Properties

Label 72.18.a.g
Level $72$
Weight $18$
Character orbit 72.a
Self dual yes
Analytic conductor $131.920$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [72,18,Mod(1,72)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(72, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 18, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("72.1"); S:= CuspForms(chi, 18); N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 18 \)
Character orbit: \([\chi]\) \(=\) 72.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,-677824] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(131.919902888\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: \(\mathbb{Q}[x]/(x^{4} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 43098290x^{2} - 18986612040x + 22664628899989 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{8} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_1 - 169456) q^{5} + (\beta_{2} + 2408220) q^{7} + ( - \beta_{3} - 3 \beta_{2} + \cdots + 150921920) q^{11} + (4 \beta_{3} - 828 \beta_1 - 619029950) q^{13} + ( - 4 \beta_{3} - 1036 \beta_{2} + \cdots - 1855927136) q^{17}+ \cdots + ( - 19559952 \beta_{3} + \cdots - 43\!\cdots\!90) q^{97}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 677824 q^{5} + 9632880 q^{7} + 603687680 q^{11} - 2476119800 q^{13} - 7423708544 q^{17} - 19551988960 q^{19} - 458239426048 q^{23} + 1015542005996 q^{25} + 844849583040 q^{29} + 1246685956208 q^{31}+ \cdots - 17\!\cdots\!60 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 43098290x^{2} - 18986612040x + 22664628899989 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -568\nu^{3} + 3651712\nu^{2} + 15383263192\nu - 70602974657200 ) / 79518607 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -7168\nu^{3} + 4384\nu^{2} + 291728178496\nu + 101977554875360 ) / 11359801 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -806216\nu^{3} + 990012896\nu^{2} + 43907311246184\nu - 9853448638443440 ) / 79518607 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} - 13\beta_{2} - 271\beta_1 ) / 165888 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( 353\beta_{3} - 11405\beta_{2} + 506449\beta _1 + 595790760960 ) / 27648 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 40699981\beta_{3} - 792023017\beta_{2} - 11027485315\beta _1 + 2362238323568640 ) / 165888 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−6285.20
6739.18
538.912
−992.898
0 0 0 −1.65331e6 0 6.66132e6 0 0 0
1.2 0 0 0 −484700. 0 −8.65967e6 0 0 0
1.3 0 0 0 601950. 0 2.51263e7 0 0 0
1.4 0 0 0 858240. 0 −1.34951e7 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.18.a.g 4
3.b odd 2 1 72.18.a.h yes 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.18.a.g 4 1.a even 1 1 trivial
72.18.a.h yes 4 3.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} + 677824T_{5}^{3} - 1803927221760T_{5}^{2} - 65604870625280000T_{5} + 413997294267080089600000 \) acting on \(S_{18}^{\mathrm{new}}(\Gamma_0(72))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} + \cdots + 41\!\cdots\!00 \) Copy content Toggle raw display
$7$ \( T^{4} + \cdots + 19\!\cdots\!64 \) Copy content Toggle raw display
$11$ \( T^{4} + \cdots + 14\!\cdots\!64 \) Copy content Toggle raw display
$13$ \( T^{4} + \cdots + 24\!\cdots\!36 \) Copy content Toggle raw display
$17$ \( T^{4} + \cdots + 62\!\cdots\!64 \) Copy content Toggle raw display
$19$ \( T^{4} + \cdots - 17\!\cdots\!24 \) Copy content Toggle raw display
$23$ \( T^{4} + \cdots + 32\!\cdots\!64 \) Copy content Toggle raw display
$29$ \( T^{4} + \cdots + 36\!\cdots\!00 \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 10\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{4} + \cdots - 89\!\cdots\!00 \) Copy content Toggle raw display
$41$ \( T^{4} + \cdots + 15\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( T^{4} + \cdots + 98\!\cdots\!00 \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 43\!\cdots\!76 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots - 42\!\cdots\!76 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 60\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 10\!\cdots\!64 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 77\!\cdots\!04 \) Copy content Toggle raw display
$71$ \( T^{4} + \cdots - 75\!\cdots\!84 \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 93\!\cdots\!96 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots - 69\!\cdots\!04 \) Copy content Toggle raw display
$83$ \( T^{4} + \cdots - 31\!\cdots\!36 \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 11\!\cdots\!00 \) Copy content Toggle raw display
$97$ \( T^{4} + \cdots + 95\!\cdots\!24 \) Copy content Toggle raw display
show more
show less