Properties

Label 715.2.a.i.1.4
Level $715$
Weight $2$
Character 715.1
Self dual yes
Analytic conductor $5.709$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [715,2,Mod(1,715)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(715, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("715.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 715 = 5 \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 715.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.70930374452\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 16x^{7} + 14x^{6} + 86x^{5} - 57x^{4} - 179x^{3} + 64x^{2} + 118x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.06779\) of defining polynomial
Character \(\chi\) \(=\) 715.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.06779 q^{2} +0.343328 q^{3} -0.859816 q^{4} +1.00000 q^{5} -0.366604 q^{6} +1.31980 q^{7} +3.05369 q^{8} -2.88213 q^{9} -1.06779 q^{10} -1.00000 q^{11} -0.295199 q^{12} -1.00000 q^{13} -1.40927 q^{14} +0.343328 q^{15} -1.54108 q^{16} +7.11691 q^{17} +3.07752 q^{18} +4.66833 q^{19} -0.859816 q^{20} +0.453123 q^{21} +1.06779 q^{22} -3.09689 q^{23} +1.04842 q^{24} +1.00000 q^{25} +1.06779 q^{26} -2.01950 q^{27} -1.13478 q^{28} -4.83303 q^{29} -0.366604 q^{30} +5.60339 q^{31} -4.46183 q^{32} -0.343328 q^{33} -7.59940 q^{34} +1.31980 q^{35} +2.47810 q^{36} +3.95696 q^{37} -4.98481 q^{38} -0.343328 q^{39} +3.05369 q^{40} +6.94860 q^{41} -0.483842 q^{42} +0.0908316 q^{43} +0.859816 q^{44} -2.88213 q^{45} +3.30684 q^{46} +5.18536 q^{47} -0.529097 q^{48} -5.25814 q^{49} -1.06779 q^{50} +2.44344 q^{51} +0.859816 q^{52} +12.6253 q^{53} +2.15641 q^{54} -1.00000 q^{55} +4.03025 q^{56} +1.60277 q^{57} +5.16068 q^{58} +10.3805 q^{59} -0.295199 q^{60} +14.4830 q^{61} -5.98326 q^{62} -3.80382 q^{63} +7.84648 q^{64} -1.00000 q^{65} +0.366604 q^{66} +0.452157 q^{67} -6.11924 q^{68} -1.06325 q^{69} -1.40927 q^{70} +10.7371 q^{71} -8.80113 q^{72} -10.7422 q^{73} -4.22522 q^{74} +0.343328 q^{75} -4.01390 q^{76} -1.31980 q^{77} +0.366604 q^{78} +5.81132 q^{79} -1.54108 q^{80} +7.95303 q^{81} -7.41967 q^{82} -14.5762 q^{83} -0.389602 q^{84} +7.11691 q^{85} -0.0969895 q^{86} -1.65931 q^{87} -3.05369 q^{88} +1.82629 q^{89} +3.07752 q^{90} -1.31980 q^{91} +2.66276 q^{92} +1.92380 q^{93} -5.53690 q^{94} +4.66833 q^{95} -1.53187 q^{96} -5.98946 q^{97} +5.61461 q^{98} +2.88213 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + q^{2} + 2 q^{3} + 15 q^{4} + 9 q^{5} - q^{6} - 4 q^{7} + 3 q^{8} + 23 q^{9} + q^{10} - 9 q^{11} + 6 q^{12} - 9 q^{13} + 16 q^{14} + 2 q^{15} + 15 q^{16} + 13 q^{17} + 3 q^{18} - 3 q^{19} + 15 q^{20}+ \cdots - 23 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.06779 −0.755044 −0.377522 0.926001i \(-0.623224\pi\)
−0.377522 + 0.926001i \(0.623224\pi\)
\(3\) 0.343328 0.198221 0.0991103 0.995076i \(-0.468400\pi\)
0.0991103 + 0.995076i \(0.468400\pi\)
\(4\) −0.859816 −0.429908
\(5\) 1.00000 0.447214
\(6\) −0.366604 −0.149665
\(7\) 1.31980 0.498836 0.249418 0.968396i \(-0.419761\pi\)
0.249418 + 0.968396i \(0.419761\pi\)
\(8\) 3.05369 1.07964
\(9\) −2.88213 −0.960709
\(10\) −1.06779 −0.337666
\(11\) −1.00000 −0.301511
\(12\) −0.295199 −0.0852166
\(13\) −1.00000 −0.277350
\(14\) −1.40927 −0.376643
\(15\) 0.343328 0.0886469
\(16\) −1.54108 −0.385271
\(17\) 7.11691 1.72611 0.863053 0.505114i \(-0.168550\pi\)
0.863053 + 0.505114i \(0.168550\pi\)
\(18\) 3.07752 0.725378
\(19\) 4.66833 1.07099 0.535494 0.844539i \(-0.320126\pi\)
0.535494 + 0.844539i \(0.320126\pi\)
\(20\) −0.859816 −0.192261
\(21\) 0.453123 0.0988795
\(22\) 1.06779 0.227654
\(23\) −3.09689 −0.645747 −0.322873 0.946442i \(-0.604649\pi\)
−0.322873 + 0.946442i \(0.604649\pi\)
\(24\) 1.04842 0.214008
\(25\) 1.00000 0.200000
\(26\) 1.06779 0.209412
\(27\) −2.01950 −0.388653
\(28\) −1.13478 −0.214453
\(29\) −4.83303 −0.897471 −0.448736 0.893665i \(-0.648126\pi\)
−0.448736 + 0.893665i \(0.648126\pi\)
\(30\) −0.366604 −0.0669324
\(31\) 5.60339 1.00640 0.503199 0.864171i \(-0.332156\pi\)
0.503199 + 0.864171i \(0.332156\pi\)
\(32\) −4.46183 −0.788747
\(33\) −0.343328 −0.0597657
\(34\) −7.59940 −1.30329
\(35\) 1.31980 0.223086
\(36\) 2.47810 0.413016
\(37\) 3.95696 0.650521 0.325261 0.945624i \(-0.394548\pi\)
0.325261 + 0.945624i \(0.394548\pi\)
\(38\) −4.98481 −0.808643
\(39\) −0.343328 −0.0549765
\(40\) 3.05369 0.482831
\(41\) 6.94860 1.08519 0.542594 0.839995i \(-0.317442\pi\)
0.542594 + 0.839995i \(0.317442\pi\)
\(42\) −0.483842 −0.0746584
\(43\) 0.0908316 0.0138517 0.00692585 0.999976i \(-0.497795\pi\)
0.00692585 + 0.999976i \(0.497795\pi\)
\(44\) 0.859816 0.129622
\(45\) −2.88213 −0.429642
\(46\) 3.30684 0.487567
\(47\) 5.18536 0.756363 0.378182 0.925731i \(-0.376550\pi\)
0.378182 + 0.925731i \(0.376550\pi\)
\(48\) −0.529097 −0.0763686
\(49\) −5.25814 −0.751163
\(50\) −1.06779 −0.151009
\(51\) 2.44344 0.342150
\(52\) 0.859816 0.119235
\(53\) 12.6253 1.73422 0.867109 0.498119i \(-0.165976\pi\)
0.867109 + 0.498119i \(0.165976\pi\)
\(54\) 2.15641 0.293450
\(55\) −1.00000 −0.134840
\(56\) 4.03025 0.538565
\(57\) 1.60277 0.212292
\(58\) 5.16068 0.677631
\(59\) 10.3805 1.35143 0.675716 0.737162i \(-0.263835\pi\)
0.675716 + 0.737162i \(0.263835\pi\)
\(60\) −0.295199 −0.0381100
\(61\) 14.4830 1.85435 0.927177 0.374624i \(-0.122228\pi\)
0.927177 + 0.374624i \(0.122228\pi\)
\(62\) −5.98326 −0.759875
\(63\) −3.80382 −0.479236
\(64\) 7.84648 0.980810
\(65\) −1.00000 −0.124035
\(66\) 0.366604 0.0451258
\(67\) 0.452157 0.0552398 0.0276199 0.999618i \(-0.491207\pi\)
0.0276199 + 0.999618i \(0.491207\pi\)
\(68\) −6.11924 −0.742066
\(69\) −1.06325 −0.128000
\(70\) −1.40927 −0.168440
\(71\) 10.7371 1.27425 0.637127 0.770759i \(-0.280123\pi\)
0.637127 + 0.770759i \(0.280123\pi\)
\(72\) −8.80113 −1.03722
\(73\) −10.7422 −1.25728 −0.628640 0.777696i \(-0.716388\pi\)
−0.628640 + 0.777696i \(0.716388\pi\)
\(74\) −4.22522 −0.491172
\(75\) 0.343328 0.0396441
\(76\) −4.01390 −0.460426
\(77\) −1.31980 −0.150405
\(78\) 0.366604 0.0415097
\(79\) 5.81132 0.653824 0.326912 0.945055i \(-0.393992\pi\)
0.326912 + 0.945055i \(0.393992\pi\)
\(80\) −1.54108 −0.172298
\(81\) 7.95303 0.883670
\(82\) −7.41967 −0.819365
\(83\) −14.5762 −1.59995 −0.799973 0.600036i \(-0.795153\pi\)
−0.799973 + 0.600036i \(0.795153\pi\)
\(84\) −0.389602 −0.0425091
\(85\) 7.11691 0.771938
\(86\) −0.0969895 −0.0104586
\(87\) −1.65931 −0.177897
\(88\) −3.05369 −0.325525
\(89\) 1.82629 0.193586 0.0967931 0.995305i \(-0.469141\pi\)
0.0967931 + 0.995305i \(0.469141\pi\)
\(90\) 3.07752 0.324399
\(91\) −1.31980 −0.138352
\(92\) 2.66276 0.277612
\(93\) 1.92380 0.199489
\(94\) −5.53690 −0.571088
\(95\) 4.66833 0.478960
\(96\) −1.53187 −0.156346
\(97\) −5.98946 −0.608138 −0.304069 0.952650i \(-0.598345\pi\)
−0.304069 + 0.952650i \(0.598345\pi\)
\(98\) 5.61461 0.567161
\(99\) 2.88213 0.289665
\(100\) −0.859816 −0.0859816
\(101\) −18.1302 −1.80402 −0.902009 0.431717i \(-0.857908\pi\)
−0.902009 + 0.431717i \(0.857908\pi\)
\(102\) −2.60909 −0.258338
\(103\) −18.7381 −1.84632 −0.923159 0.384419i \(-0.874402\pi\)
−0.923159 + 0.384419i \(0.874402\pi\)
\(104\) −3.05369 −0.299439
\(105\) 0.453123 0.0442203
\(106\) −13.4812 −1.30941
\(107\) 14.3491 1.38718 0.693590 0.720370i \(-0.256028\pi\)
0.693590 + 0.720370i \(0.256028\pi\)
\(108\) 1.73640 0.167085
\(109\) 3.65773 0.350347 0.175174 0.984538i \(-0.443951\pi\)
0.175174 + 0.984538i \(0.443951\pi\)
\(110\) 1.06779 0.101810
\(111\) 1.35854 0.128947
\(112\) −2.03392 −0.192187
\(113\) 18.7717 1.76589 0.882945 0.469477i \(-0.155557\pi\)
0.882945 + 0.469477i \(0.155557\pi\)
\(114\) −1.71142 −0.160290
\(115\) −3.09689 −0.288787
\(116\) 4.15552 0.385830
\(117\) 2.88213 0.266453
\(118\) −11.0843 −1.02039
\(119\) 9.39287 0.861043
\(120\) 1.04842 0.0957071
\(121\) 1.00000 0.0909091
\(122\) −15.4648 −1.40012
\(123\) 2.38565 0.215107
\(124\) −4.81788 −0.432658
\(125\) 1.00000 0.0894427
\(126\) 4.06169 0.361844
\(127\) −8.65119 −0.767669 −0.383834 0.923402i \(-0.625397\pi\)
−0.383834 + 0.923402i \(0.625397\pi\)
\(128\) 0.545230 0.0481919
\(129\) 0.0311850 0.00274569
\(130\) 1.06779 0.0936517
\(131\) 13.0268 1.13816 0.569079 0.822283i \(-0.307300\pi\)
0.569079 + 0.822283i \(0.307300\pi\)
\(132\) 0.295199 0.0256938
\(133\) 6.16123 0.534247
\(134\) −0.482811 −0.0417085
\(135\) −2.01950 −0.173811
\(136\) 21.7329 1.86358
\(137\) −10.7958 −0.922349 −0.461175 0.887309i \(-0.652572\pi\)
−0.461175 + 0.887309i \(0.652572\pi\)
\(138\) 1.13533 0.0966459
\(139\) −18.8935 −1.60252 −0.801262 0.598313i \(-0.795838\pi\)
−0.801262 + 0.598313i \(0.795838\pi\)
\(140\) −1.13478 −0.0959065
\(141\) 1.78028 0.149927
\(142\) −11.4650 −0.962118
\(143\) 1.00000 0.0836242
\(144\) 4.44160 0.370133
\(145\) −4.83303 −0.401361
\(146\) 11.4705 0.949303
\(147\) −1.80527 −0.148896
\(148\) −3.40226 −0.279664
\(149\) −6.97104 −0.571090 −0.285545 0.958365i \(-0.592175\pi\)
−0.285545 + 0.958365i \(0.592175\pi\)
\(150\) −0.366604 −0.0299331
\(151\) −19.9988 −1.62748 −0.813740 0.581229i \(-0.802572\pi\)
−0.813740 + 0.581229i \(0.802572\pi\)
\(152\) 14.2556 1.15629
\(153\) −20.5118 −1.65828
\(154\) 1.40927 0.113562
\(155\) 5.60339 0.450075
\(156\) 0.295199 0.0236348
\(157\) −14.2815 −1.13979 −0.569895 0.821717i \(-0.693016\pi\)
−0.569895 + 0.821717i \(0.693016\pi\)
\(158\) −6.20529 −0.493666
\(159\) 4.33462 0.343757
\(160\) −4.46183 −0.352738
\(161\) −4.08726 −0.322121
\(162\) −8.49219 −0.667210
\(163\) −3.29640 −0.258194 −0.129097 0.991632i \(-0.541208\pi\)
−0.129097 + 0.991632i \(0.541208\pi\)
\(164\) −5.97451 −0.466531
\(165\) −0.343328 −0.0267280
\(166\) 15.5644 1.20803
\(167\) 4.87554 0.377281 0.188640 0.982046i \(-0.439592\pi\)
0.188640 + 0.982046i \(0.439592\pi\)
\(168\) 1.38370 0.106755
\(169\) 1.00000 0.0769231
\(170\) −7.59940 −0.582847
\(171\) −13.4547 −1.02891
\(172\) −0.0780985 −0.00595495
\(173\) 13.2332 1.00610 0.503049 0.864258i \(-0.332211\pi\)
0.503049 + 0.864258i \(0.332211\pi\)
\(174\) 1.77181 0.134320
\(175\) 1.31980 0.0997672
\(176\) 1.54108 0.116164
\(177\) 3.56393 0.267881
\(178\) −1.95010 −0.146166
\(179\) −18.9190 −1.41408 −0.707038 0.707176i \(-0.749969\pi\)
−0.707038 + 0.707176i \(0.749969\pi\)
\(180\) 2.47810 0.184707
\(181\) 24.5749 1.82663 0.913317 0.407248i \(-0.133512\pi\)
0.913317 + 0.407248i \(0.133512\pi\)
\(182\) 1.40927 0.104462
\(183\) 4.97241 0.367571
\(184\) −9.45696 −0.697176
\(185\) 3.95696 0.290922
\(186\) −2.05422 −0.150623
\(187\) −7.11691 −0.520440
\(188\) −4.45846 −0.325167
\(189\) −2.66532 −0.193874
\(190\) −4.98481 −0.361636
\(191\) −8.28475 −0.599464 −0.299732 0.954023i \(-0.596897\pi\)
−0.299732 + 0.954023i \(0.596897\pi\)
\(192\) 2.69392 0.194417
\(193\) −20.0813 −1.44549 −0.722743 0.691116i \(-0.757119\pi\)
−0.722743 + 0.691116i \(0.757119\pi\)
\(194\) 6.39551 0.459171
\(195\) −0.343328 −0.0245862
\(196\) 4.52103 0.322931
\(197\) −15.8972 −1.13263 −0.566314 0.824189i \(-0.691631\pi\)
−0.566314 + 0.824189i \(0.691631\pi\)
\(198\) −3.07752 −0.218710
\(199\) −11.2488 −0.797403 −0.398701 0.917081i \(-0.630539\pi\)
−0.398701 + 0.917081i \(0.630539\pi\)
\(200\) 3.05369 0.215929
\(201\) 0.155238 0.0109497
\(202\) 19.3593 1.36211
\(203\) −6.37861 −0.447691
\(204\) −2.10091 −0.147093
\(205\) 6.94860 0.485311
\(206\) 20.0084 1.39405
\(207\) 8.92563 0.620374
\(208\) 1.54108 0.106855
\(209\) −4.66833 −0.322915
\(210\) −0.483842 −0.0333883
\(211\) 12.0831 0.831834 0.415917 0.909403i \(-0.363461\pi\)
0.415917 + 0.909403i \(0.363461\pi\)
\(212\) −10.8554 −0.745554
\(213\) 3.68633 0.252583
\(214\) −15.3219 −1.04738
\(215\) 0.0908316 0.00619466
\(216\) −6.16693 −0.419607
\(217\) 7.39532 0.502027
\(218\) −3.90570 −0.264528
\(219\) −3.68810 −0.249219
\(220\) 0.859816 0.0579688
\(221\) −7.11691 −0.478735
\(222\) −1.45064 −0.0973604
\(223\) −11.8085 −0.790755 −0.395377 0.918519i \(-0.629386\pi\)
−0.395377 + 0.918519i \(0.629386\pi\)
\(224\) −5.88870 −0.393455
\(225\) −2.88213 −0.192142
\(226\) −20.0443 −1.33333
\(227\) −16.8935 −1.12126 −0.560632 0.828065i \(-0.689442\pi\)
−0.560632 + 0.828065i \(0.689442\pi\)
\(228\) −1.37808 −0.0912659
\(229\) 16.5925 1.09647 0.548233 0.836326i \(-0.315301\pi\)
0.548233 + 0.836326i \(0.315301\pi\)
\(230\) 3.30684 0.218047
\(231\) −0.453123 −0.0298133
\(232\) −14.7586 −0.968949
\(233\) 19.2647 1.26207 0.631036 0.775753i \(-0.282630\pi\)
0.631036 + 0.775753i \(0.282630\pi\)
\(234\) −3.07752 −0.201184
\(235\) 5.18536 0.338256
\(236\) −8.92535 −0.580991
\(237\) 1.99519 0.129601
\(238\) −10.0297 −0.650126
\(239\) 28.3128 1.83140 0.915702 0.401857i \(-0.131635\pi\)
0.915702 + 0.401857i \(0.131635\pi\)
\(240\) −0.529097 −0.0341531
\(241\) −17.7918 −1.14607 −0.573036 0.819530i \(-0.694235\pi\)
−0.573036 + 0.819530i \(0.694235\pi\)
\(242\) −1.06779 −0.0686404
\(243\) 8.78899 0.563814
\(244\) −12.4527 −0.797202
\(245\) −5.25814 −0.335930
\(246\) −2.54738 −0.162415
\(247\) −4.66833 −0.297038
\(248\) 17.1110 1.08655
\(249\) −5.00442 −0.317142
\(250\) −1.06779 −0.0675332
\(251\) 18.5434 1.17045 0.585225 0.810871i \(-0.301006\pi\)
0.585225 + 0.810871i \(0.301006\pi\)
\(252\) 3.27058 0.206027
\(253\) 3.09689 0.194700
\(254\) 9.23768 0.579624
\(255\) 2.44344 0.153014
\(256\) −16.2752 −1.01720
\(257\) −3.31960 −0.207071 −0.103535 0.994626i \(-0.533016\pi\)
−0.103535 + 0.994626i \(0.533016\pi\)
\(258\) −0.0332992 −0.00207312
\(259\) 5.22238 0.324503
\(260\) 0.859816 0.0533235
\(261\) 13.9294 0.862208
\(262\) −13.9100 −0.859360
\(263\) −11.0823 −0.683364 −0.341682 0.939816i \(-0.610997\pi\)
−0.341682 + 0.939816i \(0.610997\pi\)
\(264\) −1.04842 −0.0645257
\(265\) 12.6253 0.775565
\(266\) −6.57893 −0.403380
\(267\) 0.627016 0.0383728
\(268\) −0.388772 −0.0237480
\(269\) −0.765738 −0.0466879 −0.0233439 0.999727i \(-0.507431\pi\)
−0.0233439 + 0.999727i \(0.507431\pi\)
\(270\) 2.15641 0.131235
\(271\) −12.5639 −0.763205 −0.381602 0.924327i \(-0.624628\pi\)
−0.381602 + 0.924327i \(0.624628\pi\)
\(272\) −10.9678 −0.665019
\(273\) −0.453123 −0.0274242
\(274\) 11.5277 0.696415
\(275\) −1.00000 −0.0603023
\(276\) 0.914199 0.0550283
\(277\) 24.3104 1.46067 0.730334 0.683090i \(-0.239364\pi\)
0.730334 + 0.683090i \(0.239364\pi\)
\(278\) 20.1744 1.20998
\(279\) −16.1497 −0.966855
\(280\) 4.03025 0.240854
\(281\) 15.3784 0.917400 0.458700 0.888591i \(-0.348315\pi\)
0.458700 + 0.888591i \(0.348315\pi\)
\(282\) −1.90097 −0.113201
\(283\) −3.73537 −0.222045 −0.111022 0.993818i \(-0.535413\pi\)
−0.111022 + 0.993818i \(0.535413\pi\)
\(284\) −9.23189 −0.547812
\(285\) 1.60277 0.0949397
\(286\) −1.06779 −0.0631400
\(287\) 9.17072 0.541331
\(288\) 12.8595 0.757756
\(289\) 33.6505 1.97944
\(290\) 5.16068 0.303046
\(291\) −2.05635 −0.120545
\(292\) 9.23632 0.540515
\(293\) 2.21953 0.129666 0.0648332 0.997896i \(-0.479348\pi\)
0.0648332 + 0.997896i \(0.479348\pi\)
\(294\) 1.92765 0.112423
\(295\) 10.3805 0.604378
\(296\) 12.0834 0.702331
\(297\) 2.01950 0.117183
\(298\) 7.44363 0.431198
\(299\) 3.09689 0.179098
\(300\) −0.295199 −0.0170433
\(301\) 0.119879 0.00690972
\(302\) 21.3546 1.22882
\(303\) −6.22459 −0.357594
\(304\) −7.19428 −0.412620
\(305\) 14.4830 0.829292
\(306\) 21.9024 1.25208
\(307\) −26.8988 −1.53520 −0.767598 0.640932i \(-0.778548\pi\)
−0.767598 + 0.640932i \(0.778548\pi\)
\(308\) 1.13478 0.0646602
\(309\) −6.43331 −0.365978
\(310\) −5.98326 −0.339826
\(311\) −15.9839 −0.906365 −0.453183 0.891418i \(-0.649711\pi\)
−0.453183 + 0.891418i \(0.649711\pi\)
\(312\) −1.04842 −0.0593550
\(313\) 2.48431 0.140422 0.0702108 0.997532i \(-0.477633\pi\)
0.0702108 + 0.997532i \(0.477633\pi\)
\(314\) 15.2497 0.860592
\(315\) −3.80382 −0.214321
\(316\) −4.99666 −0.281084
\(317\) −7.91673 −0.444648 −0.222324 0.974973i \(-0.571364\pi\)
−0.222324 + 0.974973i \(0.571364\pi\)
\(318\) −4.62848 −0.259552
\(319\) 4.83303 0.270598
\(320\) 7.84648 0.438632
\(321\) 4.92645 0.274968
\(322\) 4.36436 0.243216
\(323\) 33.2241 1.84864
\(324\) −6.83814 −0.379897
\(325\) −1.00000 −0.0554700
\(326\) 3.51987 0.194948
\(327\) 1.25580 0.0694460
\(328\) 21.2189 1.17162
\(329\) 6.84362 0.377301
\(330\) 0.366604 0.0201809
\(331\) −21.2305 −1.16693 −0.583467 0.812137i \(-0.698304\pi\)
−0.583467 + 0.812137i \(0.698304\pi\)
\(332\) 12.5329 0.687830
\(333\) −11.4045 −0.624961
\(334\) −5.20607 −0.284864
\(335\) 0.452157 0.0247040
\(336\) −0.698300 −0.0380954
\(337\) 21.6075 1.17704 0.588518 0.808484i \(-0.299712\pi\)
0.588518 + 0.808484i \(0.299712\pi\)
\(338\) −1.06779 −0.0580803
\(339\) 6.44484 0.350036
\(340\) −6.11924 −0.331862
\(341\) −5.60339 −0.303440
\(342\) 14.3668 0.776870
\(343\) −16.1782 −0.873543
\(344\) 0.277372 0.0149549
\(345\) −1.06325 −0.0572434
\(346\) −14.1303 −0.759649
\(347\) −25.8757 −1.38908 −0.694540 0.719455i \(-0.744392\pi\)
−0.694540 + 0.719455i \(0.744392\pi\)
\(348\) 1.42671 0.0764794
\(349\) −17.8972 −0.958014 −0.479007 0.877811i \(-0.659003\pi\)
−0.479007 + 0.877811i \(0.659003\pi\)
\(350\) −1.40927 −0.0753286
\(351\) 2.01950 0.107793
\(352\) 4.46183 0.237816
\(353\) 30.2693 1.61107 0.805535 0.592548i \(-0.201878\pi\)
0.805535 + 0.592548i \(0.201878\pi\)
\(354\) −3.80554 −0.202262
\(355\) 10.7371 0.569864
\(356\) −1.57027 −0.0832243
\(357\) 3.22484 0.170676
\(358\) 20.2016 1.06769
\(359\) −5.68638 −0.300116 −0.150058 0.988677i \(-0.547946\pi\)
−0.150058 + 0.988677i \(0.547946\pi\)
\(360\) −8.80113 −0.463860
\(361\) 2.79326 0.147014
\(362\) −26.2409 −1.37919
\(363\) 0.343328 0.0180200
\(364\) 1.13478 0.0594787
\(365\) −10.7422 −0.562273
\(366\) −5.30951 −0.277532
\(367\) 16.1935 0.845291 0.422646 0.906295i \(-0.361101\pi\)
0.422646 + 0.906295i \(0.361101\pi\)
\(368\) 4.77257 0.248788
\(369\) −20.0267 −1.04255
\(370\) −4.22522 −0.219659
\(371\) 16.6628 0.865089
\(372\) −1.65411 −0.0857618
\(373\) −9.81582 −0.508244 −0.254122 0.967172i \(-0.581786\pi\)
−0.254122 + 0.967172i \(0.581786\pi\)
\(374\) 7.59940 0.392956
\(375\) 0.343328 0.0177294
\(376\) 15.8345 0.816603
\(377\) 4.83303 0.248914
\(378\) 2.84602 0.146383
\(379\) −15.3268 −0.787283 −0.393642 0.919264i \(-0.628785\pi\)
−0.393642 + 0.919264i \(0.628785\pi\)
\(380\) −4.01390 −0.205909
\(381\) −2.97019 −0.152168
\(382\) 8.84641 0.452622
\(383\) −5.98657 −0.305899 −0.152950 0.988234i \(-0.548877\pi\)
−0.152950 + 0.988234i \(0.548877\pi\)
\(384\) 0.187193 0.00955263
\(385\) −1.31980 −0.0672630
\(386\) 21.4427 1.09141
\(387\) −0.261788 −0.0133074
\(388\) 5.14984 0.261443
\(389\) 28.5530 1.44769 0.723847 0.689960i \(-0.242372\pi\)
0.723847 + 0.689960i \(0.242372\pi\)
\(390\) 0.366604 0.0185637
\(391\) −22.0403 −1.11463
\(392\) −16.0568 −0.810988
\(393\) 4.47247 0.225606
\(394\) 16.9749 0.855185
\(395\) 5.81132 0.292399
\(396\) −2.47810 −0.124529
\(397\) −15.3127 −0.768522 −0.384261 0.923225i \(-0.625544\pi\)
−0.384261 + 0.923225i \(0.625544\pi\)
\(398\) 12.0114 0.602075
\(399\) 2.11532 0.105899
\(400\) −1.54108 −0.0770542
\(401\) 19.1032 0.953968 0.476984 0.878912i \(-0.341730\pi\)
0.476984 + 0.878912i \(0.341730\pi\)
\(402\) −0.165762 −0.00826748
\(403\) −5.60339 −0.279125
\(404\) 15.5886 0.775562
\(405\) 7.95303 0.395189
\(406\) 6.81104 0.338026
\(407\) −3.95696 −0.196139
\(408\) 7.46151 0.369400
\(409\) 23.2991 1.15206 0.576032 0.817427i \(-0.304600\pi\)
0.576032 + 0.817427i \(0.304600\pi\)
\(410\) −7.41967 −0.366431
\(411\) −3.70651 −0.182829
\(412\) 16.1113 0.793747
\(413\) 13.7002 0.674142
\(414\) −9.53074 −0.468410
\(415\) −14.5762 −0.715518
\(416\) 4.46183 0.218759
\(417\) −6.48666 −0.317653
\(418\) 4.98481 0.243815
\(419\) 30.6438 1.49705 0.748525 0.663107i \(-0.230762\pi\)
0.748525 + 0.663107i \(0.230762\pi\)
\(420\) −0.389602 −0.0190106
\(421\) 5.40310 0.263331 0.131666 0.991294i \(-0.457967\pi\)
0.131666 + 0.991294i \(0.457967\pi\)
\(422\) −12.9022 −0.628071
\(423\) −14.9449 −0.726645
\(424\) 38.5538 1.87234
\(425\) 7.11691 0.345221
\(426\) −3.93624 −0.190712
\(427\) 19.1146 0.925018
\(428\) −12.3376 −0.596360
\(429\) 0.343328 0.0165760
\(430\) −0.0969895 −0.00467725
\(431\) −13.9555 −0.672212 −0.336106 0.941824i \(-0.609110\pi\)
−0.336106 + 0.941824i \(0.609110\pi\)
\(432\) 3.11222 0.149737
\(433\) −9.59238 −0.460980 −0.230490 0.973075i \(-0.574033\pi\)
−0.230490 + 0.973075i \(0.574033\pi\)
\(434\) −7.89668 −0.379053
\(435\) −1.65931 −0.0795581
\(436\) −3.14498 −0.150617
\(437\) −14.4573 −0.691586
\(438\) 3.93813 0.188171
\(439\) −1.99577 −0.0952529 −0.0476264 0.998865i \(-0.515166\pi\)
−0.0476264 + 0.998865i \(0.515166\pi\)
\(440\) −3.05369 −0.145579
\(441\) 15.1546 0.721649
\(442\) 7.59940 0.361467
\(443\) 27.1573 1.29028 0.645141 0.764063i \(-0.276798\pi\)
0.645141 + 0.764063i \(0.276798\pi\)
\(444\) −1.16809 −0.0554352
\(445\) 1.82629 0.0865744
\(446\) 12.6090 0.597055
\(447\) −2.39335 −0.113202
\(448\) 10.3558 0.489263
\(449\) −13.6479 −0.644085 −0.322043 0.946725i \(-0.604369\pi\)
−0.322043 + 0.946725i \(0.604369\pi\)
\(450\) 3.07752 0.145076
\(451\) −6.94860 −0.327197
\(452\) −16.1402 −0.759170
\(453\) −6.86615 −0.322600
\(454\) 18.0388 0.846604
\(455\) −1.31980 −0.0618730
\(456\) 4.89436 0.229199
\(457\) 12.1666 0.569132 0.284566 0.958656i \(-0.408151\pi\)
0.284566 + 0.958656i \(0.408151\pi\)
\(458\) −17.7174 −0.827880
\(459\) −14.3726 −0.670855
\(460\) 2.66276 0.124152
\(461\) 24.8253 1.15623 0.578116 0.815955i \(-0.303788\pi\)
0.578116 + 0.815955i \(0.303788\pi\)
\(462\) 0.483842 0.0225104
\(463\) 14.9250 0.693625 0.346812 0.937935i \(-0.387264\pi\)
0.346812 + 0.937935i \(0.387264\pi\)
\(464\) 7.44811 0.345770
\(465\) 1.92380 0.0892141
\(466\) −20.5707 −0.952921
\(467\) −21.1572 −0.979040 −0.489520 0.871992i \(-0.662828\pi\)
−0.489520 + 0.871992i \(0.662828\pi\)
\(468\) −2.47810 −0.114550
\(469\) 0.596755 0.0275556
\(470\) −5.53690 −0.255398
\(471\) −4.90325 −0.225930
\(472\) 31.6990 1.45906
\(473\) −0.0908316 −0.00417644
\(474\) −2.13045 −0.0978548
\(475\) 4.66833 0.214197
\(476\) −8.07614 −0.370169
\(477\) −36.3877 −1.66608
\(478\) −30.2323 −1.38279
\(479\) −14.9078 −0.681156 −0.340578 0.940216i \(-0.610623\pi\)
−0.340578 + 0.940216i \(0.610623\pi\)
\(480\) −1.53187 −0.0699200
\(481\) −3.95696 −0.180422
\(482\) 18.9980 0.865336
\(483\) −1.40327 −0.0638511
\(484\) −0.859816 −0.0390825
\(485\) −5.98946 −0.271968
\(486\) −9.38483 −0.425705
\(487\) 22.2067 1.00628 0.503140 0.864205i \(-0.332178\pi\)
0.503140 + 0.864205i \(0.332178\pi\)
\(488\) 44.2266 2.00204
\(489\) −1.13175 −0.0511793
\(490\) 5.61461 0.253642
\(491\) −21.0059 −0.947984 −0.473992 0.880529i \(-0.657187\pi\)
−0.473992 + 0.880529i \(0.657187\pi\)
\(492\) −2.05122 −0.0924760
\(493\) −34.3963 −1.54913
\(494\) 4.98481 0.224277
\(495\) 2.88213 0.129542
\(496\) −8.63529 −0.387736
\(497\) 14.1707 0.635644
\(498\) 5.34369 0.239456
\(499\) −5.96703 −0.267121 −0.133560 0.991041i \(-0.542641\pi\)
−0.133560 + 0.991041i \(0.542641\pi\)
\(500\) −0.859816 −0.0384521
\(501\) 1.67391 0.0747848
\(502\) −19.8006 −0.883742
\(503\) 6.17193 0.275193 0.137596 0.990488i \(-0.456062\pi\)
0.137596 + 0.990488i \(0.456062\pi\)
\(504\) −11.6157 −0.517404
\(505\) −18.1302 −0.806782
\(506\) −3.30684 −0.147007
\(507\) 0.343328 0.0152477
\(508\) 7.43843 0.330027
\(509\) 14.3534 0.636205 0.318103 0.948056i \(-0.396954\pi\)
0.318103 + 0.948056i \(0.396954\pi\)
\(510\) −2.60909 −0.115532
\(511\) −14.1775 −0.627176
\(512\) 16.2881 0.719837
\(513\) −9.42768 −0.416242
\(514\) 3.54465 0.156348
\(515\) −18.7381 −0.825698
\(516\) −0.0268134 −0.00118039
\(517\) −5.18536 −0.228052
\(518\) −5.57643 −0.245014
\(519\) 4.54331 0.199429
\(520\) −3.05369 −0.133913
\(521\) 10.8081 0.473511 0.236755 0.971569i \(-0.423916\pi\)
0.236755 + 0.971569i \(0.423916\pi\)
\(522\) −14.8737 −0.651006
\(523\) −17.0609 −0.746019 −0.373009 0.927828i \(-0.621674\pi\)
−0.373009 + 0.927828i \(0.621674\pi\)
\(524\) −11.2007 −0.489303
\(525\) 0.453123 0.0197759
\(526\) 11.8336 0.515970
\(527\) 39.8788 1.73715
\(528\) 0.529097 0.0230260
\(529\) −13.4093 −0.583011
\(530\) −13.4812 −0.585586
\(531\) −29.9180 −1.29833
\(532\) −5.29753 −0.229677
\(533\) −6.94860 −0.300977
\(534\) −0.669524 −0.0289731
\(535\) 14.3491 0.620366
\(536\) 1.38075 0.0596393
\(537\) −6.49544 −0.280299
\(538\) 0.817650 0.0352514
\(539\) 5.25814 0.226484
\(540\) 1.73640 0.0747226
\(541\) −4.72643 −0.203205 −0.101602 0.994825i \(-0.532397\pi\)
−0.101602 + 0.994825i \(0.532397\pi\)
\(542\) 13.4157 0.576253
\(543\) 8.43724 0.362077
\(544\) −31.7544 −1.36146
\(545\) 3.65773 0.156680
\(546\) 0.483842 0.0207065
\(547\) 4.77101 0.203994 0.101997 0.994785i \(-0.467477\pi\)
0.101997 + 0.994785i \(0.467477\pi\)
\(548\) 9.28242 0.396525
\(549\) −41.7417 −1.78149
\(550\) 1.06779 0.0455309
\(551\) −22.5622 −0.961180
\(552\) −3.24684 −0.138195
\(553\) 7.66975 0.326151
\(554\) −25.9585 −1.10287
\(555\) 1.35854 0.0576667
\(556\) 16.2449 0.688938
\(557\) −16.5718 −0.702169 −0.351084 0.936344i \(-0.614187\pi\)
−0.351084 + 0.936344i \(0.614187\pi\)
\(558\) 17.2445 0.730018
\(559\) −0.0908316 −0.00384177
\(560\) −2.03392 −0.0859486
\(561\) −2.44344 −0.103162
\(562\) −16.4210 −0.692678
\(563\) −25.9594 −1.09406 −0.547030 0.837113i \(-0.684242\pi\)
−0.547030 + 0.837113i \(0.684242\pi\)
\(564\) −1.53071 −0.0644547
\(565\) 18.7717 0.789730
\(566\) 3.98861 0.167654
\(567\) 10.4964 0.440806
\(568\) 32.7877 1.37574
\(569\) −6.86052 −0.287608 −0.143804 0.989606i \(-0.545933\pi\)
−0.143804 + 0.989606i \(0.545933\pi\)
\(570\) −1.71142 −0.0716837
\(571\) −28.0004 −1.17178 −0.585890 0.810390i \(-0.699255\pi\)
−0.585890 + 0.810390i \(0.699255\pi\)
\(572\) −0.859816 −0.0359507
\(573\) −2.84439 −0.118826
\(574\) −9.79244 −0.408729
\(575\) −3.09689 −0.129149
\(576\) −22.6145 −0.942273
\(577\) −21.7112 −0.903850 −0.451925 0.892056i \(-0.649263\pi\)
−0.451925 + 0.892056i \(0.649263\pi\)
\(578\) −35.9318 −1.49456
\(579\) −6.89449 −0.286525
\(580\) 4.15552 0.172548
\(581\) −19.2376 −0.798110
\(582\) 2.19576 0.0910171
\(583\) −12.6253 −0.522886
\(584\) −32.8034 −1.35742
\(585\) 2.88213 0.119161
\(586\) −2.37000 −0.0979039
\(587\) 21.5111 0.887857 0.443929 0.896062i \(-0.353584\pi\)
0.443929 + 0.896062i \(0.353584\pi\)
\(588\) 1.55220 0.0640115
\(589\) 26.1584 1.07784
\(590\) −11.0843 −0.456333
\(591\) −5.45795 −0.224510
\(592\) −6.09802 −0.250627
\(593\) −43.7709 −1.79745 −0.898727 0.438509i \(-0.855507\pi\)
−0.898727 + 0.438509i \(0.855507\pi\)
\(594\) −2.15641 −0.0884785
\(595\) 9.39287 0.385070
\(596\) 5.99381 0.245516
\(597\) −3.86201 −0.158062
\(598\) −3.30684 −0.135227
\(599\) −19.5116 −0.797221 −0.398611 0.917120i \(-0.630508\pi\)
−0.398611 + 0.917120i \(0.630508\pi\)
\(600\) 1.04842 0.0428015
\(601\) −0.382954 −0.0156210 −0.00781051 0.999969i \(-0.502486\pi\)
−0.00781051 + 0.999969i \(0.502486\pi\)
\(602\) −0.128006 −0.00521714
\(603\) −1.30317 −0.0530693
\(604\) 17.1953 0.699667
\(605\) 1.00000 0.0406558
\(606\) 6.64658 0.269999
\(607\) 15.5471 0.631039 0.315519 0.948919i \(-0.397821\pi\)
0.315519 + 0.948919i \(0.397821\pi\)
\(608\) −20.8293 −0.844738
\(609\) −2.18996 −0.0887415
\(610\) −15.4648 −0.626152
\(611\) −5.18536 −0.209777
\(612\) 17.6364 0.712910
\(613\) 20.8664 0.842786 0.421393 0.906878i \(-0.361541\pi\)
0.421393 + 0.906878i \(0.361541\pi\)
\(614\) 28.7224 1.15914
\(615\) 2.38565 0.0961986
\(616\) −4.03025 −0.162383
\(617\) −20.8763 −0.840450 −0.420225 0.907420i \(-0.638049\pi\)
−0.420225 + 0.907420i \(0.638049\pi\)
\(618\) 6.86945 0.276330
\(619\) 14.5455 0.584633 0.292316 0.956322i \(-0.405574\pi\)
0.292316 + 0.956322i \(0.405574\pi\)
\(620\) −4.81788 −0.193491
\(621\) 6.25417 0.250971
\(622\) 17.0675 0.684346
\(623\) 2.41033 0.0965678
\(624\) 0.529097 0.0211809
\(625\) 1.00000 0.0400000
\(626\) −2.65273 −0.106025
\(627\) −1.60277 −0.0640083
\(628\) 12.2795 0.490005
\(629\) 28.1614 1.12287
\(630\) 4.06169 0.161822
\(631\) −2.96489 −0.118030 −0.0590152 0.998257i \(-0.518796\pi\)
−0.0590152 + 0.998257i \(0.518796\pi\)
\(632\) 17.7460 0.705897
\(633\) 4.14846 0.164887
\(634\) 8.45344 0.335729
\(635\) −8.65119 −0.343312
\(636\) −3.72697 −0.147784
\(637\) 5.25814 0.208335
\(638\) −5.16068 −0.204313
\(639\) −30.9455 −1.22419
\(640\) 0.545230 0.0215521
\(641\) −34.5769 −1.36570 −0.682852 0.730557i \(-0.739261\pi\)
−0.682852 + 0.730557i \(0.739261\pi\)
\(642\) −5.26043 −0.207613
\(643\) 3.43687 0.135537 0.0677684 0.997701i \(-0.478412\pi\)
0.0677684 + 0.997701i \(0.478412\pi\)
\(644\) 3.51429 0.138483
\(645\) 0.0311850 0.00122791
\(646\) −35.4765 −1.39580
\(647\) −35.0062 −1.37624 −0.688119 0.725598i \(-0.741563\pi\)
−0.688119 + 0.725598i \(0.741563\pi\)
\(648\) 24.2861 0.954049
\(649\) −10.3805 −0.407472
\(650\) 1.06779 0.0418823
\(651\) 2.53902 0.0995121
\(652\) 2.83429 0.111000
\(653\) −17.3441 −0.678727 −0.339364 0.940655i \(-0.610212\pi\)
−0.339364 + 0.940655i \(0.610212\pi\)
\(654\) −1.34094 −0.0524348
\(655\) 13.0268 0.509000
\(656\) −10.7084 −0.418092
\(657\) 30.9604 1.20788
\(658\) −7.30758 −0.284879
\(659\) 1.99929 0.0778812 0.0389406 0.999242i \(-0.487602\pi\)
0.0389406 + 0.999242i \(0.487602\pi\)
\(660\) 0.295199 0.0114906
\(661\) 23.6273 0.918994 0.459497 0.888179i \(-0.348030\pi\)
0.459497 + 0.888179i \(0.348030\pi\)
\(662\) 22.6698 0.881088
\(663\) −2.44344 −0.0948952
\(664\) −44.5113 −1.72737
\(665\) 6.16123 0.238922
\(666\) 12.1776 0.471873
\(667\) 14.9674 0.579539
\(668\) −4.19207 −0.162196
\(669\) −4.05418 −0.156744
\(670\) −0.482811 −0.0186526
\(671\) −14.4830 −0.559109
\(672\) −2.02176 −0.0779909
\(673\) −21.2862 −0.820523 −0.410261 0.911968i \(-0.634563\pi\)
−0.410261 + 0.911968i \(0.634563\pi\)
\(674\) −23.0723 −0.888714
\(675\) −2.01950 −0.0777305
\(676\) −0.859816 −0.0330698
\(677\) 44.5518 1.71227 0.856133 0.516756i \(-0.172861\pi\)
0.856133 + 0.516756i \(0.172861\pi\)
\(678\) −6.88176 −0.264292
\(679\) −7.90487 −0.303361
\(680\) 21.7329 0.833418
\(681\) −5.80003 −0.222258
\(682\) 5.98326 0.229111
\(683\) 36.0211 1.37831 0.689154 0.724615i \(-0.257982\pi\)
0.689154 + 0.724615i \(0.257982\pi\)
\(684\) 11.5686 0.442335
\(685\) −10.7958 −0.412487
\(686\) 17.2750 0.659563
\(687\) 5.69668 0.217342
\(688\) −0.139979 −0.00533666
\(689\) −12.6253 −0.480985
\(690\) 1.13533 0.0432213
\(691\) 6.72904 0.255985 0.127992 0.991775i \(-0.459147\pi\)
0.127992 + 0.991775i \(0.459147\pi\)
\(692\) −11.3781 −0.432530
\(693\) 3.80382 0.144495
\(694\) 27.6299 1.04882
\(695\) −18.8935 −0.716671
\(696\) −5.06704 −0.192066
\(697\) 49.4526 1.87315
\(698\) 19.1105 0.723343
\(699\) 6.61411 0.250169
\(700\) −1.13478 −0.0428907
\(701\) 15.7973 0.596657 0.298328 0.954463i \(-0.403571\pi\)
0.298328 + 0.954463i \(0.403571\pi\)
\(702\) −2.15641 −0.0813884
\(703\) 18.4724 0.696700
\(704\) −7.84648 −0.295725
\(705\) 1.78028 0.0670493
\(706\) −32.3213 −1.21643
\(707\) −23.9281 −0.899909
\(708\) −3.06432 −0.115164
\(709\) 31.3162 1.17610 0.588052 0.808823i \(-0.299895\pi\)
0.588052 + 0.808823i \(0.299895\pi\)
\(710\) −11.4650 −0.430272
\(711\) −16.7489 −0.628135
\(712\) 5.57693 0.209004
\(713\) −17.3531 −0.649878
\(714\) −3.44346 −0.128868
\(715\) 1.00000 0.0373979
\(716\) 16.2669 0.607922
\(717\) 9.72059 0.363022
\(718\) 6.07188 0.226601
\(719\) 48.9739 1.82642 0.913210 0.407490i \(-0.133596\pi\)
0.913210 + 0.407490i \(0.133596\pi\)
\(720\) 4.44160 0.165529
\(721\) −24.7304 −0.921009
\(722\) −2.98263 −0.111002
\(723\) −6.10843 −0.227175
\(724\) −21.1299 −0.785285
\(725\) −4.83303 −0.179494
\(726\) −0.366604 −0.0136059
\(727\) −29.3947 −1.09019 −0.545094 0.838375i \(-0.683506\pi\)
−0.545094 + 0.838375i \(0.683506\pi\)
\(728\) −4.03025 −0.149371
\(729\) −20.8416 −0.771910
\(730\) 11.4705 0.424541
\(731\) 0.646441 0.0239095
\(732\) −4.27536 −0.158022
\(733\) 21.8190 0.805904 0.402952 0.915221i \(-0.367984\pi\)
0.402952 + 0.915221i \(0.367984\pi\)
\(734\) −17.2913 −0.638233
\(735\) −1.80527 −0.0665883
\(736\) 13.8178 0.509331
\(737\) −0.452157 −0.0166554
\(738\) 21.3844 0.787171
\(739\) 4.31975 0.158905 0.0794523 0.996839i \(-0.474683\pi\)
0.0794523 + 0.996839i \(0.474683\pi\)
\(740\) −3.40226 −0.125070
\(741\) −1.60277 −0.0588791
\(742\) −17.7924 −0.653181
\(743\) −7.58424 −0.278239 −0.139119 0.990276i \(-0.544427\pi\)
−0.139119 + 0.990276i \(0.544427\pi\)
\(744\) 5.87470 0.215377
\(745\) −6.97104 −0.255399
\(746\) 10.4813 0.383747
\(747\) 42.0104 1.53708
\(748\) 6.11924 0.223741
\(749\) 18.9379 0.691975
\(750\) −0.366604 −0.0133865
\(751\) 4.01713 0.146587 0.0732936 0.997310i \(-0.476649\pi\)
0.0732936 + 0.997310i \(0.476649\pi\)
\(752\) −7.99108 −0.291405
\(753\) 6.36648 0.232007
\(754\) −5.16068 −0.187941
\(755\) −19.9988 −0.727831
\(756\) 2.29169 0.0833479
\(757\) 25.5698 0.929348 0.464674 0.885482i \(-0.346171\pi\)
0.464674 + 0.885482i \(0.346171\pi\)
\(758\) 16.3658 0.594434
\(759\) 1.06325 0.0385935
\(760\) 14.2556 0.517106
\(761\) −27.1804 −0.985287 −0.492644 0.870231i \(-0.663969\pi\)
−0.492644 + 0.870231i \(0.663969\pi\)
\(762\) 3.17156 0.114893
\(763\) 4.82746 0.174766
\(764\) 7.12336 0.257714
\(765\) −20.5118 −0.741607
\(766\) 6.39242 0.230968
\(767\) −10.3805 −0.374820
\(768\) −5.58772 −0.201629
\(769\) 8.02400 0.289353 0.144676 0.989479i \(-0.453786\pi\)
0.144676 + 0.989479i \(0.453786\pi\)
\(770\) 1.40927 0.0507866
\(771\) −1.13971 −0.0410457
\(772\) 17.2663 0.621426
\(773\) −3.39505 −0.122111 −0.0610557 0.998134i \(-0.519447\pi\)
−0.0610557 + 0.998134i \(0.519447\pi\)
\(774\) 0.279536 0.0100477
\(775\) 5.60339 0.201280
\(776\) −18.2900 −0.656572
\(777\) 1.79299 0.0643232
\(778\) −30.4887 −1.09307
\(779\) 32.4383 1.16222
\(780\) 0.295199 0.0105698
\(781\) −10.7371 −0.384202
\(782\) 23.5345 0.841593
\(783\) 9.76030 0.348805
\(784\) 8.10324 0.289401
\(785\) −14.2815 −0.509730
\(786\) −4.77568 −0.170343
\(787\) −44.7193 −1.59407 −0.797036 0.603932i \(-0.793600\pi\)
−0.797036 + 0.603932i \(0.793600\pi\)
\(788\) 13.6687 0.486926
\(789\) −3.80487 −0.135457
\(790\) −6.20529 −0.220774
\(791\) 24.7748 0.880889
\(792\) 8.80113 0.312735
\(793\) −14.4830 −0.514305
\(794\) 16.3508 0.580268
\(795\) 4.33462 0.153733
\(796\) 9.67186 0.342810
\(797\) −22.6005 −0.800549 −0.400275 0.916395i \(-0.631085\pi\)
−0.400275 + 0.916395i \(0.631085\pi\)
\(798\) −2.25873 −0.0799582
\(799\) 36.9038 1.30556
\(800\) −4.46183 −0.157749
\(801\) −5.26360 −0.185980
\(802\) −20.3983 −0.720288
\(803\) 10.7422 0.379084
\(804\) −0.133476 −0.00470735
\(805\) −4.08726 −0.144057
\(806\) 5.98326 0.210751
\(807\) −0.262899 −0.00925449
\(808\) −55.3640 −1.94770
\(809\) 34.0475 1.19705 0.598523 0.801105i \(-0.295754\pi\)
0.598523 + 0.801105i \(0.295754\pi\)
\(810\) −8.49219 −0.298385
\(811\) −9.83446 −0.345335 −0.172667 0.984980i \(-0.555239\pi\)
−0.172667 + 0.984980i \(0.555239\pi\)
\(812\) 5.48443 0.192466
\(813\) −4.31355 −0.151283
\(814\) 4.22522 0.148094
\(815\) −3.29640 −0.115468
\(816\) −3.76554 −0.131820
\(817\) 0.424032 0.0148350
\(818\) −24.8786 −0.869859
\(819\) 3.80382 0.132916
\(820\) −5.97451 −0.208639
\(821\) −13.8180 −0.482253 −0.241126 0.970494i \(-0.577517\pi\)
−0.241126 + 0.970494i \(0.577517\pi\)
\(822\) 3.95779 0.138044
\(823\) −11.6302 −0.405403 −0.202702 0.979241i \(-0.564972\pi\)
−0.202702 + 0.979241i \(0.564972\pi\)
\(824\) −57.2204 −1.99337
\(825\) −0.343328 −0.0119531
\(826\) −14.6290 −0.509007
\(827\) 20.6783 0.719054 0.359527 0.933135i \(-0.382938\pi\)
0.359527 + 0.933135i \(0.382938\pi\)
\(828\) −7.67440 −0.266704
\(829\) 22.8936 0.795127 0.397563 0.917575i \(-0.369856\pi\)
0.397563 + 0.917575i \(0.369856\pi\)
\(830\) 15.5644 0.540248
\(831\) 8.34643 0.289535
\(832\) −7.84648 −0.272028
\(833\) −37.4217 −1.29659
\(834\) 6.92642 0.239842
\(835\) 4.87554 0.168725
\(836\) 4.01390 0.138824
\(837\) −11.3160 −0.391139
\(838\) −32.7213 −1.13034
\(839\) −39.2466 −1.35494 −0.677471 0.735550i \(-0.736924\pi\)
−0.677471 + 0.735550i \(0.736924\pi\)
\(840\) 1.38370 0.0477421
\(841\) −5.64182 −0.194545
\(842\) −5.76940 −0.198827
\(843\) 5.27985 0.181848
\(844\) −10.3892 −0.357612
\(845\) 1.00000 0.0344010
\(846\) 15.9580 0.548649
\(847\) 1.31980 0.0453487
\(848\) −19.4566 −0.668144
\(849\) −1.28246 −0.0440138
\(850\) −7.59940 −0.260657
\(851\) −12.2543 −0.420072
\(852\) −3.16957 −0.108588
\(853\) −24.4193 −0.836101 −0.418051 0.908424i \(-0.637287\pi\)
−0.418051 + 0.908424i \(0.637287\pi\)
\(854\) −20.4104 −0.698430
\(855\) −13.4547 −0.460141
\(856\) 43.8178 1.49766
\(857\) 34.2627 1.17039 0.585196 0.810892i \(-0.301018\pi\)
0.585196 + 0.810892i \(0.301018\pi\)
\(858\) −0.366604 −0.0125156
\(859\) 22.5047 0.767850 0.383925 0.923364i \(-0.374572\pi\)
0.383925 + 0.923364i \(0.374572\pi\)
\(860\) −0.0780985 −0.00266314
\(861\) 3.14857 0.107303
\(862\) 14.9016 0.507550
\(863\) −5.81216 −0.197848 −0.0989240 0.995095i \(-0.531540\pi\)
−0.0989240 + 0.995095i \(0.531540\pi\)
\(864\) 9.01066 0.306549
\(865\) 13.2332 0.449941
\(866\) 10.2427 0.348061
\(867\) 11.5532 0.392366
\(868\) −6.35862 −0.215826
\(869\) −5.81132 −0.197135
\(870\) 1.77181 0.0600699
\(871\) −0.452157 −0.0153208
\(872\) 11.1696 0.378250
\(873\) 17.2624 0.584243
\(874\) 15.4374 0.522178
\(875\) 1.31980 0.0446172
\(876\) 3.17109 0.107141
\(877\) −23.6694 −0.799260 −0.399630 0.916677i \(-0.630861\pi\)
−0.399630 + 0.916677i \(0.630861\pi\)
\(878\) 2.13107 0.0719202
\(879\) 0.762027 0.0257025
\(880\) 1.54108 0.0519499
\(881\) −18.6126 −0.627074 −0.313537 0.949576i \(-0.601514\pi\)
−0.313537 + 0.949576i \(0.601514\pi\)
\(882\) −16.1820 −0.544877
\(883\) −35.6983 −1.20134 −0.600671 0.799496i \(-0.705100\pi\)
−0.600671 + 0.799496i \(0.705100\pi\)
\(884\) 6.11924 0.205812
\(885\) 3.56393 0.119800
\(886\) −28.9984 −0.974221
\(887\) −29.9209 −1.00465 −0.502323 0.864680i \(-0.667521\pi\)
−0.502323 + 0.864680i \(0.667521\pi\)
\(888\) 4.14856 0.139216
\(889\) −11.4178 −0.382941
\(890\) −1.95010 −0.0653675
\(891\) −7.95303 −0.266436
\(892\) 10.1531 0.339952
\(893\) 24.2070 0.810055
\(894\) 2.55561 0.0854723
\(895\) −18.9190 −0.632394
\(896\) 0.719592 0.0240399
\(897\) 1.06325 0.0355009
\(898\) 14.5732 0.486313
\(899\) −27.0813 −0.903213
\(900\) 2.47810 0.0826033
\(901\) 89.8531 2.99344
\(902\) 7.41967 0.247048
\(903\) 0.0411579 0.00136965
\(904\) 57.3229 1.90653
\(905\) 24.5749 0.816896
\(906\) 7.33164 0.243577
\(907\) 39.8957 1.32472 0.662358 0.749188i \(-0.269556\pi\)
0.662358 + 0.749188i \(0.269556\pi\)
\(908\) 14.5253 0.482040
\(909\) 52.2534 1.73314
\(910\) 1.40927 0.0467168
\(911\) −34.8570 −1.15486 −0.577431 0.816439i \(-0.695945\pi\)
−0.577431 + 0.816439i \(0.695945\pi\)
\(912\) −2.47000 −0.0817898
\(913\) 14.5762 0.482402
\(914\) −12.9915 −0.429720
\(915\) 4.97241 0.164383
\(916\) −14.2665 −0.471379
\(917\) 17.1927 0.567754
\(918\) 15.3470 0.506526
\(919\) 6.14603 0.202739 0.101369 0.994849i \(-0.467678\pi\)
0.101369 + 0.994849i \(0.467678\pi\)
\(920\) −9.45696 −0.311787
\(921\) −9.23511 −0.304307
\(922\) −26.5083 −0.873006
\(923\) −10.7371 −0.353415
\(924\) 0.389602 0.0128170
\(925\) 3.95696 0.130104
\(926\) −15.9368 −0.523717
\(927\) 54.0055 1.77377
\(928\) 21.5642 0.707878
\(929\) 54.1710 1.77729 0.888647 0.458592i \(-0.151646\pi\)
0.888647 + 0.458592i \(0.151646\pi\)
\(930\) −2.05422 −0.0673606
\(931\) −24.5467 −0.804486
\(932\) −16.5641 −0.542575
\(933\) −5.48773 −0.179660
\(934\) 22.5916 0.739219
\(935\) −7.11691 −0.232748
\(936\) 8.80113 0.287674
\(937\) −0.682282 −0.0222892 −0.0111446 0.999938i \(-0.503548\pi\)
−0.0111446 + 0.999938i \(0.503548\pi\)
\(938\) −0.637211 −0.0208057
\(939\) 0.852934 0.0278345
\(940\) −4.45846 −0.145419
\(941\) 11.4586 0.373539 0.186770 0.982404i \(-0.440198\pi\)
0.186770 + 0.982404i \(0.440198\pi\)
\(942\) 5.23566 0.170587
\(943\) −21.5190 −0.700757
\(944\) −15.9973 −0.520667
\(945\) −2.66532 −0.0867030
\(946\) 0.0969895 0.00315340
\(947\) −3.11253 −0.101143 −0.0505717 0.998720i \(-0.516104\pi\)
−0.0505717 + 0.998720i \(0.516104\pi\)
\(948\) −1.71549 −0.0557167
\(949\) 10.7422 0.348707
\(950\) −4.98481 −0.161729
\(951\) −2.71804 −0.0881384
\(952\) 28.6830 0.929620
\(953\) −26.1414 −0.846802 −0.423401 0.905942i \(-0.639164\pi\)
−0.423401 + 0.905942i \(0.639164\pi\)
\(954\) 38.8545 1.25796
\(955\) −8.28475 −0.268088
\(956\) −24.3438 −0.787335
\(957\) 1.65931 0.0536380
\(958\) 15.9185 0.514303
\(959\) −14.2483 −0.460101
\(960\) 2.69392 0.0869458
\(961\) 0.397933 0.0128366
\(962\) 4.22522 0.136227
\(963\) −41.3559 −1.33268
\(964\) 15.2977 0.492706
\(965\) −20.0813 −0.646441
\(966\) 1.49841 0.0482104
\(967\) −38.3726 −1.23398 −0.616989 0.786972i \(-0.711648\pi\)
−0.616989 + 0.786972i \(0.711648\pi\)
\(968\) 3.05369 0.0981495
\(969\) 11.4068 0.366438
\(970\) 6.39551 0.205348
\(971\) −48.2005 −1.54683 −0.773415 0.633900i \(-0.781453\pi\)
−0.773415 + 0.633900i \(0.781453\pi\)
\(972\) −7.55692 −0.242388
\(973\) −24.9355 −0.799397
\(974\) −23.7122 −0.759787
\(975\) −0.343328 −0.0109953
\(976\) −22.3195 −0.714429
\(977\) −11.1779 −0.357611 −0.178806 0.983884i \(-0.557223\pi\)
−0.178806 + 0.983884i \(0.557223\pi\)
\(978\) 1.20847 0.0386426
\(979\) −1.82629 −0.0583685
\(980\) 4.52103 0.144419
\(981\) −10.5420 −0.336582
\(982\) 22.4300 0.715770
\(983\) −1.54272 −0.0492050 −0.0246025 0.999697i \(-0.507832\pi\)
−0.0246025 + 0.999697i \(0.507832\pi\)
\(984\) 7.28504 0.232239
\(985\) −15.8972 −0.506527
\(986\) 36.7281 1.16966
\(987\) 2.34961 0.0747888
\(988\) 4.01390 0.127699
\(989\) −0.281296 −0.00894468
\(990\) −3.07752 −0.0978099
\(991\) 24.4899 0.777948 0.388974 0.921249i \(-0.372830\pi\)
0.388974 + 0.921249i \(0.372830\pi\)
\(992\) −25.0013 −0.793793
\(993\) −7.28903 −0.231310
\(994\) −15.1314 −0.479939
\(995\) −11.2488 −0.356609
\(996\) 4.30288 0.136342
\(997\) −16.3909 −0.519104 −0.259552 0.965729i \(-0.583575\pi\)
−0.259552 + 0.965729i \(0.583575\pi\)
\(998\) 6.37156 0.201688
\(999\) −7.99109 −0.252827
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 715.2.a.i.1.4 9
3.2 odd 2 6435.2.a.bq.1.6 9
5.4 even 2 3575.2.a.t.1.6 9
11.10 odd 2 7865.2.a.w.1.6 9
13.12 even 2 9295.2.a.t.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
715.2.a.i.1.4 9 1.1 even 1 trivial
3575.2.a.t.1.6 9 5.4 even 2
6435.2.a.bq.1.6 9 3.2 odd 2
7865.2.a.w.1.6 9 11.10 odd 2
9295.2.a.t.1.6 9 13.12 even 2