L(s) = 1 | − i·2-s + (−0.707 + 0.707i)3-s − 4-s + (−2.39 + 2.39i)5-s + (0.707 + 0.707i)6-s + (0.707 + 0.707i)7-s + i·8-s − 1.00i·9-s + (2.39 + 2.39i)10-s + (1.39 + 1.39i)11-s + (0.707 − 0.707i)12-s − 1.28·13-s + (0.707 − 0.707i)14-s − 3.38i·15-s + 16-s + (−3.78 − 1.62i)17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + (−0.408 + 0.408i)3-s − 0.5·4-s + (−1.06 + 1.06i)5-s + (0.288 + 0.288i)6-s + (0.267 + 0.267i)7-s + 0.353i·8-s − 0.333i·9-s + (0.755 + 0.755i)10-s + (0.419 + 0.419i)11-s + (0.204 − 0.204i)12-s − 0.356·13-s + (0.188 − 0.188i)14-s − 0.872i·15-s + 0.250·16-s + (−0.918 − 0.394i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.967 + 0.254i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 714 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.967 + 0.254i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.0125305 - 0.0967449i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0125305 - 0.0967449i\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + iT \) |
| 3 | \( 1 + (0.707 - 0.707i)T \) |
| 7 | \( 1 + (-0.707 - 0.707i)T \) |
| 17 | \( 1 + (3.78 + 1.62i)T \) |
good | 5 | \( 1 + (2.39 - 2.39i)T - 5iT^{2} \) |
| 11 | \( 1 + (-1.39 - 1.39i)T + 11iT^{2} \) |
| 13 | \( 1 + 1.28T + 13T^{2} \) |
| 19 | \( 1 + 8.42iT - 19T^{2} \) |
| 23 | \( 1 + (2.44 + 2.44i)T + 23iT^{2} \) |
| 29 | \( 1 + (2.63 - 2.63i)T - 29iT^{2} \) |
| 31 | \( 1 + (4.74 - 4.74i)T - 31iT^{2} \) |
| 37 | \( 1 + (1.22 - 1.22i)T - 37iT^{2} \) |
| 41 | \( 1 + (-1.33 - 1.33i)T + 41iT^{2} \) |
| 43 | \( 1 + 12.0iT - 43T^{2} \) |
| 47 | \( 1 + 5.10T + 47T^{2} \) |
| 53 | \( 1 + 13.8iT - 53T^{2} \) |
| 59 | \( 1 - 12.5iT - 59T^{2} \) |
| 61 | \( 1 + (7.70 + 7.70i)T + 61iT^{2} \) |
| 67 | \( 1 - 15.9T + 67T^{2} \) |
| 71 | \( 1 + (5.22 - 5.22i)T - 71iT^{2} \) |
| 73 | \( 1 + (2.40 - 2.40i)T - 73iT^{2} \) |
| 79 | \( 1 + (9.16 + 9.16i)T + 79iT^{2} \) |
| 83 | \( 1 - 7.05iT - 83T^{2} \) |
| 89 | \( 1 - 0.0821T + 89T^{2} \) |
| 97 | \( 1 + (-2.30 + 2.30i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.31210714731804683270908070842, −9.273843273490580196998368390436, −8.531132685379083758020287779875, −7.19728321379117415146657116485, −6.74951326972270108766638696585, −5.16572235240441216053755566786, −4.35567450661841498822965949343, −3.38741581646564997974361425306, −2.30800487648943450304917289395, −0.05501469059000513375901237797,
1.49254243336529740096824176941, 3.81502717725192662380546460967, 4.43344252134554246218983048970, 5.56018997109078084478210712927, 6.34104435570670641385448089126, 7.67487546218724807811442319940, 7.902511053574378187472084960624, 8.829749195750772983562167832118, 9.765739037404426767186358797561, 11.01580430872302327591147346616