L(s) = 1 | + (0.707 + 0.707i)2-s + (−0.923 − 1.46i)3-s + 1.00i·4-s + (−0.224 + 0.541i)5-s + (0.382 − 1.68i)6-s + (1.81 − 1.92i)7-s + (−0.707 + 0.707i)8-s + (−1.29 + 2.70i)9-s + (−0.541 + 0.224i)10-s + (1.70 + 4.12i)11-s + (1.46 − 0.923i)12-s + 1.08·13-s + (2.64 − 0.0761i)14-s + (1 − 0.171i)15-s − 1.00·16-s + (3.76 − 1.68i)17-s + ⋯ |
L(s) = 1 | + (0.499 + 0.499i)2-s + (−0.533 − 0.845i)3-s + 0.500i·4-s + (−0.100 + 0.242i)5-s + (0.156 − 0.689i)6-s + (0.686 − 0.727i)7-s + (−0.250 + 0.250i)8-s + (−0.430 + 0.902i)9-s + (−0.171 + 0.0708i)10-s + (0.514 + 1.24i)11-s + (0.422 − 0.266i)12-s + 0.300·13-s + (0.706 − 0.0203i)14-s + (0.258 − 0.0442i)15-s − 0.250·16-s + (0.912 − 0.409i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.962 - 0.271i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.962 - 0.271i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.79412 + 0.247940i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.79412 + 0.247940i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-0.707 - 0.707i)T \) |
| 3 | \( 1 + (0.923 + 1.46i)T \) |
| 7 | \( 1 + (-1.81 + 1.92i)T \) |
| 17 | \( 1 + (-3.76 + 1.68i)T \) |
good | 5 | \( 1 + (0.224 - 0.541i)T + (-3.53 - 3.53i)T^{2} \) |
| 11 | \( 1 + (-1.70 - 4.12i)T + (-7.77 + 7.77i)T^{2} \) |
| 13 | \( 1 - 1.08T + 13T^{2} \) |
| 19 | \( 1 + (0.989 + 0.989i)T + 19iT^{2} \) |
| 23 | \( 1 + (2.53 + 6.12i)T + (-16.2 + 16.2i)T^{2} \) |
| 29 | \( 1 + (-9.24 - 3.82i)T + (20.5 + 20.5i)T^{2} \) |
| 31 | \( 1 + (-2.38 + 5.76i)T + (-21.9 - 21.9i)T^{2} \) |
| 37 | \( 1 + (-6.12 - 2.53i)T + (26.1 + 26.1i)T^{2} \) |
| 41 | \( 1 + (-1.21 - 2.93i)T + (-28.9 + 28.9i)T^{2} \) |
| 43 | \( 1 + (-1.41 - 1.41i)T + 43iT^{2} \) |
| 47 | \( 1 - 9.55iT - 47T^{2} \) |
| 53 | \( 1 + (8 + 8i)T + 53iT^{2} \) |
| 59 | \( 1 + (4.01 + 4.01i)T + 59iT^{2} \) |
| 61 | \( 1 + (13.6 - 5.67i)T + (43.1 - 43.1i)T^{2} \) |
| 67 | \( 1 - 9.17T + 67T^{2} \) |
| 71 | \( 1 + (-0.778 + 1.87i)T + (-50.2 - 50.2i)T^{2} \) |
| 73 | \( 1 + (-7.83 - 3.24i)T + (51.6 + 51.6i)T^{2} \) |
| 79 | \( 1 + (8.82 - 3.65i)T + (55.8 - 55.8i)T^{2} \) |
| 83 | \( 1 + (-5.54 + 5.54i)T - 83iT^{2} \) |
| 89 | \( 1 - 6.62iT - 89T^{2} \) |
| 97 | \( 1 + (12.3 + 5.09i)T + (68.5 + 68.5i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.69981883848503005265747683681, −9.664162971855064584899547847600, −8.249593348813920919883436124616, −7.69417061315530525820919087513, −6.82960767544777679538570790371, −6.28096909260076216011392791312, −4.93289323259794995607132562778, −4.37232428470402649156944604471, −2.74265625714385601492009890275, −1.24530101495343405543373165806,
1.14677165343202518669325828065, 2.95718127598089027704950267218, 3.92194654674323012831552604741, 4.87849065702838883010230395457, 5.76711392364240826933807010974, 6.30676778042990645777917088451, 8.109533179873630891059348560433, 8.778004036526728886447569107455, 9.681772224086192971825561382475, 10.62750392128764026809768816208