Properties

Label 714.2.m.d.463.1
Level $714$
Weight $2$
Character 714.463
Analytic conductor $5.701$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [714,2,Mod(421,714)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(714, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("714.421"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 714 = 2 \cdot 3 \cdot 7 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 714.m (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0,-12,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.70131870432\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 38x^{10} + 509x^{8} + 2748x^{6} + 4804x^{4} + 2496x^{2} + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{17}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 463.1
Root \(3.38067i\) of defining polynomial
Character \(\chi\) \(=\) 714.463
Dual form 714.2.m.d.421.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} +(-0.707107 + 0.707107i) q^{3} -1.00000 q^{4} +(-2.39049 + 2.39049i) q^{5} +(0.707107 + 0.707107i) q^{6} +(0.707107 + 0.707107i) q^{7} +1.00000i q^{8} -1.00000i q^{9} +(2.39049 + 2.39049i) q^{10} +(1.39049 + 1.39049i) q^{11} +(0.707107 - 0.707107i) q^{12} -1.28498 q^{13} +(0.707107 - 0.707107i) q^{14} -3.38067i q^{15} +1.00000 q^{16} +(-3.78907 - 1.62572i) q^{17} -1.00000 q^{18} -8.42622i q^{19} +(2.39049 - 2.39049i) q^{20} -1.00000 q^{21} +(1.39049 - 1.39049i) q^{22} +(-2.44833 - 2.44833i) q^{23} +(-0.707107 - 0.707107i) q^{24} -6.42892i q^{25} +1.28498i q^{26} +(0.707107 + 0.707107i) q^{27} +(-0.707107 - 0.707107i) q^{28} +(-2.63153 + 2.63153i) q^{29} -3.38067 q^{30} +(-4.74744 + 4.74744i) q^{31} -1.00000i q^{32} -1.96645 q^{33} +(-1.62572 + 3.78907i) q^{34} -3.38067 q^{35} +1.00000i q^{36} +(-1.22714 + 1.22714i) q^{37} -8.42622 q^{38} +(0.908617 - 0.908617i) q^{39} +(-2.39049 - 2.39049i) q^{40} +(1.33266 + 1.33266i) q^{41} +1.00000i q^{42} -12.0495i q^{43} +(-1.39049 - 1.39049i) q^{44} +(2.39049 + 2.39049i) q^{45} +(-2.44833 + 2.44833i) q^{46} -5.10769 q^{47} +(-0.707107 + 0.707107i) q^{48} +1.00000i q^{49} -6.42892 q^{50} +(3.82883 - 1.52972i) q^{51} +1.28498 q^{52} -13.8832i q^{53} +(0.707107 - 0.707107i) q^{54} -6.64793 q^{55} +(-0.707107 + 0.707107i) q^{56} +(5.95823 + 5.95823i) q^{57} +(2.63153 + 2.63153i) q^{58} +12.5311i q^{59} +3.38067i q^{60} +(-7.70568 - 7.70568i) q^{61} +(4.74744 + 4.74744i) q^{62} +(0.707107 - 0.707107i) q^{63} -1.00000 q^{64} +(3.07173 - 3.07173i) q^{65} +1.96645i q^{66} +15.9824 q^{67} +(3.78907 + 1.62572i) q^{68} +3.46246 q^{69} +3.38067i q^{70} +(-5.22932 + 5.22932i) q^{71} +1.00000 q^{72} +(-2.40439 + 2.40439i) q^{73} +(1.22714 + 1.22714i) q^{74} +(4.54593 + 4.54593i) q^{75} +8.42622i q^{76} +1.96645i q^{77} +(-0.908617 - 0.908617i) q^{78} +(-9.16596 - 9.16596i) q^{79} +(-2.39049 + 2.39049i) q^{80} -1.00000 q^{81} +(1.33266 - 1.33266i) q^{82} +7.05798i q^{83} +1.00000 q^{84} +(12.9440 - 5.17148i) q^{85} -12.0495 q^{86} -3.72154i q^{87} +(-1.39049 + 1.39049i) q^{88} +0.0821301 q^{89} +(2.39049 - 2.39049i) q^{90} +(-0.908617 - 0.908617i) q^{91} +(2.44833 + 2.44833i) q^{92} -6.71390i q^{93} +5.10769i q^{94} +(20.1428 + 20.1428i) q^{95} +(0.707107 + 0.707107i) q^{96} +(2.30951 - 2.30951i) q^{97} +1.00000 q^{98} +(1.39049 - 1.39049i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 12 q^{4} - 4 q^{5} + 4 q^{10} - 8 q^{11} + 12 q^{13} + 12 q^{16} - 12 q^{17} - 12 q^{18} + 4 q^{20} - 12 q^{21} - 8 q^{22} + 8 q^{23} + 12 q^{29} - 4 q^{30} + 12 q^{31} - 4 q^{33} + 4 q^{34} - 4 q^{35}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/714\mathbb{Z}\right)^\times\).

\(n\) \(239\) \(409\) \(547\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) −0.707107 + 0.707107i −0.408248 + 0.408248i
\(4\) −1.00000 −0.500000
\(5\) −2.39049 + 2.39049i −1.06906 + 1.06906i −0.0716299 + 0.997431i \(0.522820\pi\)
−0.997431 + 0.0716299i \(0.977180\pi\)
\(6\) 0.707107 + 0.707107i 0.288675 + 0.288675i
\(7\) 0.707107 + 0.707107i 0.267261 + 0.267261i
\(8\) 1.00000i 0.353553i
\(9\) 1.00000i 0.333333i
\(10\) 2.39049 + 2.39049i 0.755940 + 0.755940i
\(11\) 1.39049 + 1.39049i 0.419250 + 0.419250i 0.884945 0.465695i \(-0.154196\pi\)
−0.465695 + 0.884945i \(0.654196\pi\)
\(12\) 0.707107 0.707107i 0.204124 0.204124i
\(13\) −1.28498 −0.356389 −0.178194 0.983995i \(-0.557026\pi\)
−0.178194 + 0.983995i \(0.557026\pi\)
\(14\) 0.707107 0.707107i 0.188982 0.188982i
\(15\) 3.38067i 0.872885i
\(16\) 1.00000 0.250000
\(17\) −3.78907 1.62572i −0.918984 0.394294i
\(18\) −1.00000 −0.235702
\(19\) 8.42622i 1.93311i −0.256466 0.966553i \(-0.582558\pi\)
0.256466 0.966553i \(-0.417442\pi\)
\(20\) 2.39049 2.39049i 0.534531 0.534531i
\(21\) −1.00000 −0.218218
\(22\) 1.39049 1.39049i 0.296454 0.296454i
\(23\) −2.44833 2.44833i −0.510512 0.510512i 0.404171 0.914683i \(-0.367560\pi\)
−0.914683 + 0.404171i \(0.867560\pi\)
\(24\) −0.707107 0.707107i −0.144338 0.144338i
\(25\) 6.42892i 1.28578i
\(26\) 1.28498i 0.252005i
\(27\) 0.707107 + 0.707107i 0.136083 + 0.136083i
\(28\) −0.707107 0.707107i −0.133631 0.133631i
\(29\) −2.63153 + 2.63153i −0.488663 + 0.488663i −0.907884 0.419221i \(-0.862303\pi\)
0.419221 + 0.907884i \(0.362303\pi\)
\(30\) −3.38067 −0.617223
\(31\) −4.74744 + 4.74744i −0.852666 + 0.852666i −0.990461 0.137795i \(-0.955998\pi\)
0.137795 + 0.990461i \(0.455998\pi\)
\(32\) 1.00000i 0.176777i
\(33\) −1.96645 −0.342316
\(34\) −1.62572 + 3.78907i −0.278808 + 0.649820i
\(35\) −3.38067 −0.571437
\(36\) 1.00000i 0.166667i
\(37\) −1.22714 + 1.22714i −0.201741 + 0.201741i −0.800745 0.599005i \(-0.795563\pi\)
0.599005 + 0.800745i \(0.295563\pi\)
\(38\) −8.42622 −1.36691
\(39\) 0.908617 0.908617i 0.145495 0.145495i
\(40\) −2.39049 2.39049i −0.377970 0.377970i
\(41\) 1.33266 + 1.33266i 0.208126 + 0.208126i 0.803470 0.595345i \(-0.202984\pi\)
−0.595345 + 0.803470i \(0.702984\pi\)
\(42\) 1.00000i 0.154303i
\(43\) 12.0495i 1.83754i −0.394799 0.918768i \(-0.629186\pi\)
0.394799 0.918768i \(-0.370814\pi\)
\(44\) −1.39049 1.39049i −0.209625 0.209625i
\(45\) 2.39049 + 2.39049i 0.356354 + 0.356354i
\(46\) −2.44833 + 2.44833i −0.360987 + 0.360987i
\(47\) −5.10769 −0.745033 −0.372517 0.928025i \(-0.621505\pi\)
−0.372517 + 0.928025i \(0.621505\pi\)
\(48\) −0.707107 + 0.707107i −0.102062 + 0.102062i
\(49\) 1.00000i 0.142857i
\(50\) −6.42892 −0.909186
\(51\) 3.82883 1.52972i 0.536144 0.214204i
\(52\) 1.28498 0.178194
\(53\) 13.8832i 1.90700i −0.301387 0.953502i \(-0.597449\pi\)
0.301387 0.953502i \(-0.402551\pi\)
\(54\) 0.707107 0.707107i 0.0962250 0.0962250i
\(55\) −6.64793 −0.896407
\(56\) −0.707107 + 0.707107i −0.0944911 + 0.0944911i
\(57\) 5.95823 + 5.95823i 0.789187 + 0.789187i
\(58\) 2.63153 + 2.63153i 0.345537 + 0.345537i
\(59\) 12.5311i 1.63141i 0.578465 + 0.815707i \(0.303652\pi\)
−0.578465 + 0.815707i \(0.696348\pi\)
\(60\) 3.38067i 0.436442i
\(61\) −7.70568 7.70568i −0.986611 0.986611i 0.0133008 0.999912i \(-0.495766\pi\)
−0.999912 + 0.0133008i \(0.995766\pi\)
\(62\) 4.74744 + 4.74744i 0.602926 + 0.602926i
\(63\) 0.707107 0.707107i 0.0890871 0.0890871i
\(64\) −1.00000 −0.125000
\(65\) 3.07173 3.07173i 0.381002 0.381002i
\(66\) 1.96645i 0.242054i
\(67\) 15.9824 1.95257 0.976283 0.216500i \(-0.0694642\pi\)
0.976283 + 0.216500i \(0.0694642\pi\)
\(68\) 3.78907 + 1.62572i 0.459492 + 0.197147i
\(69\) 3.46246 0.416832
\(70\) 3.38067i 0.404067i
\(71\) −5.22932 + 5.22932i −0.620606 + 0.620606i −0.945686 0.325080i \(-0.894609\pi\)
0.325080 + 0.945686i \(0.394609\pi\)
\(72\) 1.00000 0.117851
\(73\) −2.40439 + 2.40439i −0.281412 + 0.281412i −0.833672 0.552260i \(-0.813766\pi\)
0.552260 + 0.833672i \(0.313766\pi\)
\(74\) 1.22714 + 1.22714i 0.142652 + 0.142652i
\(75\) 4.54593 + 4.54593i 0.524919 + 0.524919i
\(76\) 8.42622i 0.966553i
\(77\) 1.96645i 0.224098i
\(78\) −0.908617 0.908617i −0.102881 0.102881i
\(79\) −9.16596 9.16596i −1.03125 1.03125i −0.999496 0.0317556i \(-0.989890\pi\)
−0.0317556 0.999496i \(-0.510110\pi\)
\(80\) −2.39049 + 2.39049i −0.267265 + 0.267265i
\(81\) −1.00000 −0.111111
\(82\) 1.33266 1.33266i 0.147167 0.147167i
\(83\) 7.05798i 0.774714i 0.921930 + 0.387357i \(0.126612\pi\)
−0.921930 + 0.387357i \(0.873388\pi\)
\(84\) 1.00000 0.109109
\(85\) 12.9440 5.17148i 1.40398 0.560926i
\(86\) −12.0495 −1.29933
\(87\) 3.72154i 0.398991i
\(88\) −1.39049 + 1.39049i −0.148227 + 0.148227i
\(89\) 0.0821301 0.00870577 0.00435288 0.999991i \(-0.498614\pi\)
0.00435288 + 0.999991i \(0.498614\pi\)
\(90\) 2.39049 2.39049i 0.251980 0.251980i
\(91\) −0.908617 0.908617i −0.0952489 0.0952489i
\(92\) 2.44833 + 2.44833i 0.255256 + 0.255256i
\(93\) 6.71390i 0.696199i
\(94\) 5.10769i 0.526818i
\(95\) 20.1428 + 20.1428i 2.06661 + 2.06661i
\(96\) 0.707107 + 0.707107i 0.0721688 + 0.0721688i
\(97\) 2.30951 2.30951i 0.234495 0.234495i −0.580071 0.814566i \(-0.696975\pi\)
0.814566 + 0.580071i \(0.196975\pi\)
\(98\) 1.00000 0.101015
\(99\) 1.39049 1.39049i 0.139750 0.139750i
\(100\) 6.42892i 0.642892i
\(101\) 4.17200 0.415130 0.207565 0.978221i \(-0.433446\pi\)
0.207565 + 0.978221i \(0.433446\pi\)
\(102\) −1.52972 3.82883i −0.151465 0.379111i
\(103\) −14.8586 −1.46406 −0.732030 0.681273i \(-0.761427\pi\)
−0.732030 + 0.681273i \(0.761427\pi\)
\(104\) 1.28498i 0.126003i
\(105\) 2.39049 2.39049i 0.233288 0.233288i
\(106\) −13.8832 −1.34846
\(107\) 0.434436 0.434436i 0.0419985 0.0419985i −0.685796 0.727794i \(-0.740546\pi\)
0.727794 + 0.685796i \(0.240546\pi\)
\(108\) −0.707107 0.707107i −0.0680414 0.0680414i
\(109\) 4.96966 + 4.96966i 0.476008 + 0.476008i 0.903852 0.427845i \(-0.140727\pi\)
−0.427845 + 0.903852i \(0.640727\pi\)
\(110\) 6.64793i 0.633855i
\(111\) 1.73544i 0.164721i
\(112\) 0.707107 + 0.707107i 0.0668153 + 0.0668153i
\(113\) −2.49227 2.49227i −0.234453 0.234453i 0.580095 0.814549i \(-0.303015\pi\)
−0.814549 + 0.580095i \(0.803015\pi\)
\(114\) 5.95823 5.95823i 0.558040 0.558040i
\(115\) 11.7054 1.09154
\(116\) 2.63153 2.63153i 0.244331 0.244331i
\(117\) 1.28498i 0.118796i
\(118\) 12.5311 1.15358
\(119\) −1.52972 3.82883i −0.140229 0.350988i
\(120\) 3.38067 0.308611
\(121\) 7.13306i 0.648460i
\(122\) −7.70568 + 7.70568i −0.697639 + 0.697639i
\(123\) −1.88466 −0.169934
\(124\) 4.74744 4.74744i 0.426333 0.426333i
\(125\) 3.41582 + 3.41582i 0.305520 + 0.305520i
\(126\) −0.707107 0.707107i −0.0629941 0.0629941i
\(127\) 10.1157i 0.897621i 0.893627 + 0.448811i \(0.148152\pi\)
−0.893627 + 0.448811i \(0.851848\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 8.52030 + 8.52030i 0.750171 + 0.750171i
\(130\) −3.07173 3.07173i −0.269409 0.269409i
\(131\) −6.65114 + 6.65114i −0.581113 + 0.581113i −0.935209 0.354096i \(-0.884789\pi\)
0.354096 + 0.935209i \(0.384789\pi\)
\(132\) 1.96645 0.171158
\(133\) 5.95823 5.95823i 0.516644 0.516644i
\(134\) 15.9824i 1.38067i
\(135\) −3.38067 −0.290962
\(136\) 1.62572 3.78907i 0.139404 0.324910i
\(137\) −12.5049 −1.06837 −0.534184 0.845368i \(-0.679381\pi\)
−0.534184 + 0.845368i \(0.679381\pi\)
\(138\) 3.46246i 0.294744i
\(139\) 6.51482 6.51482i 0.552580 0.552580i −0.374605 0.927185i \(-0.622222\pi\)
0.927185 + 0.374605i \(0.122222\pi\)
\(140\) 3.38067 0.285719
\(141\) 3.61168 3.61168i 0.304159 0.304159i
\(142\) 5.22932 + 5.22932i 0.438835 + 0.438835i
\(143\) −1.78675 1.78675i −0.149416 0.149416i
\(144\) 1.00000i 0.0833333i
\(145\) 12.5813i 1.04482i
\(146\) 2.40439 + 2.40439i 0.198989 + 0.198989i
\(147\) −0.707107 0.707107i −0.0583212 0.0583212i
\(148\) 1.22714 1.22714i 0.100870 0.100870i
\(149\) −4.64339 −0.380401 −0.190201 0.981745i \(-0.560914\pi\)
−0.190201 + 0.981745i \(0.560914\pi\)
\(150\) 4.54593 4.54593i 0.371174 0.371174i
\(151\) 13.5227i 1.10046i 0.835013 + 0.550230i \(0.185460\pi\)
−0.835013 + 0.550230i \(0.814540\pi\)
\(152\) 8.42622 0.683456
\(153\) −1.62572 + 3.78907i −0.131431 + 0.306328i
\(154\) 1.96645 0.158461
\(155\) 22.6975i 1.82310i
\(156\) −0.908617 + 0.908617i −0.0727476 + 0.0727476i
\(157\) 3.96117 0.316136 0.158068 0.987428i \(-0.449473\pi\)
0.158068 + 0.987428i \(0.449473\pi\)
\(158\) −9.16596 + 9.16596i −0.729205 + 0.729205i
\(159\) 9.81690 + 9.81690i 0.778531 + 0.778531i
\(160\) 2.39049 + 2.39049i 0.188985 + 0.188985i
\(161\) 3.46246i 0.272880i
\(162\) 1.00000i 0.0785674i
\(163\) 6.08099 + 6.08099i 0.476300 + 0.476300i 0.903946 0.427647i \(-0.140657\pi\)
−0.427647 + 0.903946i \(0.640657\pi\)
\(164\) −1.33266 1.33266i −0.104063 0.104063i
\(165\) 4.70080 4.70080i 0.365957 0.365957i
\(166\) 7.05798 0.547806
\(167\) −12.2454 + 12.2454i −0.947577 + 0.947577i −0.998693 0.0511160i \(-0.983722\pi\)
0.0511160 + 0.998693i \(0.483722\pi\)
\(168\) 1.00000i 0.0771517i
\(169\) −11.3488 −0.872987
\(170\) −5.17148 12.9440i −0.396634 0.992760i
\(171\) −8.42622 −0.644369
\(172\) 12.0495i 0.918768i
\(173\) 8.45952 8.45952i 0.643166 0.643166i −0.308167 0.951332i \(-0.599715\pi\)
0.951332 + 0.308167i \(0.0997154\pi\)
\(174\) −3.72154 −0.282130
\(175\) 4.54593 4.54593i 0.343640 0.343640i
\(176\) 1.39049 + 1.39049i 0.104812 + 0.104812i
\(177\) −8.86085 8.86085i −0.666022 0.666022i
\(178\) 0.0821301i 0.00615591i
\(179\) 17.0913i 1.27746i 0.769431 + 0.638730i \(0.220540\pi\)
−0.769431 + 0.638730i \(0.779460\pi\)
\(180\) −2.39049 2.39049i −0.178177 0.178177i
\(181\) 8.35361 + 8.35361i 0.620919 + 0.620919i 0.945766 0.324848i \(-0.105313\pi\)
−0.324848 + 0.945766i \(0.605313\pi\)
\(182\) −0.908617 + 0.908617i −0.0673512 + 0.0673512i
\(183\) 10.8975 0.805564
\(184\) 2.44833 2.44833i 0.180493 0.180493i
\(185\) 5.86694i 0.431346i
\(186\) −6.71390 −0.492287
\(187\) −3.00813 7.52922i −0.219976 0.550591i
\(188\) 5.10769 0.372517
\(189\) 1.00000i 0.0727393i
\(190\) 20.1428 20.1428i 1.46131 1.46131i
\(191\) 1.31277 0.0949886 0.0474943 0.998872i \(-0.484876\pi\)
0.0474943 + 0.998872i \(0.484876\pi\)
\(192\) 0.707107 0.707107i 0.0510310 0.0510310i
\(193\) 3.84808 + 3.84808i 0.276991 + 0.276991i 0.831907 0.554916i \(-0.187250\pi\)
−0.554916 + 0.831907i \(0.687250\pi\)
\(194\) −2.30951 2.30951i −0.165813 0.165813i
\(195\) 4.34409i 0.311086i
\(196\) 1.00000i 0.0714286i
\(197\) −9.16814 9.16814i −0.653203 0.653203i 0.300560 0.953763i \(-0.402826\pi\)
−0.953763 + 0.300560i \(0.902826\pi\)
\(198\) −1.39049 1.39049i −0.0988181 0.0988181i
\(199\) −1.71232 + 1.71232i −0.121383 + 0.121383i −0.765189 0.643806i \(-0.777354\pi\)
0.643806 + 0.765189i \(0.277354\pi\)
\(200\) 6.42892 0.454593
\(201\) −11.3013 + 11.3013i −0.797131 + 0.797131i
\(202\) 4.17200i 0.293541i
\(203\) −3.72154 −0.261201
\(204\) −3.82883 + 1.52972i −0.268072 + 0.107102i
\(205\) −6.37141 −0.444999
\(206\) 14.8586i 1.03525i
\(207\) −2.44833 + 2.44833i −0.170171 + 0.170171i
\(208\) −1.28498 −0.0890972
\(209\) 11.7166 11.7166i 0.810454 0.810454i
\(210\) −2.39049 2.39049i −0.164960 0.164960i
\(211\) 12.7938 + 12.7938i 0.880759 + 0.880759i 0.993612 0.112853i \(-0.0359990\pi\)
−0.112853 + 0.993612i \(0.535999\pi\)
\(212\) 13.8832i 0.953502i
\(213\) 7.39537i 0.506723i
\(214\) −0.434436 0.434436i −0.0296974 0.0296974i
\(215\) 28.8043 + 28.8043i 1.96444 + 1.96444i
\(216\) −0.707107 + 0.707107i −0.0481125 + 0.0481125i
\(217\) −6.71390 −0.455769
\(218\) 4.96966 4.96966i 0.336588 0.336588i
\(219\) 3.40032i 0.229772i
\(220\) 6.64793 0.448203
\(221\) 4.86887 + 2.08901i 0.327516 + 0.140522i
\(222\) −1.73544 −0.116475
\(223\) 9.43942i 0.632110i 0.948741 + 0.316055i \(0.102358\pi\)
−0.948741 + 0.316055i \(0.897642\pi\)
\(224\) 0.707107 0.707107i 0.0472456 0.0472456i
\(225\) −6.42892 −0.428595
\(226\) −2.49227 + 2.49227i −0.165784 + 0.165784i
\(227\) −19.0383 19.0383i −1.26362 1.26362i −0.949326 0.314292i \(-0.898233\pi\)
−0.314292 0.949326i \(-0.601767\pi\)
\(228\) −5.95823 5.95823i −0.394594 0.394594i
\(229\) 20.6547i 1.36490i 0.730931 + 0.682452i \(0.239086\pi\)
−0.730931 + 0.682452i \(0.760914\pi\)
\(230\) 11.7054i 0.771834i
\(231\) −1.39049 1.39049i −0.0914878 0.0914878i
\(232\) −2.63153 2.63153i −0.172768 0.172768i
\(233\) 11.4172 11.4172i 0.747966 0.747966i −0.226131 0.974097i \(-0.572608\pi\)
0.974097 + 0.226131i \(0.0726078\pi\)
\(234\) 1.28498 0.0840017
\(235\) 12.2099 12.2099i 0.796486 0.796486i
\(236\) 12.5311i 0.815707i
\(237\) 12.9626 0.842013
\(238\) −3.82883 + 1.52972i −0.248186 + 0.0991571i
\(239\) −14.5531 −0.941359 −0.470679 0.882304i \(-0.655991\pi\)
−0.470679 + 0.882304i \(0.655991\pi\)
\(240\) 3.38067i 0.218221i
\(241\) 5.63110 5.63110i 0.362731 0.362731i −0.502087 0.864817i \(-0.667434\pi\)
0.864817 + 0.502087i \(0.167434\pi\)
\(242\) −7.13306 −0.458530
\(243\) 0.707107 0.707107i 0.0453609 0.0453609i
\(244\) 7.70568 + 7.70568i 0.493305 + 0.493305i
\(245\) −2.39049 2.39049i −0.152723 0.152723i
\(246\) 1.88466i 0.120162i
\(247\) 10.8275i 0.688938i
\(248\) −4.74744 4.74744i −0.301463 0.301463i
\(249\) −4.99075 4.99075i −0.316276 0.316276i
\(250\) 3.41582 3.41582i 0.216035 0.216035i
\(251\) −4.23248 −0.267152 −0.133576 0.991039i \(-0.542646\pi\)
−0.133576 + 0.991039i \(0.542646\pi\)
\(252\) −0.707107 + 0.707107i −0.0445435 + 0.0445435i
\(253\) 6.80878i 0.428064i
\(254\) 10.1157 0.634714
\(255\) −5.49601 + 12.8096i −0.344173 + 0.802167i
\(256\) 1.00000 0.0625000
\(257\) 2.93720i 0.183218i −0.995795 0.0916088i \(-0.970799\pi\)
0.995795 0.0916088i \(-0.0292009\pi\)
\(258\) 8.52030 8.52030i 0.530451 0.530451i
\(259\) −1.73544 −0.107835
\(260\) −3.07173 + 3.07173i −0.190501 + 0.190501i
\(261\) 2.63153 + 2.63153i 0.162888 + 0.162888i
\(262\) 6.65114 + 6.65114i 0.410909 + 0.410909i
\(263\) 5.34017i 0.329289i 0.986353 + 0.164644i \(0.0526477\pi\)
−0.986353 + 0.164644i \(0.947352\pi\)
\(264\) 1.96645i 0.121027i
\(265\) 33.1877 + 33.1877i 2.03870 + 2.03870i
\(266\) −5.95823 5.95823i −0.365323 0.365323i
\(267\) −0.0580747 + 0.0580747i −0.00355411 + 0.00355411i
\(268\) −15.9824 −0.976283
\(269\) 18.3598 18.3598i 1.11942 1.11942i 0.127592 0.991827i \(-0.459275\pi\)
0.991827 0.127592i \(-0.0407247\pi\)
\(270\) 3.38067i 0.205741i
\(271\) −22.7631 −1.38276 −0.691381 0.722490i \(-0.742998\pi\)
−0.691381 + 0.722490i \(0.742998\pi\)
\(272\) −3.78907 1.62572i −0.229746 0.0985735i
\(273\) 1.28498 0.0777704
\(274\) 12.5049i 0.755451i
\(275\) 8.93937 8.93937i 0.539064 0.539064i
\(276\) −3.46246 −0.208416
\(277\) 0.737840 0.737840i 0.0443325 0.0443325i −0.684593 0.728926i \(-0.740020\pi\)
0.728926 + 0.684593i \(0.240020\pi\)
\(278\) −6.51482 6.51482i −0.390733 0.390733i
\(279\) 4.74744 + 4.74744i 0.284222 + 0.284222i
\(280\) 3.38067i 0.202034i
\(281\) 5.01320i 0.299063i 0.988757 + 0.149531i \(0.0477765\pi\)
−0.988757 + 0.149531i \(0.952224\pi\)
\(282\) −3.61168 3.61168i −0.215073 0.215073i
\(283\) −23.5506 23.5506i −1.39994 1.39994i −0.800185 0.599753i \(-0.795265\pi\)
−0.599753 0.800185i \(-0.704735\pi\)
\(284\) 5.22932 5.22932i 0.310303 0.310303i
\(285\) −28.4862 −1.68738
\(286\) −1.78675 + 1.78675i −0.105653 + 0.105653i
\(287\) 1.88466i 0.111248i
\(288\) −1.00000 −0.0589256
\(289\) 11.7141 + 12.3199i 0.689064 + 0.724700i
\(290\) −12.5813 −0.738800
\(291\) 3.26614i 0.191464i
\(292\) 2.40439 2.40439i 0.140706 0.140706i
\(293\) −1.91153 −0.111673 −0.0558363 0.998440i \(-0.517782\pi\)
−0.0558363 + 0.998440i \(0.517782\pi\)
\(294\) −0.707107 + 0.707107i −0.0412393 + 0.0412393i
\(295\) −29.9556 29.9556i −1.74408 1.74408i
\(296\) −1.22714 1.22714i −0.0713261 0.0713261i
\(297\) 1.96645i 0.114105i
\(298\) 4.64339i 0.268984i
\(299\) 3.14605 + 3.14605i 0.181941 + 0.181941i
\(300\) −4.54593 4.54593i −0.262459 0.262459i
\(301\) 8.52030 8.52030i 0.491102 0.491102i
\(302\) 13.5227 0.778142
\(303\) −2.95005 + 2.95005i −0.169476 + 0.169476i
\(304\) 8.42622i 0.483277i
\(305\) 36.8407 2.10949
\(306\) 3.78907 + 1.62572i 0.216607 + 0.0929360i
\(307\) −4.52564 −0.258292 −0.129146 0.991626i \(-0.541224\pi\)
−0.129146 + 0.991626i \(0.541224\pi\)
\(308\) 1.96645i 0.112049i
\(309\) 10.5066 10.5066i 0.597700 0.597700i
\(310\) −22.6975 −1.28913
\(311\) −19.0542 + 19.0542i −1.08046 + 1.08046i −0.0839966 + 0.996466i \(0.526769\pi\)
−0.996466 + 0.0839966i \(0.973231\pi\)
\(312\) 0.908617 + 0.908617i 0.0514403 + 0.0514403i
\(313\) −12.6439 12.6439i −0.714676 0.714676i 0.252834 0.967510i \(-0.418637\pi\)
−0.967510 + 0.252834i \(0.918637\pi\)
\(314\) 3.96117i 0.223542i
\(315\) 3.38067i 0.190479i
\(316\) 9.16596 + 9.16596i 0.515626 + 0.515626i
\(317\) 0.765710 + 0.765710i 0.0430066 + 0.0430066i 0.728283 0.685276i \(-0.240319\pi\)
−0.685276 + 0.728283i \(0.740319\pi\)
\(318\) 9.81690 9.81690i 0.550505 0.550505i
\(319\) −7.31825 −0.409743
\(320\) 2.39049 2.39049i 0.133633 0.133633i
\(321\) 0.614386i 0.0342917i
\(322\) −3.46246 −0.192956
\(323\) −13.6986 + 31.9275i −0.762213 + 1.77649i
\(324\) 1.00000 0.0555556
\(325\) 8.26102i 0.458239i
\(326\) 6.08099 6.08099i 0.336795 0.336795i
\(327\) −7.02817 −0.388659
\(328\) −1.33266 + 1.33266i −0.0735836 + 0.0735836i
\(329\) −3.61168 3.61168i −0.199119 0.199119i
\(330\) −4.70080 4.70080i −0.258770 0.258770i
\(331\) 25.7000i 1.41260i 0.707914 + 0.706299i \(0.249636\pi\)
−0.707914 + 0.706299i \(0.750364\pi\)
\(332\) 7.05798i 0.387357i
\(333\) 1.22714 + 1.22714i 0.0672469 + 0.0672469i
\(334\) 12.2454 + 12.2454i 0.670038 + 0.670038i
\(335\) −38.2059 + 38.2059i −2.08741 + 2.08741i
\(336\) −1.00000 −0.0545545
\(337\) −24.0901 + 24.0901i −1.31227 + 1.31227i −0.392536 + 0.919737i \(0.628402\pi\)
−0.919737 + 0.392536i \(0.871598\pi\)
\(338\) 11.3488i 0.617295i
\(339\) 3.52461 0.191430
\(340\) −12.9440 + 5.17148i −0.701988 + 0.280463i
\(341\) −13.2026 −0.714959
\(342\) 8.42622i 0.455638i
\(343\) −0.707107 + 0.707107i −0.0381802 + 0.0381802i
\(344\) 12.0495 0.649667
\(345\) −8.27700 + 8.27700i −0.445618 + 0.445618i
\(346\) −8.45952 8.45952i −0.454787 0.454787i
\(347\) −5.39049 5.39049i −0.289377 0.289377i 0.547457 0.836834i \(-0.315596\pi\)
−0.836834 + 0.547457i \(0.815596\pi\)
\(348\) 3.72154i 0.199496i
\(349\) 25.9178i 1.38735i −0.720289 0.693674i \(-0.755991\pi\)
0.720289 0.693674i \(-0.244009\pi\)
\(350\) −4.54593 4.54593i −0.242990 0.242990i
\(351\) −0.908617 0.908617i −0.0484984 0.0484984i
\(352\) 1.39049 1.39049i 0.0741135 0.0741135i
\(353\) 3.55828 0.189388 0.0946942 0.995506i \(-0.469813\pi\)
0.0946942 + 0.995506i \(0.469813\pi\)
\(354\) −8.86085 + 8.86085i −0.470949 + 0.470949i
\(355\) 25.0013i 1.32693i
\(356\) −0.0821301 −0.00435288
\(357\) 3.78907 + 1.62572i 0.200539 + 0.0860420i
\(358\) 17.0913 0.903301
\(359\) 34.2619i 1.80827i −0.427244 0.904137i \(-0.640515\pi\)
0.427244 0.904137i \(-0.359485\pi\)
\(360\) −2.39049 + 2.39049i −0.125990 + 0.125990i
\(361\) −52.0011 −2.73690
\(362\) 8.35361 8.35361i 0.439056 0.439056i
\(363\) 5.04383 + 5.04383i 0.264733 + 0.264733i
\(364\) 0.908617 + 0.908617i 0.0476245 + 0.0476245i
\(365\) 11.4953i 0.601694i
\(366\) 10.8975i 0.569620i
\(367\) 26.7144 + 26.7144i 1.39448 + 1.39448i 0.814957 + 0.579521i \(0.196760\pi\)
0.579521 + 0.814957i \(0.303240\pi\)
\(368\) −2.44833 2.44833i −0.127628 0.127628i
\(369\) 1.33266 1.33266i 0.0693753 0.0693753i
\(370\) −5.86694 −0.305008
\(371\) 9.81690 9.81690i 0.509668 0.509668i
\(372\) 6.71390i 0.348099i
\(373\) −22.3260 −1.15600 −0.577999 0.816037i \(-0.696166\pi\)
−0.577999 + 0.816037i \(0.696166\pi\)
\(374\) −7.52922 + 3.00813i −0.389327 + 0.155547i
\(375\) −4.83070 −0.249456
\(376\) 5.10769i 0.263409i
\(377\) 3.38146 3.38146i 0.174154 0.174154i
\(378\) 1.00000 0.0514344
\(379\) −18.0618 + 18.0618i −0.927774 + 0.927774i −0.997562 0.0697880i \(-0.977768\pi\)
0.0697880 + 0.997562i \(0.477768\pi\)
\(380\) −20.1428 20.1428i −1.03330 1.03330i
\(381\) −7.15286 7.15286i −0.366452 0.366452i
\(382\) 1.31277i 0.0671671i
\(383\) 3.61122i 0.184525i −0.995735 0.0922623i \(-0.970590\pi\)
0.995735 0.0922623i \(-0.0294098\pi\)
\(384\) −0.707107 0.707107i −0.0360844 0.0360844i
\(385\) −4.70080 4.70080i −0.239575 0.239575i
\(386\) 3.84808 3.84808i 0.195862 0.195862i
\(387\) −12.0495 −0.612512
\(388\) −2.30951 + 2.30951i −0.117247 + 0.117247i
\(389\) 2.86642i 0.145333i 0.997356 + 0.0726667i \(0.0231509\pi\)
−0.997356 + 0.0726667i \(0.976849\pi\)
\(390\) 4.34409 0.219971
\(391\) 5.29660 + 13.2572i 0.267861 + 0.670445i
\(392\) −1.00000 −0.0505076
\(393\) 9.40613i 0.474477i
\(394\) −9.16814 + 9.16814i −0.461884 + 0.461884i
\(395\) 43.8223 2.20494
\(396\) −1.39049 + 1.39049i −0.0698749 + 0.0698749i
\(397\) 7.72306 + 7.72306i 0.387609 + 0.387609i 0.873834 0.486225i \(-0.161626\pi\)
−0.486225 + 0.873834i \(0.661626\pi\)
\(398\) 1.71232 + 1.71232i 0.0858308 + 0.0858308i
\(399\) 8.42622i 0.421838i
\(400\) 6.42892i 0.321446i
\(401\) 10.6881 + 10.6881i 0.533740 + 0.533740i 0.921683 0.387943i \(-0.126814\pi\)
−0.387943 + 0.921683i \(0.626814\pi\)
\(402\) 11.3013 + 11.3013i 0.563657 + 0.563657i
\(403\) 6.10036 6.10036i 0.303881 0.303881i
\(404\) −4.17200 −0.207565
\(405\) 2.39049 2.39049i 0.118785 0.118785i
\(406\) 3.72154i 0.184697i
\(407\) −3.41266 −0.169159
\(408\) 1.52972 + 3.82883i 0.0757325 + 0.189555i
\(409\) 6.06041 0.299668 0.149834 0.988711i \(-0.452126\pi\)
0.149834 + 0.988711i \(0.452126\pi\)
\(410\) 6.37141i 0.314661i
\(411\) 8.84232 8.84232i 0.436160 0.436160i
\(412\) 14.8586 0.732030
\(413\) −8.86085 + 8.86085i −0.436014 + 0.436014i
\(414\) 2.44833 + 2.44833i 0.120329 + 0.120329i
\(415\) −16.8721 16.8721i −0.828217 0.828217i
\(416\) 1.28498i 0.0630013i
\(417\) 9.21335i 0.451180i
\(418\) −11.7166 11.7166i −0.573078 0.573078i
\(419\) 16.4842 + 16.4842i 0.805304 + 0.805304i 0.983919 0.178615i \(-0.0571617\pi\)
−0.178615 + 0.983919i \(0.557162\pi\)
\(420\) −2.39049 + 2.39049i −0.116644 + 0.116644i
\(421\) −4.62562 −0.225439 −0.112719 0.993627i \(-0.535956\pi\)
−0.112719 + 0.993627i \(0.535956\pi\)
\(422\) 12.7938 12.7938i 0.622790 0.622790i
\(423\) 5.10769i 0.248344i
\(424\) 13.8832 0.674228
\(425\) −10.4516 + 24.3596i −0.506977 + 1.18161i
\(426\) −7.39537 −0.358307
\(427\) 10.8975i 0.527366i
\(428\) −0.434436 + 0.434436i −0.0209993 + 0.0209993i
\(429\) 2.52685 0.121998
\(430\) 28.8043 28.8043i 1.38907 1.38907i
\(431\) 20.3856 + 20.3856i 0.981940 + 0.981940i 0.999840 0.0179002i \(-0.00569812\pi\)
−0.0179002 + 0.999840i \(0.505698\pi\)
\(432\) 0.707107 + 0.707107i 0.0340207 + 0.0340207i
\(433\) 1.25625i 0.0603714i −0.999544 0.0301857i \(-0.990390\pi\)
0.999544 0.0301857i \(-0.00960987\pi\)
\(434\) 6.71390i 0.322277i
\(435\) 8.89633 + 8.89633i 0.426546 + 0.426546i
\(436\) −4.96966 4.96966i −0.238004 0.238004i
\(437\) −20.6302 + 20.6302i −0.986875 + 0.986875i
\(438\) −3.40032 −0.162474
\(439\) 3.35755 3.35755i 0.160247 0.160247i −0.622429 0.782676i \(-0.713854\pi\)
0.782676 + 0.622429i \(0.213854\pi\)
\(440\) 6.64793i 0.316928i
\(441\) 1.00000 0.0476190
\(442\) 2.08901 4.86887i 0.0993641 0.231589i
\(443\) 17.6059 0.836484 0.418242 0.908336i \(-0.362646\pi\)
0.418242 + 0.908336i \(0.362646\pi\)
\(444\) 1.73544i 0.0823603i
\(445\) −0.196331 + 0.196331i −0.00930700 + 0.00930700i
\(446\) 9.43942 0.446969
\(447\) 3.28337 3.28337i 0.155298 0.155298i
\(448\) −0.707107 0.707107i −0.0334077 0.0334077i
\(449\) −16.8815 16.8815i −0.796689 0.796689i 0.185883 0.982572i \(-0.440485\pi\)
−0.982572 + 0.185883i \(0.940485\pi\)
\(450\) 6.42892i 0.303062i
\(451\) 3.70610i 0.174513i
\(452\) 2.49227 + 2.49227i 0.117227 + 0.117227i
\(453\) −9.56197 9.56197i −0.449261 0.449261i
\(454\) −19.0383 + 19.0383i −0.893513 + 0.893513i
\(455\) 4.34409 0.203654
\(456\) −5.95823 + 5.95823i −0.279020 + 0.279020i
\(457\) 12.1171i 0.566814i −0.959000 0.283407i \(-0.908535\pi\)
0.959000 0.283407i \(-0.0914647\pi\)
\(458\) 20.6547 0.965133
\(459\) −1.52972 3.82883i −0.0714013 0.178715i
\(460\) −11.7054 −0.545769
\(461\) 11.3954i 0.530735i 0.964147 + 0.265368i \(0.0854933\pi\)
−0.964147 + 0.265368i \(0.914507\pi\)
\(462\) −1.39049 + 1.39049i −0.0646916 + 0.0646916i
\(463\) 0.0322217 0.00149747 0.000748735 1.00000i \(-0.499762\pi\)
0.000748735 1.00000i \(0.499762\pi\)
\(464\) −2.63153 + 2.63153i −0.122166 + 0.122166i
\(465\) 16.0495 + 16.0495i 0.744279 + 0.744279i
\(466\) −11.4172 11.4172i −0.528892 0.528892i
\(467\) 3.55094i 0.164318i −0.996619 0.0821589i \(-0.973819\pi\)
0.996619 0.0821589i \(-0.0261815\pi\)
\(468\) 1.28498i 0.0593982i
\(469\) 11.3013 + 11.3013i 0.521845 + 0.521845i
\(470\) −12.2099 12.2099i −0.563201 0.563201i
\(471\) −2.80097 + 2.80097i −0.129062 + 0.129062i
\(472\) −12.5311 −0.576792
\(473\) 16.7548 16.7548i 0.770386 0.770386i
\(474\) 12.9626i 0.595393i
\(475\) −54.1714 −2.48556
\(476\) 1.52972 + 3.82883i 0.0701147 + 0.175494i
\(477\) −13.8832 −0.635668
\(478\) 14.5531i 0.665641i
\(479\) 11.7195 11.7195i 0.535477 0.535477i −0.386720 0.922197i \(-0.626392\pi\)
0.922197 + 0.386720i \(0.126392\pi\)
\(480\) −3.38067 −0.154306
\(481\) 1.57685 1.57685i 0.0718981 0.0718981i
\(482\) −5.63110 5.63110i −0.256489 0.256489i
\(483\) 2.44833 + 2.44833i 0.111403 + 0.111403i
\(484\) 7.13306i 0.324230i
\(485\) 11.0417i 0.501379i
\(486\) −0.707107 0.707107i −0.0320750 0.0320750i
\(487\) −16.2454 16.2454i −0.736149 0.736149i 0.235681 0.971830i \(-0.424268\pi\)
−0.971830 + 0.235681i \(0.924268\pi\)
\(488\) 7.70568 7.70568i 0.348820 0.348820i
\(489\) −8.59981 −0.388897
\(490\) −2.39049 + 2.39049i −0.107991 + 0.107991i
\(491\) 5.47202i 0.246949i −0.992348 0.123474i \(-0.960596\pi\)
0.992348 0.123474i \(-0.0394037\pi\)
\(492\) 1.88466 0.0849670
\(493\) 14.2492 5.69293i 0.641750 0.256396i
\(494\) 10.8275 0.487153
\(495\) 6.64793i 0.298802i
\(496\) −4.74744 + 4.74744i −0.213166 + 0.213166i
\(497\) −7.39537 −0.331728
\(498\) −4.99075 + 4.99075i −0.223641 + 0.223641i
\(499\) −5.70798 5.70798i −0.255524 0.255524i 0.567707 0.823231i \(-0.307831\pi\)
−0.823231 + 0.567707i \(0.807831\pi\)
\(500\) −3.41582 3.41582i −0.152760 0.152760i
\(501\) 17.3176i 0.773693i
\(502\) 4.23248i 0.188905i
\(503\) −13.7769 13.7769i −0.614281 0.614281i 0.329778 0.944059i \(-0.393026\pi\)
−0.944059 + 0.329778i \(0.893026\pi\)
\(504\) 0.707107 + 0.707107i 0.0314970 + 0.0314970i
\(505\) −9.97315 + 9.97315i −0.443799 + 0.443799i
\(506\) −6.80878 −0.302687
\(507\) 8.02483 8.02483i 0.356395 0.356395i
\(508\) 10.1157i 0.448811i
\(509\) −1.06167 −0.0470578 −0.0235289 0.999723i \(-0.507490\pi\)
−0.0235289 + 0.999723i \(0.507490\pi\)
\(510\) 12.8096 + 5.49601i 0.567218 + 0.243367i
\(511\) −3.40032 −0.150421
\(512\) 1.00000i 0.0441942i
\(513\) 5.95823 5.95823i 0.263062 0.263062i
\(514\) −2.93720 −0.129554
\(515\) 35.5193 35.5193i 1.56517 1.56517i
\(516\) −8.52030 8.52030i −0.375085 0.375085i
\(517\) −7.10221 7.10221i −0.312355 0.312355i
\(518\) 1.73544i 0.0762508i
\(519\) 11.9636i 0.525143i
\(520\) 3.07173 + 3.07173i 0.134704 + 0.134704i
\(521\) −26.6714 26.6714i −1.16850 1.16850i −0.982562 0.185935i \(-0.940469\pi\)
−0.185935 0.982562i \(-0.559531\pi\)
\(522\) 2.63153 2.63153i 0.115179 0.115179i
\(523\) 23.5170 1.02833 0.514163 0.857692i \(-0.328103\pi\)
0.514163 + 0.857692i \(0.328103\pi\)
\(524\) 6.65114 6.65114i 0.290556 0.290556i
\(525\) 6.42892i 0.280581i
\(526\) 5.34017 0.232842
\(527\) 25.7064 10.2704i 1.11979 0.447385i
\(528\) −1.96645 −0.0855790
\(529\) 11.0113i 0.478754i
\(530\) 33.1877 33.1877i 1.44158 1.44158i
\(531\) 12.5311 0.543805
\(532\) −5.95823 + 5.95823i −0.258322 + 0.258322i
\(533\) −1.71243 1.71243i −0.0741737 0.0741737i
\(534\) 0.0580747 + 0.0580747i 0.00251314 + 0.00251314i
\(535\) 2.07703i 0.0897980i
\(536\) 15.9824i 0.690336i
\(537\) −12.0853 12.0853i −0.521521 0.521521i
\(538\) −18.3598 18.3598i −0.791548 0.791548i
\(539\) −1.39049 + 1.39049i −0.0598928 + 0.0598928i
\(540\) 3.38067 0.145481
\(541\) 20.5110 20.5110i 0.881837 0.881837i −0.111885 0.993721i \(-0.535689\pi\)
0.993721 + 0.111885i \(0.0356887\pi\)
\(542\) 22.7631i 0.977761i
\(543\) −11.8138 −0.506978
\(544\) −1.62572 + 3.78907i −0.0697020 + 0.162455i
\(545\) −23.7599 −1.01776
\(546\) 1.28498i 0.0549920i
\(547\) 10.1454 10.1454i 0.433788 0.433788i −0.456127 0.889915i \(-0.650764\pi\)
0.889915 + 0.456127i \(0.150764\pi\)
\(548\) 12.5049 0.534184
\(549\) −7.70568 + 7.70568i −0.328870 + 0.328870i
\(550\) −8.93937 8.93937i −0.381176 0.381176i
\(551\) 22.1738 + 22.1738i 0.944637 + 0.944637i
\(552\) 3.46246i 0.147372i
\(553\) 12.9626i 0.551227i
\(554\) −0.737840 0.737840i −0.0313478 0.0313478i
\(555\) 4.14856 + 4.14856i 0.176096 + 0.176096i
\(556\) −6.51482 + 6.51482i −0.276290 + 0.276290i
\(557\) −9.60166 −0.406836 −0.203418 0.979092i \(-0.565205\pi\)
−0.203418 + 0.979092i \(0.565205\pi\)
\(558\) 4.74744 4.74744i 0.200975 0.200975i
\(559\) 15.4834i 0.654877i
\(560\) −3.38067 −0.142859
\(561\) 7.45103 + 3.19690i 0.314583 + 0.134973i
\(562\) 5.01320 0.211469
\(563\) 41.3596i 1.74310i −0.490308 0.871549i \(-0.663116\pi\)
0.490308 0.871549i \(-0.336884\pi\)
\(564\) −3.61168 + 3.61168i −0.152079 + 0.152079i
\(565\) 11.9155 0.501290
\(566\) −23.5506 + 23.5506i −0.989906 + 0.989906i
\(567\) −0.707107 0.707107i −0.0296957 0.0296957i
\(568\) −5.22932 5.22932i −0.219417 0.219417i
\(569\) 4.70690i 0.197324i −0.995121 0.0986618i \(-0.968544\pi\)
0.995121 0.0986618i \(-0.0314562\pi\)
\(570\) 28.4862i 1.19316i
\(571\) −9.94075 9.94075i −0.416007 0.416007i 0.467818 0.883825i \(-0.345040\pi\)
−0.883825 + 0.467818i \(0.845040\pi\)
\(572\) 1.78675 + 1.78675i 0.0747079 + 0.0747079i
\(573\) −0.928267 + 0.928267i −0.0387789 + 0.0387789i
\(574\) 1.88466 0.0786642
\(575\) −15.7401 + 15.7401i −0.656408 + 0.656408i
\(576\) 1.00000i 0.0416667i
\(577\) 11.1165 0.462785 0.231393 0.972860i \(-0.425672\pi\)
0.231393 + 0.972860i \(0.425672\pi\)
\(578\) 12.3199 11.7141i 0.512441 0.487242i
\(579\) −5.44200 −0.226162
\(580\) 12.5813i 0.522410i
\(581\) −4.99075 + 4.99075i −0.207051 + 0.207051i
\(582\) 3.26614 0.135386
\(583\) 19.3045 19.3045i 0.799511 0.799511i
\(584\) −2.40439 2.40439i −0.0994943 0.0994943i
\(585\) −3.07173 3.07173i −0.127001 0.127001i
\(586\) 1.91153i 0.0789644i
\(587\) 9.11270i 0.376121i −0.982157 0.188061i \(-0.939780\pi\)
0.982157 0.188061i \(-0.0602202\pi\)
\(588\) 0.707107 + 0.707107i 0.0291606 + 0.0291606i
\(589\) 40.0030 + 40.0030i 1.64829 + 1.64829i
\(590\) −29.9556 + 29.9556i −1.23325 + 1.23325i
\(591\) 12.9657 0.533338
\(592\) −1.22714 + 1.22714i −0.0504352 + 0.0504352i
\(593\) 38.4287i 1.57808i −0.614343 0.789039i \(-0.710579\pi\)
0.614343 0.789039i \(-0.289421\pi\)
\(594\) 1.96645 0.0806846
\(595\) 12.8096 + 5.49601i 0.525142 + 0.225314i
\(596\) 4.64339 0.190201
\(597\) 2.42159i 0.0991089i
\(598\) 3.14605 3.14605i 0.128652 0.128652i
\(599\) 30.7270 1.25547 0.627736 0.778426i \(-0.283982\pi\)
0.627736 + 0.778426i \(0.283982\pi\)
\(600\) −4.54593 + 4.54593i −0.185587 + 0.185587i
\(601\) 27.2880 + 27.2880i 1.11310 + 1.11310i 0.992729 + 0.120370i \(0.0384080\pi\)
0.120370 + 0.992729i \(0.461592\pi\)
\(602\) −8.52030 8.52030i −0.347262 0.347262i
\(603\) 15.9824i 0.650855i
\(604\) 13.5227i 0.550230i
\(605\) 17.0515 + 17.0515i 0.693243 + 0.693243i
\(606\) 2.95005 + 2.95005i 0.119838 + 0.119838i
\(607\) 14.2548 14.2548i 0.578584 0.578584i −0.355929 0.934513i \(-0.615835\pi\)
0.934513 + 0.355929i \(0.115835\pi\)
\(608\) −8.42622 −0.341728
\(609\) 2.63153 2.63153i 0.106635 0.106635i
\(610\) 36.8407i 1.49164i
\(611\) 6.56327 0.265522
\(612\) 1.62572 3.78907i 0.0657157 0.153164i
\(613\) 2.29978 0.0928872 0.0464436 0.998921i \(-0.485211\pi\)
0.0464436 + 0.998921i \(0.485211\pi\)
\(614\) 4.52564i 0.182640i
\(615\) 4.50527 4.50527i 0.181670 0.181670i
\(616\) −1.96645 −0.0792307
\(617\) 14.7028 14.7028i 0.591914 0.591914i −0.346234 0.938148i \(-0.612540\pi\)
0.938148 + 0.346234i \(0.112540\pi\)
\(618\) −10.5066 10.5066i −0.422637 0.422637i
\(619\) −24.4637 24.4637i −0.983280 0.983280i 0.0165830 0.999862i \(-0.494721\pi\)
−0.999862 + 0.0165830i \(0.994721\pi\)
\(620\) 22.6975i 0.911552i
\(621\) 3.46246i 0.138944i
\(622\) 19.0542 + 19.0542i 0.764002 + 0.764002i
\(623\) 0.0580747 + 0.0580747i 0.00232671 + 0.00232671i
\(624\) 0.908617 0.908617i 0.0363738 0.0363738i
\(625\) 15.8136 0.632544
\(626\) −12.6439 + 12.6439i −0.505352 + 0.505352i
\(627\) 16.5698i 0.661733i
\(628\) −3.96117 −0.158068
\(629\) 6.64470 2.65474i 0.264942 0.105851i
\(630\) 3.38067 0.134689
\(631\) 23.4333i 0.932867i 0.884556 + 0.466433i \(0.154461\pi\)
−0.884556 + 0.466433i \(0.845539\pi\)
\(632\) 9.16596 9.16596i 0.364602 0.364602i
\(633\) −18.0931 −0.719136
\(634\) 0.765710 0.765710i 0.0304102 0.0304102i
\(635\) −24.1815 24.1815i −0.959612 0.959612i
\(636\) −9.81690 9.81690i −0.389266 0.389266i
\(637\) 1.28498i 0.0509127i
\(638\) 7.31825i 0.289732i
\(639\) 5.22932 + 5.22932i 0.206869 + 0.206869i
\(640\) −2.39049 2.39049i −0.0944925 0.0944925i
\(641\) −24.8958 + 24.8958i −0.983326 + 0.983326i −0.999863 0.0165372i \(-0.994736\pi\)
0.0165372 + 0.999863i \(0.494736\pi\)
\(642\) 0.614386 0.0242479
\(643\) −7.75029 + 7.75029i −0.305642 + 0.305642i −0.843216 0.537575i \(-0.819341\pi\)
0.537575 + 0.843216i \(0.319341\pi\)
\(644\) 3.46246i 0.136440i
\(645\) −40.7354 −1.60396
\(646\) 31.9275 + 13.6986i 1.25617 + 0.538966i
\(647\) 45.2277 1.77809 0.889043 0.457824i \(-0.151371\pi\)
0.889043 + 0.457824i \(0.151371\pi\)
\(648\) 1.00000i 0.0392837i
\(649\) −17.4245 + 17.4245i −0.683970 + 0.683970i
\(650\) 8.26102 0.324024
\(651\) 4.74744 4.74744i 0.186067 0.186067i
\(652\) −6.08099 6.08099i −0.238150 0.238150i
\(653\) −9.20261 9.20261i −0.360126 0.360126i 0.503733 0.863859i \(-0.331959\pi\)
−0.863859 + 0.503733i \(0.831959\pi\)
\(654\) 7.02817i 0.274823i
\(655\) 31.7990i 1.24249i
\(656\) 1.33266 + 1.33266i 0.0520315 + 0.0520315i
\(657\) 2.40439 + 2.40439i 0.0938041 + 0.0938041i
\(658\) −3.61168 + 3.61168i −0.140798 + 0.140798i
\(659\) −2.08563 −0.0812448 −0.0406224 0.999175i \(-0.512934\pi\)
−0.0406224 + 0.999175i \(0.512934\pi\)
\(660\) −4.70080 + 4.70080i −0.182978 + 0.182978i
\(661\) 27.3092i 1.06220i −0.847308 0.531102i \(-0.821778\pi\)
0.847308 0.531102i \(-0.178222\pi\)
\(662\) 25.7000 0.998857
\(663\) −4.91997 + 1.96566i −0.191076 + 0.0763399i
\(664\) −7.05798 −0.273903
\(665\) 28.4862i 1.10465i
\(666\) 1.22714 1.22714i 0.0475507 0.0475507i
\(667\) 12.8857 0.498937
\(668\) 12.2454 12.2454i 0.473788 0.473788i
\(669\) −6.67468 6.67468i −0.258058 0.258058i
\(670\) 38.2059 + 38.2059i 1.47602 + 1.47602i
\(671\) 21.4294i 0.827272i
\(672\) 1.00000i 0.0385758i
\(673\) 10.8624 + 10.8624i 0.418715 + 0.418715i 0.884761 0.466046i \(-0.154322\pi\)
−0.466046 + 0.884761i \(0.654322\pi\)
\(674\) 24.0901 + 24.0901i 0.927917 + 0.927917i
\(675\) 4.54593 4.54593i 0.174973 0.174973i
\(676\) 11.3488 0.436493
\(677\) −12.4119 + 12.4119i −0.477027 + 0.477027i −0.904180 0.427152i \(-0.859517\pi\)
0.427152 + 0.904180i \(0.359517\pi\)
\(678\) 3.52461i 0.135362i
\(679\) 3.26614 0.125343
\(680\) 5.17148 + 12.9440i 0.198317 + 0.496380i
\(681\) 26.9243 1.03174
\(682\) 13.2026i 0.505553i
\(683\) 5.73473 5.73473i 0.219433 0.219433i −0.588826 0.808260i \(-0.700410\pi\)
0.808260 + 0.588826i \(0.200410\pi\)
\(684\) 8.42622 0.322184
\(685\) 29.8930 29.8930i 1.14215 1.14215i
\(686\) 0.707107 + 0.707107i 0.0269975 + 0.0269975i
\(687\) −14.6051 14.6051i −0.557220 0.557220i
\(688\) 12.0495i 0.459384i
\(689\) 17.8396i 0.679635i
\(690\) 8.27700 + 8.27700i 0.315100 + 0.315100i
\(691\) 11.1292 + 11.1292i 0.423375 + 0.423375i 0.886364 0.462989i \(-0.153223\pi\)
−0.462989 + 0.886364i \(0.653223\pi\)
\(692\) −8.45952 + 8.45952i −0.321583 + 0.321583i
\(693\) 1.96645 0.0746994
\(694\) −5.39049 + 5.39049i −0.204620 + 0.204620i
\(695\) 31.1473i 1.18148i
\(696\) 3.72154 0.141065
\(697\) −2.88300 7.21605i −0.109202 0.273327i
\(698\) −25.9178 −0.981003
\(699\) 16.1464i 0.610711i
\(700\) −4.54593 + 4.54593i −0.171820 + 0.171820i
\(701\) −7.25671 −0.274082 −0.137041 0.990565i \(-0.543759\pi\)
−0.137041 + 0.990565i \(0.543759\pi\)
\(702\) −0.908617 + 0.908617i −0.0342935 + 0.0342935i
\(703\) 10.3402 + 10.3402i 0.389986 + 0.389986i
\(704\) −1.39049 1.39049i −0.0524062 0.0524062i
\(705\) 17.2674i 0.650328i
\(706\) 3.55828i 0.133918i
\(707\) 2.95005 + 2.95005i 0.110948 + 0.110948i
\(708\) 8.86085 + 8.86085i 0.333011 + 0.333011i
\(709\) −24.5130 + 24.5130i −0.920604 + 0.920604i −0.997072 0.0764677i \(-0.975636\pi\)
0.0764677 + 0.997072i \(0.475636\pi\)
\(710\) −25.0013 −0.938282
\(711\) −9.16596 + 9.16596i −0.343750 + 0.343750i
\(712\) 0.0821301i 0.00307795i
\(713\) 23.2466 0.870593
\(714\) 1.62572 3.78907i 0.0608409 0.141802i
\(715\) 8.54245 0.319469
\(716\) 17.0913i 0.638730i
\(717\) 10.2906 10.2906i 0.384308 0.384308i
\(718\) −34.2619 −1.27864
\(719\) −6.47064 + 6.47064i −0.241314 + 0.241314i −0.817394 0.576079i \(-0.804582\pi\)
0.576079 + 0.817394i \(0.304582\pi\)
\(720\) 2.39049 + 2.39049i 0.0890884 + 0.0890884i
\(721\) −10.5066 10.5066i −0.391286 0.391286i
\(722\) 52.0011i 1.93528i
\(723\) 7.96357i 0.296169i
\(724\) −8.35361 8.35361i −0.310459 0.310459i
\(725\) 16.9179 + 16.9179i 0.628314 + 0.628314i
\(726\) 5.04383 5.04383i 0.187194 0.187194i
\(727\) 14.9858 0.555792 0.277896 0.960611i \(-0.410363\pi\)
0.277896 + 0.960611i \(0.410363\pi\)
\(728\) 0.908617 0.908617i 0.0336756 0.0336756i
\(729\) 1.00000i 0.0370370i
\(730\) −11.4953 −0.425462
\(731\) −19.5891 + 45.6565i −0.724529 + 1.68867i
\(732\) −10.8975 −0.402782
\(733\) 28.3491i 1.04710i 0.851995 + 0.523549i \(0.175392\pi\)
−0.851995 + 0.523549i \(0.824608\pi\)
\(734\) 26.7144 26.7144i 0.986045 0.986045i
\(735\) 3.38067 0.124698
\(736\) −2.44833 + 2.44833i −0.0902467 + 0.0902467i
\(737\) 22.2235 + 22.2235i 0.818612 + 0.818612i
\(738\) −1.33266 1.33266i −0.0490557 0.0490557i
\(739\) 39.5670i 1.45550i 0.685845 + 0.727748i \(0.259433\pi\)
−0.685845 + 0.727748i \(0.740567\pi\)
\(740\) 5.86694i 0.215673i
\(741\) −7.65620 7.65620i −0.281258 0.281258i
\(742\) −9.81690 9.81690i −0.360390 0.360390i
\(743\) 31.8319 31.8319i 1.16780 1.16780i 0.185074 0.982725i \(-0.440747\pi\)
0.982725 0.185074i \(-0.0592526\pi\)
\(744\) 6.71390 0.246143
\(745\) 11.1000 11.1000i 0.406672 0.406672i
\(746\) 22.3260i 0.817415i
\(747\) 7.05798 0.258238
\(748\) 3.00813 + 7.52922i 0.109988 + 0.275296i
\(749\) 0.614386 0.0224492
\(750\) 4.83070i 0.176392i
\(751\) −21.3181 + 21.3181i −0.777907 + 0.777907i −0.979475 0.201567i \(-0.935396\pi\)
0.201567 + 0.979475i \(0.435396\pi\)
\(752\) −5.10769 −0.186258
\(753\) 2.99281 2.99281i 0.109064 0.109064i
\(754\) −3.38146 3.38146i −0.123145 0.123145i
\(755\) −32.3259 32.3259i −1.17646 1.17646i
\(756\) 1.00000i 0.0363696i
\(757\) 24.7619i 0.899987i 0.893032 + 0.449993i \(0.148574\pi\)
−0.893032 + 0.449993i \(0.851426\pi\)
\(758\) 18.0618 + 18.0618i 0.656035 + 0.656035i
\(759\) 4.81453 + 4.81453i 0.174756 + 0.174756i
\(760\) −20.1428 + 20.1428i −0.730657 + 0.730657i
\(761\) 33.7322 1.22279 0.611396 0.791325i \(-0.290608\pi\)
0.611396 + 0.791325i \(0.290608\pi\)
\(762\) −7.15286 + 7.15286i −0.259121 + 0.259121i
\(763\) 7.02817i 0.254437i
\(764\) −1.31277 −0.0474943
\(765\) −5.17148 12.9440i −0.186975 0.467992i
\(766\) −3.61122 −0.130479
\(767\) 16.1022i 0.581418i
\(768\) −0.707107 + 0.707107i −0.0255155 + 0.0255155i
\(769\) 49.9676 1.80188 0.900939 0.433945i \(-0.142879\pi\)
0.900939 + 0.433945i \(0.142879\pi\)
\(770\) −4.70080 + 4.70080i −0.169405 + 0.169405i
\(771\) 2.07692 + 2.07692i 0.0747983 + 0.0747983i
\(772\) −3.84808 3.84808i −0.138495 0.138495i
\(773\) 8.00672i 0.287982i −0.989579 0.143991i \(-0.954006\pi\)
0.989579 0.143991i \(-0.0459936\pi\)
\(774\) 12.0495i 0.433111i
\(775\) 30.5209 + 30.5209i 1.09634 + 1.09634i
\(776\) 2.30951 + 2.30951i 0.0829065 + 0.0829065i
\(777\) 1.22714 1.22714i 0.0440234 0.0440234i
\(778\) 2.86642 0.102766
\(779\) 11.2292 11.2292i 0.402329 0.402329i
\(780\) 4.34409i 0.155543i
\(781\) −14.5427 −0.520377
\(782\) 13.2572 5.29660i 0.474076 0.189406i
\(783\) −3.72154 −0.132997
\(784\) 1.00000i 0.0357143i
\(785\) −9.46916 + 9.46916i −0.337969 + 0.337969i
\(786\) −9.40613 −0.335506
\(787\) −2.32638 + 2.32638i −0.0829263 + 0.0829263i −0.747353 0.664427i \(-0.768676\pi\)
0.664427 + 0.747353i \(0.268676\pi\)
\(788\) 9.16814 + 9.16814i 0.326601 + 0.326601i
\(789\) −3.77607 3.77607i −0.134432 0.134432i
\(790\) 43.8223i 1.55913i
\(791\) 3.52461i 0.125321i
\(792\) 1.39049 + 1.39049i 0.0494090 + 0.0494090i
\(793\) 9.90163 + 9.90163i 0.351617 + 0.351617i
\(794\) 7.72306 7.72306i 0.274081 0.274081i
\(795\) −46.9345 −1.66459
\(796\) 1.71232 1.71232i 0.0606916 0.0606916i
\(797\) 44.9964i 1.59385i −0.604076 0.796927i \(-0.706458\pi\)
0.604076 0.796927i \(-0.293542\pi\)
\(798\) 8.42622 0.298285
\(799\) 19.3534 + 8.30366i 0.684674 + 0.293762i
\(800\) −6.42892 −0.227297
\(801\) 0.0821301i 0.00290192i
\(802\) 10.6881 10.6881i 0.377411 0.377411i
\(803\) −6.68657 −0.235964
\(804\) 11.3013 11.3013i 0.398566 0.398566i
\(805\) 8.27700 + 8.27700i 0.291726 + 0.291726i
\(806\) −6.10036 6.10036i −0.214876 0.214876i
\(807\) 25.9647i 0.914001i
\(808\) 4.17200i 0.146771i
\(809\) −12.5241 12.5241i −0.440323 0.440323i 0.451797 0.892121i \(-0.350783\pi\)
−0.892121 + 0.451797i \(0.850783\pi\)
\(810\) −2.39049 2.39049i −0.0839934 0.0839934i
\(811\) 8.21780 8.21780i 0.288566 0.288566i −0.547947 0.836513i \(-0.684590\pi\)
0.836513 + 0.547947i \(0.184590\pi\)
\(812\) 3.72154 0.130601
\(813\) 16.0960 16.0960i 0.564510 0.564510i
\(814\) 3.41266i 0.119614i
\(815\) −29.0731 −1.01839
\(816\) 3.82883 1.52972i 0.134036 0.0535510i
\(817\) −101.532 −3.55215
\(818\) 6.06041i 0.211897i
\(819\) −0.908617 + 0.908617i −0.0317496 + 0.0317496i
\(820\) 6.37141 0.222499
\(821\) −7.25602 + 7.25602i −0.253237 + 0.253237i −0.822296 0.569059i \(-0.807307\pi\)
0.569059 + 0.822296i \(0.307307\pi\)
\(822\) −8.84232 8.84232i −0.308411 0.308411i
\(823\) −15.3675 15.3675i −0.535676 0.535676i 0.386580 0.922256i \(-0.373656\pi\)
−0.922256 + 0.386580i \(0.873656\pi\)
\(824\) 14.8586i 0.517623i
\(825\) 12.6422i 0.440144i
\(826\) 8.86085 + 8.86085i 0.308308 + 0.308308i
\(827\) 4.43809 + 4.43809i 0.154328 + 0.154328i 0.780048 0.625720i \(-0.215195\pi\)
−0.625720 + 0.780048i \(0.715195\pi\)
\(828\) 2.44833 2.44833i 0.0850854 0.0850854i
\(829\) 30.8153 1.07026 0.535130 0.844770i \(-0.320263\pi\)
0.535130 + 0.844770i \(0.320263\pi\)
\(830\) −16.8721 + 16.8721i −0.585638 + 0.585638i
\(831\) 1.04346i 0.0361973i
\(832\) 1.28498 0.0445486
\(833\) 1.62572 3.78907i 0.0563277 0.131283i
\(834\) 9.21335 0.319032
\(835\) 58.5450i 2.02603i
\(836\) −11.7166 + 11.7166i −0.405227 + 0.405227i
\(837\) −6.71390 −0.232066
\(838\) 16.4842 16.4842i 0.569436 0.569436i
\(839\) −21.2935 21.2935i −0.735132 0.735132i 0.236500 0.971632i \(-0.424000\pi\)
−0.971632 + 0.236500i \(0.924000\pi\)
\(840\) 2.39049 + 2.39049i 0.0824799 + 0.0824799i
\(841\) 15.1501i 0.522418i
\(842\) 4.62562i 0.159409i
\(843\) −3.54487 3.54487i −0.122092 0.122092i
\(844\) −12.7938 12.7938i −0.440379 0.440379i
\(845\) 27.1293 27.1293i 0.933276 0.933276i
\(846\) 5.10769 0.175606
\(847\) 5.04383 5.04383i 0.173308 0.173308i
\(848\) 13.8832i 0.476751i
\(849\) 33.3056 1.14304
\(850\) 24.3596 + 10.4516i 0.835528 + 0.358487i
\(851\) 6.00889 0.205982
\(852\) 7.39537i 0.253361i
\(853\) −26.0721 + 26.0721i −0.892691 + 0.892691i −0.994776 0.102085i \(-0.967449\pi\)
0.102085 + 0.994776i \(0.467449\pi\)
\(854\) −10.8975 −0.372904
\(855\) 20.1428 20.1428i 0.688870 0.688870i
\(856\) 0.434436 + 0.434436i 0.0148487 + 0.0148487i
\(857\) −26.1632 26.1632i −0.893717 0.893717i 0.101154 0.994871i \(-0.467747\pi\)
−0.994871 + 0.101154i \(0.967747\pi\)
\(858\) 2.52685i 0.0862653i
\(859\) 8.62270i 0.294203i −0.989121 0.147101i \(-0.953006\pi\)
0.989121 0.147101i \(-0.0469943\pi\)
\(860\) −28.8043 28.8043i −0.982219 0.982219i
\(861\) −1.33266 1.33266i −0.0454168 0.0454168i
\(862\) 20.3856 20.3856i 0.694336 0.694336i
\(863\) 28.7193 0.977615 0.488808 0.872392i \(-0.337432\pi\)
0.488808 + 0.872392i \(0.337432\pi\)
\(864\) 0.707107 0.707107i 0.0240563 0.0240563i
\(865\) 40.4449i 1.37517i
\(866\) −1.25625 −0.0426891
\(867\) −16.9946 0.428375i −0.577167 0.0145484i
\(868\) 6.71390 0.227884
\(869\) 25.4904i 0.864703i
\(870\) 8.89633 8.89633i 0.301614 0.301614i
\(871\) −20.5371 −0.695873
\(872\) −4.96966 + 4.96966i −0.168294 + 0.168294i
\(873\) −2.30951 2.30951i −0.0781650 0.0781650i
\(874\) 20.6302 + 20.6302i 0.697826 + 0.697826i
\(875\) 4.83070i 0.163307i
\(876\) 3.40032i 0.114886i
\(877\) −8.88193 8.88193i −0.299921 0.299921i 0.541062 0.840983i \(-0.318023\pi\)
−0.840983 + 0.541062i \(0.818023\pi\)
\(878\) −3.35755 3.35755i −0.113312 0.113312i
\(879\) 1.35165 1.35165i 0.0455901 0.0455901i
\(880\) −6.64793 −0.224102
\(881\) 19.6927 19.6927i 0.663465 0.663465i −0.292730 0.956195i \(-0.594564\pi\)
0.956195 + 0.292730i \(0.0945638\pi\)
\(882\) 1.00000i 0.0336718i
\(883\) −38.0434 −1.28026 −0.640131 0.768266i \(-0.721120\pi\)
−0.640131 + 0.768266i \(0.721120\pi\)
\(884\) −4.86887 2.08901i −0.163758 0.0702610i
\(885\) 42.3636 1.42404
\(886\) 17.6059i 0.591483i
\(887\) 3.69274 3.69274i 0.123990 0.123990i −0.642389 0.766379i \(-0.722057\pi\)
0.766379 + 0.642389i \(0.222057\pi\)
\(888\) 1.73544 0.0582375
\(889\) −7.15286 + 7.15286i −0.239899 + 0.239899i
\(890\) 0.196331 + 0.196331i 0.00658104 + 0.00658104i
\(891\) −1.39049 1.39049i −0.0465833 0.0465833i
\(892\) 9.43942i 0.316055i
\(893\) 43.0385i 1.44023i
\(894\) −3.28337 3.28337i −0.109812 0.109812i
\(895\) −40.8565 40.8565i −1.36568 1.36568i
\(896\) −0.707107 + 0.707107i −0.0236228 + 0.0236228i
\(897\) −4.44919 −0.148554
\(898\) −16.8815 + 16.8815i −0.563344 + 0.563344i
\(899\) 24.9861i 0.833332i
\(900\) 6.42892 0.214297
\(901\) −22.5701 + 52.6044i −0.751921 + 1.75251i
\(902\) 3.70610 0.123400
\(903\) 12.0495i 0.400983i
\(904\) 2.49227 2.49227i 0.0828918 0.0828918i
\(905\) −39.9385 −1.32760
\(906\) −9.56197 + 9.56197i −0.317675 + 0.317675i
\(907\) −8.32303 8.32303i −0.276362 0.276362i 0.555293 0.831655i \(-0.312606\pi\)
−0.831655 + 0.555293i \(0.812606\pi\)
\(908\) 19.0383 + 19.0383i 0.631809 + 0.631809i
\(909\) 4.17200i 0.138377i
\(910\) 4.34409i 0.144005i
\(911\) −6.13788 6.13788i −0.203357 0.203357i 0.598080 0.801437i \(-0.295931\pi\)
−0.801437 + 0.598080i \(0.795931\pi\)
\(912\) 5.95823 + 5.95823i 0.197297 + 0.197297i
\(913\) −9.81408 + 9.81408i −0.324799 + 0.324799i
\(914\) −12.1171 −0.400798
\(915\) −26.0503 + 26.0503i −0.861197 + 0.861197i
\(916\) 20.6547i 0.682452i
\(917\) −9.40613 −0.310618
\(918\) −3.82883 + 1.52972i −0.126370 + 0.0504883i
\(919\) 13.8731 0.457631 0.228816 0.973470i \(-0.426515\pi\)
0.228816 + 0.973470i \(0.426515\pi\)
\(920\) 11.7054i 0.385917i
\(921\) 3.20011 3.20011i 0.105447 0.105447i
\(922\) 11.3954 0.375287
\(923\) 6.71956 6.71956i 0.221177 0.221177i
\(924\) 1.39049 + 1.39049i 0.0457439 + 0.0457439i
\(925\) 7.88919 + 7.88919i 0.259395 + 0.259395i
\(926\) 0.0322217i 0.00105887i
\(927\) 14.8586i 0.488020i
\(928\) 2.63153 + 2.63153i 0.0863842 + 0.0863842i
\(929\) −16.6118 16.6118i −0.545016 0.545016i 0.379979 0.924995i \(-0.375931\pi\)
−0.924995 + 0.379979i \(0.875931\pi\)
\(930\) 16.0495 16.0495i 0.526285 0.526285i
\(931\) 8.42622 0.276158
\(932\) −11.4172 + 11.4172i −0.373983 + 0.373983i
\(933\) 26.9467i 0.882194i
\(934\) −3.55094 −0.116190
\(935\) 25.1895 + 10.8077i 0.823784 + 0.353448i
\(936\) −1.28498 −0.0420008
\(937\) 38.2951i 1.25105i −0.780206 0.625523i \(-0.784886\pi\)
0.780206 0.625523i \(-0.215114\pi\)
\(938\) 11.3013 11.3013i 0.369000 0.369000i
\(939\) 17.8812 0.583530
\(940\) −12.2099 + 12.2099i −0.398243 + 0.398243i
\(941\) 9.30900 + 9.30900i 0.303465 + 0.303465i 0.842368 0.538903i \(-0.181161\pi\)
−0.538903 + 0.842368i \(0.681161\pi\)
\(942\) 2.80097 + 2.80097i 0.0912606 + 0.0912606i
\(943\) 6.52557i 0.212502i
\(944\) 12.5311i 0.407854i
\(945\) −2.39049 2.39049i −0.0777628 0.0777628i
\(946\) −16.7548 16.7548i −0.544745 0.544745i
\(947\) −18.1521 + 18.1521i −0.589864 + 0.589864i −0.937594 0.347731i \(-0.886952\pi\)
0.347731 + 0.937594i \(0.386952\pi\)
\(948\) −12.9626 −0.421007
\(949\) 3.08959 3.08959i 0.100292 0.100292i
\(950\) 54.1714i 1.75755i
\(951\) −1.08288 −0.0351147
\(952\) 3.82883 1.52972i 0.124093 0.0495786i
\(953\) −34.0737 −1.10376 −0.551878 0.833925i \(-0.686089\pi\)
−0.551878 + 0.833925i \(0.686089\pi\)
\(954\) 13.8832i 0.449485i
\(955\) −3.13816 + 3.13816i −0.101549 + 0.101549i
\(956\) 14.5531 0.470679
\(957\) 5.17478 5.17478i 0.167277 0.167277i
\(958\) −11.7195 11.7195i −0.378639 0.378639i
\(959\) −8.84232 8.84232i −0.285533 0.285533i
\(960\) 3.38067i 0.109111i
\(961\) 14.0764i 0.454078i
\(962\) −1.57685 1.57685i −0.0508397 0.0508397i
\(963\) −0.434436 0.434436i −0.0139995 0.0139995i
\(964\) −5.63110 + 5.63110i −0.181365 + 0.181365i
\(965\) −18.3976 −0.592240
\(966\) 2.44833 2.44833i 0.0787738 0.0787738i
\(967\) 27.9074i 0.897442i 0.893672 + 0.448721i \(0.148120\pi\)
−0.893672 + 0.448721i \(0.851880\pi\)
\(968\) 7.13306 0.229265
\(969\) −12.8898 32.2626i −0.414079 1.03642i
\(970\) 11.0417 0.354528
\(971\) 46.0034i 1.47632i 0.674627 + 0.738159i \(0.264305\pi\)
−0.674627 + 0.738159i \(0.735695\pi\)
\(972\) −0.707107 + 0.707107i −0.0226805 + 0.0226805i
\(973\) 9.21335 0.295366
\(974\) −16.2454 + 16.2454i −0.520536 + 0.520536i
\(975\) −5.84142 5.84142i −0.187075 0.187075i
\(976\) −7.70568 7.70568i −0.246653 0.246653i
\(977\) 40.2862i 1.28887i −0.764660 0.644434i \(-0.777093\pi\)
0.764660 0.644434i \(-0.222907\pi\)
\(978\) 8.59981i 0.274992i
\(979\) 0.114201 + 0.114201i 0.00364989 + 0.00364989i
\(980\) 2.39049 + 2.39049i 0.0763615 + 0.0763615i
\(981\) 4.96966 4.96966i 0.158669 0.158669i
\(982\) −5.47202 −0.174619
\(983\) 3.48372 3.48372i 0.111113 0.111113i −0.649364 0.760478i \(-0.724965\pi\)
0.760478 + 0.649364i \(0.224965\pi\)
\(984\) 1.88466i 0.0600808i
\(985\) 43.8328 1.39663
\(986\) −5.69293 14.2492i −0.181300 0.453786i
\(987\) 5.10769 0.162580
\(988\) 10.8275i 0.344469i
\(989\) −29.5012 + 29.5012i −0.938084 + 0.938084i
\(990\) 6.64793 0.211285
\(991\) 28.7458 28.7458i 0.913140 0.913140i −0.0833781 0.996518i \(-0.526571\pi\)
0.996518 + 0.0833781i \(0.0265709\pi\)
\(992\) 4.74744 + 4.74744i 0.150731 + 0.150731i
\(993\) −18.1726 18.1726i −0.576691 0.576691i
\(994\) 7.39537i 0.234567i
\(995\) 8.18658i 0.259532i
\(996\) 4.99075 + 4.99075i 0.158138 + 0.158138i
\(997\) −1.45418 1.45418i −0.0460544 0.0460544i 0.683705 0.729759i \(-0.260368\pi\)
−0.729759 + 0.683705i \(0.760368\pi\)
\(998\) −5.70798 + 5.70798i −0.180683 + 0.180683i
\(999\) −1.73544 −0.0549069
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 714.2.m.d.463.1 yes 12
3.2 odd 2 2142.2.p.g.1891.6 12
17.13 even 4 inner 714.2.m.d.421.1 12
51.47 odd 4 2142.2.p.g.1135.6 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
714.2.m.d.421.1 12 17.13 even 4 inner
714.2.m.d.463.1 yes 12 1.1 even 1 trivial
2142.2.p.g.1135.6 12 51.47 odd 4
2142.2.p.g.1891.6 12 3.2 odd 2