Properties

Label 704.4.a.p.1.2
Level $704$
Weight $4$
Character 704.1
Self dual yes
Analytic conductor $41.537$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [704,4,Mod(1,704)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("704.1"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(704, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,2,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5373446440\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 11)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.73205\) of defining polynomial
Character \(\chi\) \(=\) 704.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+7.92820 q^{3} -14.8564 q^{5} +3.07180 q^{7} +35.8564 q^{9} +11.0000 q^{11} -5.35898 q^{13} -117.785 q^{15} -41.2154 q^{17} -139.923 q^{19} +24.3538 q^{21} -111.354 q^{23} +95.7128 q^{25} +70.2154 q^{27} +24.9948 q^{29} +31.4974 q^{31} +87.2102 q^{33} -45.6359 q^{35} -13.1436 q^{37} -42.4871 q^{39} +261.072 q^{41} +57.7128 q^{43} -532.697 q^{45} -343.846 q^{47} -333.564 q^{49} -326.764 q^{51} +342.995 q^{53} -163.420 q^{55} -1109.34 q^{57} -88.3693 q^{59} -738.697 q^{61} +110.144 q^{63} +79.6152 q^{65} -342.359 q^{67} -882.836 q^{69} -207.364 q^{71} -1010.60 q^{73} +758.831 q^{75} +33.7898 q^{77} +1294.23 q^{79} -411.441 q^{81} -441.846 q^{83} +612.313 q^{85} +198.164 q^{87} -1489.11 q^{89} -16.4617 q^{91} +249.718 q^{93} +2078.75 q^{95} +1346.42 q^{97} +394.420 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} - 2 q^{5} + 20 q^{7} + 44 q^{9} + 22 q^{11} - 80 q^{13} - 194 q^{15} - 124 q^{17} - 72 q^{19} - 76 q^{21} - 98 q^{23} + 136 q^{25} + 182 q^{27} - 144 q^{29} - 34 q^{31} + 22 q^{33} + 172 q^{35}+ \cdots + 484 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 7.92820 1.52578 0.762892 0.646526i \(-0.223779\pi\)
0.762892 + 0.646526i \(0.223779\pi\)
\(4\) 0 0
\(5\) −14.8564 −1.32880 −0.664399 0.747378i \(-0.731312\pi\)
−0.664399 + 0.747378i \(0.731312\pi\)
\(6\) 0 0
\(7\) 3.07180 0.165861 0.0829307 0.996555i \(-0.473572\pi\)
0.0829307 + 0.996555i \(0.473572\pi\)
\(8\) 0 0
\(9\) 35.8564 1.32802
\(10\) 0 0
\(11\) 11.0000 0.301511
\(12\) 0 0
\(13\) −5.35898 −0.114332 −0.0571659 0.998365i \(-0.518206\pi\)
−0.0571659 + 0.998365i \(0.518206\pi\)
\(14\) 0 0
\(15\) −117.785 −2.02746
\(16\) 0 0
\(17\) −41.2154 −0.588012 −0.294006 0.955804i \(-0.594989\pi\)
−0.294006 + 0.955804i \(0.594989\pi\)
\(18\) 0 0
\(19\) −139.923 −1.68950 −0.844751 0.535159i \(-0.820252\pi\)
−0.844751 + 0.535159i \(0.820252\pi\)
\(20\) 0 0
\(21\) 24.3538 0.253069
\(22\) 0 0
\(23\) −111.354 −1.00952 −0.504758 0.863261i \(-0.668418\pi\)
−0.504758 + 0.863261i \(0.668418\pi\)
\(24\) 0 0
\(25\) 95.7128 0.765703
\(26\) 0 0
\(27\) 70.2154 0.500480
\(28\) 0 0
\(29\) 24.9948 0.160049 0.0800246 0.996793i \(-0.474500\pi\)
0.0800246 + 0.996793i \(0.474500\pi\)
\(30\) 0 0
\(31\) 31.4974 0.182487 0.0912436 0.995829i \(-0.470916\pi\)
0.0912436 + 0.995829i \(0.470916\pi\)
\(32\) 0 0
\(33\) 87.2102 0.460041
\(34\) 0 0
\(35\) −45.6359 −0.220396
\(36\) 0 0
\(37\) −13.1436 −0.0583998 −0.0291999 0.999574i \(-0.509296\pi\)
−0.0291999 + 0.999574i \(0.509296\pi\)
\(38\) 0 0
\(39\) −42.4871 −0.174446
\(40\) 0 0
\(41\) 261.072 0.994453 0.497226 0.867621i \(-0.334352\pi\)
0.497226 + 0.867621i \(0.334352\pi\)
\(42\) 0 0
\(43\) 57.7128 0.204677 0.102339 0.994750i \(-0.467367\pi\)
0.102339 + 0.994750i \(0.467367\pi\)
\(44\) 0 0
\(45\) −532.697 −1.76466
\(46\) 0 0
\(47\) −343.846 −1.06713 −0.533565 0.845759i \(-0.679148\pi\)
−0.533565 + 0.845759i \(0.679148\pi\)
\(48\) 0 0
\(49\) −333.564 −0.972490
\(50\) 0 0
\(51\) −326.764 −0.897179
\(52\) 0 0
\(53\) 342.995 0.888943 0.444471 0.895793i \(-0.353392\pi\)
0.444471 + 0.895793i \(0.353392\pi\)
\(54\) 0 0
\(55\) −163.420 −0.400647
\(56\) 0 0
\(57\) −1109.34 −2.57782
\(58\) 0 0
\(59\) −88.3693 −0.194995 −0.0974975 0.995236i \(-0.531084\pi\)
−0.0974975 + 0.995236i \(0.531084\pi\)
\(60\) 0 0
\(61\) −738.697 −1.55050 −0.775250 0.631654i \(-0.782376\pi\)
−0.775250 + 0.631654i \(0.782376\pi\)
\(62\) 0 0
\(63\) 110.144 0.220266
\(64\) 0 0
\(65\) 79.6152 0.151924
\(66\) 0 0
\(67\) −342.359 −0.624266 −0.312133 0.950038i \(-0.601043\pi\)
−0.312133 + 0.950038i \(0.601043\pi\)
\(68\) 0 0
\(69\) −882.836 −1.54030
\(70\) 0 0
\(71\) −207.364 −0.346614 −0.173307 0.984868i \(-0.555445\pi\)
−0.173307 + 0.984868i \(0.555445\pi\)
\(72\) 0 0
\(73\) −1010.60 −1.62030 −0.810149 0.586224i \(-0.800614\pi\)
−0.810149 + 0.586224i \(0.800614\pi\)
\(74\) 0 0
\(75\) 758.831 1.16830
\(76\) 0 0
\(77\) 33.7898 0.0500091
\(78\) 0 0
\(79\) 1294.23 1.84319 0.921593 0.388157i \(-0.126888\pi\)
0.921593 + 0.388157i \(0.126888\pi\)
\(80\) 0 0
\(81\) −411.441 −0.564391
\(82\) 0 0
\(83\) −441.846 −0.584324 −0.292162 0.956369i \(-0.594375\pi\)
−0.292162 + 0.956369i \(0.594375\pi\)
\(84\) 0 0
\(85\) 612.313 0.781349
\(86\) 0 0
\(87\) 198.164 0.244200
\(88\) 0 0
\(89\) −1489.11 −1.77355 −0.886773 0.462205i \(-0.847058\pi\)
−0.886773 + 0.462205i \(0.847058\pi\)
\(90\) 0 0
\(91\) −16.4617 −0.0189633
\(92\) 0 0
\(93\) 249.718 0.278436
\(94\) 0 0
\(95\) 2078.75 2.24501
\(96\) 0 0
\(97\) 1346.42 1.40936 0.704679 0.709526i \(-0.251091\pi\)
0.704679 + 0.709526i \(0.251091\pi\)
\(98\) 0 0
\(99\) 394.420 0.400412
\(100\) 0 0
\(101\) 161.461 0.159069 0.0795347 0.996832i \(-0.474657\pi\)
0.0795347 + 0.996832i \(0.474657\pi\)
\(102\) 0 0
\(103\) −34.7592 −0.0332517 −0.0166259 0.999862i \(-0.505292\pi\)
−0.0166259 + 0.999862i \(0.505292\pi\)
\(104\) 0 0
\(105\) −361.810 −0.336277
\(106\) 0 0
\(107\) −832.179 −0.751867 −0.375934 0.926647i \(-0.622678\pi\)
−0.375934 + 0.926647i \(0.622678\pi\)
\(108\) 0 0
\(109\) −1044.26 −0.917629 −0.458815 0.888532i \(-0.651726\pi\)
−0.458815 + 0.888532i \(0.651726\pi\)
\(110\) 0 0
\(111\) −104.205 −0.0891055
\(112\) 0 0
\(113\) 295.082 0.245654 0.122827 0.992428i \(-0.460804\pi\)
0.122827 + 0.992428i \(0.460804\pi\)
\(114\) 0 0
\(115\) 1654.32 1.34144
\(116\) 0 0
\(117\) −192.154 −0.151834
\(118\) 0 0
\(119\) −126.605 −0.0975285
\(120\) 0 0
\(121\) 121.000 0.0909091
\(122\) 0 0
\(123\) 2069.83 1.51732
\(124\) 0 0
\(125\) 435.102 0.311334
\(126\) 0 0
\(127\) −1317.60 −0.920618 −0.460309 0.887759i \(-0.652261\pi\)
−0.460309 + 0.887759i \(0.652261\pi\)
\(128\) 0 0
\(129\) 457.559 0.312293
\(130\) 0 0
\(131\) 1600.71 1.06759 0.533797 0.845612i \(-0.320765\pi\)
0.533797 + 0.845612i \(0.320765\pi\)
\(132\) 0 0
\(133\) −429.815 −0.280223
\(134\) 0 0
\(135\) −1043.15 −0.665036
\(136\) 0 0
\(137\) 1611.68 1.00507 0.502536 0.864556i \(-0.332400\pi\)
0.502536 + 0.864556i \(0.332400\pi\)
\(138\) 0 0
\(139\) 31.8619 0.0194424 0.00972120 0.999953i \(-0.496906\pi\)
0.00972120 + 0.999953i \(0.496906\pi\)
\(140\) 0 0
\(141\) −2726.08 −1.62821
\(142\) 0 0
\(143\) −58.9488 −0.0344724
\(144\) 0 0
\(145\) −371.334 −0.212673
\(146\) 0 0
\(147\) −2644.56 −1.48381
\(148\) 0 0
\(149\) 2428.34 1.33515 0.667576 0.744542i \(-0.267332\pi\)
0.667576 + 0.744542i \(0.267332\pi\)
\(150\) 0 0
\(151\) −2576.68 −1.38866 −0.694328 0.719659i \(-0.744298\pi\)
−0.694328 + 0.719659i \(0.744298\pi\)
\(152\) 0 0
\(153\) −1477.84 −0.780889
\(154\) 0 0
\(155\) −467.939 −0.242489
\(156\) 0 0
\(157\) −2475.94 −1.25861 −0.629305 0.777158i \(-0.716660\pi\)
−0.629305 + 0.777158i \(0.716660\pi\)
\(158\) 0 0
\(159\) 2719.33 1.35633
\(160\) 0 0
\(161\) −342.056 −0.167440
\(162\) 0 0
\(163\) 2725.11 1.30949 0.654745 0.755850i \(-0.272776\pi\)
0.654745 + 0.755850i \(0.272776\pi\)
\(164\) 0 0
\(165\) −1295.63 −0.611301
\(166\) 0 0
\(167\) 2737.30 1.26837 0.634187 0.773180i \(-0.281335\pi\)
0.634187 + 0.773180i \(0.281335\pi\)
\(168\) 0 0
\(169\) −2168.28 −0.986928
\(170\) 0 0
\(171\) −5017.14 −2.24368
\(172\) 0 0
\(173\) −2307.42 −1.01404 −0.507022 0.861933i \(-0.669254\pi\)
−0.507022 + 0.861933i \(0.669254\pi\)
\(174\) 0 0
\(175\) 294.010 0.127001
\(176\) 0 0
\(177\) −700.610 −0.297520
\(178\) 0 0
\(179\) 1312.15 0.547905 0.273953 0.961743i \(-0.411669\pi\)
0.273953 + 0.961743i \(0.411669\pi\)
\(180\) 0 0
\(181\) 803.174 0.329831 0.164916 0.986308i \(-0.447265\pi\)
0.164916 + 0.986308i \(0.447265\pi\)
\(182\) 0 0
\(183\) −5856.54 −2.36573
\(184\) 0 0
\(185\) 195.267 0.0776015
\(186\) 0 0
\(187\) −453.369 −0.177292
\(188\) 0 0
\(189\) 215.687 0.0830103
\(190\) 0 0
\(191\) 1718.25 0.650932 0.325466 0.945554i \(-0.394479\pi\)
0.325466 + 0.945554i \(0.394479\pi\)
\(192\) 0 0
\(193\) 1340.18 0.499837 0.249919 0.968267i \(-0.419596\pi\)
0.249919 + 0.968267i \(0.419596\pi\)
\(194\) 0 0
\(195\) 631.206 0.231803
\(196\) 0 0
\(197\) 3518.33 1.27244 0.636220 0.771508i \(-0.280497\pi\)
0.636220 + 0.771508i \(0.280497\pi\)
\(198\) 0 0
\(199\) 823.692 0.293417 0.146709 0.989180i \(-0.453132\pi\)
0.146709 + 0.989180i \(0.453132\pi\)
\(200\) 0 0
\(201\) −2714.29 −0.952494
\(202\) 0 0
\(203\) 76.7791 0.0265460
\(204\) 0 0
\(205\) −3878.59 −1.32143
\(206\) 0 0
\(207\) −3992.75 −1.34065
\(208\) 0 0
\(209\) −1539.15 −0.509404
\(210\) 0 0
\(211\) 107.343 0.0350228 0.0175114 0.999847i \(-0.494426\pi\)
0.0175114 + 0.999847i \(0.494426\pi\)
\(212\) 0 0
\(213\) −1644.03 −0.528858
\(214\) 0 0
\(215\) −857.405 −0.271975
\(216\) 0 0
\(217\) 96.7537 0.0302676
\(218\) 0 0
\(219\) −8012.24 −2.47222
\(220\) 0 0
\(221\) 220.873 0.0672285
\(222\) 0 0
\(223\) −3933.68 −1.18125 −0.590625 0.806946i \(-0.701119\pi\)
−0.590625 + 0.806946i \(0.701119\pi\)
\(224\) 0 0
\(225\) 3431.92 1.01686
\(226\) 0 0
\(227\) 1771.90 0.518085 0.259042 0.965866i \(-0.416593\pi\)
0.259042 + 0.965866i \(0.416593\pi\)
\(228\) 0 0
\(229\) −1915.37 −0.552713 −0.276356 0.961055i \(-0.589127\pi\)
−0.276356 + 0.961055i \(0.589127\pi\)
\(230\) 0 0
\(231\) 267.892 0.0763031
\(232\) 0 0
\(233\) 4396.32 1.23610 0.618052 0.786137i \(-0.287922\pi\)
0.618052 + 0.786137i \(0.287922\pi\)
\(234\) 0 0
\(235\) 5108.32 1.41800
\(236\) 0 0
\(237\) 10260.9 2.81230
\(238\) 0 0
\(239\) −4084.49 −1.10546 −0.552728 0.833362i \(-0.686413\pi\)
−0.552728 + 0.833362i \(0.686413\pi\)
\(240\) 0 0
\(241\) 3908.58 1.04471 0.522353 0.852730i \(-0.325054\pi\)
0.522353 + 0.852730i \(0.325054\pi\)
\(242\) 0 0
\(243\) −5157.80 −1.36162
\(244\) 0 0
\(245\) 4955.56 1.29224
\(246\) 0 0
\(247\) 749.845 0.193164
\(248\) 0 0
\(249\) −3503.05 −0.891552
\(250\) 0 0
\(251\) −1094.89 −0.275335 −0.137667 0.990479i \(-0.543960\pi\)
−0.137667 + 0.990479i \(0.543960\pi\)
\(252\) 0 0
\(253\) −1224.89 −0.304381
\(254\) 0 0
\(255\) 4854.54 1.19217
\(256\) 0 0
\(257\) 783.179 0.190091 0.0950454 0.995473i \(-0.469700\pi\)
0.0950454 + 0.995473i \(0.469700\pi\)
\(258\) 0 0
\(259\) −40.3744 −0.00968628
\(260\) 0 0
\(261\) 896.225 0.212548
\(262\) 0 0
\(263\) 6180.06 1.44897 0.724484 0.689292i \(-0.242078\pi\)
0.724484 + 0.689292i \(0.242078\pi\)
\(264\) 0 0
\(265\) −5095.67 −1.18122
\(266\) 0 0
\(267\) −11806.0 −2.70605
\(268\) 0 0
\(269\) −986.965 −0.223704 −0.111852 0.993725i \(-0.535678\pi\)
−0.111852 + 0.993725i \(0.535678\pi\)
\(270\) 0 0
\(271\) 4576.99 1.02595 0.512975 0.858404i \(-0.328543\pi\)
0.512975 + 0.858404i \(0.328543\pi\)
\(272\) 0 0
\(273\) −130.512 −0.0289338
\(274\) 0 0
\(275\) 1052.84 0.230868
\(276\) 0 0
\(277\) −567.836 −0.123169 −0.0615847 0.998102i \(-0.519615\pi\)
−0.0615847 + 0.998102i \(0.519615\pi\)
\(278\) 0 0
\(279\) 1129.38 0.242346
\(280\) 0 0
\(281\) 5311.01 1.12750 0.563752 0.825944i \(-0.309357\pi\)
0.563752 + 0.825944i \(0.309357\pi\)
\(282\) 0 0
\(283\) 4728.44 0.993204 0.496602 0.867978i \(-0.334581\pi\)
0.496602 + 0.867978i \(0.334581\pi\)
\(284\) 0 0
\(285\) 16480.8 3.42539
\(286\) 0 0
\(287\) 801.960 0.164941
\(288\) 0 0
\(289\) −3214.29 −0.654242
\(290\) 0 0
\(291\) 10674.7 2.15038
\(292\) 0 0
\(293\) −2328.92 −0.464358 −0.232179 0.972673i \(-0.574585\pi\)
−0.232179 + 0.972673i \(0.574585\pi\)
\(294\) 0 0
\(295\) 1312.85 0.259109
\(296\) 0 0
\(297\) 772.369 0.150900
\(298\) 0 0
\(299\) 596.743 0.115420
\(300\) 0 0
\(301\) 177.282 0.0339481
\(302\) 0 0
\(303\) 1280.10 0.242705
\(304\) 0 0
\(305\) 10974.4 2.06030
\(306\) 0 0
\(307\) 1678.07 0.311962 0.155981 0.987760i \(-0.450146\pi\)
0.155981 + 0.987760i \(0.450146\pi\)
\(308\) 0 0
\(309\) −275.578 −0.0507349
\(310\) 0 0
\(311\) 3572.71 0.651413 0.325707 0.945471i \(-0.394398\pi\)
0.325707 + 0.945471i \(0.394398\pi\)
\(312\) 0 0
\(313\) 7184.36 1.29739 0.648697 0.761047i \(-0.275314\pi\)
0.648697 + 0.761047i \(0.275314\pi\)
\(314\) 0 0
\(315\) −1636.34 −0.292690
\(316\) 0 0
\(317\) 15.7077 0.00278306 0.00139153 0.999999i \(-0.499557\pi\)
0.00139153 + 0.999999i \(0.499557\pi\)
\(318\) 0 0
\(319\) 274.943 0.0482566
\(320\) 0 0
\(321\) −6597.69 −1.14719
\(322\) 0 0
\(323\) 5766.98 0.993447
\(324\) 0 0
\(325\) −512.923 −0.0875442
\(326\) 0 0
\(327\) −8279.08 −1.40010
\(328\) 0 0
\(329\) −1056.23 −0.176996
\(330\) 0 0
\(331\) 1318.95 0.219022 0.109511 0.993986i \(-0.465072\pi\)
0.109511 + 0.993986i \(0.465072\pi\)
\(332\) 0 0
\(333\) −471.282 −0.0775558
\(334\) 0 0
\(335\) 5086.22 0.829523
\(336\) 0 0
\(337\) −239.183 −0.0386621 −0.0193310 0.999813i \(-0.506154\pi\)
−0.0193310 + 0.999813i \(0.506154\pi\)
\(338\) 0 0
\(339\) 2339.47 0.374816
\(340\) 0 0
\(341\) 346.472 0.0550220
\(342\) 0 0
\(343\) −2078.27 −0.327160
\(344\) 0 0
\(345\) 13115.8 2.04675
\(346\) 0 0
\(347\) 5862.79 0.907006 0.453503 0.891255i \(-0.350174\pi\)
0.453503 + 0.891255i \(0.350174\pi\)
\(348\) 0 0
\(349\) −3491.73 −0.535553 −0.267776 0.963481i \(-0.586289\pi\)
−0.267776 + 0.963481i \(0.586289\pi\)
\(350\) 0 0
\(351\) −376.283 −0.0572208
\(352\) 0 0
\(353\) −10916.7 −1.64600 −0.822999 0.568043i \(-0.807701\pi\)
−0.822999 + 0.568043i \(0.807701\pi\)
\(354\) 0 0
\(355\) 3080.69 0.460580
\(356\) 0 0
\(357\) −1003.75 −0.148807
\(358\) 0 0
\(359\) −11500.7 −1.69077 −0.845384 0.534160i \(-0.820628\pi\)
−0.845384 + 0.534160i \(0.820628\pi\)
\(360\) 0 0
\(361\) 12719.5 1.85442
\(362\) 0 0
\(363\) 959.313 0.138708
\(364\) 0 0
\(365\) 15013.9 2.15305
\(366\) 0 0
\(367\) 6767.01 0.962493 0.481246 0.876585i \(-0.340184\pi\)
0.481246 + 0.876585i \(0.340184\pi\)
\(368\) 0 0
\(369\) 9361.10 1.32065
\(370\) 0 0
\(371\) 1053.61 0.147441
\(372\) 0 0
\(373\) 5310.22 0.737139 0.368569 0.929600i \(-0.379848\pi\)
0.368569 + 0.929600i \(0.379848\pi\)
\(374\) 0 0
\(375\) 3449.58 0.475028
\(376\) 0 0
\(377\) −133.947 −0.0182987
\(378\) 0 0
\(379\) 838.267 0.113612 0.0568059 0.998385i \(-0.481908\pi\)
0.0568059 + 0.998385i \(0.481908\pi\)
\(380\) 0 0
\(381\) −10446.2 −1.40466
\(382\) 0 0
\(383\) −2832.16 −0.377851 −0.188925 0.981991i \(-0.560500\pi\)
−0.188925 + 0.981991i \(0.560500\pi\)
\(384\) 0 0
\(385\) −501.994 −0.0664520
\(386\) 0 0
\(387\) 2069.37 0.271814
\(388\) 0 0
\(389\) −3111.25 −0.405519 −0.202759 0.979229i \(-0.564991\pi\)
−0.202759 + 0.979229i \(0.564991\pi\)
\(390\) 0 0
\(391\) 4589.49 0.593608
\(392\) 0 0
\(393\) 12690.8 1.62892
\(394\) 0 0
\(395\) −19227.5 −2.44922
\(396\) 0 0
\(397\) −14208.7 −1.79626 −0.898131 0.439728i \(-0.855075\pi\)
−0.898131 + 0.439728i \(0.855075\pi\)
\(398\) 0 0
\(399\) −3407.66 −0.427560
\(400\) 0 0
\(401\) −6261.68 −0.779784 −0.389892 0.920861i \(-0.627488\pi\)
−0.389892 + 0.920861i \(0.627488\pi\)
\(402\) 0 0
\(403\) −168.794 −0.0208641
\(404\) 0 0
\(405\) 6112.54 0.749961
\(406\) 0 0
\(407\) −144.580 −0.0176082
\(408\) 0 0
\(409\) −4192.50 −0.506860 −0.253430 0.967354i \(-0.581559\pi\)
−0.253430 + 0.967354i \(0.581559\pi\)
\(410\) 0 0
\(411\) 12777.7 1.53352
\(412\) 0 0
\(413\) −271.453 −0.0323421
\(414\) 0 0
\(415\) 6564.25 0.776448
\(416\) 0 0
\(417\) 252.608 0.0296649
\(418\) 0 0
\(419\) 9287.15 1.08283 0.541416 0.840755i \(-0.317888\pi\)
0.541416 + 0.840755i \(0.317888\pi\)
\(420\) 0 0
\(421\) −13146.0 −1.52185 −0.760923 0.648842i \(-0.775254\pi\)
−0.760923 + 0.648842i \(0.775254\pi\)
\(422\) 0 0
\(423\) −12329.1 −1.41716
\(424\) 0 0
\(425\) −3944.84 −0.450242
\(426\) 0 0
\(427\) −2269.13 −0.257168
\(428\) 0 0
\(429\) −467.358 −0.0525974
\(430\) 0 0
\(431\) 4909.67 0.548701 0.274351 0.961630i \(-0.411537\pi\)
0.274351 + 0.961630i \(0.411537\pi\)
\(432\) 0 0
\(433\) −11743.3 −1.30334 −0.651671 0.758502i \(-0.725932\pi\)
−0.651671 + 0.758502i \(0.725932\pi\)
\(434\) 0 0
\(435\) −2944.01 −0.324493
\(436\) 0 0
\(437\) 15581.0 1.70558
\(438\) 0 0
\(439\) −11824.2 −1.28551 −0.642754 0.766073i \(-0.722208\pi\)
−0.642754 + 0.766073i \(0.722208\pi\)
\(440\) 0 0
\(441\) −11960.4 −1.29148
\(442\) 0 0
\(443\) −10102.1 −1.08344 −0.541722 0.840558i \(-0.682228\pi\)
−0.541722 + 0.840558i \(0.682228\pi\)
\(444\) 0 0
\(445\) 22122.9 2.35668
\(446\) 0 0
\(447\) 19252.4 2.03715
\(448\) 0 0
\(449\) −345.254 −0.0362885 −0.0181443 0.999835i \(-0.505776\pi\)
−0.0181443 + 0.999835i \(0.505776\pi\)
\(450\) 0 0
\(451\) 2871.79 0.299839
\(452\) 0 0
\(453\) −20428.4 −2.11879
\(454\) 0 0
\(455\) 244.562 0.0251983
\(456\) 0 0
\(457\) −10567.1 −1.08164 −0.540821 0.841138i \(-0.681886\pi\)
−0.540821 + 0.841138i \(0.681886\pi\)
\(458\) 0 0
\(459\) −2893.95 −0.294288
\(460\) 0 0
\(461\) −4733.96 −0.478270 −0.239135 0.970986i \(-0.576864\pi\)
−0.239135 + 0.970986i \(0.576864\pi\)
\(462\) 0 0
\(463\) 3431.20 0.344409 0.172204 0.985061i \(-0.444911\pi\)
0.172204 + 0.985061i \(0.444911\pi\)
\(464\) 0 0
\(465\) −3709.91 −0.369985
\(466\) 0 0
\(467\) −5116.96 −0.507034 −0.253517 0.967331i \(-0.581587\pi\)
−0.253517 + 0.967331i \(0.581587\pi\)
\(468\) 0 0
\(469\) −1051.66 −0.103542
\(470\) 0 0
\(471\) −19629.8 −1.92037
\(472\) 0 0
\(473\) 634.841 0.0617125
\(474\) 0 0
\(475\) −13392.4 −1.29366
\(476\) 0 0
\(477\) 12298.6 1.18053
\(478\) 0 0
\(479\) 11566.9 1.10335 0.551675 0.834059i \(-0.313989\pi\)
0.551675 + 0.834059i \(0.313989\pi\)
\(480\) 0 0
\(481\) 70.4363 0.00667696
\(482\) 0 0
\(483\) −2711.89 −0.255477
\(484\) 0 0
\(485\) −20002.9 −1.87275
\(486\) 0 0
\(487\) −18326.5 −1.70525 −0.852623 0.522527i \(-0.824990\pi\)
−0.852623 + 0.522527i \(0.824990\pi\)
\(488\) 0 0
\(489\) 21605.2 1.99800
\(490\) 0 0
\(491\) 7617.58 0.700156 0.350078 0.936721i \(-0.386155\pi\)
0.350078 + 0.936721i \(0.386155\pi\)
\(492\) 0 0
\(493\) −1030.17 −0.0941108
\(494\) 0 0
\(495\) −5859.67 −0.532066
\(496\) 0 0
\(497\) −636.980 −0.0574899
\(498\) 0 0
\(499\) −12909.1 −1.15810 −0.579050 0.815292i \(-0.696576\pi\)
−0.579050 + 0.815292i \(0.696576\pi\)
\(500\) 0 0
\(501\) 21701.8 1.93526
\(502\) 0 0
\(503\) 10165.7 0.901121 0.450561 0.892746i \(-0.351224\pi\)
0.450561 + 0.892746i \(0.351224\pi\)
\(504\) 0 0
\(505\) −2398.74 −0.211371
\(506\) 0 0
\(507\) −17190.6 −1.50584
\(508\) 0 0
\(509\) −6449.93 −0.561666 −0.280833 0.959757i \(-0.590611\pi\)
−0.280833 + 0.959757i \(0.590611\pi\)
\(510\) 0 0
\(511\) −3104.36 −0.268745
\(512\) 0 0
\(513\) −9824.75 −0.845562
\(514\) 0 0
\(515\) 516.397 0.0441848
\(516\) 0 0
\(517\) −3782.31 −0.321752
\(518\) 0 0
\(519\) −18293.7 −1.54721
\(520\) 0 0
\(521\) −19327.4 −1.62524 −0.812620 0.582794i \(-0.801959\pi\)
−0.812620 + 0.582794i \(0.801959\pi\)
\(522\) 0 0
\(523\) −6259.09 −0.523310 −0.261655 0.965161i \(-0.584268\pi\)
−0.261655 + 0.965161i \(0.584268\pi\)
\(524\) 0 0
\(525\) 2330.97 0.193775
\(526\) 0 0
\(527\) −1298.18 −0.107305
\(528\) 0 0
\(529\) 232.675 0.0191235
\(530\) 0 0
\(531\) −3168.61 −0.258956
\(532\) 0 0
\(533\) −1399.08 −0.113698
\(534\) 0 0
\(535\) 12363.2 0.999079
\(536\) 0 0
\(537\) 10403.0 0.835985
\(538\) 0 0
\(539\) −3669.20 −0.293217
\(540\) 0 0
\(541\) 14008.2 1.11323 0.556616 0.830770i \(-0.312100\pi\)
0.556616 + 0.830770i \(0.312100\pi\)
\(542\) 0 0
\(543\) 6367.72 0.503251
\(544\) 0 0
\(545\) 15513.9 1.21934
\(546\) 0 0
\(547\) 4949.45 0.386879 0.193440 0.981112i \(-0.438036\pi\)
0.193440 + 0.981112i \(0.438036\pi\)
\(548\) 0 0
\(549\) −26487.0 −2.05909
\(550\) 0 0
\(551\) −3497.35 −0.270404
\(552\) 0 0
\(553\) 3975.60 0.305714
\(554\) 0 0
\(555\) 1548.11 0.118403
\(556\) 0 0
\(557\) 3801.58 0.289188 0.144594 0.989491i \(-0.453812\pi\)
0.144594 + 0.989491i \(0.453812\pi\)
\(558\) 0 0
\(559\) −309.282 −0.0234011
\(560\) 0 0
\(561\) −3594.40 −0.270510
\(562\) 0 0
\(563\) 9900.11 0.741101 0.370551 0.928812i \(-0.379169\pi\)
0.370551 + 0.928812i \(0.379169\pi\)
\(564\) 0 0
\(565\) −4383.85 −0.326425
\(566\) 0 0
\(567\) −1263.86 −0.0936107
\(568\) 0 0
\(569\) 5329.16 0.392636 0.196318 0.980540i \(-0.437102\pi\)
0.196318 + 0.980540i \(0.437102\pi\)
\(570\) 0 0
\(571\) 16962.6 1.24319 0.621597 0.783337i \(-0.286484\pi\)
0.621597 + 0.783337i \(0.286484\pi\)
\(572\) 0 0
\(573\) 13622.6 0.993181
\(574\) 0 0
\(575\) −10658.0 −0.772989
\(576\) 0 0
\(577\) −15487.0 −1.11738 −0.558692 0.829375i \(-0.688697\pi\)
−0.558692 + 0.829375i \(0.688697\pi\)
\(578\) 0 0
\(579\) 10625.3 0.762643
\(580\) 0 0
\(581\) −1357.26 −0.0969169
\(582\) 0 0
\(583\) 3772.94 0.268026
\(584\) 0 0
\(585\) 2854.72 0.201757
\(586\) 0 0
\(587\) −11084.2 −0.779373 −0.389686 0.920948i \(-0.627417\pi\)
−0.389686 + 0.920948i \(0.627417\pi\)
\(588\) 0 0
\(589\) −4407.22 −0.308313
\(590\) 0 0
\(591\) 27894.0 1.94147
\(592\) 0 0
\(593\) 4349.68 0.301214 0.150607 0.988594i \(-0.451877\pi\)
0.150607 + 0.988594i \(0.451877\pi\)
\(594\) 0 0
\(595\) 1880.90 0.129596
\(596\) 0 0
\(597\) 6530.40 0.447691
\(598\) 0 0
\(599\) 13183.9 0.899299 0.449650 0.893205i \(-0.351549\pi\)
0.449650 + 0.893205i \(0.351549\pi\)
\(600\) 0 0
\(601\) −18765.0 −1.27361 −0.636806 0.771024i \(-0.719745\pi\)
−0.636806 + 0.771024i \(0.719745\pi\)
\(602\) 0 0
\(603\) −12275.8 −0.829034
\(604\) 0 0
\(605\) −1797.63 −0.120800
\(606\) 0 0
\(607\) 21871.4 1.46249 0.731244 0.682116i \(-0.238940\pi\)
0.731244 + 0.682116i \(0.238940\pi\)
\(608\) 0 0
\(609\) 608.720 0.0405034
\(610\) 0 0
\(611\) 1842.67 0.122007
\(612\) 0 0
\(613\) 3527.85 0.232445 0.116222 0.993223i \(-0.462921\pi\)
0.116222 + 0.993223i \(0.462921\pi\)
\(614\) 0 0
\(615\) −30750.2 −2.01621
\(616\) 0 0
\(617\) −22728.1 −1.48298 −0.741490 0.670963i \(-0.765881\pi\)
−0.741490 + 0.670963i \(0.765881\pi\)
\(618\) 0 0
\(619\) 21443.3 1.39237 0.696187 0.717861i \(-0.254879\pi\)
0.696187 + 0.717861i \(0.254879\pi\)
\(620\) 0 0
\(621\) −7818.75 −0.505243
\(622\) 0 0
\(623\) −4574.25 −0.294163
\(624\) 0 0
\(625\) −18428.2 −1.17940
\(626\) 0 0
\(627\) −12202.7 −0.777240
\(628\) 0 0
\(629\) 541.718 0.0343398
\(630\) 0 0
\(631\) 21532.0 1.35844 0.679219 0.733936i \(-0.262319\pi\)
0.679219 + 0.733936i \(0.262319\pi\)
\(632\) 0 0
\(633\) 851.038 0.0534372
\(634\) 0 0
\(635\) 19574.9 1.22332
\(636\) 0 0
\(637\) 1787.56 0.111187
\(638\) 0 0
\(639\) −7435.33 −0.460309
\(640\) 0 0
\(641\) 20148.3 1.24151 0.620756 0.784004i \(-0.286826\pi\)
0.620756 + 0.784004i \(0.286826\pi\)
\(642\) 0 0
\(643\) −28869.7 −1.77062 −0.885310 0.465000i \(-0.846054\pi\)
−0.885310 + 0.465000i \(0.846054\pi\)
\(644\) 0 0
\(645\) −6797.68 −0.414974
\(646\) 0 0
\(647\) −1590.02 −0.0966155 −0.0483077 0.998833i \(-0.515383\pi\)
−0.0483077 + 0.998833i \(0.515383\pi\)
\(648\) 0 0
\(649\) −972.062 −0.0587932
\(650\) 0 0
\(651\) 767.083 0.0461818
\(652\) 0 0
\(653\) −20028.1 −1.20024 −0.600122 0.799909i \(-0.704881\pi\)
−0.600122 + 0.799909i \(0.704881\pi\)
\(654\) 0 0
\(655\) −23780.8 −1.41862
\(656\) 0 0
\(657\) −36236.5 −2.15178
\(658\) 0 0
\(659\) 10520.7 0.621897 0.310948 0.950427i \(-0.399353\pi\)
0.310948 + 0.950427i \(0.399353\pi\)
\(660\) 0 0
\(661\) −3295.83 −0.193938 −0.0969690 0.995287i \(-0.530915\pi\)
−0.0969690 + 0.995287i \(0.530915\pi\)
\(662\) 0 0
\(663\) 1751.12 0.102576
\(664\) 0 0
\(665\) 6385.51 0.372360
\(666\) 0 0
\(667\) −2783.27 −0.161572
\(668\) 0 0
\(669\) −31187.0 −1.80233
\(670\) 0 0
\(671\) −8125.67 −0.467493
\(672\) 0 0
\(673\) −1187.64 −0.0680239 −0.0340119 0.999421i \(-0.510828\pi\)
−0.0340119 + 0.999421i \(0.510828\pi\)
\(674\) 0 0
\(675\) 6720.51 0.383219
\(676\) 0 0
\(677\) −13221.4 −0.750574 −0.375287 0.926909i \(-0.622456\pi\)
−0.375287 + 0.926909i \(0.622456\pi\)
\(678\) 0 0
\(679\) 4135.91 0.233758
\(680\) 0 0
\(681\) 14048.0 0.790485
\(682\) 0 0
\(683\) 13831.4 0.774882 0.387441 0.921894i \(-0.373359\pi\)
0.387441 + 0.921894i \(0.373359\pi\)
\(684\) 0 0
\(685\) −23943.7 −1.33554
\(686\) 0 0
\(687\) −15185.4 −0.843320
\(688\) 0 0
\(689\) −1838.10 −0.101635
\(690\) 0 0
\(691\) 9817.07 0.540462 0.270231 0.962796i \(-0.412900\pi\)
0.270231 + 0.962796i \(0.412900\pi\)
\(692\) 0 0
\(693\) 1211.58 0.0664128
\(694\) 0 0
\(695\) −473.354 −0.0258350
\(696\) 0 0
\(697\) −10760.2 −0.584750
\(698\) 0 0
\(699\) 34854.9 1.88603
\(700\) 0 0
\(701\) −29949.8 −1.61368 −0.806838 0.590773i \(-0.798823\pi\)
−0.806838 + 0.590773i \(0.798823\pi\)
\(702\) 0 0
\(703\) 1839.09 0.0986667
\(704\) 0 0
\(705\) 40499.8 2.16356
\(706\) 0 0
\(707\) 495.976 0.0263835
\(708\) 0 0
\(709\) −11307.5 −0.598959 −0.299479 0.954103i \(-0.596813\pi\)
−0.299479 + 0.954103i \(0.596813\pi\)
\(710\) 0 0
\(711\) 46406.3 2.44778
\(712\) 0 0
\(713\) −3507.36 −0.184224
\(714\) 0 0
\(715\) 875.768 0.0458068
\(716\) 0 0
\(717\) −32382.7 −1.68669
\(718\) 0 0
\(719\) −32623.4 −1.69214 −0.846070 0.533071i \(-0.821038\pi\)
−0.846070 + 0.533071i \(0.821038\pi\)
\(720\) 0 0
\(721\) −106.773 −0.00551518
\(722\) 0 0
\(723\) 30988.0 1.59399
\(724\) 0 0
\(725\) 2392.33 0.122550
\(726\) 0 0
\(727\) −502.545 −0.0256373 −0.0128187 0.999918i \(-0.504080\pi\)
−0.0128187 + 0.999918i \(0.504080\pi\)
\(728\) 0 0
\(729\) −29783.2 −1.51314
\(730\) 0 0
\(731\) −2378.66 −0.120353
\(732\) 0 0
\(733\) −8631.37 −0.434935 −0.217467 0.976068i \(-0.569780\pi\)
−0.217467 + 0.976068i \(0.569780\pi\)
\(734\) 0 0
\(735\) 39288.7 1.97168
\(736\) 0 0
\(737\) −3765.95 −0.188223
\(738\) 0 0
\(739\) 18357.5 0.913792 0.456896 0.889520i \(-0.348961\pi\)
0.456896 + 0.889520i \(0.348961\pi\)
\(740\) 0 0
\(741\) 5944.93 0.294726
\(742\) 0 0
\(743\) 11182.6 0.552155 0.276078 0.961135i \(-0.410965\pi\)
0.276078 + 0.961135i \(0.410965\pi\)
\(744\) 0 0
\(745\) −36076.4 −1.77415
\(746\) 0 0
\(747\) −15843.0 −0.775991
\(748\) 0 0
\(749\) −2556.29 −0.124706
\(750\) 0 0
\(751\) 16733.4 0.813063 0.406531 0.913637i \(-0.366738\pi\)
0.406531 + 0.913637i \(0.366738\pi\)
\(752\) 0 0
\(753\) −8680.53 −0.420101
\(754\) 0 0
\(755\) 38280.2 1.84524
\(756\) 0 0
\(757\) 24402.4 1.17163 0.585813 0.810446i \(-0.300775\pi\)
0.585813 + 0.810446i \(0.300775\pi\)
\(758\) 0 0
\(759\) −9711.19 −0.464419
\(760\) 0 0
\(761\) 8469.33 0.403434 0.201717 0.979444i \(-0.435348\pi\)
0.201717 + 0.979444i \(0.435348\pi\)
\(762\) 0 0
\(763\) −3207.74 −0.152199
\(764\) 0 0
\(765\) 21955.3 1.03764
\(766\) 0 0
\(767\) 473.570 0.0222941
\(768\) 0 0
\(769\) 32834.7 1.53973 0.769864 0.638208i \(-0.220324\pi\)
0.769864 + 0.638208i \(0.220324\pi\)
\(770\) 0 0
\(771\) 6209.20 0.290038
\(772\) 0 0
\(773\) 35571.4 1.65513 0.827564 0.561371i \(-0.189726\pi\)
0.827564 + 0.561371i \(0.189726\pi\)
\(774\) 0 0
\(775\) 3014.71 0.139731
\(776\) 0 0
\(777\) −320.097 −0.0147792
\(778\) 0 0
\(779\) −36530.0 −1.68013
\(780\) 0 0
\(781\) −2281.01 −0.104508
\(782\) 0 0
\(783\) 1755.02 0.0801014
\(784\) 0 0
\(785\) 36783.6 1.67244
\(786\) 0 0
\(787\) −15729.6 −0.712452 −0.356226 0.934400i \(-0.615937\pi\)
−0.356226 + 0.934400i \(0.615937\pi\)
\(788\) 0 0
\(789\) 48996.7 2.21081
\(790\) 0 0
\(791\) 906.431 0.0407446
\(792\) 0 0
\(793\) 3958.67 0.177272
\(794\) 0 0
\(795\) −40399.5 −1.80229
\(796\) 0 0
\(797\) −7888.07 −0.350577 −0.175288 0.984517i \(-0.556086\pi\)
−0.175288 + 0.984517i \(0.556086\pi\)
\(798\) 0 0
\(799\) 14171.8 0.627485
\(800\) 0 0
\(801\) −53394.2 −2.35530
\(802\) 0 0
\(803\) −11116.6 −0.488538
\(804\) 0 0
\(805\) 5081.73 0.222494
\(806\) 0 0
\(807\) −7824.86 −0.341323
\(808\) 0 0
\(809\) 5896.97 0.256275 0.128138 0.991756i \(-0.459100\pi\)
0.128138 + 0.991756i \(0.459100\pi\)
\(810\) 0 0
\(811\) −14197.9 −0.614744 −0.307372 0.951589i \(-0.599450\pi\)
−0.307372 + 0.951589i \(0.599450\pi\)
\(812\) 0 0
\(813\) 36287.3 1.56538
\(814\) 0 0
\(815\) −40485.3 −1.74005
\(816\) 0 0
\(817\) −8075.35 −0.345803
\(818\) 0 0
\(819\) −590.258 −0.0251835
\(820\) 0 0
\(821\) 19841.7 0.843459 0.421729 0.906722i \(-0.361423\pi\)
0.421729 + 0.906722i \(0.361423\pi\)
\(822\) 0 0
\(823\) −28202.2 −1.19449 −0.597246 0.802058i \(-0.703738\pi\)
−0.597246 + 0.802058i \(0.703738\pi\)
\(824\) 0 0
\(825\) 8347.14 0.352255
\(826\) 0 0
\(827\) −34031.0 −1.43092 −0.715462 0.698651i \(-0.753784\pi\)
−0.715462 + 0.698651i \(0.753784\pi\)
\(828\) 0 0
\(829\) −4931.55 −0.206610 −0.103305 0.994650i \(-0.532942\pi\)
−0.103305 + 0.994650i \(0.532942\pi\)
\(830\) 0 0
\(831\) −4501.92 −0.187930
\(832\) 0 0
\(833\) 13748.0 0.571836
\(834\) 0 0
\(835\) −40666.4 −1.68541
\(836\) 0 0
\(837\) 2211.60 0.0913312
\(838\) 0 0
\(839\) −38189.8 −1.57146 −0.785731 0.618568i \(-0.787713\pi\)
−0.785731 + 0.618568i \(0.787713\pi\)
\(840\) 0 0
\(841\) −23764.3 −0.974384
\(842\) 0 0
\(843\) 42106.8 1.72033
\(844\) 0 0
\(845\) 32212.9 1.31143
\(846\) 0 0
\(847\) 371.687 0.0150783
\(848\) 0 0
\(849\) 37488.0 1.51541
\(850\) 0 0
\(851\) 1463.59 0.0589556
\(852\) 0 0
\(853\) −42966.8 −1.72469 −0.862343 0.506325i \(-0.831003\pi\)
−0.862343 + 0.506325i \(0.831003\pi\)
\(854\) 0 0
\(855\) 74536.6 2.98140
\(856\) 0 0
\(857\) −17281.5 −0.688828 −0.344414 0.938818i \(-0.611922\pi\)
−0.344414 + 0.938818i \(0.611922\pi\)
\(858\) 0 0
\(859\) −9316.75 −0.370062 −0.185031 0.982733i \(-0.559239\pi\)
−0.185031 + 0.982733i \(0.559239\pi\)
\(860\) 0 0
\(861\) 6358.10 0.251665
\(862\) 0 0
\(863\) −9647.65 −0.380544 −0.190272 0.981731i \(-0.560937\pi\)
−0.190272 + 0.981731i \(0.560937\pi\)
\(864\) 0 0
\(865\) 34279.9 1.34746
\(866\) 0 0
\(867\) −25483.6 −0.998232
\(868\) 0 0
\(869\) 14236.5 0.555742
\(870\) 0 0
\(871\) 1834.70 0.0713735
\(872\) 0 0
\(873\) 48277.6 1.87165
\(874\) 0 0
\(875\) 1336.55 0.0516383
\(876\) 0 0
\(877\) −19728.7 −0.759624 −0.379812 0.925064i \(-0.624011\pi\)
−0.379812 + 0.925064i \(0.624011\pi\)
\(878\) 0 0
\(879\) −18464.1 −0.708509
\(880\) 0 0
\(881\) 19473.9 0.744712 0.372356 0.928090i \(-0.378550\pi\)
0.372356 + 0.928090i \(0.378550\pi\)
\(882\) 0 0
\(883\) −49092.4 −1.87100 −0.935499 0.353329i \(-0.885050\pi\)
−0.935499 + 0.353329i \(0.885050\pi\)
\(884\) 0 0
\(885\) 10408.5 0.395344
\(886\) 0 0
\(887\) 9292.86 0.351774 0.175887 0.984410i \(-0.443721\pi\)
0.175887 + 0.984410i \(0.443721\pi\)
\(888\) 0 0
\(889\) −4047.41 −0.152695
\(890\) 0 0
\(891\) −4525.85 −0.170170
\(892\) 0 0
\(893\) 48112.0 1.80292
\(894\) 0 0
\(895\) −19493.9 −0.728055
\(896\) 0 0
\(897\) 4731.10 0.176106
\(898\) 0 0
\(899\) 787.273 0.0292069
\(900\) 0 0
\(901\) −14136.7 −0.522709
\(902\) 0 0
\(903\) 1405.53 0.0517974
\(904\) 0 0
\(905\) −11932.3 −0.438279
\(906\) 0 0
\(907\) −37688.7 −1.37975 −0.689875 0.723928i \(-0.742335\pi\)
−0.689875 + 0.723928i \(0.742335\pi\)
\(908\) 0 0
\(909\) 5789.42 0.211246
\(910\) 0 0
\(911\) 33049.6 1.20196 0.600979 0.799265i \(-0.294778\pi\)
0.600979 + 0.799265i \(0.294778\pi\)
\(912\) 0 0
\(913\) −4860.31 −0.176180
\(914\) 0 0
\(915\) 87007.2 3.14357
\(916\) 0 0
\(917\) 4917.06 0.177073
\(918\) 0 0
\(919\) −23148.0 −0.830883 −0.415442 0.909620i \(-0.636373\pi\)
−0.415442 + 0.909620i \(0.636373\pi\)
\(920\) 0 0
\(921\) 13304.1 0.475986
\(922\) 0 0
\(923\) 1111.26 0.0396290
\(924\) 0 0
\(925\) −1258.01 −0.0447169
\(926\) 0 0
\(927\) −1246.34 −0.0441588
\(928\) 0 0
\(929\) −23177.9 −0.818561 −0.409280 0.912409i \(-0.634220\pi\)
−0.409280 + 0.912409i \(0.634220\pi\)
\(930\) 0 0
\(931\) 46673.3 1.64302
\(932\) 0 0
\(933\) 28325.1 0.993916
\(934\) 0 0
\(935\) 6735.44 0.235585
\(936\) 0 0
\(937\) −34574.7 −1.20545 −0.602724 0.797950i \(-0.705918\pi\)
−0.602724 + 0.797950i \(0.705918\pi\)
\(938\) 0 0
\(939\) 56959.1 1.97954
\(940\) 0 0
\(941\) −41831.2 −1.44916 −0.724578 0.689192i \(-0.757966\pi\)
−0.724578 + 0.689192i \(0.757966\pi\)
\(942\) 0 0
\(943\) −29071.3 −1.00392
\(944\) 0 0
\(945\) −3204.34 −0.110304
\(946\) 0 0
\(947\) −27231.2 −0.934419 −0.467209 0.884147i \(-0.654741\pi\)
−0.467209 + 0.884147i \(0.654741\pi\)
\(948\) 0 0
\(949\) 5415.79 0.185252
\(950\) 0 0
\(951\) 124.534 0.00424635
\(952\) 0 0
\(953\) 40939.4 1.39156 0.695781 0.718254i \(-0.255058\pi\)
0.695781 + 0.718254i \(0.255058\pi\)
\(954\) 0 0
\(955\) −25527.0 −0.864956
\(956\) 0 0
\(957\) 2179.81 0.0736292
\(958\) 0 0
\(959\) 4950.74 0.166703
\(960\) 0 0
\(961\) −28798.9 −0.966698
\(962\) 0 0
\(963\) −29839.0 −0.998491
\(964\) 0 0
\(965\) −19910.3 −0.664182
\(966\) 0 0
\(967\) −46173.1 −1.53550 −0.767750 0.640750i \(-0.778624\pi\)
−0.767750 + 0.640750i \(0.778624\pi\)
\(968\) 0 0
\(969\) 45721.8 1.51579
\(970\) 0 0
\(971\) 5153.91 0.170337 0.0851683 0.996367i \(-0.472857\pi\)
0.0851683 + 0.996367i \(0.472857\pi\)
\(972\) 0 0
\(973\) 97.8734 0.00322474
\(974\) 0 0
\(975\) −4066.56 −0.133574
\(976\) 0 0
\(977\) 9692.13 0.317378 0.158689 0.987329i \(-0.449273\pi\)
0.158689 + 0.987329i \(0.449273\pi\)
\(978\) 0 0
\(979\) −16380.2 −0.534744
\(980\) 0 0
\(981\) −37443.3 −1.21863
\(982\) 0 0
\(983\) 32915.7 1.06800 0.534002 0.845483i \(-0.320687\pi\)
0.534002 + 0.845483i \(0.320687\pi\)
\(984\) 0 0
\(985\) −52269.7 −1.69081
\(986\) 0 0
\(987\) −8373.97 −0.270057
\(988\) 0 0
\(989\) −6426.54 −0.206625
\(990\) 0 0
\(991\) 29477.9 0.944901 0.472451 0.881357i \(-0.343370\pi\)
0.472451 + 0.881357i \(0.343370\pi\)
\(992\) 0 0
\(993\) 10456.9 0.334180
\(994\) 0 0
\(995\) −12237.1 −0.389892
\(996\) 0 0
\(997\) 31944.4 1.01473 0.507366 0.861731i \(-0.330619\pi\)
0.507366 + 0.861731i \(0.330619\pi\)
\(998\) 0 0
\(999\) −922.883 −0.0292279
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.4.a.p.1.2 2
4.3 odd 2 704.4.a.n.1.1 2
8.3 odd 2 176.4.a.i.1.2 2
8.5 even 2 11.4.a.a.1.2 2
24.5 odd 2 99.4.a.c.1.1 2
24.11 even 2 1584.4.a.bc.1.1 2
40.13 odd 4 275.4.b.c.199.1 4
40.29 even 2 275.4.a.b.1.1 2
40.37 odd 4 275.4.b.c.199.4 4
56.13 odd 2 539.4.a.e.1.2 2
88.5 even 10 121.4.c.c.3.1 8
88.13 odd 10 121.4.c.f.81.2 8
88.21 odd 2 121.4.a.c.1.1 2
88.29 odd 10 121.4.c.f.27.1 8
88.37 even 10 121.4.c.c.27.2 8
88.43 even 2 1936.4.a.w.1.2 2
88.53 even 10 121.4.c.c.81.1 8
88.61 odd 10 121.4.c.f.3.2 8
88.69 even 10 121.4.c.c.9.2 8
88.85 odd 10 121.4.c.f.9.1 8
104.77 even 2 1859.4.a.a.1.1 2
120.29 odd 2 2475.4.a.q.1.2 2
264.197 even 2 1089.4.a.v.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
11.4.a.a.1.2 2 8.5 even 2
99.4.a.c.1.1 2 24.5 odd 2
121.4.a.c.1.1 2 88.21 odd 2
121.4.c.c.3.1 8 88.5 even 10
121.4.c.c.9.2 8 88.69 even 10
121.4.c.c.27.2 8 88.37 even 10
121.4.c.c.81.1 8 88.53 even 10
121.4.c.f.3.2 8 88.61 odd 10
121.4.c.f.9.1 8 88.85 odd 10
121.4.c.f.27.1 8 88.29 odd 10
121.4.c.f.81.2 8 88.13 odd 10
176.4.a.i.1.2 2 8.3 odd 2
275.4.a.b.1.1 2 40.29 even 2
275.4.b.c.199.1 4 40.13 odd 4
275.4.b.c.199.4 4 40.37 odd 4
539.4.a.e.1.2 2 56.13 odd 2
704.4.a.n.1.1 2 4.3 odd 2
704.4.a.p.1.2 2 1.1 even 1 trivial
1089.4.a.v.1.2 2 264.197 even 2
1584.4.a.bc.1.1 2 24.11 even 2
1859.4.a.a.1.1 2 104.77 even 2
1936.4.a.w.1.2 2 88.43 even 2
2475.4.a.q.1.2 2 120.29 odd 2