Properties

Label 3575.2.a.t.1.6
Level $3575$
Weight $2$
Character 3575.1
Self dual yes
Analytic conductor $28.547$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [3575,2,Mod(1,3575)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(3575, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("3575.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 3575 = 5^{2} \cdot 11 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3575.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [9,-1,-2,15,0,-1,4,-3,23,0,-9,-6,9,16,0,15,-13] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(17)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(28.5465187226\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - x^{8} - 16x^{7} + 14x^{6} + 86x^{5} - 57x^{4} - 179x^{3} + 64x^{2} + 118x - 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 715)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-1.06779\) of defining polynomial
Character \(\chi\) \(=\) 3575.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.06779 q^{2} -0.343328 q^{3} -0.859816 q^{4} -0.366604 q^{6} -1.31980 q^{7} -3.05369 q^{8} -2.88213 q^{9} -1.00000 q^{11} +0.295199 q^{12} +1.00000 q^{13} -1.40927 q^{14} -1.54108 q^{16} -7.11691 q^{17} -3.07752 q^{18} +4.66833 q^{19} +0.453123 q^{21} -1.06779 q^{22} +3.09689 q^{23} +1.04842 q^{24} +1.06779 q^{26} +2.01950 q^{27} +1.13478 q^{28} -4.83303 q^{29} +5.60339 q^{31} +4.46183 q^{32} +0.343328 q^{33} -7.59940 q^{34} +2.47810 q^{36} -3.95696 q^{37} +4.98481 q^{38} -0.343328 q^{39} +6.94860 q^{41} +0.483842 q^{42} -0.0908316 q^{43} +0.859816 q^{44} +3.30684 q^{46} -5.18536 q^{47} +0.529097 q^{48} -5.25814 q^{49} +2.44344 q^{51} -0.859816 q^{52} -12.6253 q^{53} +2.15641 q^{54} +4.03025 q^{56} -1.60277 q^{57} -5.16068 q^{58} +10.3805 q^{59} +14.4830 q^{61} +5.98326 q^{62} +3.80382 q^{63} +7.84648 q^{64} +0.366604 q^{66} -0.452157 q^{67} +6.11924 q^{68} -1.06325 q^{69} +10.7371 q^{71} +8.80113 q^{72} +10.7422 q^{73} -4.22522 q^{74} -4.01390 q^{76} +1.31980 q^{77} -0.366604 q^{78} +5.81132 q^{79} +7.95303 q^{81} +7.41967 q^{82} +14.5762 q^{83} -0.389602 q^{84} -0.0969895 q^{86} +1.65931 q^{87} +3.05369 q^{88} +1.82629 q^{89} -1.31980 q^{91} -2.66276 q^{92} -1.92380 q^{93} -5.53690 q^{94} -1.53187 q^{96} +5.98946 q^{97} -5.61461 q^{98} +2.88213 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q - q^{2} - 2 q^{3} + 15 q^{4} - q^{6} + 4 q^{7} - 3 q^{8} + 23 q^{9} - 9 q^{11} - 6 q^{12} + 9 q^{13} + 16 q^{14} + 15 q^{16} - 13 q^{17} - 3 q^{18} - 3 q^{19} + 14 q^{21} + q^{22} + 2 q^{24} - q^{26}+ \cdots - 23 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.06779 0.755044 0.377522 0.926001i \(-0.376776\pi\)
0.377522 + 0.926001i \(0.376776\pi\)
\(3\) −0.343328 −0.198221 −0.0991103 0.995076i \(-0.531600\pi\)
−0.0991103 + 0.995076i \(0.531600\pi\)
\(4\) −0.859816 −0.429908
\(5\) 0 0
\(6\) −0.366604 −0.149665
\(7\) −1.31980 −0.498836 −0.249418 0.968396i \(-0.580239\pi\)
−0.249418 + 0.968396i \(0.580239\pi\)
\(8\) −3.05369 −1.07964
\(9\) −2.88213 −0.960709
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0.295199 0.0852166
\(13\) 1.00000 0.277350
\(14\) −1.40927 −0.376643
\(15\) 0 0
\(16\) −1.54108 −0.385271
\(17\) −7.11691 −1.72611 −0.863053 0.505114i \(-0.831450\pi\)
−0.863053 + 0.505114i \(0.831450\pi\)
\(18\) −3.07752 −0.725378
\(19\) 4.66833 1.07099 0.535494 0.844539i \(-0.320126\pi\)
0.535494 + 0.844539i \(0.320126\pi\)
\(20\) 0 0
\(21\) 0.453123 0.0988795
\(22\) −1.06779 −0.227654
\(23\) 3.09689 0.645747 0.322873 0.946442i \(-0.395351\pi\)
0.322873 + 0.946442i \(0.395351\pi\)
\(24\) 1.04842 0.214008
\(25\) 0 0
\(26\) 1.06779 0.209412
\(27\) 2.01950 0.388653
\(28\) 1.13478 0.214453
\(29\) −4.83303 −0.897471 −0.448736 0.893665i \(-0.648126\pi\)
−0.448736 + 0.893665i \(0.648126\pi\)
\(30\) 0 0
\(31\) 5.60339 1.00640 0.503199 0.864171i \(-0.332156\pi\)
0.503199 + 0.864171i \(0.332156\pi\)
\(32\) 4.46183 0.788747
\(33\) 0.343328 0.0597657
\(34\) −7.59940 −1.30329
\(35\) 0 0
\(36\) 2.47810 0.413016
\(37\) −3.95696 −0.650521 −0.325261 0.945624i \(-0.605452\pi\)
−0.325261 + 0.945624i \(0.605452\pi\)
\(38\) 4.98481 0.808643
\(39\) −0.343328 −0.0549765
\(40\) 0 0
\(41\) 6.94860 1.08519 0.542594 0.839995i \(-0.317442\pi\)
0.542594 + 0.839995i \(0.317442\pi\)
\(42\) 0.483842 0.0746584
\(43\) −0.0908316 −0.0138517 −0.00692585 0.999976i \(-0.502205\pi\)
−0.00692585 + 0.999976i \(0.502205\pi\)
\(44\) 0.859816 0.129622
\(45\) 0 0
\(46\) 3.30684 0.487567
\(47\) −5.18536 −0.756363 −0.378182 0.925731i \(-0.623450\pi\)
−0.378182 + 0.925731i \(0.623450\pi\)
\(48\) 0.529097 0.0763686
\(49\) −5.25814 −0.751163
\(50\) 0 0
\(51\) 2.44344 0.342150
\(52\) −0.859816 −0.119235
\(53\) −12.6253 −1.73422 −0.867109 0.498119i \(-0.834024\pi\)
−0.867109 + 0.498119i \(0.834024\pi\)
\(54\) 2.15641 0.293450
\(55\) 0 0
\(56\) 4.03025 0.538565
\(57\) −1.60277 −0.212292
\(58\) −5.16068 −0.677631
\(59\) 10.3805 1.35143 0.675716 0.737162i \(-0.263835\pi\)
0.675716 + 0.737162i \(0.263835\pi\)
\(60\) 0 0
\(61\) 14.4830 1.85435 0.927177 0.374624i \(-0.122228\pi\)
0.927177 + 0.374624i \(0.122228\pi\)
\(62\) 5.98326 0.759875
\(63\) 3.80382 0.479236
\(64\) 7.84648 0.980810
\(65\) 0 0
\(66\) 0.366604 0.0451258
\(67\) −0.452157 −0.0552398 −0.0276199 0.999618i \(-0.508793\pi\)
−0.0276199 + 0.999618i \(0.508793\pi\)
\(68\) 6.11924 0.742066
\(69\) −1.06325 −0.128000
\(70\) 0 0
\(71\) 10.7371 1.27425 0.637127 0.770759i \(-0.280123\pi\)
0.637127 + 0.770759i \(0.280123\pi\)
\(72\) 8.80113 1.03722
\(73\) 10.7422 1.25728 0.628640 0.777696i \(-0.283612\pi\)
0.628640 + 0.777696i \(0.283612\pi\)
\(74\) −4.22522 −0.491172
\(75\) 0 0
\(76\) −4.01390 −0.460426
\(77\) 1.31980 0.150405
\(78\) −0.366604 −0.0415097
\(79\) 5.81132 0.653824 0.326912 0.945055i \(-0.393992\pi\)
0.326912 + 0.945055i \(0.393992\pi\)
\(80\) 0 0
\(81\) 7.95303 0.883670
\(82\) 7.41967 0.819365
\(83\) 14.5762 1.59995 0.799973 0.600036i \(-0.204847\pi\)
0.799973 + 0.600036i \(0.204847\pi\)
\(84\) −0.389602 −0.0425091
\(85\) 0 0
\(86\) −0.0969895 −0.0104586
\(87\) 1.65931 0.177897
\(88\) 3.05369 0.325525
\(89\) 1.82629 0.193586 0.0967931 0.995305i \(-0.469141\pi\)
0.0967931 + 0.995305i \(0.469141\pi\)
\(90\) 0 0
\(91\) −1.31980 −0.138352
\(92\) −2.66276 −0.277612
\(93\) −1.92380 −0.199489
\(94\) −5.53690 −0.571088
\(95\) 0 0
\(96\) −1.53187 −0.156346
\(97\) 5.98946 0.608138 0.304069 0.952650i \(-0.401655\pi\)
0.304069 + 0.952650i \(0.401655\pi\)
\(98\) −5.61461 −0.567161
\(99\) 2.88213 0.289665
\(100\) 0 0
\(101\) −18.1302 −1.80402 −0.902009 0.431717i \(-0.857908\pi\)
−0.902009 + 0.431717i \(0.857908\pi\)
\(102\) 2.60909 0.258338
\(103\) 18.7381 1.84632 0.923159 0.384419i \(-0.125598\pi\)
0.923159 + 0.384419i \(0.125598\pi\)
\(104\) −3.05369 −0.299439
\(105\) 0 0
\(106\) −13.4812 −1.30941
\(107\) −14.3491 −1.38718 −0.693590 0.720370i \(-0.743972\pi\)
−0.693590 + 0.720370i \(0.743972\pi\)
\(108\) −1.73640 −0.167085
\(109\) 3.65773 0.350347 0.175174 0.984538i \(-0.443951\pi\)
0.175174 + 0.984538i \(0.443951\pi\)
\(110\) 0 0
\(111\) 1.35854 0.128947
\(112\) 2.03392 0.192187
\(113\) −18.7717 −1.76589 −0.882945 0.469477i \(-0.844443\pi\)
−0.882945 + 0.469477i \(0.844443\pi\)
\(114\) −1.71142 −0.160290
\(115\) 0 0
\(116\) 4.15552 0.385830
\(117\) −2.88213 −0.266453
\(118\) 11.0843 1.02039
\(119\) 9.39287 0.861043
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 15.4648 1.40012
\(123\) −2.38565 −0.215107
\(124\) −4.81788 −0.432658
\(125\) 0 0
\(126\) 4.06169 0.361844
\(127\) 8.65119 0.767669 0.383834 0.923402i \(-0.374603\pi\)
0.383834 + 0.923402i \(0.374603\pi\)
\(128\) −0.545230 −0.0481919
\(129\) 0.0311850 0.00274569
\(130\) 0 0
\(131\) 13.0268 1.13816 0.569079 0.822283i \(-0.307300\pi\)
0.569079 + 0.822283i \(0.307300\pi\)
\(132\) −0.295199 −0.0256938
\(133\) −6.16123 −0.534247
\(134\) −0.482811 −0.0417085
\(135\) 0 0
\(136\) 21.7329 1.86358
\(137\) 10.7958 0.922349 0.461175 0.887309i \(-0.347428\pi\)
0.461175 + 0.887309i \(0.347428\pi\)
\(138\) −1.13533 −0.0966459
\(139\) −18.8935 −1.60252 −0.801262 0.598313i \(-0.795838\pi\)
−0.801262 + 0.598313i \(0.795838\pi\)
\(140\) 0 0
\(141\) 1.78028 0.149927
\(142\) 11.4650 0.962118
\(143\) −1.00000 −0.0836242
\(144\) 4.44160 0.370133
\(145\) 0 0
\(146\) 11.4705 0.949303
\(147\) 1.80527 0.148896
\(148\) 3.40226 0.279664
\(149\) −6.97104 −0.571090 −0.285545 0.958365i \(-0.592175\pi\)
−0.285545 + 0.958365i \(0.592175\pi\)
\(150\) 0 0
\(151\) −19.9988 −1.62748 −0.813740 0.581229i \(-0.802572\pi\)
−0.813740 + 0.581229i \(0.802572\pi\)
\(152\) −14.2556 −1.15629
\(153\) 20.5118 1.65828
\(154\) 1.40927 0.113562
\(155\) 0 0
\(156\) 0.295199 0.0236348
\(157\) 14.2815 1.13979 0.569895 0.821717i \(-0.306984\pi\)
0.569895 + 0.821717i \(0.306984\pi\)
\(158\) 6.20529 0.493666
\(159\) 4.33462 0.343757
\(160\) 0 0
\(161\) −4.08726 −0.322121
\(162\) 8.49219 0.667210
\(163\) 3.29640 0.258194 0.129097 0.991632i \(-0.458792\pi\)
0.129097 + 0.991632i \(0.458792\pi\)
\(164\) −5.97451 −0.466531
\(165\) 0 0
\(166\) 15.5644 1.20803
\(167\) −4.87554 −0.377281 −0.188640 0.982046i \(-0.560408\pi\)
−0.188640 + 0.982046i \(0.560408\pi\)
\(168\) −1.38370 −0.106755
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −13.4547 −1.02891
\(172\) 0.0780985 0.00595495
\(173\) −13.2332 −1.00610 −0.503049 0.864258i \(-0.667789\pi\)
−0.503049 + 0.864258i \(0.667789\pi\)
\(174\) 1.77181 0.134320
\(175\) 0 0
\(176\) 1.54108 0.116164
\(177\) −3.56393 −0.267881
\(178\) 1.95010 0.146166
\(179\) −18.9190 −1.41408 −0.707038 0.707176i \(-0.749969\pi\)
−0.707038 + 0.707176i \(0.749969\pi\)
\(180\) 0 0
\(181\) 24.5749 1.82663 0.913317 0.407248i \(-0.133512\pi\)
0.913317 + 0.407248i \(0.133512\pi\)
\(182\) −1.40927 −0.104462
\(183\) −4.97241 −0.367571
\(184\) −9.45696 −0.697176
\(185\) 0 0
\(186\) −2.05422 −0.150623
\(187\) 7.11691 0.520440
\(188\) 4.45846 0.325167
\(189\) −2.66532 −0.193874
\(190\) 0 0
\(191\) −8.28475 −0.599464 −0.299732 0.954023i \(-0.596897\pi\)
−0.299732 + 0.954023i \(0.596897\pi\)
\(192\) −2.69392 −0.194417
\(193\) 20.0813 1.44549 0.722743 0.691116i \(-0.242881\pi\)
0.722743 + 0.691116i \(0.242881\pi\)
\(194\) 6.39551 0.459171
\(195\) 0 0
\(196\) 4.52103 0.322931
\(197\) 15.8972 1.13263 0.566314 0.824189i \(-0.308369\pi\)
0.566314 + 0.824189i \(0.308369\pi\)
\(198\) 3.07752 0.218710
\(199\) −11.2488 −0.797403 −0.398701 0.917081i \(-0.630539\pi\)
−0.398701 + 0.917081i \(0.630539\pi\)
\(200\) 0 0
\(201\) 0.155238 0.0109497
\(202\) −19.3593 −1.36211
\(203\) 6.37861 0.447691
\(204\) −2.10091 −0.147093
\(205\) 0 0
\(206\) 20.0084 1.39405
\(207\) −8.92563 −0.620374
\(208\) −1.54108 −0.106855
\(209\) −4.66833 −0.322915
\(210\) 0 0
\(211\) 12.0831 0.831834 0.415917 0.909403i \(-0.363461\pi\)
0.415917 + 0.909403i \(0.363461\pi\)
\(212\) 10.8554 0.745554
\(213\) −3.68633 −0.252583
\(214\) −15.3219 −1.04738
\(215\) 0 0
\(216\) −6.16693 −0.419607
\(217\) −7.39532 −0.502027
\(218\) 3.90570 0.264528
\(219\) −3.68810 −0.249219
\(220\) 0 0
\(221\) −7.11691 −0.478735
\(222\) 1.45064 0.0973604
\(223\) 11.8085 0.790755 0.395377 0.918519i \(-0.370614\pi\)
0.395377 + 0.918519i \(0.370614\pi\)
\(224\) −5.88870 −0.393455
\(225\) 0 0
\(226\) −20.0443 −1.33333
\(227\) 16.8935 1.12126 0.560632 0.828065i \(-0.310558\pi\)
0.560632 + 0.828065i \(0.310558\pi\)
\(228\) 1.37808 0.0912659
\(229\) 16.5925 1.09647 0.548233 0.836326i \(-0.315301\pi\)
0.548233 + 0.836326i \(0.315301\pi\)
\(230\) 0 0
\(231\) −0.453123 −0.0298133
\(232\) 14.7586 0.968949
\(233\) −19.2647 −1.26207 −0.631036 0.775753i \(-0.717370\pi\)
−0.631036 + 0.775753i \(0.717370\pi\)
\(234\) −3.07752 −0.201184
\(235\) 0 0
\(236\) −8.92535 −0.580991
\(237\) −1.99519 −0.129601
\(238\) 10.0297 0.650126
\(239\) 28.3128 1.83140 0.915702 0.401857i \(-0.131635\pi\)
0.915702 + 0.401857i \(0.131635\pi\)
\(240\) 0 0
\(241\) −17.7918 −1.14607 −0.573036 0.819530i \(-0.694235\pi\)
−0.573036 + 0.819530i \(0.694235\pi\)
\(242\) 1.06779 0.0686404
\(243\) −8.78899 −0.563814
\(244\) −12.4527 −0.797202
\(245\) 0 0
\(246\) −2.54738 −0.162415
\(247\) 4.66833 0.297038
\(248\) −17.1110 −1.08655
\(249\) −5.00442 −0.317142
\(250\) 0 0
\(251\) 18.5434 1.17045 0.585225 0.810871i \(-0.301006\pi\)
0.585225 + 0.810871i \(0.301006\pi\)
\(252\) −3.27058 −0.206027
\(253\) −3.09689 −0.194700
\(254\) 9.23768 0.579624
\(255\) 0 0
\(256\) −16.2752 −1.01720
\(257\) 3.31960 0.207071 0.103535 0.994626i \(-0.466984\pi\)
0.103535 + 0.994626i \(0.466984\pi\)
\(258\) 0.0332992 0.00207312
\(259\) 5.22238 0.324503
\(260\) 0 0
\(261\) 13.9294 0.862208
\(262\) 13.9100 0.859360
\(263\) 11.0823 0.683364 0.341682 0.939816i \(-0.389003\pi\)
0.341682 + 0.939816i \(0.389003\pi\)
\(264\) −1.04842 −0.0645257
\(265\) 0 0
\(266\) −6.57893 −0.403380
\(267\) −0.627016 −0.0383728
\(268\) 0.388772 0.0237480
\(269\) −0.765738 −0.0466879 −0.0233439 0.999727i \(-0.507431\pi\)
−0.0233439 + 0.999727i \(0.507431\pi\)
\(270\) 0 0
\(271\) −12.5639 −0.763205 −0.381602 0.924327i \(-0.624628\pi\)
−0.381602 + 0.924327i \(0.624628\pi\)
\(272\) 10.9678 0.665019
\(273\) 0.453123 0.0274242
\(274\) 11.5277 0.696415
\(275\) 0 0
\(276\) 0.914199 0.0550283
\(277\) −24.3104 −1.46067 −0.730334 0.683090i \(-0.760636\pi\)
−0.730334 + 0.683090i \(0.760636\pi\)
\(278\) −20.1744 −1.20998
\(279\) −16.1497 −0.966855
\(280\) 0 0
\(281\) 15.3784 0.917400 0.458700 0.888591i \(-0.348315\pi\)
0.458700 + 0.888591i \(0.348315\pi\)
\(282\) 1.90097 0.113201
\(283\) 3.73537 0.222045 0.111022 0.993818i \(-0.464587\pi\)
0.111022 + 0.993818i \(0.464587\pi\)
\(284\) −9.23189 −0.547812
\(285\) 0 0
\(286\) −1.06779 −0.0631400
\(287\) −9.17072 −0.541331
\(288\) −12.8595 −0.757756
\(289\) 33.6505 1.97944
\(290\) 0 0
\(291\) −2.05635 −0.120545
\(292\) −9.23632 −0.540515
\(293\) −2.21953 −0.129666 −0.0648332 0.997896i \(-0.520652\pi\)
−0.0648332 + 0.997896i \(0.520652\pi\)
\(294\) 1.92765 0.112423
\(295\) 0 0
\(296\) 12.0834 0.702331
\(297\) −2.01950 −0.117183
\(298\) −7.44363 −0.431198
\(299\) 3.09689 0.179098
\(300\) 0 0
\(301\) 0.119879 0.00690972
\(302\) −21.3546 −1.22882
\(303\) 6.22459 0.357594
\(304\) −7.19428 −0.412620
\(305\) 0 0
\(306\) 21.9024 1.25208
\(307\) 26.8988 1.53520 0.767598 0.640932i \(-0.221452\pi\)
0.767598 + 0.640932i \(0.221452\pi\)
\(308\) −1.13478 −0.0646602
\(309\) −6.43331 −0.365978
\(310\) 0 0
\(311\) −15.9839 −0.906365 −0.453183 0.891418i \(-0.649711\pi\)
−0.453183 + 0.891418i \(0.649711\pi\)
\(312\) 1.04842 0.0593550
\(313\) −2.48431 −0.140422 −0.0702108 0.997532i \(-0.522367\pi\)
−0.0702108 + 0.997532i \(0.522367\pi\)
\(314\) 15.2497 0.860592
\(315\) 0 0
\(316\) −4.99666 −0.281084
\(317\) 7.91673 0.444648 0.222324 0.974973i \(-0.428636\pi\)
0.222324 + 0.974973i \(0.428636\pi\)
\(318\) 4.62848 0.259552
\(319\) 4.83303 0.270598
\(320\) 0 0
\(321\) 4.92645 0.274968
\(322\) −4.36436 −0.243216
\(323\) −33.2241 −1.84864
\(324\) −6.83814 −0.379897
\(325\) 0 0
\(326\) 3.51987 0.194948
\(327\) −1.25580 −0.0694460
\(328\) −21.2189 −1.17162
\(329\) 6.84362 0.377301
\(330\) 0 0
\(331\) −21.2305 −1.16693 −0.583467 0.812137i \(-0.698304\pi\)
−0.583467 + 0.812137i \(0.698304\pi\)
\(332\) −12.5329 −0.687830
\(333\) 11.4045 0.624961
\(334\) −5.20607 −0.284864
\(335\) 0 0
\(336\) −0.698300 −0.0380954
\(337\) −21.6075 −1.17704 −0.588518 0.808484i \(-0.700288\pi\)
−0.588518 + 0.808484i \(0.700288\pi\)
\(338\) 1.06779 0.0580803
\(339\) 6.44484 0.350036
\(340\) 0 0
\(341\) −5.60339 −0.303440
\(342\) −14.3668 −0.776870
\(343\) 16.1782 0.873543
\(344\) 0.277372 0.0149549
\(345\) 0 0
\(346\) −14.1303 −0.759649
\(347\) 25.8757 1.38908 0.694540 0.719455i \(-0.255608\pi\)
0.694540 + 0.719455i \(0.255608\pi\)
\(348\) −1.42671 −0.0764794
\(349\) −17.8972 −0.958014 −0.479007 0.877811i \(-0.659003\pi\)
−0.479007 + 0.877811i \(0.659003\pi\)
\(350\) 0 0
\(351\) 2.01950 0.107793
\(352\) −4.46183 −0.237816
\(353\) −30.2693 −1.61107 −0.805535 0.592548i \(-0.798122\pi\)
−0.805535 + 0.592548i \(0.798122\pi\)
\(354\) −3.80554 −0.202262
\(355\) 0 0
\(356\) −1.57027 −0.0832243
\(357\) −3.22484 −0.170676
\(358\) −20.2016 −1.06769
\(359\) −5.68638 −0.300116 −0.150058 0.988677i \(-0.547946\pi\)
−0.150058 + 0.988677i \(0.547946\pi\)
\(360\) 0 0
\(361\) 2.79326 0.147014
\(362\) 26.2409 1.37919
\(363\) −0.343328 −0.0180200
\(364\) 1.13478 0.0594787
\(365\) 0 0
\(366\) −5.30951 −0.277532
\(367\) −16.1935 −0.845291 −0.422646 0.906295i \(-0.638899\pi\)
−0.422646 + 0.906295i \(0.638899\pi\)
\(368\) −4.77257 −0.248788
\(369\) −20.0267 −1.04255
\(370\) 0 0
\(371\) 16.6628 0.865089
\(372\) 1.65411 0.0857618
\(373\) 9.81582 0.508244 0.254122 0.967172i \(-0.418214\pi\)
0.254122 + 0.967172i \(0.418214\pi\)
\(374\) 7.59940 0.392956
\(375\) 0 0
\(376\) 15.8345 0.816603
\(377\) −4.83303 −0.248914
\(378\) −2.84602 −0.146383
\(379\) −15.3268 −0.787283 −0.393642 0.919264i \(-0.628785\pi\)
−0.393642 + 0.919264i \(0.628785\pi\)
\(380\) 0 0
\(381\) −2.97019 −0.152168
\(382\) −8.84641 −0.452622
\(383\) 5.98657 0.305899 0.152950 0.988234i \(-0.451123\pi\)
0.152950 + 0.988234i \(0.451123\pi\)
\(384\) 0.187193 0.00955263
\(385\) 0 0
\(386\) 21.4427 1.09141
\(387\) 0.261788 0.0133074
\(388\) −5.14984 −0.261443
\(389\) 28.5530 1.44769 0.723847 0.689960i \(-0.242372\pi\)
0.723847 + 0.689960i \(0.242372\pi\)
\(390\) 0 0
\(391\) −22.0403 −1.11463
\(392\) 16.0568 0.810988
\(393\) −4.47247 −0.225606
\(394\) 16.9749 0.855185
\(395\) 0 0
\(396\) −2.47810 −0.124529
\(397\) 15.3127 0.768522 0.384261 0.923225i \(-0.374456\pi\)
0.384261 + 0.923225i \(0.374456\pi\)
\(398\) −12.0114 −0.602075
\(399\) 2.11532 0.105899
\(400\) 0 0
\(401\) 19.1032 0.953968 0.476984 0.878912i \(-0.341730\pi\)
0.476984 + 0.878912i \(0.341730\pi\)
\(402\) 0.165762 0.00826748
\(403\) 5.60339 0.279125
\(404\) 15.5886 0.775562
\(405\) 0 0
\(406\) 6.81104 0.338026
\(407\) 3.95696 0.196139
\(408\) −7.46151 −0.369400
\(409\) 23.2991 1.15206 0.576032 0.817427i \(-0.304600\pi\)
0.576032 + 0.817427i \(0.304600\pi\)
\(410\) 0 0
\(411\) −3.70651 −0.182829
\(412\) −16.1113 −0.793747
\(413\) −13.7002 −0.674142
\(414\) −9.53074 −0.468410
\(415\) 0 0
\(416\) 4.46183 0.218759
\(417\) 6.48666 0.317653
\(418\) −4.98481 −0.243815
\(419\) 30.6438 1.49705 0.748525 0.663107i \(-0.230762\pi\)
0.748525 + 0.663107i \(0.230762\pi\)
\(420\) 0 0
\(421\) 5.40310 0.263331 0.131666 0.991294i \(-0.457967\pi\)
0.131666 + 0.991294i \(0.457967\pi\)
\(422\) 12.9022 0.628071
\(423\) 14.9449 0.726645
\(424\) 38.5538 1.87234
\(425\) 0 0
\(426\) −3.93624 −0.190712
\(427\) −19.1146 −0.925018
\(428\) 12.3376 0.596360
\(429\) 0.343328 0.0165760
\(430\) 0 0
\(431\) −13.9555 −0.672212 −0.336106 0.941824i \(-0.609110\pi\)
−0.336106 + 0.941824i \(0.609110\pi\)
\(432\) −3.11222 −0.149737
\(433\) 9.59238 0.460980 0.230490 0.973075i \(-0.425967\pi\)
0.230490 + 0.973075i \(0.425967\pi\)
\(434\) −7.89668 −0.379053
\(435\) 0 0
\(436\) −3.14498 −0.150617
\(437\) 14.4573 0.691586
\(438\) −3.93813 −0.188171
\(439\) −1.99577 −0.0952529 −0.0476264 0.998865i \(-0.515166\pi\)
−0.0476264 + 0.998865i \(0.515166\pi\)
\(440\) 0 0
\(441\) 15.1546 0.721649
\(442\) −7.59940 −0.361467
\(443\) −27.1573 −1.29028 −0.645141 0.764063i \(-0.723202\pi\)
−0.645141 + 0.764063i \(0.723202\pi\)
\(444\) −1.16809 −0.0554352
\(445\) 0 0
\(446\) 12.6090 0.597055
\(447\) 2.39335 0.113202
\(448\) −10.3558 −0.489263
\(449\) −13.6479 −0.644085 −0.322043 0.946725i \(-0.604369\pi\)
−0.322043 + 0.946725i \(0.604369\pi\)
\(450\) 0 0
\(451\) −6.94860 −0.327197
\(452\) 16.1402 0.759170
\(453\) 6.86615 0.322600
\(454\) 18.0388 0.846604
\(455\) 0 0
\(456\) 4.89436 0.229199
\(457\) −12.1666 −0.569132 −0.284566 0.958656i \(-0.591849\pi\)
−0.284566 + 0.958656i \(0.591849\pi\)
\(458\) 17.7174 0.827880
\(459\) −14.3726 −0.670855
\(460\) 0 0
\(461\) 24.8253 1.15623 0.578116 0.815955i \(-0.303788\pi\)
0.578116 + 0.815955i \(0.303788\pi\)
\(462\) −0.483842 −0.0225104
\(463\) −14.9250 −0.693625 −0.346812 0.937935i \(-0.612736\pi\)
−0.346812 + 0.937935i \(0.612736\pi\)
\(464\) 7.44811 0.345770
\(465\) 0 0
\(466\) −20.5707 −0.952921
\(467\) 21.1572 0.979040 0.489520 0.871992i \(-0.337172\pi\)
0.489520 + 0.871992i \(0.337172\pi\)
\(468\) 2.47810 0.114550
\(469\) 0.596755 0.0275556
\(470\) 0 0
\(471\) −4.90325 −0.225930
\(472\) −31.6990 −1.45906
\(473\) 0.0908316 0.00417644
\(474\) −2.13045 −0.0978548
\(475\) 0 0
\(476\) −8.07614 −0.370169
\(477\) 36.3877 1.66608
\(478\) 30.2323 1.38279
\(479\) −14.9078 −0.681156 −0.340578 0.940216i \(-0.610623\pi\)
−0.340578 + 0.940216i \(0.610623\pi\)
\(480\) 0 0
\(481\) −3.95696 −0.180422
\(482\) −18.9980 −0.865336
\(483\) 1.40327 0.0638511
\(484\) −0.859816 −0.0390825
\(485\) 0 0
\(486\) −9.38483 −0.425705
\(487\) −22.2067 −1.00628 −0.503140 0.864205i \(-0.667822\pi\)
−0.503140 + 0.864205i \(0.667822\pi\)
\(488\) −44.2266 −2.00204
\(489\) −1.13175 −0.0511793
\(490\) 0 0
\(491\) −21.0059 −0.947984 −0.473992 0.880529i \(-0.657187\pi\)
−0.473992 + 0.880529i \(0.657187\pi\)
\(492\) 2.05122 0.0924760
\(493\) 34.3963 1.54913
\(494\) 4.98481 0.224277
\(495\) 0 0
\(496\) −8.63529 −0.387736
\(497\) −14.1707 −0.635644
\(498\) −5.34369 −0.239456
\(499\) −5.96703 −0.267121 −0.133560 0.991041i \(-0.542641\pi\)
−0.133560 + 0.991041i \(0.542641\pi\)
\(500\) 0 0
\(501\) 1.67391 0.0747848
\(502\) 19.8006 0.883742
\(503\) −6.17193 −0.275193 −0.137596 0.990488i \(-0.543938\pi\)
−0.137596 + 0.990488i \(0.543938\pi\)
\(504\) −11.6157 −0.517404
\(505\) 0 0
\(506\) −3.30684 −0.147007
\(507\) −0.343328 −0.0152477
\(508\) −7.43843 −0.330027
\(509\) 14.3534 0.636205 0.318103 0.948056i \(-0.396954\pi\)
0.318103 + 0.948056i \(0.396954\pi\)
\(510\) 0 0
\(511\) −14.1775 −0.627176
\(512\) −16.2881 −0.719837
\(513\) 9.42768 0.416242
\(514\) 3.54465 0.156348
\(515\) 0 0
\(516\) −0.0268134 −0.00118039
\(517\) 5.18536 0.228052
\(518\) 5.57643 0.245014
\(519\) 4.54331 0.199429
\(520\) 0 0
\(521\) 10.8081 0.473511 0.236755 0.971569i \(-0.423916\pi\)
0.236755 + 0.971569i \(0.423916\pi\)
\(522\) 14.8737 0.651006
\(523\) 17.0609 0.746019 0.373009 0.927828i \(-0.378326\pi\)
0.373009 + 0.927828i \(0.378326\pi\)
\(524\) −11.2007 −0.489303
\(525\) 0 0
\(526\) 11.8336 0.515970
\(527\) −39.8788 −1.73715
\(528\) −0.529097 −0.0230260
\(529\) −13.4093 −0.583011
\(530\) 0 0
\(531\) −29.9180 −1.29833
\(532\) 5.29753 0.229677
\(533\) 6.94860 0.300977
\(534\) −0.669524 −0.0289731
\(535\) 0 0
\(536\) 1.38075 0.0596393
\(537\) 6.49544 0.280299
\(538\) −0.817650 −0.0352514
\(539\) 5.25814 0.226484
\(540\) 0 0
\(541\) −4.72643 −0.203205 −0.101602 0.994825i \(-0.532397\pi\)
−0.101602 + 0.994825i \(0.532397\pi\)
\(542\) −13.4157 −0.576253
\(543\) −8.43724 −0.362077
\(544\) −31.7544 −1.36146
\(545\) 0 0
\(546\) 0.483842 0.0207065
\(547\) −4.77101 −0.203994 −0.101997 0.994785i \(-0.532523\pi\)
−0.101997 + 0.994785i \(0.532523\pi\)
\(548\) −9.28242 −0.396525
\(549\) −41.7417 −1.78149
\(550\) 0 0
\(551\) −22.5622 −0.961180
\(552\) 3.24684 0.138195
\(553\) −7.66975 −0.326151
\(554\) −25.9585 −1.10287
\(555\) 0 0
\(556\) 16.2449 0.688938
\(557\) 16.5718 0.702169 0.351084 0.936344i \(-0.385813\pi\)
0.351084 + 0.936344i \(0.385813\pi\)
\(558\) −17.2445 −0.730018
\(559\) −0.0908316 −0.00384177
\(560\) 0 0
\(561\) −2.44344 −0.103162
\(562\) 16.4210 0.692678
\(563\) 25.9594 1.09406 0.547030 0.837113i \(-0.315758\pi\)
0.547030 + 0.837113i \(0.315758\pi\)
\(564\) −1.53071 −0.0644547
\(565\) 0 0
\(566\) 3.98861 0.167654
\(567\) −10.4964 −0.440806
\(568\) −32.7877 −1.37574
\(569\) −6.86052 −0.287608 −0.143804 0.989606i \(-0.545933\pi\)
−0.143804 + 0.989606i \(0.545933\pi\)
\(570\) 0 0
\(571\) −28.0004 −1.17178 −0.585890 0.810390i \(-0.699255\pi\)
−0.585890 + 0.810390i \(0.699255\pi\)
\(572\) 0.859816 0.0359507
\(573\) 2.84439 0.118826
\(574\) −9.79244 −0.408729
\(575\) 0 0
\(576\) −22.6145 −0.942273
\(577\) 21.7112 0.903850 0.451925 0.892056i \(-0.350737\pi\)
0.451925 + 0.892056i \(0.350737\pi\)
\(578\) 35.9318 1.49456
\(579\) −6.89449 −0.286525
\(580\) 0 0
\(581\) −19.2376 −0.798110
\(582\) −2.19576 −0.0910171
\(583\) 12.6253 0.522886
\(584\) −32.8034 −1.35742
\(585\) 0 0
\(586\) −2.37000 −0.0979039
\(587\) −21.5111 −0.887857 −0.443929 0.896062i \(-0.646416\pi\)
−0.443929 + 0.896062i \(0.646416\pi\)
\(588\) −1.55220 −0.0640115
\(589\) 26.1584 1.07784
\(590\) 0 0
\(591\) −5.45795 −0.224510
\(592\) 6.09802 0.250627
\(593\) 43.7709 1.79745 0.898727 0.438509i \(-0.144493\pi\)
0.898727 + 0.438509i \(0.144493\pi\)
\(594\) −2.15641 −0.0884785
\(595\) 0 0
\(596\) 5.99381 0.245516
\(597\) 3.86201 0.158062
\(598\) 3.30684 0.135227
\(599\) −19.5116 −0.797221 −0.398611 0.917120i \(-0.630508\pi\)
−0.398611 + 0.917120i \(0.630508\pi\)
\(600\) 0 0
\(601\) −0.382954 −0.0156210 −0.00781051 0.999969i \(-0.502486\pi\)
−0.00781051 + 0.999969i \(0.502486\pi\)
\(602\) 0.128006 0.00521714
\(603\) 1.30317 0.0530693
\(604\) 17.1953 0.699667
\(605\) 0 0
\(606\) 6.64658 0.269999
\(607\) −15.5471 −0.631039 −0.315519 0.948919i \(-0.602179\pi\)
−0.315519 + 0.948919i \(0.602179\pi\)
\(608\) 20.8293 0.844738
\(609\) −2.18996 −0.0887415
\(610\) 0 0
\(611\) −5.18536 −0.209777
\(612\) −17.6364 −0.712910
\(613\) −20.8664 −0.842786 −0.421393 0.906878i \(-0.638459\pi\)
−0.421393 + 0.906878i \(0.638459\pi\)
\(614\) 28.7224 1.15914
\(615\) 0 0
\(616\) −4.03025 −0.162383
\(617\) 20.8763 0.840450 0.420225 0.907420i \(-0.361951\pi\)
0.420225 + 0.907420i \(0.361951\pi\)
\(618\) −6.86945 −0.276330
\(619\) 14.5455 0.584633 0.292316 0.956322i \(-0.405574\pi\)
0.292316 + 0.956322i \(0.405574\pi\)
\(620\) 0 0
\(621\) 6.25417 0.250971
\(622\) −17.0675 −0.684346
\(623\) −2.41033 −0.0965678
\(624\) 0.529097 0.0211809
\(625\) 0 0
\(626\) −2.65273 −0.106025
\(627\) 1.60277 0.0640083
\(628\) −12.2795 −0.490005
\(629\) 28.1614 1.12287
\(630\) 0 0
\(631\) −2.96489 −0.118030 −0.0590152 0.998257i \(-0.518796\pi\)
−0.0590152 + 0.998257i \(0.518796\pi\)
\(632\) −17.7460 −0.705897
\(633\) −4.14846 −0.164887
\(634\) 8.45344 0.335729
\(635\) 0 0
\(636\) −3.72697 −0.147784
\(637\) −5.25814 −0.208335
\(638\) 5.16068 0.204313
\(639\) −30.9455 −1.22419
\(640\) 0 0
\(641\) −34.5769 −1.36570 −0.682852 0.730557i \(-0.739261\pi\)
−0.682852 + 0.730557i \(0.739261\pi\)
\(642\) 5.26043 0.207613
\(643\) −3.43687 −0.135537 −0.0677684 0.997701i \(-0.521588\pi\)
−0.0677684 + 0.997701i \(0.521588\pi\)
\(644\) 3.51429 0.138483
\(645\) 0 0
\(646\) −35.4765 −1.39580
\(647\) 35.0062 1.37624 0.688119 0.725598i \(-0.258437\pi\)
0.688119 + 0.725598i \(0.258437\pi\)
\(648\) −24.2861 −0.954049
\(649\) −10.3805 −0.407472
\(650\) 0 0
\(651\) 2.53902 0.0995121
\(652\) −2.83429 −0.111000
\(653\) 17.3441 0.678727 0.339364 0.940655i \(-0.389788\pi\)
0.339364 + 0.940655i \(0.389788\pi\)
\(654\) −1.34094 −0.0524348
\(655\) 0 0
\(656\) −10.7084 −0.418092
\(657\) −30.9604 −1.20788
\(658\) 7.30758 0.284879
\(659\) 1.99929 0.0778812 0.0389406 0.999242i \(-0.487602\pi\)
0.0389406 + 0.999242i \(0.487602\pi\)
\(660\) 0 0
\(661\) 23.6273 0.918994 0.459497 0.888179i \(-0.348030\pi\)
0.459497 + 0.888179i \(0.348030\pi\)
\(662\) −22.6698 −0.881088
\(663\) 2.44344 0.0948952
\(664\) −44.5113 −1.72737
\(665\) 0 0
\(666\) 12.1776 0.471873
\(667\) −14.9674 −0.579539
\(668\) 4.19207 0.162196
\(669\) −4.05418 −0.156744
\(670\) 0 0
\(671\) −14.4830 −0.559109
\(672\) 2.02176 0.0779909
\(673\) 21.2862 0.820523 0.410261 0.911968i \(-0.365437\pi\)
0.410261 + 0.911968i \(0.365437\pi\)
\(674\) −23.0723 −0.888714
\(675\) 0 0
\(676\) −0.859816 −0.0330698
\(677\) −44.5518 −1.71227 −0.856133 0.516756i \(-0.827139\pi\)
−0.856133 + 0.516756i \(0.827139\pi\)
\(678\) 6.88176 0.264292
\(679\) −7.90487 −0.303361
\(680\) 0 0
\(681\) −5.80003 −0.222258
\(682\) −5.98326 −0.229111
\(683\) −36.0211 −1.37831 −0.689154 0.724615i \(-0.742018\pi\)
−0.689154 + 0.724615i \(0.742018\pi\)
\(684\) 11.5686 0.442335
\(685\) 0 0
\(686\) 17.2750 0.659563
\(687\) −5.69668 −0.217342
\(688\) 0.139979 0.00533666
\(689\) −12.6253 −0.480985
\(690\) 0 0
\(691\) 6.72904 0.255985 0.127992 0.991775i \(-0.459147\pi\)
0.127992 + 0.991775i \(0.459147\pi\)
\(692\) 11.3781 0.432530
\(693\) −3.80382 −0.144495
\(694\) 27.6299 1.04882
\(695\) 0 0
\(696\) −5.06704 −0.192066
\(697\) −49.4526 −1.87315
\(698\) −19.1105 −0.723343
\(699\) 6.61411 0.250169
\(700\) 0 0
\(701\) 15.7973 0.596657 0.298328 0.954463i \(-0.403571\pi\)
0.298328 + 0.954463i \(0.403571\pi\)
\(702\) 2.15641 0.0813884
\(703\) −18.4724 −0.696700
\(704\) −7.84648 −0.295725
\(705\) 0 0
\(706\) −32.3213 −1.21643
\(707\) 23.9281 0.899909
\(708\) 3.06432 0.115164
\(709\) 31.3162 1.17610 0.588052 0.808823i \(-0.299895\pi\)
0.588052 + 0.808823i \(0.299895\pi\)
\(710\) 0 0
\(711\) −16.7489 −0.628135
\(712\) −5.57693 −0.209004
\(713\) 17.3531 0.649878
\(714\) −3.44346 −0.128868
\(715\) 0 0
\(716\) 16.2669 0.607922
\(717\) −9.72059 −0.363022
\(718\) −6.07188 −0.226601
\(719\) 48.9739 1.82642 0.913210 0.407490i \(-0.133596\pi\)
0.913210 + 0.407490i \(0.133596\pi\)
\(720\) 0 0
\(721\) −24.7304 −0.921009
\(722\) 2.98263 0.111002
\(723\) 6.10843 0.227175
\(724\) −21.1299 −0.785285
\(725\) 0 0
\(726\) −0.366604 −0.0136059
\(727\) 29.3947 1.09019 0.545094 0.838375i \(-0.316494\pi\)
0.545094 + 0.838375i \(0.316494\pi\)
\(728\) 4.03025 0.149371
\(729\) −20.8416 −0.771910
\(730\) 0 0
\(731\) 0.646441 0.0239095
\(732\) 4.27536 0.158022
\(733\) −21.8190 −0.805904 −0.402952 0.915221i \(-0.632016\pi\)
−0.402952 + 0.915221i \(0.632016\pi\)
\(734\) −17.2913 −0.638233
\(735\) 0 0
\(736\) 13.8178 0.509331
\(737\) 0.452157 0.0166554
\(738\) −21.3844 −0.787171
\(739\) 4.31975 0.158905 0.0794523 0.996839i \(-0.474683\pi\)
0.0794523 + 0.996839i \(0.474683\pi\)
\(740\) 0 0
\(741\) −1.60277 −0.0588791
\(742\) 17.7924 0.653181
\(743\) 7.58424 0.278239 0.139119 0.990276i \(-0.455573\pi\)
0.139119 + 0.990276i \(0.455573\pi\)
\(744\) 5.87470 0.215377
\(745\) 0 0
\(746\) 10.4813 0.383747
\(747\) −42.0104 −1.53708
\(748\) −6.11924 −0.223741
\(749\) 18.9379 0.691975
\(750\) 0 0
\(751\) 4.01713 0.146587 0.0732936 0.997310i \(-0.476649\pi\)
0.0732936 + 0.997310i \(0.476649\pi\)
\(752\) 7.99108 0.291405
\(753\) −6.36648 −0.232007
\(754\) −5.16068 −0.187941
\(755\) 0 0
\(756\) 2.29169 0.0833479
\(757\) −25.5698 −0.929348 −0.464674 0.885482i \(-0.653829\pi\)
−0.464674 + 0.885482i \(0.653829\pi\)
\(758\) −16.3658 −0.594434
\(759\) 1.06325 0.0385935
\(760\) 0 0
\(761\) −27.1804 −0.985287 −0.492644 0.870231i \(-0.663969\pi\)
−0.492644 + 0.870231i \(0.663969\pi\)
\(762\) −3.17156 −0.114893
\(763\) −4.82746 −0.174766
\(764\) 7.12336 0.257714
\(765\) 0 0
\(766\) 6.39242 0.230968
\(767\) 10.3805 0.374820
\(768\) 5.58772 0.201629
\(769\) 8.02400 0.289353 0.144676 0.989479i \(-0.453786\pi\)
0.144676 + 0.989479i \(0.453786\pi\)
\(770\) 0 0
\(771\) −1.13971 −0.0410457
\(772\) −17.2663 −0.621426
\(773\) 3.39505 0.122111 0.0610557 0.998134i \(-0.480553\pi\)
0.0610557 + 0.998134i \(0.480553\pi\)
\(774\) 0.279536 0.0100477
\(775\) 0 0
\(776\) −18.2900 −0.656572
\(777\) −1.79299 −0.0643232
\(778\) 30.4887 1.09307
\(779\) 32.4383 1.16222
\(780\) 0 0
\(781\) −10.7371 −0.384202
\(782\) −23.5345 −0.841593
\(783\) −9.76030 −0.348805
\(784\) 8.10324 0.289401
\(785\) 0 0
\(786\) −4.77568 −0.170343
\(787\) 44.7193 1.59407 0.797036 0.603932i \(-0.206400\pi\)
0.797036 + 0.603932i \(0.206400\pi\)
\(788\) −13.6687 −0.486926
\(789\) −3.80487 −0.135457
\(790\) 0 0
\(791\) 24.7748 0.880889
\(792\) −8.80113 −0.312735
\(793\) 14.4830 0.514305
\(794\) 16.3508 0.580268
\(795\) 0 0
\(796\) 9.67186 0.342810
\(797\) 22.6005 0.800549 0.400275 0.916395i \(-0.368915\pi\)
0.400275 + 0.916395i \(0.368915\pi\)
\(798\) 2.25873 0.0799582
\(799\) 36.9038 1.30556
\(800\) 0 0
\(801\) −5.26360 −0.185980
\(802\) 20.3983 0.720288
\(803\) −10.7422 −0.379084
\(804\) −0.133476 −0.00470735
\(805\) 0 0
\(806\) 5.98326 0.210751
\(807\) 0.262899 0.00925449
\(808\) 55.3640 1.94770
\(809\) 34.0475 1.19705 0.598523 0.801105i \(-0.295754\pi\)
0.598523 + 0.801105i \(0.295754\pi\)
\(810\) 0 0
\(811\) −9.83446 −0.345335 −0.172667 0.984980i \(-0.555239\pi\)
−0.172667 + 0.984980i \(0.555239\pi\)
\(812\) −5.48443 −0.192466
\(813\) 4.31355 0.151283
\(814\) 4.22522 0.148094
\(815\) 0 0
\(816\) −3.76554 −0.131820
\(817\) −0.424032 −0.0148350
\(818\) 24.8786 0.869859
\(819\) 3.80382 0.132916
\(820\) 0 0
\(821\) −13.8180 −0.482253 −0.241126 0.970494i \(-0.577517\pi\)
−0.241126 + 0.970494i \(0.577517\pi\)
\(822\) −3.95779 −0.138044
\(823\) 11.6302 0.405403 0.202702 0.979241i \(-0.435028\pi\)
0.202702 + 0.979241i \(0.435028\pi\)
\(824\) −57.2204 −1.99337
\(825\) 0 0
\(826\) −14.6290 −0.509007
\(827\) −20.6783 −0.719054 −0.359527 0.933135i \(-0.617062\pi\)
−0.359527 + 0.933135i \(0.617062\pi\)
\(828\) 7.67440 0.266704
\(829\) 22.8936 0.795127 0.397563 0.917575i \(-0.369856\pi\)
0.397563 + 0.917575i \(0.369856\pi\)
\(830\) 0 0
\(831\) 8.34643 0.289535
\(832\) 7.84648 0.272028
\(833\) 37.4217 1.29659
\(834\) 6.92642 0.239842
\(835\) 0 0
\(836\) 4.01390 0.138824
\(837\) 11.3160 0.391139
\(838\) 32.7213 1.13034
\(839\) −39.2466 −1.35494 −0.677471 0.735550i \(-0.736924\pi\)
−0.677471 + 0.735550i \(0.736924\pi\)
\(840\) 0 0
\(841\) −5.64182 −0.194545
\(842\) 5.76940 0.198827
\(843\) −5.27985 −0.181848
\(844\) −10.3892 −0.357612
\(845\) 0 0
\(846\) 15.9580 0.548649
\(847\) −1.31980 −0.0453487
\(848\) 19.4566 0.668144
\(849\) −1.28246 −0.0440138
\(850\) 0 0
\(851\) −12.2543 −0.420072
\(852\) 3.16957 0.108588
\(853\) 24.4193 0.836101 0.418051 0.908424i \(-0.362713\pi\)
0.418051 + 0.908424i \(0.362713\pi\)
\(854\) −20.4104 −0.698430
\(855\) 0 0
\(856\) 43.8178 1.49766
\(857\) −34.2627 −1.17039 −0.585196 0.810892i \(-0.698982\pi\)
−0.585196 + 0.810892i \(0.698982\pi\)
\(858\) 0.366604 0.0125156
\(859\) 22.5047 0.767850 0.383925 0.923364i \(-0.374572\pi\)
0.383925 + 0.923364i \(0.374572\pi\)
\(860\) 0 0
\(861\) 3.14857 0.107303
\(862\) −14.9016 −0.507550
\(863\) 5.81216 0.197848 0.0989240 0.995095i \(-0.468460\pi\)
0.0989240 + 0.995095i \(0.468460\pi\)
\(864\) 9.01066 0.306549
\(865\) 0 0
\(866\) 10.2427 0.348061
\(867\) −11.5532 −0.392366
\(868\) 6.35862 0.215826
\(869\) −5.81132 −0.197135
\(870\) 0 0
\(871\) −0.452157 −0.0153208
\(872\) −11.1696 −0.378250
\(873\) −17.2624 −0.584243
\(874\) 15.4374 0.522178
\(875\) 0 0
\(876\) 3.17109 0.107141
\(877\) 23.6694 0.799260 0.399630 0.916677i \(-0.369139\pi\)
0.399630 + 0.916677i \(0.369139\pi\)
\(878\) −2.13107 −0.0719202
\(879\) 0.762027 0.0257025
\(880\) 0 0
\(881\) −18.6126 −0.627074 −0.313537 0.949576i \(-0.601514\pi\)
−0.313537 + 0.949576i \(0.601514\pi\)
\(882\) 16.1820 0.544877
\(883\) 35.6983 1.20134 0.600671 0.799496i \(-0.294900\pi\)
0.600671 + 0.799496i \(0.294900\pi\)
\(884\) 6.11924 0.205812
\(885\) 0 0
\(886\) −28.9984 −0.974221
\(887\) 29.9209 1.00465 0.502323 0.864680i \(-0.332479\pi\)
0.502323 + 0.864680i \(0.332479\pi\)
\(888\) −4.14856 −0.139216
\(889\) −11.4178 −0.382941
\(890\) 0 0
\(891\) −7.95303 −0.266436
\(892\) −10.1531 −0.339952
\(893\) −24.2070 −0.810055
\(894\) 2.55561 0.0854723
\(895\) 0 0
\(896\) 0.719592 0.0240399
\(897\) −1.06325 −0.0355009
\(898\) −14.5732 −0.486313
\(899\) −27.0813 −0.903213
\(900\) 0 0
\(901\) 89.8531 2.99344
\(902\) −7.41967 −0.247048
\(903\) −0.0411579 −0.00136965
\(904\) 57.3229 1.90653
\(905\) 0 0
\(906\) 7.33164 0.243577
\(907\) −39.8957 −1.32472 −0.662358 0.749188i \(-0.730444\pi\)
−0.662358 + 0.749188i \(0.730444\pi\)
\(908\) −14.5253 −0.482040
\(909\) 52.2534 1.73314
\(910\) 0 0
\(911\) −34.8570 −1.15486 −0.577431 0.816439i \(-0.695945\pi\)
−0.577431 + 0.816439i \(0.695945\pi\)
\(912\) 2.47000 0.0817898
\(913\) −14.5762 −0.482402
\(914\) −12.9915 −0.429720
\(915\) 0 0
\(916\) −14.2665 −0.471379
\(917\) −17.1927 −0.567754
\(918\) −15.3470 −0.506526
\(919\) 6.14603 0.202739 0.101369 0.994849i \(-0.467678\pi\)
0.101369 + 0.994849i \(0.467678\pi\)
\(920\) 0 0
\(921\) −9.23511 −0.304307
\(922\) 26.5083 0.873006
\(923\) 10.7371 0.353415
\(924\) 0.389602 0.0128170
\(925\) 0 0
\(926\) −15.9368 −0.523717
\(927\) −54.0055 −1.77377
\(928\) −21.5642 −0.707878
\(929\) 54.1710 1.77729 0.888647 0.458592i \(-0.151646\pi\)
0.888647 + 0.458592i \(0.151646\pi\)
\(930\) 0 0
\(931\) −24.5467 −0.804486
\(932\) 16.5641 0.542575
\(933\) 5.48773 0.179660
\(934\) 22.5916 0.739219
\(935\) 0 0
\(936\) 8.80113 0.287674
\(937\) 0.682282 0.0222892 0.0111446 0.999938i \(-0.496452\pi\)
0.0111446 + 0.999938i \(0.496452\pi\)
\(938\) 0.637211 0.0208057
\(939\) 0.852934 0.0278345
\(940\) 0 0
\(941\) 11.4586 0.373539 0.186770 0.982404i \(-0.440198\pi\)
0.186770 + 0.982404i \(0.440198\pi\)
\(942\) −5.23566 −0.170587
\(943\) 21.5190 0.700757
\(944\) −15.9973 −0.520667
\(945\) 0 0
\(946\) 0.0969895 0.00315340
\(947\) 3.11253 0.101143 0.0505717 0.998720i \(-0.483896\pi\)
0.0505717 + 0.998720i \(0.483896\pi\)
\(948\) 1.71549 0.0557167
\(949\) 10.7422 0.348707
\(950\) 0 0
\(951\) −2.71804 −0.0881384
\(952\) −28.6830 −0.929620
\(953\) 26.1414 0.846802 0.423401 0.905942i \(-0.360836\pi\)
0.423401 + 0.905942i \(0.360836\pi\)
\(954\) 38.8545 1.25796
\(955\) 0 0
\(956\) −24.3438 −0.787335
\(957\) −1.65931 −0.0536380
\(958\) −15.9185 −0.514303
\(959\) −14.2483 −0.460101
\(960\) 0 0
\(961\) 0.397933 0.0128366
\(962\) −4.22522 −0.136227
\(963\) 41.3559 1.33268
\(964\) 15.2977 0.492706
\(965\) 0 0
\(966\) 1.49841 0.0482104
\(967\) 38.3726 1.23398 0.616989 0.786972i \(-0.288352\pi\)
0.616989 + 0.786972i \(0.288352\pi\)
\(968\) −3.05369 −0.0981495
\(969\) 11.4068 0.366438
\(970\) 0 0
\(971\) −48.2005 −1.54683 −0.773415 0.633900i \(-0.781453\pi\)
−0.773415 + 0.633900i \(0.781453\pi\)
\(972\) 7.55692 0.242388
\(973\) 24.9355 0.799397
\(974\) −23.7122 −0.759787
\(975\) 0 0
\(976\) −22.3195 −0.714429
\(977\) 11.1779 0.357611 0.178806 0.983884i \(-0.442777\pi\)
0.178806 + 0.983884i \(0.442777\pi\)
\(978\) −1.20847 −0.0386426
\(979\) −1.82629 −0.0583685
\(980\) 0 0
\(981\) −10.5420 −0.336582
\(982\) −22.4300 −0.715770
\(983\) 1.54272 0.0492050 0.0246025 0.999697i \(-0.492168\pi\)
0.0246025 + 0.999697i \(0.492168\pi\)
\(984\) 7.28504 0.232239
\(985\) 0 0
\(986\) 36.7281 1.16966
\(987\) −2.34961 −0.0747888
\(988\) −4.01390 −0.127699
\(989\) −0.281296 −0.00894468
\(990\) 0 0
\(991\) 24.4899 0.777948 0.388974 0.921249i \(-0.372830\pi\)
0.388974 + 0.921249i \(0.372830\pi\)
\(992\) 25.0013 0.793793
\(993\) 7.28903 0.231310
\(994\) −15.1314 −0.479939
\(995\) 0 0
\(996\) 4.30288 0.136342
\(997\) 16.3909 0.519104 0.259552 0.965729i \(-0.416425\pi\)
0.259552 + 0.965729i \(0.416425\pi\)
\(998\) −6.37156 −0.201688
\(999\) −7.99109 −0.252827
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3575.2.a.t.1.6 9
5.4 even 2 715.2.a.i.1.4 9
15.14 odd 2 6435.2.a.bq.1.6 9
55.54 odd 2 7865.2.a.w.1.6 9
65.64 even 2 9295.2.a.t.1.6 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
715.2.a.i.1.4 9 5.4 even 2
3575.2.a.t.1.6 9 1.1 even 1 trivial
6435.2.a.bq.1.6 9 15.14 odd 2
7865.2.a.w.1.6 9 55.54 odd 2
9295.2.a.t.1.6 9 65.64 even 2