 1.40944e22 0.359709
\(456\) 0 0
\(457\) −2.18470e22 −0.537162 −0.268581 0.963257i \(-0.586555\pi\)
−0.268581 + 0.963257i \(0.586555\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.50670e22 0.572326 0.286163 0.958181i \(-0.407620\pi\)
0.286163 + 0.958181i \(0.407620\pi\)
\(462\) 0 0
\(463\) −3.46875e22 −0.763368 −0.381684 0.924293i \(-0.624656\pi\)
−0.381684 + 0.924293i \(0.624656\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −2.78939e22 −0.570578 −0.285289 0.958441i \(-0.592090\pi\)
−0.285289 + 0.958441i \(0.592090\pi\)
\(468\) 0 0
\(469\) 1.43865e22 0.283784
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 1.05282e22 0.193212
\(474\) 0 0
\(475\) −2.59173e22 −0.458874
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 9.33721e22 1.53945 0.769724 0.638377i \(-0.220394\pi\)
0.769724 + 0.638377i \(0.220394\pi\)
\(480\) 0 0
\(481\) 4.46121e22 0.709936
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.59827e22 0.385371
\(486\) 0 0
\(487\) 3.39236e22 0.485854 0.242927 0.970045i \(-0.421893\pi\)
0.242927 + 0.970045i \(0.421893\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 1.36955e23 1.82973 0.914864 0.403763i \(-0.132298\pi\)
0.914864 + 0.403763i \(0.132298\pi\)
\(492\) 0 0
\(493\) −7.95760e21 −0.102703
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.49210e22 0.179791
\(498\) 0 0
\(499\) −9.60929e22 −1.11902 −0.559508 0.828825i \(-0.689010\pi\)
−0.559508 + 0.828825i \(0.689010\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 8.78161e19 0.000955534 0 0.000477767 1.00000i \(-0.499848\pi\)
0.000477767 1.00000i \(0.499848\pi\)
\(504\) 0 0
\(505\) 2.86613e22 0.301522
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.48440e22 0.441167 0.220583 0.975368i \(-0.429204\pi\)
0.220583 + 0.975368i \(0.429204\pi\)
\(510\) 0 0
\(511\) −7.58834e22 −0.722053
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −5.34798e22 −0.476243
\(516\) 0 0
\(517\) 9.74572e22 0.839739
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 1.40072e23 1.13039 0.565196 0.824956i \(-0.308800\pi\)
0.565196 + 0.824956i \(0.308800\pi\)
\(522\) 0 0
\(523\) −3.87014e22 −0.302317 −0.151159 0.988510i \(-0.548300\pi\)
−0.151159 + 0.988510i \(0.548300\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 3.50149e22 0.256367
\(528\) 0 0
\(529\) 9.54385e22 0.676628
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −5.77613e22 −0.384110
\(534\) 0 0
\(535\) −2.82716e22 −0.182114
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 1.26714e23 0.766158
\(540\) 0 0
\(541\) 1.71513e23 1.00489 0.502447 0.864608i \(-0.332433\pi\)
0.502447 + 0.864608i \(0.332433\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −2.23312e22 −0.122897
\(546\) 0 0
\(547\) −4.18991e22 −0.223518 −0.111759 0.993735i \(-0.535648\pi\)
−0.111759 + 0.993735i \(0.535648\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −6.88814e22 −0.345393
\(552\) 0 0
\(553\) −3.25977e22 −0.158498
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.03398e23 −1.38753 −0.693766 0.720200i \(-0.744050\pi\)
−0.693766 + 0.720200i \(0.744050\pi\)
\(558\) 0 0
\(559\) −4.39816e22 −0.195106
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −2.79700e23 −1.16781 −0.583903 0.811823i \(-0.698475\pi\)
−0.583903 + 0.811823i \(0.698475\pi\)
\(564\) 0 0
\(565\) 2.52914e23 1.02462
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.97640e23 −0.754086 −0.377043 0.926196i \(-0.623059\pi\)
−0.377043 + 0.926196i \(0.623059\pi\)
\(570\) 0 0
\(571\) −4.38294e23 −1.62315 −0.811574 0.584249i \(-0.801389\pi\)
−0.811574 + 0.584249i \(0.801389\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.56769e23 −0.896121
\(576\) 0 0
\(577\) −1.05986e23 −0.359133 −0.179566 0.983746i \(-0.557469\pi\)
−0.179566 + 0.983746i \(0.557469\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 6.75192e22 0.215740
\(582\) 0 0
\(583\) −5.04336e23 −1.56508
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 1.65195e23 0.483696 0.241848 0.970314i \(-0.422247\pi\)
0.241848 + 0.970314i \(0.422247\pi\)
\(588\) 0 0
\(589\) 3.03091e23 0.862169
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 1.85479e22 0.0498116 0.0249058 0.999690i \(-0.492071\pi\)
0.0249058 + 0.999690i \(0.492071\pi\)
\(594\) 0 0
\(595\) 2.38016e22 0.0621172
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −6.11584e23 −1.50775 −0.753873 0.657020i \(-0.771817\pi\)
−0.753873 + 0.657020i \(0.771817\pi\)
\(600\) 0 0
\(601\) 6.16474e23 1.47734 0.738672 0.674065i \(-0.235453\pi\)
0.738672 + 0.674065i \(0.235453\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.81814e22 −0.154435
\(606\) 0 0
\(607\) 1.17867e23 0.259590 0.129795 0.991541i \(-0.458568\pi\)
0.129795 + 0.991541i \(0.458568\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −4.07129e23 −0.847973
\(612\) 0 0
\(613\) −1.09211e23 −0.221234 −0.110617 0.993863i \(-0.535283\pi\)
−0.110617 + 0.993863i \(0.535283\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −6.33478e23 −1.21425 −0.607124 0.794607i \(-0.707677\pi\)
−0.607124 + 0.794607i \(0.707677\pi\)
\(618\) 0 0
\(619\) 4.19708e23 0.782666 0.391333 0.920249i \(-0.372014\pi\)
0.391333 + 0.920249i \(0.372014\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −4.86518e22 −0.0858916
\(624\) 0 0
\(625\) 9.95487e22 0.171023
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 7.53374e22 0.122597
\(630\) 0 0
\(631\) −8.84513e23 −1.40105 −0.700527 0.713626i \(-0.747052\pi\)
−0.700527 + 0.713626i \(0.747052\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −3.51291e23 −0.527339
\(636\) 0 0
\(637\) −5.29348e23 −0.773671
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −1.03257e24 −1.43096 −0.715478 0.698636i \(-0.753791\pi\)
−0.715478 + 0.698636i \(0.753791\pi\)
\(642\) 0 0
\(643\) 5.84752e23 0.789184 0.394592 0.918856i \(-0.370886\pi\)
0.394592 + 0.918856i \(0.370886\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −2.89705e23 −0.370911 −0.185456 0.982653i \(-0.559376\pi\)
−0.185456 + 0.982653i \(0.559376\pi\)
\(648\) 0 0
\(649\) 1.90000e23 0.236959
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 5.54002e23 0.655767 0.327883 0.944718i \(-0.393665\pi\)
0.327883 + 0.944718i \(0.393665\pi\)
\(654\) 0 0
\(655\) 6.50783e23 0.750560
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.67095e24 1.82994 0.914969 0.403524i \(-0.132215\pi\)
0.914969 + 0.403524i \(0.132215\pi\)
\(660\) 0 0
\(661\) −3.59471e23 −0.383664 −0.191832 0.981428i \(-0.561443\pi\)
−0.191832 + 0.981428i \(0.561443\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.06028e23 0.208902
\(666\) 0 0
\(667\) −6.82426e23 −0.674507
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.61156e23 0.902927
\(672\) 0 0
\(673\) −7.73956e23 −0.708905 −0.354452 0.935074i \(-0.615333\pi\)
−0.354452 + 0.935074i \(0.615333\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −7.87302e23 −0.685706 −0.342853 0.939389i \(-0.611393\pi\)
−0.342853 + 0.939389i \(0.611393\pi\)
\(678\) 0 0
\(679\) 4.64207e23 0.394293
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −4.91474e23 −0.397122 −0.198561 0.980088i \(-0.563627\pi\)
−0.198561 + 0.980088i \(0.563627\pi\)
\(684\) 0 0
\(685\) 1.22192e24 0.963102
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 2.10687e24 1.58043
\(690\) 0 0
\(691\) −9.36732e23 −0.685570 −0.342785 0.939414i \(-0.611370\pi\)
−0.342785 + 0.939414i \(0.611370\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 3.05898e23 0.213160
\(696\) 0 0
\(697\) −9.75429e22 −0.0663311
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 3.64436e23 0.236058 0.118029 0.993010i \(-0.462342\pi\)
0.118029 + 0.993010i \(0.462342\pi\)
\(702\) 0 0
\(703\) 6.52125e23 0.412297
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 5.12063e23 0.308503
\(708\) 0 0
\(709\) −2.02149e24 −1.18899 −0.594494 0.804100i \(-0.702648\pi\)
−0.594494 + 0.804100i \(0.702648\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 3.00280e24 1.68370
\(714\) 0 0
\(715\) 1.30828e24 0.716308
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.18677e23 0.218617 0.109308 0.994008i \(-0.465136\pi\)
0.109308 + 0.994008i \(0.465136\pi\)
\(720\) 0 0
\(721\) −9.55472e23 −0.487268
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 7.40950e23 0.360509
\(726\) 0 0
\(727\) 2.25868e24 1.07353 0.536763 0.843733i \(-0.319647\pi\)
0.536763 + 0.843733i \(0.319647\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −7.42728e22 −0.0336924
\(732\) 0 0
\(733\) −1.59589e24 −0.707325 −0.353663 0.935373i \(-0.615064\pi\)
−0.353663 + 0.935373i \(0.615064\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.33540e24 0.565114
\(738\) 0 0
\(739\) 3.93421e24 1.62697 0.813485 0.581585i \(-0.197567\pi\)
0.813485 + 0.581585i \(0.197567\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.09794e24 1.22368 0.611841 0.790981i \(-0.290429\pi\)
0.611841 + 0.790981i \(0.290429\pi\)
\(744\) 0 0
\(745\) 8.89643e23 0.343469
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −5.05101e23 −0.186330
\(750\) 0 0
\(751\) 1.49050e24 0.537518 0.268759 0.963207i \(-0.413386\pi\)
0.268759 + 0.963207i \(0.413386\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 2.06468e24 0.711712
\(756\) 0 0
\(757\) −4.26149e24 −1.43631 −0.718153 0.695885i \(-0.755012\pi\)
−0.718153 + 0.695885i \(0.755012\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.46465e24 −0.794303 −0.397152 0.917753i \(-0.630001\pi\)
−0.397152 + 0.917753i \(0.630001\pi\)
\(762\) 0 0
\(763\) −3.98970e23 −0.125742
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7.93728e23 −0.239283
\(768\) 0 0
\(769\) −3.52425e24 −1.03918 −0.519592 0.854414i \(-0.673916\pi\)
−0.519592 + 0.854414i \(0.673916\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 5.09437e24 1.43736 0.718678 0.695343i \(-0.244747\pi\)
0.718678 + 0.695343i \(0.244747\pi\)
\(774\) 0 0
\(775\) −3.26031e24 −0.899902
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −8.44336e23 −0.223073
\(780\) 0 0
\(781\) 1.38500e24 0.358028
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 4.06984e23 0.100736
\(786\) 0 0
\(787\) 3.97377e24 0.962538 0.481269 0.876573i \(-0.340176\pi\)
0.481269 + 0.876573i \(0.340176\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.51857e24 1.04834
\(792\) 0 0
\(793\) −4.01525e24 −0.911780
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −3.02040e24 −0.657157 −0.328579 0.944477i \(-0.606570\pi\)
−0.328579 + 0.944477i \(0.606570\pi\)
\(798\) 0 0
\(799\) −6.87529e23 −0.146434
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −7.04369e24 −1.43787
\(804\) 0 0
\(805\) 2.04117e24 0.407957
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −7.06671e24 −1.35411 −0.677056 0.735931i \(-0.736745\pi\)
−0.677056 + 0.735931i \(0.736745\pi\)
\(810\) 0 0
\(811\) 7.01786e24 1.31682 0.658412 0.752658i \(-0.271228\pi\)
0.658412 + 0.752658i \(0.271228\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −4.67870e24 −0.841949
\(816\) 0 0
\(817\) −6.42909e23 −0.113308
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −4.08902e24 −0.691357 −0.345679 0.938353i \(-0.612351\pi\)
−0.345679 + 0.938353i \(0.612351\pi\)
\(822\) 0 0
\(823\) 1.18447e24 0.196167 0.0980835 0.995178i \(-0.468729\pi\)
0.0980835 + 0.995178i \(0.468729\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −4.42303e24 −0.702947 −0.351474 0.936198i \(-0.614319\pi\)
−0.351474 + 0.936198i \(0.614319\pi\)
\(828\) 0 0
\(829\) −1.70464e24 −0.265411 −0.132706 0.991156i \(-0.542366\pi\)
−0.132706 + 0.991156i \(0.542366\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −8.93922e23 −0.133603
\(834\) 0 0
\(835\) 4.97542e24 0.728609
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −3.65201e23 −0.0513517 −0.0256759 0.999670i \(-0.508174\pi\)
−0.0256759 + 0.999670i \(0.508174\pi\)
\(840\) 0 0
\(841\) −5.28789e24 −0.728646
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −1.27251e24 −0.168414
\(846\) 0 0
\(847\) −1.21813e24 −0.158010
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 6.46077e24 0.805162
\(852\) 0 0
\(853\) 6.64517e24 0.811782 0.405891 0.913921i \(-0.366961\pi\)
0.405891 + 0.913921i \(0.366961\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −3.34537e24 −0.392742 −0.196371 0.980530i \(-0.562916\pi\)
−0.196371 + 0.980530i \(0.562916\pi\)
\(858\) 0 0
\(859\) −1.52661e25 −1.75706 −0.878529 0.477688i \(-0.841475\pi\)
−0.878529 + 0.477688i \(0.841475\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.29506e25 −1.43284 −0.716419 0.697670i \(-0.754220\pi\)
−0.716419 + 0.697670i \(0.754220\pi\)
\(864\) 0 0
\(865\) 8.56846e24 0.929535
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −3.02580e24 −0.315625
\(870\) 0 0
\(871\) −5.57864e24 −0.570656
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −5.41854e24 −0.533106
\(876\) 0 0
\(877\) −3.39683e24 −0.327776 −0.163888 0.986479i \(-0.552404\pi\)
−0.163888 + 0.986479i \(0.552404\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −1.16744e25 −1.08377 −0.541887 0.840451i \(-0.682290\pi\)
−0.541887 + 0.840451i \(0.682290\pi\)
\(882\) 0 0
\(883\) 1.03857e25 0.945733 0.472866 0.881134i \(-0.343219\pi\)
0.472866 + 0.881134i \(0.343219\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.20725e23 −0.0631566 −0.0315783 0.999501i \(-0.510053\pi\)
−0.0315783 + 0.999501i \(0.510053\pi\)
\(888\) 0 0
\(889\) −6.27617e24 −0.539548
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −5.95128e24 −0.492463
\(894\) 0 0
\(895\) 7.69954e24 0.625128
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −8.66507e24 −0.677353
\(900\) 0 0
\(901\) 3.55792e24 0.272920
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 9.41809e24 0.695745
\(906\) 0 0
\(907\) −6.80337e24 −0.493244 −0.246622 0.969112i \(-0.579321\pi\)
−0.246622 + 0.969112i \(0.579321\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −4.70926e24 −0.328887 −0.164444 0.986386i \(-0.552583\pi\)
−0.164444 + 0.986386i \(0.552583\pi\)
\(912\) 0 0
\(913\) 6.26730e24 0.429615
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 1.16269e25 0.767936
\(918\) 0 0
\(919\) −2.09220e25 −1.35651 −0.678253 0.734828i \(-0.737263\pi\)
−0.678253 + 0.734828i \(0.737263\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −5.78588e24 −0.361539
\(924\) 0 0
\(925\) −7.01483e24 −0.430341
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1.73931e25 1.02859 0.514296 0.857613i \(-0.328053\pi\)
0.514296 + 0.857613i \(0.328053\pi\)
\(930\) 0 0
\(931\) −7.73784e24 −0.449311
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 2.20932e24 0.123697
\(936\) 0 0
\(937\) 2.24671e25 1.23527 0.617634 0.786466i \(-0.288091\pi\)
0.617634 + 0.786466i \(0.288091\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −1.98079e24 −0.105033 −0.0525166 0.998620i \(-0.516724\pi\)
−0.0525166 + 0.998620i \(0.516724\pi\)
\(942\) 0 0
\(943\) −8.36506e24 −0.435632
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 2.99450e25 1.50435 0.752177 0.658962i \(-0.229004\pi\)
0.752177 + 0.658962i \(0.229004\pi\)
\(948\) 0 0
\(949\) 2.94252e25 1.45196
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −1.23958e25 −0.590181 −0.295091 0.955469i \(-0.595350\pi\)
−0.295091 + 0.955469i \(0.595350\pi\)
\(954\) 0 0
\(955\) 1.40550e25 0.657359
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 2.18308e25 0.985399
\(960\) 0 0
\(961\) 1.55778e25 0.690807
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −8.07632e24 −0.345726
\(966\) 0 0
\(967\) −3.16830e25 −1.33261 −0.666303 0.745681i \(-0.732124\pi\)
−0.666303 + 0.745681i \(0.732124\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 4.08361e25 1.65837 0.829183 0.558977i \(-0.188806\pi\)
0.829183 + 0.558977i \(0.188806\pi\)
\(972\) 0 0
\(973\) 5.46518e24 0.218095
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 3.32294e25 1.28061 0.640307 0.768119i \(-0.278807\pi\)
0.640307 + 0.768119i \(0.278807\pi\)
\(978\) 0 0
\(979\) −4.51599e24 −0.171041
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −9.07807e24 −0.332115 −0.166058 0.986116i \(-0.553104\pi\)
−0.166058 + 0.986116i \(0.553104\pi\)
\(984\) 0 0
\(985\) 2.46837e25 0.887569
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.36947e24 −0.221276
\(990\) 0 0
\(991\) −5.16244e25 −1.76290 −0.881452 0.472273i \(-0.843434\pi\)
−0.881452 + 0.472273i \(0.843434\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 6.68621e24 0.220640
\(996\) 0 0
\(997\) −7.25042e24 −0.235209 −0.117605 0.993061i \(-0.537522\pi\)
−0.117605 + 0.993061i \(0.537522\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.18.a.g.1.2 4
3.2 odd 2 72.18.a.h.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.18.a.g.1.2 4 1.1 even 1 trivial
72.18.a.h.1.3 yes 4 3.2 odd 2