Properties

Label 702.2.t.a.415.7
Level $702$
Weight $2$
Character 702.415
Analytic conductor $5.605$
Analytic rank $0$
Dimension $28$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(181,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.181"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.t (of order \(6\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(28\)
Relative dimension: \(14\) over \(\Q(\zeta_{6})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 415.7
Character \(\chi\) \(=\) 702.415
Dual form 702.2.t.a.181.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} +(2.73536 + 1.57926i) q^{5} +(-1.36392 + 0.787458i) q^{7} +1.00000i q^{8} -3.15852 q^{10} +(-3.26194 + 1.88328i) q^{11} +(0.899453 + 3.49156i) q^{13} +(0.787458 - 1.36392i) q^{14} +(-0.500000 - 0.866025i) q^{16} -7.06565 q^{17} +3.76656i q^{19} +(2.73536 - 1.57926i) q^{20} +(1.88328 - 3.26194i) q^{22} +(1.84873 - 3.20209i) q^{23} +(2.48812 + 4.30955i) q^{25} +(-2.52473 - 2.57405i) q^{26} +1.57492i q^{28} +(-0.109128 - 0.189015i) q^{29} +(2.65792 + 1.53455i) q^{31} +(0.866025 + 0.500000i) q^{32} +(6.11904 - 3.53283i) q^{34} -4.97440 q^{35} +0.292126i q^{37} +(-1.88328 - 3.26194i) q^{38} +(-1.57926 + 2.73536i) q^{40} +(6.39272 + 3.69084i) q^{41} +(-3.05835 - 5.29722i) q^{43} +3.76656i q^{44} +3.69746i q^{46} +(-6.17888 + 3.56738i) q^{47} +(-2.25982 + 3.91412i) q^{49} +(-4.30955 - 2.48812i) q^{50} +(3.47351 + 0.966830i) q^{52} +14.4175 q^{53} -11.8968 q^{55} +(-0.787458 - 1.36392i) q^{56} +(0.189015 + 0.109128i) q^{58} +(-9.04745 - 5.22355i) q^{59} +(3.00007 + 5.19627i) q^{61} -3.06910 q^{62} -1.00000 q^{64} +(-3.05375 + 10.9711i) q^{65} +(-6.33583 - 3.65799i) q^{67} +(-3.53283 + 6.11904i) q^{68} +(4.30796 - 2.48720i) q^{70} -0.772410i q^{71} +13.5342i q^{73} +(-0.146063 - 0.252988i) q^{74} +(3.26194 + 1.88328i) q^{76} +(2.96601 - 5.13728i) q^{77} +(6.34033 + 10.9818i) q^{79} -3.15852i q^{80} -7.38168 q^{82} +(0.314795 - 0.181747i) q^{83} +(-19.3271 - 11.1585i) q^{85} +(5.29722 + 3.05835i) q^{86} +(-1.88328 - 3.26194i) q^{88} +7.06555i q^{89} +(-3.97624 - 4.05392i) q^{91} +(-1.84873 - 3.20209i) q^{92} +(3.56738 - 6.17888i) q^{94} +(-5.94838 + 10.3029i) q^{95} +(-0.535716 + 0.309296i) q^{97} -4.51964i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 28 q + 14 q^{4} + 2 q^{13} - 8 q^{14} - 14 q^{16} - 16 q^{17} + 8 q^{23} + 14 q^{25} - 8 q^{26} + 16 q^{29} + 68 q^{35} - 4 q^{43} + 10 q^{49} - 2 q^{52} + 120 q^{53} + 8 q^{56} + 28 q^{61} - 68 q^{62}+ \cdots - 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(-1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 2.73536 + 1.57926i 1.22329 + 0.706266i 0.965618 0.259967i \(-0.0837115\pi\)
0.257671 + 0.966233i \(0.417045\pi\)
\(6\) 0 0
\(7\) −1.36392 + 0.787458i −0.515512 + 0.297631i −0.735097 0.677962i \(-0.762863\pi\)
0.219584 + 0.975594i \(0.429530\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −3.15852 −0.998811
\(11\) −3.26194 + 1.88328i −0.983511 + 0.567830i −0.903328 0.428950i \(-0.858884\pi\)
−0.0801828 + 0.996780i \(0.525550\pi\)
\(12\) 0 0
\(13\) 0.899453 + 3.49156i 0.249463 + 0.968384i
\(14\) 0.787458 1.36392i 0.210457 0.364522i
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −7.06565 −1.71367 −0.856836 0.515588i \(-0.827573\pi\)
−0.856836 + 0.515588i \(0.827573\pi\)
\(18\) 0 0
\(19\) 3.76656i 0.864108i 0.901848 + 0.432054i \(0.142211\pi\)
−0.901848 + 0.432054i \(0.857789\pi\)
\(20\) 2.73536 1.57926i 0.611644 0.353133i
\(21\) 0 0
\(22\) 1.88328 3.26194i 0.401517 0.695447i
\(23\) 1.84873 3.20209i 0.385487 0.667683i −0.606350 0.795198i \(-0.707367\pi\)
0.991837 + 0.127515i \(0.0407002\pi\)
\(24\) 0 0
\(25\) 2.48812 + 4.30955i 0.497624 + 0.861910i
\(26\) −2.52473 2.57405i −0.495140 0.504813i
\(27\) 0 0
\(28\) 1.57492i 0.297631i
\(29\) −0.109128 0.189015i −0.0202645 0.0350992i 0.855715 0.517447i \(-0.173118\pi\)
−0.875980 + 0.482348i \(0.839784\pi\)
\(30\) 0 0
\(31\) 2.65792 + 1.53455i 0.477376 + 0.275613i 0.719322 0.694676i \(-0.244452\pi\)
−0.241946 + 0.970290i \(0.577786\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 6.11904 3.53283i 1.04941 0.605875i
\(35\) −4.97440 −0.840827
\(36\) 0 0
\(37\) 0.292126i 0.0480251i 0.999712 + 0.0240126i \(0.00764417\pi\)
−0.999712 + 0.0240126i \(0.992356\pi\)
\(38\) −1.88328 3.26194i −0.305508 0.529156i
\(39\) 0 0
\(40\) −1.57926 + 2.73536i −0.249703 + 0.432498i
\(41\) 6.39272 + 3.69084i 0.998375 + 0.576412i 0.907767 0.419474i \(-0.137786\pi\)
0.0906081 + 0.995887i \(0.471119\pi\)
\(42\) 0 0
\(43\) −3.05835 5.29722i −0.466395 0.807819i 0.532869 0.846198i \(-0.321114\pi\)
−0.999263 + 0.0383789i \(0.987781\pi\)
\(44\) 3.76656i 0.567830i
\(45\) 0 0
\(46\) 3.69746i 0.545161i
\(47\) −6.17888 + 3.56738i −0.901282 + 0.520356i −0.877616 0.479364i \(-0.840867\pi\)
−0.0236662 + 0.999720i \(0.507534\pi\)
\(48\) 0 0
\(49\) −2.25982 + 3.91412i −0.322831 + 0.559160i
\(50\) −4.30955 2.48812i −0.609462 0.351873i
\(51\) 0 0
\(52\) 3.47351 + 0.966830i 0.481689 + 0.134075i
\(53\) 14.4175 1.98040 0.990201 0.139649i \(-0.0445973\pi\)
0.990201 + 0.139649i \(0.0445973\pi\)
\(54\) 0 0
\(55\) −11.8968 −1.60416
\(56\) −0.787458 1.36392i −0.105229 0.182261i
\(57\) 0 0
\(58\) 0.189015 + 0.109128i 0.0248188 + 0.0143292i
\(59\) −9.04745 5.22355i −1.17788 0.680048i −0.222355 0.974966i \(-0.571374\pi\)
−0.955523 + 0.294918i \(0.904708\pi\)
\(60\) 0 0
\(61\) 3.00007 + 5.19627i 0.384119 + 0.665314i 0.991647 0.128985i \(-0.0411718\pi\)
−0.607527 + 0.794299i \(0.707838\pi\)
\(62\) −3.06910 −0.389776
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −3.05375 + 10.9711i −0.378771 + 1.36080i
\(66\) 0 0
\(67\) −6.33583 3.65799i −0.774045 0.446895i 0.0602708 0.998182i \(-0.480804\pi\)
−0.834316 + 0.551287i \(0.814137\pi\)
\(68\) −3.53283 + 6.11904i −0.428418 + 0.742042i
\(69\) 0 0
\(70\) 4.30796 2.48720i 0.514900 0.297277i
\(71\) 0.772410i 0.0916682i −0.998949 0.0458341i \(-0.985405\pi\)
0.998949 0.0458341i \(-0.0145946\pi\)
\(72\) 0 0
\(73\) 13.5342i 1.58406i 0.610480 + 0.792032i \(0.290976\pi\)
−0.610480 + 0.792032i \(0.709024\pi\)
\(74\) −0.146063 0.252988i −0.0169795 0.0294093i
\(75\) 0 0
\(76\) 3.26194 + 1.88328i 0.374170 + 0.216027i
\(77\) 2.96601 5.13728i 0.338008 0.585447i
\(78\) 0 0
\(79\) 6.34033 + 10.9818i 0.713343 + 1.23555i 0.963595 + 0.267366i \(0.0861532\pi\)
−0.250252 + 0.968181i \(0.580513\pi\)
\(80\) 3.15852i 0.353133i
\(81\) 0 0
\(82\) −7.38168 −0.815170
\(83\) 0.314795 0.181747i 0.0345533 0.0199494i −0.482624 0.875828i \(-0.660316\pi\)
0.517177 + 0.855878i \(0.326983\pi\)
\(84\) 0 0
\(85\) −19.3271 11.1585i −2.09632 1.21031i
\(86\) 5.29722 + 3.05835i 0.571214 + 0.329791i
\(87\) 0 0
\(88\) −1.88328 3.26194i −0.200758 0.347724i
\(89\) 7.06555i 0.748947i 0.927238 + 0.374473i \(0.122176\pi\)
−0.927238 + 0.374473i \(0.877824\pi\)
\(90\) 0 0
\(91\) −3.97624 4.05392i −0.416823 0.424966i
\(92\) −1.84873 3.20209i −0.192743 0.333841i
\(93\) 0 0
\(94\) 3.56738 6.17888i 0.367947 0.637303i
\(95\) −5.94838 + 10.3029i −0.610290 + 1.05705i
\(96\) 0 0
\(97\) −0.535716 + 0.309296i −0.0543937 + 0.0314042i −0.526950 0.849896i \(-0.676665\pi\)
0.472557 + 0.881300i \(0.343331\pi\)
\(98\) 4.51964i 0.456552i
\(99\) 0 0
\(100\) 4.97624 0.497624
\(101\) 4.16781 + 7.21887i 0.414713 + 0.718304i 0.995398 0.0958241i \(-0.0305486\pi\)
−0.580685 + 0.814128i \(0.697215\pi\)
\(102\) 0 0
\(103\) 4.94838 8.57084i 0.487578 0.844510i −0.512320 0.858795i \(-0.671214\pi\)
0.999898 + 0.0142849i \(0.00454717\pi\)
\(104\) −3.49156 + 0.899453i −0.342376 + 0.0881987i
\(105\) 0 0
\(106\) −12.4860 + 7.20877i −1.21274 + 0.700178i
\(107\) −0.115559 −0.0111715 −0.00558574 0.999984i \(-0.501778\pi\)
−0.00558574 + 0.999984i \(0.501778\pi\)
\(108\) 0 0
\(109\) 14.1301i 1.35342i −0.736251 0.676708i \(-0.763406\pi\)
0.736251 0.676708i \(-0.236594\pi\)
\(110\) 10.3029 5.94838i 0.982342 0.567155i
\(111\) 0 0
\(112\) 1.36392 + 0.787458i 0.128878 + 0.0744078i
\(113\) 9.70968 16.8177i 0.913410 1.58207i 0.104197 0.994557i \(-0.466773\pi\)
0.809213 0.587516i \(-0.199894\pi\)
\(114\) 0 0
\(115\) 10.1139 5.83925i 0.943124 0.544513i
\(116\) −0.218255 −0.0202645
\(117\) 0 0
\(118\) 10.4471 0.961733
\(119\) 9.63697 5.56391i 0.883420 0.510043i
\(120\) 0 0
\(121\) 1.59349 2.76001i 0.144863 0.250910i
\(122\) −5.19627 3.00007i −0.470448 0.271613i
\(123\) 0 0
\(124\) 2.65792 1.53455i 0.238688 0.137807i
\(125\) 0.0750557i 0.00671318i
\(126\) 0 0
\(127\) 5.42904 0.481750 0.240875 0.970556i \(-0.422566\pi\)
0.240875 + 0.970556i \(0.422566\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) −2.84094 11.0282i −0.249167 0.967233i
\(131\) −6.34342 + 10.9871i −0.554227 + 0.959950i 0.443736 + 0.896158i \(0.353653\pi\)
−0.997963 + 0.0637922i \(0.979681\pi\)
\(132\) 0 0
\(133\) −2.96601 5.13728i −0.257186 0.445459i
\(134\) 7.31599 0.632005
\(135\) 0 0
\(136\) 7.06565i 0.605875i
\(137\) 6.36997 3.67770i 0.544223 0.314207i −0.202566 0.979269i \(-0.564928\pi\)
0.746789 + 0.665061i \(0.231595\pi\)
\(138\) 0 0
\(139\) 3.65559 6.33167i 0.310063 0.537046i −0.668312 0.743881i \(-0.732983\pi\)
0.978376 + 0.206835i \(0.0663164\pi\)
\(140\) −2.48720 + 4.30796i −0.210207 + 0.364089i
\(141\) 0 0
\(142\) 0.386205 + 0.668927i 0.0324096 + 0.0561351i
\(143\) −9.50955 9.69532i −0.795228 0.810764i
\(144\) 0 0
\(145\) 0.689364i 0.0572485i
\(146\) −6.76712 11.7210i −0.560051 0.970037i
\(147\) 0 0
\(148\) 0.252988 + 0.146063i 0.0207955 + 0.0120063i
\(149\) 20.5800 + 11.8819i 1.68598 + 0.973401i 0.957544 + 0.288289i \(0.0930862\pi\)
0.728437 + 0.685113i \(0.240247\pi\)
\(150\) 0 0
\(151\) 8.99711 5.19448i 0.732174 0.422721i −0.0870428 0.996205i \(-0.527742\pi\)
0.819217 + 0.573484i \(0.194408\pi\)
\(152\) −3.76656 −0.305508
\(153\) 0 0
\(154\) 5.93202i 0.478016i
\(155\) 4.84690 + 8.39509i 0.389313 + 0.674310i
\(156\) 0 0
\(157\) 4.57412 7.92261i 0.365054 0.632293i −0.623730 0.781640i \(-0.714384\pi\)
0.988785 + 0.149347i \(0.0477170\pi\)
\(158\) −10.9818 6.34033i −0.873663 0.504410i
\(159\) 0 0
\(160\) 1.57926 + 2.73536i 0.124851 + 0.216249i
\(161\) 5.82319i 0.458932i
\(162\) 0 0
\(163\) 13.5935i 1.06473i 0.846516 + 0.532363i \(0.178696\pi\)
−0.846516 + 0.532363i \(0.821304\pi\)
\(164\) 6.39272 3.69084i 0.499188 0.288206i
\(165\) 0 0
\(166\) −0.181747 + 0.314795i −0.0141063 + 0.0244329i
\(167\) −6.20607 3.58308i −0.480240 0.277267i 0.240276 0.970705i \(-0.422762\pi\)
−0.720517 + 0.693438i \(0.756095\pi\)
\(168\) 0 0
\(169\) −11.3820 + 6.28099i −0.875536 + 0.483153i
\(170\) 22.3170 1.71164
\(171\) 0 0
\(172\) −6.11671 −0.466395
\(173\) 1.50582 + 2.60815i 0.114485 + 0.198294i 0.917574 0.397566i \(-0.130145\pi\)
−0.803089 + 0.595859i \(0.796812\pi\)
\(174\) 0 0
\(175\) −6.78718 3.91858i −0.513062 0.296217i
\(176\) 3.26194 + 1.88328i 0.245878 + 0.141958i
\(177\) 0 0
\(178\) −3.53277 6.11894i −0.264793 0.458634i
\(179\) 19.2107 1.43587 0.717936 0.696109i \(-0.245087\pi\)
0.717936 + 0.696109i \(0.245087\pi\)
\(180\) 0 0
\(181\) 9.14810 0.679973 0.339987 0.940430i \(-0.389577\pi\)
0.339987 + 0.940430i \(0.389577\pi\)
\(182\) 5.47048 + 1.52268i 0.405499 + 0.112868i
\(183\) 0 0
\(184\) 3.20209 + 1.84873i 0.236062 + 0.136290i
\(185\) −0.461342 + 0.799068i −0.0339185 + 0.0587486i
\(186\) 0 0
\(187\) 23.0477 13.3066i 1.68542 0.973076i
\(188\) 7.13476i 0.520356i
\(189\) 0 0
\(190\) 11.8968i 0.863081i
\(191\) 0.131627 + 0.227985i 0.00952420 + 0.0164964i 0.870748 0.491729i \(-0.163635\pi\)
−0.861224 + 0.508226i \(0.830302\pi\)
\(192\) 0 0
\(193\) 10.1470 + 5.85837i 0.730397 + 0.421695i 0.818567 0.574410i \(-0.194769\pi\)
−0.0881704 + 0.996105i \(0.528102\pi\)
\(194\) 0.309296 0.535716i 0.0222061 0.0384622i
\(195\) 0 0
\(196\) 2.25982 + 3.91412i 0.161416 + 0.279580i
\(197\) 20.5283i 1.46258i −0.682066 0.731291i \(-0.738918\pi\)
0.682066 0.731291i \(-0.261082\pi\)
\(198\) 0 0
\(199\) 5.95247 0.421960 0.210980 0.977490i \(-0.432335\pi\)
0.210980 + 0.977490i \(0.432335\pi\)
\(200\) −4.30955 + 2.48812i −0.304731 + 0.175937i
\(201\) 0 0
\(202\) −7.21887 4.16781i −0.507918 0.293246i
\(203\) 0.297682 + 0.171867i 0.0208932 + 0.0120627i
\(204\) 0 0
\(205\) 11.6576 + 20.1915i 0.814201 + 1.41024i
\(206\) 9.89675i 0.689539i
\(207\) 0 0
\(208\) 2.57405 2.52473i 0.178478 0.175058i
\(209\) −7.09349 12.2863i −0.490667 0.849860i
\(210\) 0 0
\(211\) 8.69625 15.0623i 0.598674 1.03693i −0.394343 0.918963i \(-0.629028\pi\)
0.993017 0.117971i \(-0.0376389\pi\)
\(212\) 7.20877 12.4860i 0.495101 0.857539i
\(213\) 0 0
\(214\) 0.100077 0.0577794i 0.00684111 0.00394972i
\(215\) 19.3197i 1.31759i
\(216\) 0 0
\(217\) −4.83358 −0.328125
\(218\) 7.06504 + 12.2370i 0.478505 + 0.828795i
\(219\) 0 0
\(220\) −5.94838 + 10.3029i −0.401039 + 0.694621i
\(221\) −6.35523 24.6701i −0.427499 1.65949i
\(222\) 0 0
\(223\) −20.5643 + 11.8728i −1.37709 + 0.795062i −0.991808 0.127737i \(-0.959229\pi\)
−0.385280 + 0.922800i \(0.625895\pi\)
\(224\) −1.57492 −0.105229
\(225\) 0 0
\(226\) 19.4194i 1.29176i
\(227\) 3.93292 2.27067i 0.261037 0.150710i −0.363770 0.931489i \(-0.618511\pi\)
0.624808 + 0.780779i \(0.285177\pi\)
\(228\) 0 0
\(229\) −10.3673 5.98556i −0.685091 0.395537i 0.116680 0.993170i \(-0.462775\pi\)
−0.801770 + 0.597632i \(0.796108\pi\)
\(230\) −5.83925 + 10.1139i −0.385029 + 0.666889i
\(231\) 0 0
\(232\) 0.189015 0.109128i 0.0124094 0.00716458i
\(233\) −10.6895 −0.700290 −0.350145 0.936696i \(-0.613868\pi\)
−0.350145 + 0.936696i \(0.613868\pi\)
\(234\) 0 0
\(235\) −22.5353 −1.47004
\(236\) −9.04745 + 5.22355i −0.588939 + 0.340024i
\(237\) 0 0
\(238\) −5.56391 + 9.63697i −0.360655 + 0.624672i
\(239\) 20.8684 + 12.0484i 1.34987 + 0.779346i 0.988230 0.152974i \(-0.0488849\pi\)
0.361636 + 0.932319i \(0.382218\pi\)
\(240\) 0 0
\(241\) −9.63879 + 5.56496i −0.620889 + 0.358470i −0.777215 0.629235i \(-0.783368\pi\)
0.156326 + 0.987705i \(0.450035\pi\)
\(242\) 3.18698i 0.204867i
\(243\) 0 0
\(244\) 6.00013 0.384119
\(245\) −12.3628 + 7.13768i −0.789832 + 0.456010i
\(246\) 0 0
\(247\) −13.1512 + 3.38785i −0.836789 + 0.215563i
\(248\) −1.53455 + 2.65792i −0.0974440 + 0.168778i
\(249\) 0 0
\(250\) 0.0375278 + 0.0650001i 0.00237347 + 0.00411097i
\(251\) −11.3356 −0.715499 −0.357749 0.933818i \(-0.616456\pi\)
−0.357749 + 0.933818i \(0.616456\pi\)
\(252\) 0 0
\(253\) 13.9267i 0.875565i
\(254\) −4.70169 + 2.71452i −0.295010 + 0.170324i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 4.16026 7.20579i 0.259510 0.449485i −0.706601 0.707613i \(-0.749772\pi\)
0.966111 + 0.258128i \(0.0831056\pi\)
\(258\) 0 0
\(259\) −0.230037 0.398435i −0.0142938 0.0247576i
\(260\) 7.97440 + 8.13019i 0.494551 + 0.504213i
\(261\) 0 0
\(262\) 12.6868i 0.783796i
\(263\) −7.19133 12.4557i −0.443436 0.768054i 0.554506 0.832180i \(-0.312907\pi\)
−0.997942 + 0.0641260i \(0.979574\pi\)
\(264\) 0 0
\(265\) 39.4371 + 22.7690i 2.42260 + 1.39869i
\(266\) 5.13728 + 2.96601i 0.314987 + 0.181858i
\(267\) 0 0
\(268\) −6.33583 + 3.65799i −0.387022 + 0.223447i
\(269\) −9.01366 −0.549572 −0.274786 0.961505i \(-0.588607\pi\)
−0.274786 + 0.961505i \(0.588607\pi\)
\(270\) 0 0
\(271\) 19.9094i 1.20941i −0.796449 0.604705i \(-0.793291\pi\)
0.796449 0.604705i \(-0.206709\pi\)
\(272\) 3.53283 + 6.11904i 0.214209 + 0.371021i
\(273\) 0 0
\(274\) −3.67770 + 6.36997i −0.222178 + 0.384824i
\(275\) −16.2322 9.37165i −0.978837 0.565132i
\(276\) 0 0
\(277\) −6.69157 11.5901i −0.402058 0.696384i 0.591916 0.805999i \(-0.298372\pi\)
−0.993974 + 0.109615i \(0.965038\pi\)
\(278\) 7.31119i 0.438496i
\(279\) 0 0
\(280\) 4.97440i 0.297277i
\(281\) 0.606470 0.350146i 0.0361790 0.0208879i −0.481801 0.876280i \(-0.660017\pi\)
0.517980 + 0.855392i \(0.326684\pi\)
\(282\) 0 0
\(283\) −9.71783 + 16.8318i −0.577665 + 1.00055i 0.418081 + 0.908410i \(0.362703\pi\)
−0.995746 + 0.0921358i \(0.970631\pi\)
\(284\) −0.668927 0.386205i −0.0396935 0.0229170i
\(285\) 0 0
\(286\) 13.0832 + 3.64162i 0.773624 + 0.215334i
\(287\) −11.6255 −0.686233
\(288\) 0 0
\(289\) 32.9235 1.93668
\(290\) 0.344682 + 0.597006i 0.0202404 + 0.0350574i
\(291\) 0 0
\(292\) 11.7210 + 6.76712i 0.685919 + 0.396016i
\(293\) −3.68719 2.12880i −0.215408 0.124366i 0.388414 0.921485i \(-0.373023\pi\)
−0.603822 + 0.797119i \(0.706356\pi\)
\(294\) 0 0
\(295\) −16.4987 28.5765i −0.960589 1.66379i
\(296\) −0.292126 −0.0169795
\(297\) 0 0
\(298\) −23.7638 −1.37660
\(299\) 12.8431 + 3.57482i 0.742738 + 0.206737i
\(300\) 0 0
\(301\) 8.34268 + 4.81665i 0.480864 + 0.277627i
\(302\) −5.19448 + 8.99711i −0.298909 + 0.517725i
\(303\) 0 0
\(304\) 3.26194 1.88328i 0.187085 0.108014i
\(305\) 18.9515i 1.08516i
\(306\) 0 0
\(307\) 7.35088i 0.419537i 0.977751 + 0.209768i \(0.0672710\pi\)
−0.977751 + 0.209768i \(0.932729\pi\)
\(308\) −2.96601 5.13728i −0.169004 0.292724i
\(309\) 0 0
\(310\) −8.39509 4.84690i −0.476809 0.275286i
\(311\) −1.40756 + 2.43796i −0.0798152 + 0.138244i −0.903170 0.429283i \(-0.858766\pi\)
0.823355 + 0.567527i \(0.192100\pi\)
\(312\) 0 0
\(313\) −13.5459 23.4621i −0.765657 1.32616i −0.939898 0.341454i \(-0.889081\pi\)
0.174241 0.984703i \(-0.444253\pi\)
\(314\) 9.14824i 0.516265i
\(315\) 0 0
\(316\) 12.6807 0.713343
\(317\) 0.655352 0.378368i 0.0368083 0.0212513i −0.481483 0.876455i \(-0.659902\pi\)
0.518291 + 0.855204i \(0.326568\pi\)
\(318\) 0 0
\(319\) 0.711935 + 0.411036i 0.0398607 + 0.0230136i
\(320\) −2.73536 1.57926i −0.152911 0.0882833i
\(321\) 0 0
\(322\) −2.91160 5.04303i −0.162257 0.281037i
\(323\) 26.6132i 1.48080i
\(324\) 0 0
\(325\) −12.8091 + 12.5636i −0.710521 + 0.696906i
\(326\) −6.79676 11.7723i −0.376438 0.652009i
\(327\) 0 0
\(328\) −3.69084 + 6.39272i −0.203792 + 0.352979i
\(329\) 5.61832 9.73122i 0.309748 0.536499i
\(330\) 0 0
\(331\) 28.5504 16.4836i 1.56927 0.906021i 0.573020 0.819541i \(-0.305772\pi\)
0.996254 0.0864792i \(-0.0275616\pi\)
\(332\) 0.363495i 0.0199494i
\(333\) 0 0
\(334\) 7.16615 0.392114
\(335\) −11.5538 20.0118i −0.631254 1.09336i
\(336\) 0 0
\(337\) −2.25348 + 3.90313i −0.122755 + 0.212617i −0.920853 0.389910i \(-0.872506\pi\)
0.798098 + 0.602527i \(0.205839\pi\)
\(338\) 6.71658 11.1305i 0.365334 0.605418i
\(339\) 0 0
\(340\) −19.3271 + 11.1585i −1.04816 + 0.605155i
\(341\) −11.5600 −0.626007
\(342\) 0 0
\(343\) 18.1425i 0.979601i
\(344\) 5.29722 3.05835i 0.285607 0.164895i
\(345\) 0 0
\(346\) −2.60815 1.50582i −0.140215 0.0809532i
\(347\) −14.9859 + 25.9563i −0.804484 + 1.39341i 0.112155 + 0.993691i \(0.464225\pi\)
−0.916639 + 0.399716i \(0.869109\pi\)
\(348\) 0 0
\(349\) −15.0992 + 8.71753i −0.808242 + 0.466639i −0.846345 0.532635i \(-0.821202\pi\)
0.0381029 + 0.999274i \(0.487869\pi\)
\(350\) 7.83716 0.418914
\(351\) 0 0
\(352\) −3.76656 −0.200758
\(353\) 3.91310 2.25923i 0.208273 0.120247i −0.392235 0.919865i \(-0.628298\pi\)
0.600509 + 0.799618i \(0.294965\pi\)
\(354\) 0 0
\(355\) 1.21984 2.11282i 0.0647421 0.112137i
\(356\) 6.11894 + 3.53277i 0.324303 + 0.187237i
\(357\) 0 0
\(358\) −16.6369 + 9.60533i −0.879288 + 0.507657i
\(359\) 30.5681i 1.61332i 0.591013 + 0.806662i \(0.298728\pi\)
−0.591013 + 0.806662i \(0.701272\pi\)
\(360\) 0 0
\(361\) 4.81302 0.253317
\(362\) −7.92249 + 4.57405i −0.416397 + 0.240407i
\(363\) 0 0
\(364\) −5.49891 + 1.41656i −0.288221 + 0.0742481i
\(365\) −21.3741 + 37.0210i −1.11877 + 1.93777i
\(366\) 0 0
\(367\) 5.33420 + 9.23911i 0.278443 + 0.482278i 0.970998 0.239087i \(-0.0768483\pi\)
−0.692555 + 0.721365i \(0.743515\pi\)
\(368\) −3.69746 −0.192743
\(369\) 0 0
\(370\) 0.922684i 0.0479681i
\(371\) −19.6643 + 11.3532i −1.02092 + 0.589430i
\(372\) 0 0
\(373\) −4.18223 + 7.24383i −0.216548 + 0.375072i −0.953750 0.300600i \(-0.902813\pi\)
0.737203 + 0.675672i \(0.236146\pi\)
\(374\) −13.3066 + 23.0477i −0.688068 + 1.19177i
\(375\) 0 0
\(376\) −3.56738 6.17888i −0.183973 0.318651i
\(377\) 0.561801 0.551036i 0.0289342 0.0283798i
\(378\) 0 0
\(379\) 26.5494i 1.36375i −0.731467 0.681877i \(-0.761164\pi\)
0.731467 0.681877i \(-0.238836\pi\)
\(380\) 5.94838 + 10.3029i 0.305145 + 0.528527i
\(381\) 0 0
\(382\) −0.227985 0.131627i −0.0116647 0.00673463i
\(383\) −2.83624 1.63751i −0.144925 0.0836727i 0.425784 0.904825i \(-0.359998\pi\)
−0.570709 + 0.821152i \(0.693332\pi\)
\(384\) 0 0
\(385\) 16.2262 9.36819i 0.826963 0.477447i
\(386\) −11.7167 −0.596367
\(387\) 0 0
\(388\) 0.618592i 0.0314042i
\(389\) 12.7599 + 22.1008i 0.646951 + 1.12055i 0.983847 + 0.179011i \(0.0572897\pi\)
−0.336896 + 0.941542i \(0.609377\pi\)
\(390\) 0 0
\(391\) −13.0625 + 22.6249i −0.660598 + 1.14419i
\(392\) −3.91412 2.25982i −0.197693 0.114138i
\(393\) 0 0
\(394\) 10.2642 + 17.7780i 0.517101 + 0.895645i
\(395\) 40.0521i 2.01524i
\(396\) 0 0
\(397\) 4.70957i 0.236367i −0.992992 0.118183i \(-0.962293\pi\)
0.992992 0.118183i \(-0.0377071\pi\)
\(398\) −5.15499 + 2.97624i −0.258396 + 0.149185i
\(399\) 0 0
\(400\) 2.48812 4.30955i 0.124406 0.215477i
\(401\) 12.5429 + 7.24166i 0.626364 + 0.361631i 0.779343 0.626598i \(-0.215553\pi\)
−0.152979 + 0.988229i \(0.548887\pi\)
\(402\) 0 0
\(403\) −2.96730 + 10.6605i −0.147812 + 0.531039i
\(404\) 8.33563 0.414713
\(405\) 0 0
\(406\) −0.343734 −0.0170592
\(407\) −0.550154 0.952895i −0.0272701 0.0472333i
\(408\) 0 0
\(409\) 14.2191 + 8.20943i 0.703091 + 0.405930i 0.808498 0.588499i \(-0.200281\pi\)
−0.105406 + 0.994429i \(0.533614\pi\)
\(410\) −20.1915 11.6576i −0.997188 0.575727i
\(411\) 0 0
\(412\) −4.94838 8.57084i −0.243789 0.422255i
\(413\) 16.4533 0.809614
\(414\) 0 0
\(415\) 1.14810 0.0563582
\(416\) −0.966830 + 3.47351i −0.0474027 + 0.170303i
\(417\) 0 0
\(418\) 12.2863 + 7.09349i 0.600942 + 0.346954i
\(419\) 7.15411 12.3913i 0.349501 0.605354i −0.636660 0.771145i \(-0.719684\pi\)
0.986161 + 0.165791i \(0.0530178\pi\)
\(420\) 0 0
\(421\) −20.8668 + 12.0475i −1.01699 + 0.587158i −0.913230 0.407445i \(-0.866420\pi\)
−0.103757 + 0.994603i \(0.533087\pi\)
\(422\) 17.3925i 0.846653i
\(423\) 0 0
\(424\) 14.4175i 0.700178i
\(425\) −17.5802 30.4498i −0.852764 1.47703i
\(426\) 0 0
\(427\) −8.18369 4.72486i −0.396036 0.228652i
\(428\) −0.0577794 + 0.100077i −0.00279287 + 0.00483740i
\(429\) 0 0
\(430\) 9.65986 + 16.7314i 0.465840 + 0.806859i
\(431\) 9.12376i 0.439476i 0.975559 + 0.219738i \(0.0705202\pi\)
−0.975559 + 0.219738i \(0.929480\pi\)
\(432\) 0 0
\(433\) 0.372606 0.0179063 0.00895315 0.999960i \(-0.497150\pi\)
0.00895315 + 0.999960i \(0.497150\pi\)
\(434\) 4.18600 2.41679i 0.200934 0.116010i
\(435\) 0 0
\(436\) −12.2370 7.06504i −0.586047 0.338354i
\(437\) 12.0609 + 6.96335i 0.576950 + 0.333102i
\(438\) 0 0
\(439\) 1.91160 + 3.31098i 0.0912355 + 0.158024i 0.908031 0.418902i \(-0.137585\pi\)
−0.816796 + 0.576927i \(0.804252\pi\)
\(440\) 11.8968i 0.567155i
\(441\) 0 0
\(442\) 17.8389 + 18.1874i 0.848508 + 0.865085i
\(443\) −3.98203 6.89708i −0.189192 0.327690i 0.755789 0.654815i \(-0.227254\pi\)
−0.944981 + 0.327125i \(0.893920\pi\)
\(444\) 0 0
\(445\) −11.1583 + 19.3268i −0.528956 + 0.916178i
\(446\) 11.8728 20.5643i 0.562194 0.973749i
\(447\) 0 0
\(448\) 1.36392 0.787458i 0.0644391 0.0372039i
\(449\) 26.4088i 1.24631i −0.782098 0.623155i \(-0.785851\pi\)
0.782098 0.623155i \(-0.214149\pi\)
\(450\) 0 0
\(451\) −27.8035 −1.30922
\(452\) −9.70968 16.8177i −0.456705 0.791036i
\(453\) 0 0
\(454\) −2.27067 + 3.93292i −0.106568 + 0.184581i
\(455\) −4.47424 17.3684i −0.209756 0.814244i
\(456\) 0 0
\(457\) −7.46066 + 4.30742i −0.348995 + 0.201492i −0.664243 0.747517i \(-0.731246\pi\)
0.315248 + 0.949009i \(0.397912\pi\)
\(458\) 11.9711 0.559374
\(459\) 0 0
\(460\) 11.6785i 0.544513i
\(461\) −24.0754 + 13.8999i −1.12130 + 0.647384i −0.941733 0.336362i \(-0.890803\pi\)
−0.179569 + 0.983745i \(0.557470\pi\)
\(462\) 0 0
\(463\) 31.4451 + 18.1548i 1.46138 + 0.843727i 0.999075 0.0429960i \(-0.0136903\pi\)
0.462302 + 0.886723i \(0.347024\pi\)
\(464\) −0.109128 + 0.189015i −0.00506613 + 0.00877479i
\(465\) 0 0
\(466\) 9.25734 5.34473i 0.428838 0.247590i
\(467\) −13.8295 −0.639954 −0.319977 0.947425i \(-0.603675\pi\)
−0.319977 + 0.947425i \(0.603675\pi\)
\(468\) 0 0
\(469\) 11.5221 0.532040
\(470\) 19.5161 11.2676i 0.900211 0.519737i
\(471\) 0 0
\(472\) 5.22355 9.04745i 0.240433 0.416442i
\(473\) 19.9523 + 11.5195i 0.917408 + 0.529666i
\(474\) 0 0
\(475\) −16.2322 + 9.37165i −0.744783 + 0.430001i
\(476\) 11.1278i 0.510043i
\(477\) 0 0
\(478\) −24.0968 −1.10216
\(479\) 24.4509 14.1167i 1.11719 0.645010i 0.176508 0.984299i \(-0.443520\pi\)
0.940682 + 0.339289i \(0.110187\pi\)
\(480\) 0 0
\(481\) −1.01997 + 0.262753i −0.0465068 + 0.0119805i
\(482\) 5.56496 9.63879i 0.253477 0.439035i
\(483\) 0 0
\(484\) −1.59349 2.76001i −0.0724314 0.125455i
\(485\) −1.95383 −0.0887190
\(486\) 0 0
\(487\) 15.5579i 0.704995i 0.935813 + 0.352498i \(0.114668\pi\)
−0.935813 + 0.352498i \(0.885332\pi\)
\(488\) −5.19627 + 3.00007i −0.235224 + 0.135807i
\(489\) 0 0
\(490\) 7.13768 12.3628i 0.322448 0.558495i
\(491\) 7.48935 12.9719i 0.337990 0.585416i −0.646065 0.763283i \(-0.723586\pi\)
0.984055 + 0.177867i \(0.0569197\pi\)
\(492\) 0 0
\(493\) 0.771059 + 1.33551i 0.0347267 + 0.0601485i
\(494\) 9.69532 9.50955i 0.436213 0.427855i
\(495\) 0 0
\(496\) 3.06910i 0.137807i
\(497\) 0.608241 + 1.05350i 0.0272833 + 0.0472561i
\(498\) 0 0
\(499\) 29.5341 + 17.0515i 1.32213 + 0.763330i 0.984068 0.177795i \(-0.0568963\pi\)
0.338059 + 0.941125i \(0.390230\pi\)
\(500\) −0.0650001 0.0375278i −0.00290689 0.00167830i
\(501\) 0 0
\(502\) 9.81694 5.66781i 0.438152 0.252967i
\(503\) 22.7259 1.01330 0.506648 0.862153i \(-0.330884\pi\)
0.506648 + 0.862153i \(0.330884\pi\)
\(504\) 0 0
\(505\) 26.3282i 1.17159i
\(506\) −6.96335 12.0609i −0.309559 0.536172i
\(507\) 0 0
\(508\) 2.71452 4.70169i 0.120437 0.208604i
\(509\) −5.48563 3.16713i −0.243146 0.140380i 0.373476 0.927640i \(-0.378166\pi\)
−0.616622 + 0.787259i \(0.711499\pi\)
\(510\) 0 0
\(511\) −10.6576 18.4596i −0.471467 0.816604i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 8.32053i 0.367003i
\(515\) 27.0711 15.6295i 1.19290 0.688720i
\(516\) 0 0
\(517\) 13.4367 23.2731i 0.590947 1.02355i
\(518\) 0.398435 + 0.230037i 0.0175062 + 0.0101072i
\(519\) 0 0
\(520\) −10.9711 3.05375i −0.481116 0.133916i
\(521\) −19.5169 −0.855052 −0.427526 0.904003i \(-0.640615\pi\)
−0.427526 + 0.904003i \(0.640615\pi\)
\(522\) 0 0
\(523\) 4.76549 0.208380 0.104190 0.994557i \(-0.466775\pi\)
0.104190 + 0.994557i \(0.466775\pi\)
\(524\) 6.34342 + 10.9871i 0.277114 + 0.479975i
\(525\) 0 0
\(526\) 12.4557 + 7.19133i 0.543096 + 0.313557i
\(527\) −18.7799 10.8426i −0.818067 0.472311i
\(528\) 0 0
\(529\) 4.66439 + 8.07897i 0.202800 + 0.351259i
\(530\) −45.5381 −1.97805
\(531\) 0 0
\(532\) −5.93202 −0.257186
\(533\) −7.13683 + 25.6403i −0.309130 + 1.11060i
\(534\) 0 0
\(535\) −0.316094 0.182497i −0.0136660 0.00789004i
\(536\) 3.65799 6.33583i 0.158001 0.273666i
\(537\) 0 0
\(538\) 7.80606 4.50683i 0.336543 0.194303i
\(539\) 17.0235i 0.733254i
\(540\) 0 0
\(541\) 25.2325i 1.08483i −0.840111 0.542414i \(-0.817510\pi\)
0.840111 0.542414i \(-0.182490\pi\)
\(542\) 9.95470 + 17.2420i 0.427591 + 0.740609i
\(543\) 0 0
\(544\) −6.11904 3.53283i −0.262352 0.151469i
\(545\) 22.3151 38.6508i 0.955872 1.65562i
\(546\) 0 0
\(547\) −14.3916 24.9271i −0.615343 1.06580i −0.990324 0.138772i \(-0.955684\pi\)
0.374982 0.927032i \(-0.377649\pi\)
\(548\) 7.35541i 0.314207i
\(549\) 0 0
\(550\) 18.7433 0.799217
\(551\) 0.711935 0.411036i 0.0303295 0.0175107i
\(552\) 0 0
\(553\) −17.2954 9.98549i −0.735475 0.424626i
\(554\) 11.5901 + 6.69157i 0.492418 + 0.284298i
\(555\) 0 0
\(556\) −3.65559 6.33167i −0.155032 0.268523i
\(557\) 11.4847i 0.486624i −0.969948 0.243312i \(-0.921766\pi\)
0.969948 0.243312i \(-0.0782339\pi\)
\(558\) 0 0
\(559\) 15.7447 15.4430i 0.665931 0.653170i
\(560\) 2.48720 + 4.30796i 0.105103 + 0.182044i
\(561\) 0 0
\(562\) −0.350146 + 0.606470i −0.0147700 + 0.0255824i
\(563\) 7.42388 12.8585i 0.312879 0.541923i −0.666105 0.745858i \(-0.732040\pi\)
0.978984 + 0.203935i \(0.0653731\pi\)
\(564\) 0 0
\(565\) 53.1189 30.6682i 2.23473 1.29022i
\(566\) 19.4357i 0.816942i
\(567\) 0 0
\(568\) 0.772410 0.0324096
\(569\) 13.8881 + 24.0549i 0.582220 + 1.00843i 0.995216 + 0.0977019i \(0.0311492\pi\)
−0.412996 + 0.910733i \(0.635517\pi\)
\(570\) 0 0
\(571\) 9.56039 16.5591i 0.400090 0.692976i −0.593646 0.804726i \(-0.702312\pi\)
0.993736 + 0.111750i \(0.0356455\pi\)
\(572\) −13.1512 + 3.38785i −0.549878 + 0.141653i
\(573\) 0 0
\(574\) 10.0680 5.81276i 0.420230 0.242620i
\(575\) 18.3994 0.767310
\(576\) 0 0
\(577\) 26.8961i 1.11970i −0.828595 0.559849i \(-0.810859\pi\)
0.828595 0.559849i \(-0.189141\pi\)
\(578\) −28.5126 + 16.4617i −1.18597 + 0.684718i
\(579\) 0 0
\(580\) −0.597006 0.344682i −0.0247893 0.0143121i
\(581\) −0.286237 + 0.495777i −0.0118751 + 0.0205683i
\(582\) 0 0
\(583\) −47.0291 + 27.1523i −1.94775 + 1.12453i
\(584\) −13.5342 −0.560051
\(585\) 0 0
\(586\) 4.25760 0.175880
\(587\) −33.7791 + 19.5024i −1.39421 + 0.804949i −0.993778 0.111376i \(-0.964474\pi\)
−0.400434 + 0.916325i \(0.631141\pi\)
\(588\) 0 0
\(589\) −5.77998 + 10.0112i −0.238160 + 0.412505i
\(590\) 28.5765 + 16.4987i 1.17648 + 0.679239i
\(591\) 0 0
\(592\) 0.252988 0.146063i 0.0103977 0.00600314i
\(593\) 24.2756i 0.996881i −0.866924 0.498441i \(-0.833906\pi\)
0.866924 0.498441i \(-0.166094\pi\)
\(594\) 0 0
\(595\) 35.1474 1.44090
\(596\) 20.5800 11.8819i 0.842990 0.486701i
\(597\) 0 0
\(598\) −12.9099 + 3.32569i −0.527925 + 0.135998i
\(599\) −9.53752 + 16.5195i −0.389692 + 0.674967i −0.992408 0.122989i \(-0.960752\pi\)
0.602716 + 0.797956i \(0.294085\pi\)
\(600\) 0 0
\(601\) 7.43342 + 12.8751i 0.303216 + 0.525185i 0.976862 0.213869i \(-0.0686064\pi\)
−0.673647 + 0.739053i \(0.735273\pi\)
\(602\) −9.63330 −0.392624
\(603\) 0 0
\(604\) 10.3890i 0.422721i
\(605\) 8.71753 5.03307i 0.354418 0.204623i
\(606\) 0 0
\(607\) −18.3898 + 31.8521i −0.746419 + 1.29284i 0.203110 + 0.979156i \(0.434895\pi\)
−0.949529 + 0.313680i \(0.898438\pi\)
\(608\) −1.88328 + 3.26194i −0.0763771 + 0.132289i
\(609\) 0 0
\(610\) −9.47577 16.4125i −0.383663 0.664523i
\(611\) −18.0133 18.3652i −0.728741 0.742978i
\(612\) 0 0
\(613\) 9.13501i 0.368959i −0.982836 0.184480i \(-0.940940\pi\)
0.982836 0.184480i \(-0.0590600\pi\)
\(614\) −3.67544 6.36605i −0.148329 0.256913i
\(615\) 0 0
\(616\) 5.13728 + 2.96601i 0.206987 + 0.119504i
\(617\) 12.3504 + 7.13051i 0.497209 + 0.287063i 0.727560 0.686044i \(-0.240654\pi\)
−0.230352 + 0.973107i \(0.573988\pi\)
\(618\) 0 0
\(619\) 5.16609 2.98264i 0.207643 0.119883i −0.392573 0.919721i \(-0.628415\pi\)
0.600215 + 0.799838i \(0.295082\pi\)
\(620\) 9.69381 0.389313
\(621\) 0 0
\(622\) 2.81511i 0.112876i
\(623\) −5.56382 9.63683i −0.222910 0.386091i
\(624\) 0 0
\(625\) 12.5591 21.7530i 0.502365 0.870122i
\(626\) 23.4621 + 13.5459i 0.937735 + 0.541401i
\(627\) 0 0
\(628\) −4.57412 7.92261i −0.182527 0.316146i
\(629\) 2.06406i 0.0822994i
\(630\) 0 0
\(631\) 3.19802i 0.127311i 0.997972 + 0.0636557i \(0.0202759\pi\)
−0.997972 + 0.0636557i \(0.979724\pi\)
\(632\) −10.9818 + 6.34033i −0.436832 + 0.252205i
\(633\) 0 0
\(634\) −0.378368 + 0.655352i −0.0150269 + 0.0260274i
\(635\) 14.8504 + 8.57387i 0.589319 + 0.340243i
\(636\) 0 0
\(637\) −15.6990 4.36972i −0.622017 0.173135i
\(638\) −0.822072 −0.0325462
\(639\) 0 0
\(640\) 3.15852 0.124851
\(641\) 15.4801 + 26.8123i 0.611426 + 1.05902i 0.991000 + 0.133860i \(0.0427373\pi\)
−0.379574 + 0.925161i \(0.623929\pi\)
\(642\) 0 0
\(643\) −25.5058 14.7258i −1.00585 0.580729i −0.0958776 0.995393i \(-0.530566\pi\)
−0.909975 + 0.414664i \(0.863899\pi\)
\(644\) 5.04303 + 2.91160i 0.198723 + 0.114733i
\(645\) 0 0
\(646\) 13.3066 + 23.0477i 0.523542 + 0.906801i
\(647\) 27.8656 1.09551 0.547756 0.836638i \(-0.315482\pi\)
0.547756 + 0.836638i \(0.315482\pi\)
\(648\) 0 0
\(649\) 39.3496 1.54461
\(650\) 4.81118 17.2850i 0.188710 0.677973i
\(651\) 0 0
\(652\) 11.7723 + 6.79676i 0.461040 + 0.266182i
\(653\) 9.48617 16.4305i 0.371223 0.642976i −0.618531 0.785760i \(-0.712272\pi\)
0.989754 + 0.142784i \(0.0456053\pi\)
\(654\) 0 0
\(655\) −34.7030 + 20.0358i −1.35596 + 0.782864i
\(656\) 7.38168i 0.288206i
\(657\) 0 0
\(658\) 11.2366i 0.438050i
\(659\) 9.05886 + 15.6904i 0.352883 + 0.611211i 0.986753 0.162228i \(-0.0518681\pi\)
−0.633870 + 0.773439i \(0.718535\pi\)
\(660\) 0 0
\(661\) −20.5705 11.8764i −0.800101 0.461939i 0.0434052 0.999058i \(-0.486179\pi\)
−0.843507 + 0.537119i \(0.819513\pi\)
\(662\) −16.4836 + 28.5504i −0.640653 + 1.10964i
\(663\) 0 0
\(664\) 0.181747 + 0.314795i 0.00705316 + 0.0122164i
\(665\) 18.7364i 0.726566i
\(666\) 0 0
\(667\) −0.806991 −0.0312468
\(668\) −6.20607 + 3.58308i −0.240120 + 0.138633i
\(669\) 0 0
\(670\) 20.0118 + 11.5538i 0.773125 + 0.446364i
\(671\) −19.5721 11.2999i −0.755571 0.436229i
\(672\) 0 0
\(673\) −12.1157 20.9850i −0.467026 0.808913i 0.532264 0.846578i \(-0.321341\pi\)
−0.999290 + 0.0376653i \(0.988008\pi\)
\(674\) 4.50695i 0.173601i
\(675\) 0 0
\(676\) −0.251488 + 12.9976i −0.00967261 + 0.499906i
\(677\) 9.77002 + 16.9222i 0.375492 + 0.650372i 0.990401 0.138227i \(-0.0441403\pi\)
−0.614908 + 0.788599i \(0.710807\pi\)
\(678\) 0 0
\(679\) 0.487115 0.843708i 0.0186938 0.0323785i
\(680\) 11.1585 19.3271i 0.427909 0.741160i
\(681\) 0 0
\(682\) 10.0112 5.77998i 0.383349 0.221327i
\(683\) 40.5718i 1.55244i 0.630465 + 0.776218i \(0.282864\pi\)
−0.630465 + 0.776218i \(0.717136\pi\)
\(684\) 0 0
\(685\) 23.2322 0.887656
\(686\) 9.07123 + 15.7118i 0.346341 + 0.599881i
\(687\) 0 0
\(688\) −3.05835 + 5.29722i −0.116599 + 0.201955i
\(689\) 12.9679 + 50.3397i 0.494038 + 1.91779i
\(690\) 0 0
\(691\) −25.6366 + 14.8013i −0.975264 + 0.563069i −0.900837 0.434158i \(-0.857046\pi\)
−0.0744270 + 0.997226i \(0.523713\pi\)
\(692\) 3.01163 0.114485
\(693\) 0 0
\(694\) 29.9717i 1.13771i
\(695\) 19.9987 11.5463i 0.758594 0.437975i
\(696\) 0 0
\(697\) −45.1688 26.0782i −1.71089 0.987782i
\(698\) 8.71753 15.0992i 0.329964 0.571514i
\(699\) 0 0
\(700\) −6.78718 + 3.91858i −0.256531 + 0.148108i
\(701\) 14.6213 0.552238 0.276119 0.961123i \(-0.410952\pi\)
0.276119 + 0.961123i \(0.410952\pi\)
\(702\) 0 0
\(703\) −1.10031 −0.0414989
\(704\) 3.26194 1.88328i 0.122939 0.0709788i
\(705\) 0 0
\(706\) −2.25923 + 3.91310i −0.0850272 + 0.147271i
\(707\) −11.3691 6.56396i −0.427579 0.246863i
\(708\) 0 0
\(709\) 5.54229 3.19984i 0.208145 0.120173i −0.392304 0.919836i \(-0.628322\pi\)
0.600449 + 0.799663i \(0.294989\pi\)
\(710\) 2.43967i 0.0915592i
\(711\) 0 0
\(712\) −7.06555 −0.264793
\(713\) 9.82755 5.67394i 0.368045 0.212491i
\(714\) 0 0
\(715\) −10.7006 41.5382i −0.400179 1.55344i
\(716\) 9.60533 16.6369i 0.358968 0.621751i
\(717\) 0 0
\(718\) −15.2841 26.4728i −0.570396 0.987955i
\(719\) −13.5954 −0.507022 −0.253511 0.967332i \(-0.581585\pi\)
−0.253511 + 0.967332i \(0.581585\pi\)
\(720\) 0 0
\(721\) 15.5866i 0.580474i
\(722\) −4.16820 + 2.40651i −0.155124 + 0.0895610i
\(723\) 0 0
\(724\) 4.57405 7.92249i 0.169993 0.294437i
\(725\) 0.543045 0.940582i 0.0201682 0.0349323i
\(726\) 0 0
\(727\) 11.1176 + 19.2562i 0.412329 + 0.714174i 0.995144 0.0984307i \(-0.0313823\pi\)
−0.582815 + 0.812605i \(0.698049\pi\)
\(728\) 4.05392 3.97624i 0.150248 0.147369i
\(729\) 0 0
\(730\) 42.7481i 1.58218i
\(731\) 21.6093 + 37.4284i 0.799248 + 1.38434i
\(732\) 0 0
\(733\) 14.7765 + 8.53119i 0.545781 + 0.315107i 0.747419 0.664354i \(-0.231293\pi\)
−0.201638 + 0.979460i \(0.564626\pi\)
\(734\) −9.23911 5.33420i −0.341022 0.196889i
\(735\) 0 0
\(736\) 3.20209 1.84873i 0.118031 0.0681451i
\(737\) 27.5561 1.01504
\(738\) 0 0
\(739\) 47.4169i 1.74426i −0.489274 0.872130i \(-0.662738\pi\)
0.489274 0.872130i \(-0.337262\pi\)
\(740\) 0.461342 + 0.799068i 0.0169593 + 0.0293743i
\(741\) 0 0
\(742\) 11.3532 19.6643i 0.416790 0.721901i
\(743\) −22.7717 13.1472i −0.835411 0.482325i 0.0202905 0.999794i \(-0.493541\pi\)
−0.855702 + 0.517469i \(0.826874\pi\)
\(744\) 0 0
\(745\) 37.5291 + 65.0024i 1.37496 + 2.38150i
\(746\) 8.36446i 0.306245i
\(747\) 0 0
\(748\) 26.6132i 0.973076i
\(749\) 0.157613 0.0909977i 0.00575904 0.00332498i
\(750\) 0 0
\(751\) −16.9255 + 29.3158i −0.617620 + 1.06975i 0.372299 + 0.928113i \(0.378570\pi\)
−0.989919 + 0.141636i \(0.954764\pi\)
\(752\) 6.17888 + 3.56738i 0.225321 + 0.130089i
\(753\) 0 0
\(754\) −0.211016 + 0.758111i −0.00768474 + 0.0276088i
\(755\) 32.8137 1.19421
\(756\) 0 0
\(757\) −35.4490 −1.28841 −0.644207 0.764851i \(-0.722813\pi\)
−0.644207 + 0.764851i \(0.722813\pi\)
\(758\) 13.2747 + 22.9925i 0.482160 + 0.835125i
\(759\) 0 0
\(760\) −10.3029 5.94838i −0.373725 0.215770i
\(761\) −23.7086 13.6882i −0.859436 0.496196i 0.00438738 0.999990i \(-0.498603\pi\)
−0.863823 + 0.503795i \(0.831937\pi\)
\(762\) 0 0
\(763\) 11.1269 + 19.2723i 0.402819 + 0.697703i
\(764\) 0.263254 0.00952420
\(765\) 0 0
\(766\) 3.27501 0.118331
\(767\) 10.1006 36.2880i 0.364710 1.31028i
\(768\) 0 0
\(769\) −12.8943 7.44450i −0.464979 0.268456i 0.249157 0.968463i \(-0.419847\pi\)
−0.714135 + 0.700008i \(0.753180\pi\)
\(770\) −9.36819 + 16.2262i −0.337606 + 0.584751i
\(771\) 0 0
\(772\) 10.1470 5.85837i 0.365199 0.210847i
\(773\) 47.2807i 1.70057i 0.526324 + 0.850284i \(0.323570\pi\)
−0.526324 + 0.850284i \(0.676430\pi\)
\(774\) 0 0
\(775\) 15.2726i 0.548607i
\(776\) −0.309296 0.535716i −0.0111031 0.0192311i
\(777\) 0 0
\(778\) −22.1008 12.7599i −0.792350 0.457464i
\(779\) −13.9018 + 24.0786i −0.498083 + 0.862704i
\(780\) 0 0
\(781\) 1.45466 + 2.51955i 0.0520520 + 0.0901567i
\(782\) 26.1250i 0.934227i
\(783\) 0 0
\(784\) 4.51964 0.161416
\(785\) 25.0237 14.4474i 0.893134 0.515651i
\(786\) 0 0
\(787\) 1.23135 + 0.710921i 0.0438929 + 0.0253416i 0.521786 0.853076i \(-0.325266\pi\)
−0.477893 + 0.878418i \(0.658599\pi\)
\(788\) −17.7780 10.2642i −0.633317 0.365645i
\(789\) 0 0
\(790\) −20.0261 34.6861i −0.712495 1.23408i
\(791\) 30.5839i 1.08744i
\(792\) 0 0
\(793\) −15.4447 + 15.1487i −0.548456 + 0.537947i
\(794\) 2.35479 + 4.07861i 0.0835683 + 0.144744i
\(795\) 0 0
\(796\) 2.97624 5.15499i 0.105490 0.182714i
\(797\) −21.8473 + 37.8407i −0.773872 + 1.34039i 0.161554 + 0.986864i \(0.448349\pi\)
−0.935426 + 0.353522i \(0.884984\pi\)
\(798\) 0 0
\(799\) 43.6578 25.2059i 1.54450 0.891719i
\(800\) 4.97624i 0.175937i
\(801\) 0 0
\(802\) −14.4833 −0.511424
\(803\) −25.4888 44.1478i −0.899479 1.55794i
\(804\) 0 0
\(805\) −9.19633 + 15.9285i −0.324128 + 0.561406i
\(806\) −2.76051 10.7159i −0.0972349 0.377453i
\(807\) 0 0
\(808\) −7.21887 + 4.16781i −0.253959 + 0.146623i
\(809\) −5.70765 −0.200670 −0.100335 0.994954i \(-0.531992\pi\)
−0.100335 + 0.994954i \(0.531992\pi\)
\(810\) 0 0
\(811\) 50.0141i 1.75623i 0.478446 + 0.878117i \(0.341200\pi\)
−0.478446 + 0.878117i \(0.658800\pi\)
\(812\) 0.297682 0.171867i 0.0104466 0.00603135i
\(813\) 0 0
\(814\) 0.952895 + 0.550154i 0.0333990 + 0.0192829i
\(815\) −21.4677 + 37.1831i −0.751980 + 1.30247i
\(816\) 0 0
\(817\) 19.9523 11.5195i 0.698043 0.403015i
\(818\) −16.4189 −0.574072
\(819\) 0 0
\(820\) 23.3152 0.814201
\(821\) −45.2025 + 26.0977i −1.57758 + 0.910815i −0.582381 + 0.812916i \(0.697879\pi\)
−0.995196 + 0.0978991i \(0.968788\pi\)
\(822\) 0 0
\(823\) 18.5278 32.0910i 0.645837 1.11862i −0.338271 0.941049i \(-0.609842\pi\)
0.984108 0.177573i \(-0.0568247\pi\)
\(824\) 8.57084 + 4.94838i 0.298579 + 0.172385i
\(825\) 0 0
\(826\) −14.2490 + 8.22665i −0.495785 + 0.286242i
\(827\) 14.2975i 0.497174i 0.968610 + 0.248587i \(0.0799662\pi\)
−0.968610 + 0.248587i \(0.920034\pi\)
\(828\) 0 0
\(829\) −29.4062 −1.02132 −0.510659 0.859783i \(-0.670599\pi\)
−0.510659 + 0.859783i \(0.670599\pi\)
\(830\) −0.994287 + 0.574052i −0.0345122 + 0.0199256i
\(831\) 0 0
\(832\) −0.899453 3.49156i −0.0311829 0.121048i
\(833\) 15.9671 27.6558i 0.553227 0.958218i
\(834\) 0 0
\(835\) −11.3172 19.6020i −0.391648 0.678355i
\(836\) −14.1870 −0.490667
\(837\) 0 0
\(838\) 14.3082i 0.494269i
\(839\) 10.4838 6.05284i 0.361942 0.208967i −0.307990 0.951389i \(-0.599656\pi\)
0.669932 + 0.742422i \(0.266323\pi\)
\(840\) 0 0
\(841\) 14.4762 25.0735i 0.499179 0.864603i
\(842\) 12.0475 20.8668i 0.415183 0.719119i
\(843\) 0 0
\(844\) −8.69625 15.0623i −0.299337 0.518467i
\(845\) −41.0531 0.794329i −1.41227 0.0273257i
\(846\) 0 0
\(847\) 5.01923i 0.172463i
\(848\) −7.20877 12.4860i −0.247550 0.428770i
\(849\) 0 0
\(850\) 30.4498 + 17.5802i 1.04442 + 0.602995i
\(851\) 0.935414 + 0.540061i 0.0320656 + 0.0185131i
\(852\) 0 0
\(853\) 0.647074 0.373588i 0.0221554 0.0127914i −0.488881 0.872350i \(-0.662595\pi\)
0.511037 + 0.859559i \(0.329262\pi\)
\(854\) 9.44971 0.323362
\(855\) 0 0
\(856\) 0.115559i 0.00394972i
\(857\) −25.0361 43.3638i −0.855217 1.48128i −0.876443 0.481505i \(-0.840090\pi\)
0.0212258 0.999775i \(-0.493243\pi\)
\(858\) 0 0
\(859\) −14.3680 + 24.8861i −0.490230 + 0.849103i −0.999937 0.0112448i \(-0.996421\pi\)
0.509707 + 0.860348i \(0.329754\pi\)
\(860\) −16.7314 9.65986i −0.570535 0.329399i
\(861\) 0 0
\(862\) −4.56188 7.90141i −0.155378 0.269123i
\(863\) 6.03591i 0.205465i −0.994709 0.102732i \(-0.967241\pi\)
0.994709 0.102732i \(-0.0327585\pi\)
\(864\) 0 0
\(865\) 9.51229i 0.323428i
\(866\) −0.322686 + 0.186303i −0.0109653 + 0.00633083i
\(867\) 0 0
\(868\) −2.41679 + 4.18600i −0.0820311 + 0.142082i
\(869\) −41.3635 23.8812i −1.40316 0.810116i
\(870\) 0 0
\(871\) 7.07331 25.4121i 0.239670 0.861057i
\(872\) 14.1301 0.478505
\(873\) 0 0
\(874\) −13.9267 −0.471078
\(875\) 0.0591032 + 0.102370i 0.00199805 + 0.00346073i
\(876\) 0 0
\(877\) 13.8233 + 7.98087i 0.466779 + 0.269495i 0.714890 0.699237i \(-0.246477\pi\)
−0.248111 + 0.968731i \(0.579810\pi\)
\(878\) −3.31098 1.91160i −0.111740 0.0645132i
\(879\) 0 0
\(880\) 5.94838 + 10.3029i 0.200520 + 0.347310i
\(881\) 18.2622 0.615269 0.307635 0.951505i \(-0.400463\pi\)
0.307635 + 0.951505i \(0.400463\pi\)
\(882\) 0 0
\(883\) 6.17305 0.207740 0.103870 0.994591i \(-0.466877\pi\)
0.103870 + 0.994591i \(0.466877\pi\)
\(884\) −24.5426 6.83129i −0.825457 0.229761i
\(885\) 0 0
\(886\) 6.89708 + 3.98203i 0.231712 + 0.133779i
\(887\) 5.00963 8.67693i 0.168207 0.291343i −0.769583 0.638547i \(-0.779536\pi\)
0.937789 + 0.347204i \(0.112869\pi\)
\(888\) 0 0
\(889\) −7.40477 + 4.27514i −0.248348 + 0.143384i
\(890\) 22.3167i 0.748056i
\(891\) 0 0
\(892\) 23.7456i 0.795062i
\(893\) −13.4367 23.2731i −0.449644 0.778805i
\(894\) 0 0
\(895\) 52.5480 + 30.3386i 1.75649 + 1.01411i
\(896\) −0.787458 + 1.36392i −0.0263071 + 0.0455653i
\(897\) 0 0
\(898\) 13.2044 + 22.8707i 0.440637 + 0.763206i
\(899\) 0.669848i 0.0223407i
\(900\) 0 0
\(901\) −101.869 −3.39376
\(902\) 24.0786 13.9018i 0.801729 0.462878i
\(903\) 0 0
\(904\) 16.8177 + 9.70968i 0.559347 + 0.322939i
\(905\) 25.0233 + 14.4472i 0.831804 + 0.480242i
\(906\) 0 0
\(907\) 28.7735 + 49.8371i 0.955408 + 1.65481i 0.733433 + 0.679762i \(0.237917\pi\)
0.221975 + 0.975052i \(0.428750\pi\)
\(908\) 4.54135i 0.150710i
\(909\) 0 0
\(910\) 12.5590 + 12.8044i 0.416327 + 0.424461i
\(911\) −7.88991 13.6657i −0.261404 0.452765i 0.705211 0.708997i \(-0.250852\pi\)
−0.966615 + 0.256232i \(0.917519\pi\)
\(912\) 0 0
\(913\) −0.684562 + 1.18570i −0.0226557 + 0.0392408i
\(914\) 4.30742 7.46066i 0.142477 0.246777i
\(915\) 0 0
\(916\) −10.3673 + 5.98556i −0.342545 + 0.197769i
\(917\) 19.9807i 0.659821i
\(918\) 0 0
\(919\) 42.9349 1.41629 0.708146 0.706066i \(-0.249532\pi\)
0.708146 + 0.706066i \(0.249532\pi\)
\(920\) 5.83925 + 10.1139i 0.192514 + 0.333445i
\(921\) 0 0
\(922\) 13.8999 24.0754i 0.457769 0.792880i
\(923\) 2.69691 0.694747i 0.0887700 0.0228679i
\(924\) 0 0
\(925\) −1.25893 + 0.726843i −0.0413933 + 0.0238985i
\(926\) −36.3097 −1.19321
\(927\) 0 0
\(928\) 0.218255i 0.00716458i
\(929\) −8.98486 + 5.18741i −0.294784 + 0.170193i −0.640097 0.768294i \(-0.721106\pi\)
0.345314 + 0.938487i \(0.387773\pi\)
\(930\) 0 0
\(931\) −14.7428 8.51175i −0.483175 0.278961i
\(932\) −5.34473 + 9.25734i −0.175072 + 0.303234i
\(933\) 0 0
\(934\) 11.9767 6.91477i 0.391890 0.226258i
\(935\) 84.0583 2.74900
\(936\) 0 0
\(937\) −26.4110 −0.862809 −0.431404 0.902159i \(-0.641982\pi\)
−0.431404 + 0.902159i \(0.641982\pi\)
\(938\) −9.97840 + 5.76103i −0.325806 + 0.188104i
\(939\) 0 0
\(940\) −11.2676 + 19.5161i −0.367509 + 0.636545i
\(941\) −11.0738 6.39347i −0.360996 0.208421i 0.308522 0.951217i \(-0.400166\pi\)
−0.669518 + 0.742796i \(0.733499\pi\)
\(942\) 0 0
\(943\) 23.6368 13.6467i 0.769721 0.444399i
\(944\) 10.4471i 0.340024i
\(945\) 0 0
\(946\) −23.0389 −0.749061
\(947\) −0.400885 + 0.231451i −0.0130270 + 0.00752114i −0.506499 0.862240i \(-0.669061\pi\)
0.493472 + 0.869761i \(0.335727\pi\)
\(948\) 0 0
\(949\) −47.2556 + 12.1734i −1.53398 + 0.395166i
\(950\) 9.37165 16.2322i 0.304056 0.526641i
\(951\) 0 0
\(952\) 5.56391 + 9.63697i 0.180327 + 0.312336i
\(953\) −12.0901 −0.391636 −0.195818 0.980640i \(-0.562736\pi\)
−0.195818 + 0.980640i \(0.562736\pi\)
\(954\) 0 0
\(955\) 0.831493i 0.0269065i
\(956\) 20.8684 12.0484i 0.674933 0.389673i
\(957\) 0 0
\(958\) −14.1167 + 24.4509i −0.456091 + 0.789973i
\(959\) −5.79207 + 10.0322i −0.187036 + 0.323956i
\(960\) 0 0
\(961\) −10.7903 18.6894i −0.348075 0.602883i
\(962\) 0.751946 0.737538i 0.0242437 0.0237792i
\(963\) 0 0
\(964\) 11.1299i 0.358470i
\(965\) 18.5038 + 32.0495i 0.595658 + 1.03171i
\(966\) 0 0
\(967\) −25.8211 14.9078i −0.830352 0.479404i 0.0236211 0.999721i \(-0.492480\pi\)
−0.853973 + 0.520317i \(0.825814\pi\)
\(968\) 2.76001 + 1.59349i 0.0887100 + 0.0512167i
\(969\) 0 0
\(970\) 1.69207 0.976916i 0.0543291 0.0313669i
\(971\) 61.4263 1.97126 0.985632 0.168908i \(-0.0540242\pi\)
0.985632 + 0.168908i \(0.0540242\pi\)
\(972\) 0 0
\(973\) 11.5145i 0.369138i
\(974\) −7.77895 13.4735i −0.249254 0.431720i
\(975\) 0 0
\(976\) 3.00007 5.19627i 0.0960298 0.166329i
\(977\) −19.8036 11.4336i −0.633575 0.365794i 0.148561 0.988903i \(-0.452536\pi\)
−0.782135 + 0.623109i \(0.785869\pi\)
\(978\) 0 0
\(979\) −13.3064 23.0474i −0.425275 0.736597i
\(980\) 14.2754i 0.456010i
\(981\) 0 0
\(982\) 14.9787i 0.477990i
\(983\) −25.0365 + 14.4549i −0.798541 + 0.461038i −0.842961 0.537975i \(-0.819190\pi\)
0.0444194 + 0.999013i \(0.485856\pi\)
\(984\) 0 0
\(985\) 32.4195 56.1523i 1.03297 1.78916i
\(986\) −1.33551 0.771059i −0.0425314 0.0245555i
\(987\) 0 0
\(988\) −3.64162 + 13.0832i −0.115855 + 0.416231i
\(989\) −22.6163 −0.719156
\(990\) 0 0
\(991\) 21.3095 0.676917 0.338459 0.940981i \(-0.390095\pi\)
0.338459 + 0.940981i \(0.390095\pi\)
\(992\) 1.53455 + 2.65792i 0.0487220 + 0.0843890i
\(993\) 0 0
\(994\) −1.05350 0.608241i −0.0334151 0.0192922i
\(995\) 16.2821 + 9.40050i 0.516179 + 0.298016i
\(996\) 0 0
\(997\) 26.9037 + 46.5986i 0.852049 + 1.47579i 0.879356 + 0.476166i \(0.157974\pi\)
−0.0273064 + 0.999627i \(0.508693\pi\)
\(998\) −34.1030 −1.07951
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.t.a.415.7 28
3.2 odd 2 234.2.t.a.103.13 yes 28
9.2 odd 6 234.2.t.a.25.6 28
9.4 even 3 2106.2.b.d.649.1 14
9.5 odd 6 2106.2.b.c.649.14 14
9.7 even 3 inner 702.2.t.a.181.8 28
13.12 even 2 inner 702.2.t.a.415.8 28
39.38 odd 2 234.2.t.a.103.6 yes 28
117.25 even 6 inner 702.2.t.a.181.7 28
117.38 odd 6 234.2.t.a.25.13 yes 28
117.77 odd 6 2106.2.b.c.649.1 14
117.103 even 6 2106.2.b.d.649.14 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.6 28 9.2 odd 6
234.2.t.a.25.13 yes 28 117.38 odd 6
234.2.t.a.103.6 yes 28 39.38 odd 2
234.2.t.a.103.13 yes 28 3.2 odd 2
702.2.t.a.181.7 28 117.25 even 6 inner
702.2.t.a.181.8 28 9.7 even 3 inner
702.2.t.a.415.7 28 1.1 even 1 trivial
702.2.t.a.415.8 28 13.12 even 2 inner
2106.2.b.c.649.1 14 117.77 odd 6
2106.2.b.c.649.14 14 9.5 odd 6
2106.2.b.d.649.1 14 9.4 even 3
2106.2.b.d.649.14 14 117.103 even 6