Properties

Label 7128.2.a.w.1.6
Level $7128$
Weight $2$
Character 7128.1
Self dual yes
Analytic conductor $56.917$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7128,2,Mod(1,7128)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7128, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7128.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7128 = 2^{3} \cdot 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7128.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-4,0,5,0,0,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.9173665608\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.30796308.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 7x^{4} - x^{3} + 10x^{2} + 2x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 792)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(2.35114\) of defining polynomial
Character \(\chi\) \(=\) 7128.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.52788 q^{5} -0.259373 q^{7} -1.00000 q^{11} -1.32579 q^{13} -3.05274 q^{17} -1.26851 q^{19} +2.37853 q^{23} +1.39018 q^{25} -5.21676 q^{29} -0.0664179 q^{31} -0.655663 q^{35} -5.84709 q^{37} +7.16375 q^{41} +3.64955 q^{43} -4.30658 q^{47} -6.93273 q^{49} -5.63237 q^{53} -2.52788 q^{55} +1.87571 q^{59} +10.4781 q^{61} -3.35144 q^{65} -8.76056 q^{67} -0.266153 q^{71} -11.9822 q^{73} +0.259373 q^{77} -2.90010 q^{79} +3.14646 q^{83} -7.71696 q^{85} -14.4329 q^{89} +0.343874 q^{91} -3.20663 q^{95} +1.61043 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 4 q^{5} + 5 q^{7} - 6 q^{11} + 3 q^{13} - 7 q^{17} + 5 q^{19} - 8 q^{23} - 2 q^{25} - 8 q^{29} + 4 q^{31} - 8 q^{35} + 3 q^{37} + 5 q^{43} - 17 q^{47} + 3 q^{49} - 14 q^{53} + 4 q^{55} - 4 q^{59}+ \cdots - 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.52788 1.13050 0.565251 0.824919i \(-0.308779\pi\)
0.565251 + 0.824919i \(0.308779\pi\)
\(6\) 0 0
\(7\) −0.259373 −0.0980337 −0.0490168 0.998798i \(-0.515609\pi\)
−0.0490168 + 0.998798i \(0.515609\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −1.32579 −0.367708 −0.183854 0.982954i \(-0.558857\pi\)
−0.183854 + 0.982954i \(0.558857\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.05274 −0.740398 −0.370199 0.928952i \(-0.620710\pi\)
−0.370199 + 0.928952i \(0.620710\pi\)
\(18\) 0 0
\(19\) −1.26851 −0.291016 −0.145508 0.989357i \(-0.546482\pi\)
−0.145508 + 0.989357i \(0.546482\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.37853 0.495958 0.247979 0.968765i \(-0.420234\pi\)
0.247979 + 0.968765i \(0.420234\pi\)
\(24\) 0 0
\(25\) 1.39018 0.278035
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −5.21676 −0.968728 −0.484364 0.874867i \(-0.660949\pi\)
−0.484364 + 0.874867i \(0.660949\pi\)
\(30\) 0 0
\(31\) −0.0664179 −0.0119290 −0.00596450 0.999982i \(-0.501899\pi\)
−0.00596450 + 0.999982i \(0.501899\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −0.655663 −0.110827
\(36\) 0 0
\(37\) −5.84709 −0.961256 −0.480628 0.876924i \(-0.659591\pi\)
−0.480628 + 0.876924i \(0.659591\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.16375 1.11879 0.559395 0.828901i \(-0.311034\pi\)
0.559395 + 0.828901i \(0.311034\pi\)
\(42\) 0 0
\(43\) 3.64955 0.556551 0.278276 0.960501i \(-0.410237\pi\)
0.278276 + 0.960501i \(0.410237\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.30658 −0.628179 −0.314089 0.949393i \(-0.601699\pi\)
−0.314089 + 0.949393i \(0.601699\pi\)
\(48\) 0 0
\(49\) −6.93273 −0.990389
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −5.63237 −0.773665 −0.386833 0.922150i \(-0.626431\pi\)
−0.386833 + 0.922150i \(0.626431\pi\)
\(54\) 0 0
\(55\) −2.52788 −0.340859
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 1.87571 0.244196 0.122098 0.992518i \(-0.461038\pi\)
0.122098 + 0.992518i \(0.461038\pi\)
\(60\) 0 0
\(61\) 10.4781 1.34158 0.670792 0.741646i \(-0.265955\pi\)
0.670792 + 0.741646i \(0.265955\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −3.35144 −0.415695
\(66\) 0 0
\(67\) −8.76056 −1.07027 −0.535136 0.844766i \(-0.679740\pi\)
−0.535136 + 0.844766i \(0.679740\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.266153 −0.0315866 −0.0157933 0.999875i \(-0.505027\pi\)
−0.0157933 + 0.999875i \(0.505027\pi\)
\(72\) 0 0
\(73\) −11.9822 −1.40241 −0.701204 0.712961i \(-0.747354\pi\)
−0.701204 + 0.712961i \(0.747354\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0.259373 0.0295583
\(78\) 0 0
\(79\) −2.90010 −0.326287 −0.163143 0.986602i \(-0.552163\pi\)
−0.163143 + 0.986602i \(0.552163\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 3.14646 0.345369 0.172685 0.984977i \(-0.444756\pi\)
0.172685 + 0.984977i \(0.444756\pi\)
\(84\) 0 0
\(85\) −7.71696 −0.837022
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −14.4329 −1.52989 −0.764944 0.644097i \(-0.777233\pi\)
−0.764944 + 0.644097i \(0.777233\pi\)
\(90\) 0 0
\(91\) 0.343874 0.0360478
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −3.20663 −0.328994
\(96\) 0 0
\(97\) 1.61043 0.163514 0.0817570 0.996652i \(-0.473947\pi\)
0.0817570 + 0.996652i \(0.473947\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 4.04480 0.402473 0.201236 0.979543i \(-0.435504\pi\)
0.201236 + 0.979543i \(0.435504\pi\)
\(102\) 0 0
\(103\) 10.9819 1.08208 0.541038 0.840998i \(-0.318032\pi\)
0.541038 + 0.840998i \(0.318032\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −10.1271 −0.979028 −0.489514 0.871996i \(-0.662826\pi\)
−0.489514 + 0.871996i \(0.662826\pi\)
\(108\) 0 0
\(109\) −11.9561 −1.14518 −0.572592 0.819840i \(-0.694062\pi\)
−0.572592 + 0.819840i \(0.694062\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −18.6474 −1.75420 −0.877102 0.480304i \(-0.840526\pi\)
−0.877102 + 0.480304i \(0.840526\pi\)
\(114\) 0 0
\(115\) 6.01264 0.560681
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.791797 0.0725839
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −9.12520 −0.816183
\(126\) 0 0
\(127\) −4.53148 −0.402104 −0.201052 0.979581i \(-0.564436\pi\)
−0.201052 + 0.979581i \(0.564436\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 18.6797 1.63205 0.816024 0.578017i \(-0.196173\pi\)
0.816024 + 0.578017i \(0.196173\pi\)
\(132\) 0 0
\(133\) 0.329016 0.0285293
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 10.7450 0.918010 0.459005 0.888434i \(-0.348206\pi\)
0.459005 + 0.888434i \(0.348206\pi\)
\(138\) 0 0
\(139\) 7.16887 0.608056 0.304028 0.952663i \(-0.401668\pi\)
0.304028 + 0.952663i \(0.401668\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.32579 0.110868
\(144\) 0 0
\(145\) −13.1873 −1.09515
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −20.8460 −1.70777 −0.853884 0.520463i \(-0.825759\pi\)
−0.853884 + 0.520463i \(0.825759\pi\)
\(150\) 0 0
\(151\) −6.50797 −0.529611 −0.264806 0.964302i \(-0.585308\pi\)
−0.264806 + 0.964302i \(0.585308\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −0.167896 −0.0134858
\(156\) 0 0
\(157\) 9.15085 0.730317 0.365159 0.930945i \(-0.381015\pi\)
0.365159 + 0.930945i \(0.381015\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −0.616926 −0.0486206
\(162\) 0 0
\(163\) −7.23853 −0.566965 −0.283483 0.958977i \(-0.591490\pi\)
−0.283483 + 0.958977i \(0.591490\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.42898 −0.265342 −0.132671 0.991160i \(-0.542355\pi\)
−0.132671 + 0.991160i \(0.542355\pi\)
\(168\) 0 0
\(169\) −11.2423 −0.864791
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −6.42465 −0.488457 −0.244228 0.969718i \(-0.578535\pi\)
−0.244228 + 0.969718i \(0.578535\pi\)
\(174\) 0 0
\(175\) −0.360574 −0.0272568
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −6.80213 −0.508415 −0.254207 0.967150i \(-0.581815\pi\)
−0.254207 + 0.967150i \(0.581815\pi\)
\(180\) 0 0
\(181\) 17.1173 1.27232 0.636158 0.771559i \(-0.280523\pi\)
0.636158 + 0.771559i \(0.280523\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −14.7808 −1.08670
\(186\) 0 0
\(187\) 3.05274 0.223238
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −22.3386 −1.61636 −0.808181 0.588935i \(-0.799548\pi\)
−0.808181 + 0.588935i \(0.799548\pi\)
\(192\) 0 0
\(193\) 7.72114 0.555780 0.277890 0.960613i \(-0.410365\pi\)
0.277890 + 0.960613i \(0.410365\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −17.6608 −1.25828 −0.629139 0.777293i \(-0.716592\pi\)
−0.629139 + 0.777293i \(0.716592\pi\)
\(198\) 0 0
\(199\) 26.4171 1.87266 0.936330 0.351120i \(-0.114199\pi\)
0.936330 + 0.351120i \(0.114199\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 1.35309 0.0949680
\(204\) 0 0
\(205\) 18.1091 1.26479
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.26851 0.0877445
\(210\) 0 0
\(211\) 9.89679 0.681323 0.340662 0.940186i \(-0.389349\pi\)
0.340662 + 0.940186i \(0.389349\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 9.22562 0.629182
\(216\) 0 0
\(217\) 0.0172270 0.00116944
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 4.04729 0.272250
\(222\) 0 0
\(223\) −11.5335 −0.772339 −0.386170 0.922428i \(-0.626202\pi\)
−0.386170 + 0.922428i \(0.626202\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 9.04859 0.600576 0.300288 0.953849i \(-0.402917\pi\)
0.300288 + 0.953849i \(0.402917\pi\)
\(228\) 0 0
\(229\) −17.3028 −1.14340 −0.571700 0.820463i \(-0.693716\pi\)
−0.571700 + 0.820463i \(0.693716\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 6.93329 0.454215 0.227107 0.973870i \(-0.427073\pi\)
0.227107 + 0.973870i \(0.427073\pi\)
\(234\) 0 0
\(235\) −10.8865 −0.710158
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 24.1719 1.56355 0.781775 0.623561i \(-0.214315\pi\)
0.781775 + 0.623561i \(0.214315\pi\)
\(240\) 0 0
\(241\) 0.282703 0.0182105 0.00910526 0.999959i \(-0.497102\pi\)
0.00910526 + 0.999959i \(0.497102\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −17.5251 −1.11964
\(246\) 0 0
\(247\) 1.68178 0.107009
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −23.4910 −1.48274 −0.741371 0.671096i \(-0.765824\pi\)
−0.741371 + 0.671096i \(0.765824\pi\)
\(252\) 0 0
\(253\) −2.37853 −0.149537
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −0.588237 −0.0366932 −0.0183466 0.999832i \(-0.505840\pi\)
−0.0183466 + 0.999832i \(0.505840\pi\)
\(258\) 0 0
\(259\) 1.51658 0.0942355
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −29.1557 −1.79782 −0.898908 0.438137i \(-0.855638\pi\)
−0.898908 + 0.438137i \(0.855638\pi\)
\(264\) 0 0
\(265\) −14.2380 −0.874630
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −6.87374 −0.419099 −0.209550 0.977798i \(-0.567200\pi\)
−0.209550 + 0.977798i \(0.567200\pi\)
\(270\) 0 0
\(271\) 25.1479 1.52763 0.763815 0.645436i \(-0.223324\pi\)
0.763815 + 0.645436i \(0.223324\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.39018 −0.0838308
\(276\) 0 0
\(277\) 10.7243 0.644361 0.322181 0.946678i \(-0.395584\pi\)
0.322181 + 0.946678i \(0.395584\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 29.7227 1.77311 0.886554 0.462625i \(-0.153092\pi\)
0.886554 + 0.462625i \(0.153092\pi\)
\(282\) 0 0
\(283\) 19.8530 1.18014 0.590068 0.807353i \(-0.299101\pi\)
0.590068 + 0.807353i \(0.299101\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −1.85808 −0.109679
\(288\) 0 0
\(289\) −7.68079 −0.451811
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −3.93524 −0.229899 −0.114950 0.993371i \(-0.536671\pi\)
−0.114950 + 0.993371i \(0.536671\pi\)
\(294\) 0 0
\(295\) 4.74156 0.276065
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −3.15343 −0.182368
\(300\) 0 0
\(301\) −0.946594 −0.0545608
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 26.4874 1.51666
\(306\) 0 0
\(307\) 26.9063 1.53563 0.767813 0.640674i \(-0.221345\pi\)
0.767813 + 0.640674i \(0.221345\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −8.32622 −0.472137 −0.236068 0.971736i \(-0.575859\pi\)
−0.236068 + 0.971736i \(0.575859\pi\)
\(312\) 0 0
\(313\) −24.7058 −1.39645 −0.698226 0.715878i \(-0.746027\pi\)
−0.698226 + 0.715878i \(0.746027\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −17.4793 −0.981738 −0.490869 0.871233i \(-0.663321\pi\)
−0.490869 + 0.871233i \(0.663321\pi\)
\(318\) 0 0
\(319\) 5.21676 0.292082
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 3.87242 0.215467
\(324\) 0 0
\(325\) −1.84308 −0.102236
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 1.11701 0.0615827
\(330\) 0 0
\(331\) 10.1116 0.555783 0.277892 0.960612i \(-0.410364\pi\)
0.277892 + 0.960612i \(0.410364\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −22.1456 −1.20995
\(336\) 0 0
\(337\) 7.42830 0.404646 0.202323 0.979319i \(-0.435151\pi\)
0.202323 + 0.979319i \(0.435151\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0.0664179 0.00359673
\(342\) 0 0
\(343\) 3.61377 0.195125
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −21.6580 −1.16266 −0.581331 0.813667i \(-0.697468\pi\)
−0.581331 + 0.813667i \(0.697468\pi\)
\(348\) 0 0
\(349\) 6.49158 0.347487 0.173743 0.984791i \(-0.444414\pi\)
0.173743 + 0.984791i \(0.444414\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 14.3562 0.764101 0.382050 0.924141i \(-0.375218\pi\)
0.382050 + 0.924141i \(0.375218\pi\)
\(354\) 0 0
\(355\) −0.672804 −0.0357087
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −25.1280 −1.32621 −0.663103 0.748528i \(-0.730761\pi\)
−0.663103 + 0.748528i \(0.730761\pi\)
\(360\) 0 0
\(361\) −17.3909 −0.915310
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −30.2895 −1.58542
\(366\) 0 0
\(367\) 13.8865 0.724871 0.362435 0.932009i \(-0.381945\pi\)
0.362435 + 0.932009i \(0.381945\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 1.46088 0.0758453
\(372\) 0 0
\(373\) 18.1306 0.938765 0.469383 0.882995i \(-0.344476\pi\)
0.469383 + 0.882995i \(0.344476\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.91633 0.356209
\(378\) 0 0
\(379\) 33.7566 1.73396 0.866981 0.498341i \(-0.166057\pi\)
0.866981 + 0.498341i \(0.166057\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −15.1854 −0.775936 −0.387968 0.921673i \(-0.626823\pi\)
−0.387968 + 0.921673i \(0.626823\pi\)
\(384\) 0 0
\(385\) 0.655663 0.0334157
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −23.0810 −1.17025 −0.585126 0.810942i \(-0.698955\pi\)
−0.585126 + 0.810942i \(0.698955\pi\)
\(390\) 0 0
\(391\) −7.26103 −0.367206
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.33111 −0.368868
\(396\) 0 0
\(397\) −11.7765 −0.591046 −0.295523 0.955336i \(-0.595494\pi\)
−0.295523 + 0.955336i \(0.595494\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.04565 −0.301906 −0.150953 0.988541i \(-0.548234\pi\)
−0.150953 + 0.988541i \(0.548234\pi\)
\(402\) 0 0
\(403\) 0.0880562 0.00438639
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5.84709 0.289830
\(408\) 0 0
\(409\) 13.8329 0.683991 0.341995 0.939702i \(-0.388897\pi\)
0.341995 + 0.939702i \(0.388897\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −0.486508 −0.0239395
\(414\) 0 0
\(415\) 7.95388 0.390441
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.52062 0.220847 0.110423 0.993885i \(-0.464779\pi\)
0.110423 + 0.993885i \(0.464779\pi\)
\(420\) 0 0
\(421\) −19.6123 −0.955847 −0.477924 0.878401i \(-0.658610\pi\)
−0.477924 + 0.878401i \(0.658610\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −4.24385 −0.205857
\(426\) 0 0
\(427\) −2.71773 −0.131520
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 36.0517 1.73655 0.868274 0.496085i \(-0.165230\pi\)
0.868274 + 0.496085i \(0.165230\pi\)
\(432\) 0 0
\(433\) 3.07491 0.147771 0.0738854 0.997267i \(-0.476460\pi\)
0.0738854 + 0.997267i \(0.476460\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.01718 −0.144331
\(438\) 0 0
\(439\) −3.86096 −0.184273 −0.0921367 0.995746i \(-0.529370\pi\)
−0.0921367 + 0.995746i \(0.529370\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −2.22060 −0.105504 −0.0527521 0.998608i \(-0.516799\pi\)
−0.0527521 + 0.998608i \(0.516799\pi\)
\(444\) 0 0
\(445\) −36.4847 −1.72954
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 22.2230 1.04877 0.524383 0.851482i \(-0.324296\pi\)
0.524383 + 0.851482i \(0.324296\pi\)
\(450\) 0 0
\(451\) −7.16375 −0.337328
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0.869272 0.0407521
\(456\) 0 0
\(457\) 11.4845 0.537220 0.268610 0.963249i \(-0.413436\pi\)
0.268610 + 0.963249i \(0.413436\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 1.26633 0.0589787 0.0294893 0.999565i \(-0.490612\pi\)
0.0294893 + 0.999565i \(0.490612\pi\)
\(462\) 0 0
\(463\) −28.7947 −1.33820 −0.669102 0.743170i \(-0.733321\pi\)
−0.669102 + 0.743170i \(0.733321\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −31.0031 −1.43465 −0.717326 0.696738i \(-0.754634\pi\)
−0.717326 + 0.696738i \(0.754634\pi\)
\(468\) 0 0
\(469\) 2.27225 0.104923
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −3.64955 −0.167806
\(474\) 0 0
\(475\) −1.76345 −0.0809126
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −25.4856 −1.16447 −0.582233 0.813022i \(-0.697821\pi\)
−0.582233 + 0.813022i \(0.697821\pi\)
\(480\) 0 0
\(481\) 7.75202 0.353462
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.07096 0.184853
\(486\) 0 0
\(487\) 32.8068 1.48662 0.743309 0.668949i \(-0.233255\pi\)
0.743309 + 0.668949i \(0.233255\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −29.7606 −1.34308 −0.671540 0.740969i \(-0.734367\pi\)
−0.671540 + 0.740969i \(0.734367\pi\)
\(492\) 0 0
\(493\) 15.9254 0.717244
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0.0690329 0.00309655
\(498\) 0 0
\(499\) −5.70263 −0.255285 −0.127642 0.991820i \(-0.540741\pi\)
−0.127642 + 0.991820i \(0.540741\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 16.3856 0.730598 0.365299 0.930890i \(-0.380967\pi\)
0.365299 + 0.930890i \(0.380967\pi\)
\(504\) 0 0
\(505\) 10.2248 0.454996
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 14.1731 0.628212 0.314106 0.949388i \(-0.398295\pi\)
0.314106 + 0.949388i \(0.398295\pi\)
\(510\) 0 0
\(511\) 3.10785 0.137483
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 27.7608 1.22329
\(516\) 0 0
\(517\) 4.30658 0.189403
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −33.4457 −1.46528 −0.732642 0.680614i \(-0.761713\pi\)
−0.732642 + 0.680614i \(0.761713\pi\)
\(522\) 0 0
\(523\) −33.5212 −1.46578 −0.732890 0.680347i \(-0.761829\pi\)
−0.732890 + 0.680347i \(0.761829\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0.202757 0.00883221
\(528\) 0 0
\(529\) −17.3426 −0.754026
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −9.49763 −0.411388
\(534\) 0 0
\(535\) −25.6002 −1.10679
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.93273 0.298614
\(540\) 0 0
\(541\) −41.2381 −1.77297 −0.886483 0.462762i \(-0.846858\pi\)
−0.886483 + 0.462762i \(0.846858\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −30.2235 −1.29463
\(546\) 0 0
\(547\) −21.8642 −0.934844 −0.467422 0.884034i \(-0.654817\pi\)
−0.467422 + 0.884034i \(0.654817\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 6.61749 0.281915
\(552\) 0 0
\(553\) 0.752207 0.0319871
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 18.1892 0.770702 0.385351 0.922770i \(-0.374080\pi\)
0.385351 + 0.922770i \(0.374080\pi\)
\(558\) 0 0
\(559\) −4.83854 −0.204648
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.6284 −0.911530 −0.455765 0.890100i \(-0.650634\pi\)
−0.455765 + 0.890100i \(0.650634\pi\)
\(564\) 0 0
\(565\) −47.1385 −1.98313
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.01029 −0.0423536 −0.0211768 0.999776i \(-0.506741\pi\)
−0.0211768 + 0.999776i \(0.506741\pi\)
\(570\) 0 0
\(571\) 23.8078 0.996326 0.498163 0.867083i \(-0.334008\pi\)
0.498163 + 0.867083i \(0.334008\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 3.30658 0.137894
\(576\) 0 0
\(577\) 18.1176 0.754247 0.377124 0.926163i \(-0.376913\pi\)
0.377124 + 0.926163i \(0.376913\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −0.816107 −0.0338578
\(582\) 0 0
\(583\) 5.63237 0.233269
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −29.8619 −1.23253 −0.616266 0.787538i \(-0.711356\pi\)
−0.616266 + 0.787538i \(0.711356\pi\)
\(588\) 0 0
\(589\) 0.0842516 0.00347153
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 5.46598 0.224461 0.112230 0.993682i \(-0.464201\pi\)
0.112230 + 0.993682i \(0.464201\pi\)
\(594\) 0 0
\(595\) 2.00157 0.0820563
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 5.13549 0.209830 0.104915 0.994481i \(-0.466543\pi\)
0.104915 + 0.994481i \(0.466543\pi\)
\(600\) 0 0
\(601\) 1.74595 0.0712187 0.0356094 0.999366i \(-0.488663\pi\)
0.0356094 + 0.999366i \(0.488663\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 2.52788 0.102773
\(606\) 0 0
\(607\) 1.17090 0.0475253 0.0237627 0.999718i \(-0.492435\pi\)
0.0237627 + 0.999718i \(0.492435\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.70962 0.230987
\(612\) 0 0
\(613\) 20.8168 0.840783 0.420392 0.907343i \(-0.361893\pi\)
0.420392 + 0.907343i \(0.361893\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 31.2447 1.25786 0.628932 0.777461i \(-0.283493\pi\)
0.628932 + 0.777461i \(0.283493\pi\)
\(618\) 0 0
\(619\) −28.0767 −1.12850 −0.564250 0.825604i \(-0.690835\pi\)
−0.564250 + 0.825604i \(0.690835\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 3.74351 0.149980
\(624\) 0 0
\(625\) −30.0183 −1.20073
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 17.8497 0.711712
\(630\) 0 0
\(631\) 31.2790 1.24520 0.622598 0.782542i \(-0.286077\pi\)
0.622598 + 0.782542i \(0.286077\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −11.4550 −0.454579
\(636\) 0 0
\(637\) 9.19134 0.364174
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −43.9866 −1.73736 −0.868682 0.495370i \(-0.835033\pi\)
−0.868682 + 0.495370i \(0.835033\pi\)
\(642\) 0 0
\(643\) 49.3147 1.94478 0.972390 0.233361i \(-0.0749722\pi\)
0.972390 + 0.233361i \(0.0749722\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −24.2796 −0.954528 −0.477264 0.878760i \(-0.658371\pi\)
−0.477264 + 0.878760i \(0.658371\pi\)
\(648\) 0 0
\(649\) −1.87571 −0.0736280
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.02174 −0.157383 −0.0786914 0.996899i \(-0.525074\pi\)
−0.0786914 + 0.996899i \(0.525074\pi\)
\(654\) 0 0
\(655\) 47.2199 1.84504
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 16.9173 0.659003 0.329501 0.944155i \(-0.393119\pi\)
0.329501 + 0.944155i \(0.393119\pi\)
\(660\) 0 0
\(661\) 22.2545 0.865601 0.432800 0.901490i \(-0.357526\pi\)
0.432800 + 0.901490i \(0.357526\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0.831714 0.0322525
\(666\) 0 0
\(667\) −12.4082 −0.480448
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −10.4781 −0.404503
\(672\) 0 0
\(673\) −39.0710 −1.50608 −0.753038 0.657977i \(-0.771412\pi\)
−0.753038 + 0.657977i \(0.771412\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 37.0748 1.42490 0.712450 0.701723i \(-0.247585\pi\)
0.712450 + 0.701723i \(0.247585\pi\)
\(678\) 0 0
\(679\) −0.417701 −0.0160299
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 37.6043 1.43889 0.719443 0.694551i \(-0.244397\pi\)
0.719443 + 0.694551i \(0.244397\pi\)
\(684\) 0 0
\(685\) 27.1622 1.03781
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 7.46734 0.284483
\(690\) 0 0
\(691\) −16.2879 −0.619621 −0.309810 0.950798i \(-0.600266\pi\)
−0.309810 + 0.950798i \(0.600266\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 18.1221 0.687409
\(696\) 0 0
\(697\) −21.8691 −0.828350
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 13.3983 0.506047 0.253023 0.967460i \(-0.418575\pi\)
0.253023 + 0.967460i \(0.418575\pi\)
\(702\) 0 0
\(703\) 7.41708 0.279741
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −1.04911 −0.0394559
\(708\) 0 0
\(709\) −18.8671 −0.708568 −0.354284 0.935138i \(-0.615275\pi\)
−0.354284 + 0.935138i \(0.615275\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.157977 −0.00591628
\(714\) 0 0
\(715\) 3.35144 0.125337
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 6.49032 0.242048 0.121024 0.992650i \(-0.461382\pi\)
0.121024 + 0.992650i \(0.461382\pi\)
\(720\) 0 0
\(721\) −2.84840 −0.106080
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −7.25222 −0.269341
\(726\) 0 0
\(727\) −32.6534 −1.21105 −0.605524 0.795827i \(-0.707037\pi\)
−0.605524 + 0.795827i \(0.707037\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −11.1411 −0.412069
\(732\) 0 0
\(733\) 18.4922 0.683027 0.341513 0.939877i \(-0.389061\pi\)
0.341513 + 0.939877i \(0.389061\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 8.76056 0.322699
\(738\) 0 0
\(739\) 11.5633 0.425364 0.212682 0.977122i \(-0.431780\pi\)
0.212682 + 0.977122i \(0.431780\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −28.3689 −1.04075 −0.520377 0.853937i \(-0.674209\pi\)
−0.520377 + 0.853937i \(0.674209\pi\)
\(744\) 0 0
\(745\) −52.6961 −1.93064
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.62670 0.0959777
\(750\) 0 0
\(751\) 15.8079 0.576839 0.288420 0.957504i \(-0.406870\pi\)
0.288420 + 0.957504i \(0.406870\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −16.4514 −0.598727
\(756\) 0 0
\(757\) 11.6372 0.422960 0.211480 0.977382i \(-0.432172\pi\)
0.211480 + 0.977382i \(0.432172\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 22.1271 0.802105 0.401053 0.916055i \(-0.368644\pi\)
0.401053 + 0.916055i \(0.368644\pi\)
\(762\) 0 0
\(763\) 3.10108 0.112267
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −2.48680 −0.0897930
\(768\) 0 0
\(769\) −52.0277 −1.87617 −0.938084 0.346408i \(-0.887401\pi\)
−0.938084 + 0.346408i \(0.887401\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −25.0327 −0.900365 −0.450182 0.892937i \(-0.648641\pi\)
−0.450182 + 0.892937i \(0.648641\pi\)
\(774\) 0 0
\(775\) −0.0923326 −0.00331669
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.08727 −0.325585
\(780\) 0 0
\(781\) 0.266153 0.00952372
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 23.1322 0.825625
\(786\) 0 0
\(787\) 32.3104 1.15174 0.575870 0.817541i \(-0.304663\pi\)
0.575870 + 0.817541i \(0.304663\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 4.83664 0.171971
\(792\) 0 0
\(793\) −13.8918 −0.493311
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21.9047 0.775905 0.387953 0.921679i \(-0.373182\pi\)
0.387953 + 0.921679i \(0.373182\pi\)
\(798\) 0 0
\(799\) 13.1469 0.465102
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 11.9822 0.422842
\(804\) 0 0
\(805\) −1.55951 −0.0549657
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −22.7750 −0.800726 −0.400363 0.916357i \(-0.631116\pi\)
−0.400363 + 0.916357i \(0.631116\pi\)
\(810\) 0 0
\(811\) −40.8286 −1.43369 −0.716843 0.697235i \(-0.754413\pi\)
−0.716843 + 0.697235i \(0.754413\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −18.2981 −0.640955
\(816\) 0 0
\(817\) −4.62948 −0.161965
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.4439 −0.364493 −0.182246 0.983253i \(-0.558337\pi\)
−0.182246 + 0.983253i \(0.558337\pi\)
\(822\) 0 0
\(823\) 3.70212 0.129048 0.0645239 0.997916i \(-0.479447\pi\)
0.0645239 + 0.997916i \(0.479447\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −34.1184 −1.18641 −0.593207 0.805050i \(-0.702138\pi\)
−0.593207 + 0.805050i \(0.702138\pi\)
\(828\) 0 0
\(829\) 35.6910 1.23960 0.619800 0.784760i \(-0.287214\pi\)
0.619800 + 0.784760i \(0.287214\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 21.1638 0.733282
\(834\) 0 0
\(835\) −8.66805 −0.299970
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −10.3082 −0.355877 −0.177939 0.984042i \(-0.556943\pi\)
−0.177939 + 0.984042i \(0.556943\pi\)
\(840\) 0 0
\(841\) −1.78544 −0.0615668
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −28.4191 −0.977648
\(846\) 0 0
\(847\) −0.259373 −0.00891215
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −13.9075 −0.476743
\(852\) 0 0
\(853\) −22.5393 −0.771730 −0.385865 0.922555i \(-0.626097\pi\)
−0.385865 + 0.922555i \(0.626097\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 12.5365 0.428238 0.214119 0.976808i \(-0.431312\pi\)
0.214119 + 0.976808i \(0.431312\pi\)
\(858\) 0 0
\(859\) 14.4875 0.494307 0.247154 0.968976i \(-0.420505\pi\)
0.247154 + 0.968976i \(0.420505\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 40.0520 1.36338 0.681692 0.731639i \(-0.261244\pi\)
0.681692 + 0.731639i \(0.261244\pi\)
\(864\) 0 0
\(865\) −16.2407 −0.552202
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.90010 0.0983792
\(870\) 0 0
\(871\) 11.6147 0.393548
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 2.36683 0.0800134
\(876\) 0 0
\(877\) −31.1005 −1.05019 −0.525095 0.851044i \(-0.675970\pi\)
−0.525095 + 0.851044i \(0.675970\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 11.6899 0.393844 0.196922 0.980419i \(-0.436906\pi\)
0.196922 + 0.980419i \(0.436906\pi\)
\(882\) 0 0
\(883\) −21.5218 −0.724266 −0.362133 0.932126i \(-0.617951\pi\)
−0.362133 + 0.932126i \(0.617951\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −30.4671 −1.02298 −0.511492 0.859288i \(-0.670907\pi\)
−0.511492 + 0.859288i \(0.670907\pi\)
\(888\) 0 0
\(889\) 1.17534 0.0394197
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 5.46292 0.182810
\(894\) 0 0
\(895\) −17.1950 −0.574764
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0.346486 0.0115560
\(900\) 0 0
\(901\) 17.1941 0.572820
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 43.2704 1.43836
\(906\) 0 0
\(907\) 40.7022 1.35150 0.675748 0.737133i \(-0.263821\pi\)
0.675748 + 0.737133i \(0.263821\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 34.5755 1.14554 0.572768 0.819717i \(-0.305869\pi\)
0.572768 + 0.819717i \(0.305869\pi\)
\(912\) 0 0
\(913\) −3.14646 −0.104133
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −4.84499 −0.159996
\(918\) 0 0
\(919\) −57.8136 −1.90710 −0.953548 0.301242i \(-0.902599\pi\)
−0.953548 + 0.301242i \(0.902599\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0.352864 0.0116146
\(924\) 0 0
\(925\) −8.12850 −0.267263
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −30.5854 −1.00347 −0.501737 0.865020i \(-0.667305\pi\)
−0.501737 + 0.865020i \(0.667305\pi\)
\(930\) 0 0
\(931\) 8.79421 0.288219
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 7.71696 0.252371
\(936\) 0 0
\(937\) −47.5246 −1.55256 −0.776280 0.630388i \(-0.782896\pi\)
−0.776280 + 0.630388i \(0.782896\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −29.0155 −0.945879 −0.472940 0.881095i \(-0.656807\pi\)
−0.472940 + 0.881095i \(0.656807\pi\)
\(942\) 0 0
\(943\) 17.0392 0.554872
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 37.0502 1.20397 0.601985 0.798508i \(-0.294377\pi\)
0.601985 + 0.798508i \(0.294377\pi\)
\(948\) 0 0
\(949\) 15.8859 0.515677
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −11.6665 −0.377915 −0.188958 0.981985i \(-0.560511\pi\)
−0.188958 + 0.981985i \(0.560511\pi\)
\(954\) 0 0
\(955\) −56.4692 −1.82730
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −2.78697 −0.0899960
\(960\) 0 0
\(961\) −30.9956 −0.999858
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 19.5181 0.628310
\(966\) 0 0
\(967\) −35.4370 −1.13958 −0.569789 0.821791i \(-0.692975\pi\)
−0.569789 + 0.821791i \(0.692975\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 23.9907 0.769898 0.384949 0.922938i \(-0.374219\pi\)
0.384949 + 0.922938i \(0.374219\pi\)
\(972\) 0 0
\(973\) −1.85941 −0.0596100
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −43.6605 −1.39682 −0.698412 0.715696i \(-0.746109\pi\)
−0.698412 + 0.715696i \(0.746109\pi\)
\(978\) 0 0
\(979\) 14.4329 0.461278
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −16.7661 −0.534755 −0.267378 0.963592i \(-0.586157\pi\)
−0.267378 + 0.963592i \(0.586157\pi\)
\(984\) 0 0
\(985\) −44.6443 −1.42249
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 8.68056 0.276026
\(990\) 0 0
\(991\) −23.3381 −0.741358 −0.370679 0.928761i \(-0.620875\pi\)
−0.370679 + 0.928761i \(0.620875\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 66.7793 2.11705
\(996\) 0 0
\(997\) 55.8914 1.77010 0.885049 0.465498i \(-0.154125\pi\)
0.885049 + 0.465498i \(0.154125\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7128.2.a.w.1.6 6
3.2 odd 2 7128.2.a.ba.1.1 6
9.2 odd 6 792.2.q.f.265.1 12
9.4 even 3 2376.2.q.f.1585.1 12
9.5 odd 6 792.2.q.f.529.1 yes 12
9.7 even 3 2376.2.q.f.793.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
792.2.q.f.265.1 12 9.2 odd 6
792.2.q.f.529.1 yes 12 9.5 odd 6
2376.2.q.f.793.1 12 9.7 even 3
2376.2.q.f.1585.1 12 9.4 even 3
7128.2.a.w.1.6 6 1.1 even 1 trivial
7128.2.a.ba.1.1 6 3.2 odd 2