Properties

Label 714.2.w.a
Level $714$
Weight $2$
Character orbit 714.w
Analytic conductor $5.701$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [714,2,Mod(83,714)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(714, base_ring=CyclotomicField(8)) chi = DirichletCharacter(H, H._module([4, 4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("714.83"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 714 = 2 \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 714.w (of order \(8\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,8,0,-16,0,8,0,0,-8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.70131870432\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\Q(\zeta_{16})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{16}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \zeta_{16}^{2} q^{2} + ( - \zeta_{16}^{7} + \cdots + \zeta_{16}^{3}) q^{3} + \zeta_{16}^{4} q^{4} + (\zeta_{16}^{7} + \cdots + \zeta_{16}^{3}) q^{5} + (\zeta_{16}^{7} + \zeta_{16}^{5} + \zeta_{16}) q^{6}+ \cdots + (4 \zeta_{16}^{6} - 5 \zeta_{16}^{2} - 7) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 8 q^{7} - 16 q^{9} + 8 q^{11} - 8 q^{14} + 8 q^{15} - 8 q^{16} - 16 q^{21} - 8 q^{22} + 8 q^{23} + 32 q^{25} + 8 q^{28} + 40 q^{29} - 16 q^{30} - 16 q^{36} + 32 q^{37} - 8 q^{39} - 16 q^{44} - 8 q^{46}+ \cdots - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/714\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(409\) \(547\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{16}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
83.1
−0.382683 0.923880i
0.382683 + 0.923880i
−0.923880 + 0.382683i
0.923880 0.382683i
−0.923880 0.382683i
0.923880 + 0.382683i
−0.382683 + 0.923880i
0.382683 0.923880i
−0.707107 + 0.707107i −0.382683 + 1.68925i 1.00000i 3.15432 1.30656i −0.923880 1.46508i 2.25570 + 1.38268i 0.707107 + 0.707107i −2.70711 1.29289i −1.30656 + 3.15432i
83.2 −0.707107 + 0.707107i 0.382683 1.68925i 1.00000i −3.15432 + 1.30656i 0.923880 + 1.46508i 2.57273 + 0.617317i 0.707107 + 0.707107i −2.70711 1.29289i 1.30656 3.15432i
461.1 0.707107 0.707107i −0.923880 + 1.46508i 1.00000i −0.224171 0.541196i 0.382683 + 1.68925i 1.81623 + 1.92388i −0.707107 0.707107i −1.29289 2.70711i −0.541196 0.224171i
461.2 0.707107 0.707107i 0.923880 1.46508i 1.00000i 0.224171 + 0.541196i −0.382683 1.68925i −2.64466 + 0.0761205i −0.707107 0.707107i −1.29289 2.70711i 0.541196 + 0.224171i
587.1 0.707107 + 0.707107i −0.923880 1.46508i 1.00000i −0.224171 + 0.541196i 0.382683 1.68925i 1.81623 1.92388i −0.707107 + 0.707107i −1.29289 + 2.70711i −0.541196 + 0.224171i
587.2 0.707107 + 0.707107i 0.923880 + 1.46508i 1.00000i 0.224171 0.541196i −0.382683 + 1.68925i −2.64466 0.0761205i −0.707107 + 0.707107i −1.29289 + 2.70711i 0.541196 0.224171i
671.1 −0.707107 0.707107i −0.382683 1.68925i 1.00000i 3.15432 + 1.30656i −0.923880 + 1.46508i 2.25570 1.38268i 0.707107 0.707107i −2.70711 + 1.29289i −1.30656 3.15432i
671.2 −0.707107 0.707107i 0.382683 + 1.68925i 1.00000i −3.15432 1.30656i 0.923880 1.46508i 2.57273 0.617317i 0.707107 0.707107i −2.70711 + 1.29289i 1.30656 + 3.15432i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 83.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.b odd 2 1 inner
51.g odd 8 1 inner
357.w even 8 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 714.2.w.a 8
3.b odd 2 1 714.2.w.d yes 8
7.b odd 2 1 inner 714.2.w.a 8
17.d even 8 1 714.2.w.d yes 8
21.c even 2 1 714.2.w.d yes 8
51.g odd 8 1 inner 714.2.w.a 8
119.l odd 8 1 714.2.w.d yes 8
357.w even 8 1 inner 714.2.w.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
714.2.w.a 8 1.a even 1 1 trivial
714.2.w.a 8 7.b odd 2 1 inner
714.2.w.a 8 51.g odd 8 1 inner
714.2.w.a 8 357.w even 8 1 inner
714.2.w.d yes 8 3.b odd 2 1
714.2.w.d yes 8 17.d even 8 1
714.2.w.d yes 8 21.c even 2 1
714.2.w.d yes 8 119.l odd 8 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(714, [\chi])\):

\( T_{5}^{8} - 16T_{5}^{6} + 128T_{5}^{4} + 64T_{5}^{2} + 16 \) Copy content Toggle raw display
\( T_{11}^{4} - 4T_{11}^{3} + 22T_{11}^{2} - 12T_{11} + 2 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$3$ \( T^{8} + 8 T^{6} + \cdots + 81 \) Copy content Toggle raw display
$5$ \( T^{8} - 16 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$7$ \( T^{8} - 8 T^{7} + \cdots + 2401 \) Copy content Toggle raw display
$11$ \( (T^{4} - 4 T^{3} + 22 T^{2} + \cdots + 2)^{2} \) Copy content Toggle raw display
$13$ \( (T^{4} - 8 T^{2} + 8)^{2} \) Copy content Toggle raw display
$17$ \( T^{8} - 48 T^{6} + \cdots + 83521 \) Copy content Toggle raw display
$19$ \( T^{8} + 2508 T^{4} + 9604 \) Copy content Toggle raw display
$23$ \( (T^{4} - 4 T^{3} + \cdots + 1058)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 20 T^{3} + \cdots + 392)^{2} \) Copy content Toggle raw display
$31$ \( T^{8} + 48 T^{6} + \cdots + 38416 \) Copy content Toggle raw display
$37$ \( (T^{4} - 16 T^{3} + \cdots + 1058)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} - 96 T^{6} + \cdots + 614656 \) Copy content Toggle raw display
$43$ \( (T^{4} + 16)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} + 160 T^{2} + 6272)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 16 T + 128)^{4} \) Copy content Toggle raw display
$59$ \( T^{8} + 6192 T^{4} + 5345344 \) Copy content Toggle raw display
$61$ \( T^{8} - 192 T^{6} + \cdots + 342102016 \) Copy content Toggle raw display
$67$ \( (T^{2} - 24 T + 136)^{4} \) Copy content Toggle raw display
$71$ \( (T^{4} + 28 T^{3} + \cdots + 1058)^{2} \) Copy content Toggle raw display
$73$ \( T^{8} + 26873856 \) Copy content Toggle raw display
$79$ \( (T^{4} + 24 T^{3} + \cdots + 6272)^{2} \) Copy content Toggle raw display
$83$ \( T^{8} + 3888 T^{4} + 419904 \) Copy content Toggle raw display
$89$ \( (T^{4} + 68 T^{2} + 1058)^{2} \) Copy content Toggle raw display
$97$ \( T^{8} - 128 T^{6} + \cdots + 236421376 \) Copy content Toggle raw display
show more
show less