Newspace parameters
Level: | \( N \) | \(=\) | \( 702 = 2 \cdot 3^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 702.t (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(5.60549822189\) |
Analytic rank: | \(0\) |
Dimension: | \(28\) |
Relative dimension: | \(14\) over \(\Q(\zeta_{6})\) |
Twist minimal: | no (minimal twist has level 234) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
181.1 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | −3.32246 | + | 1.91822i | 0 | −2.91802 | − | 1.68472i | − | 1.00000i | 0 | 3.83645 | |||||||||
181.2 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | −2.40542 | + | 1.38877i | 0 | 0.759011 | + | 0.438215i | − | 1.00000i | 0 | 2.77754 | |||||||||
181.3 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.515076 | + | 0.297379i | 0 | −1.45217 | − | 0.838409i | − | 1.00000i | 0 | 0.594758 | |||||||||
181.4 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.419378 | − | 0.242128i | 0 | 4.37722 | + | 2.52719i | − | 1.00000i | 0 | −0.484256 | |||||||||
181.5 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.548308 | − | 0.316566i | 0 | 2.15366 | + | 1.24342i | − | 1.00000i | 0 | −0.633132 | |||||||||
181.6 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 2.53992 | − | 1.46642i | 0 | 1.90832 | + | 1.10177i | − | 1.00000i | 0 | −2.93284 | |||||||||
181.7 | −0.866025 | − | 0.500000i | 0 | 0.500000 | + | 0.866025i | 2.73536 | − | 1.57926i | 0 | −1.36392 | − | 0.787458i | − | 1.00000i | 0 | −3.15852 | |||||||||
181.8 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −2.73536 | + | 1.57926i | 0 | 1.36392 | + | 0.787458i | 1.00000i | 0 | −3.15852 | ||||||||||
181.9 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −2.53992 | + | 1.46642i | 0 | −1.90832 | − | 1.10177i | 1.00000i | 0 | −2.93284 | ||||||||||
181.10 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.548308 | + | 0.316566i | 0 | −2.15366 | − | 1.24342i | 1.00000i | 0 | −0.633132 | ||||||||||
181.11 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | −0.419378 | + | 0.242128i | 0 | −4.37722 | − | 2.52719i | 1.00000i | 0 | −0.484256 | ||||||||||
181.12 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 0.515076 | − | 0.297379i | 0 | 1.45217 | + | 0.838409i | 1.00000i | 0 | 0.594758 | ||||||||||
181.13 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 2.40542 | − | 1.38877i | 0 | −0.759011 | − | 0.438215i | 1.00000i | 0 | 2.77754 | ||||||||||
181.14 | 0.866025 | + | 0.500000i | 0 | 0.500000 | + | 0.866025i | 3.32246 | − | 1.91822i | 0 | 2.91802 | + | 1.68472i | 1.00000i | 0 | 3.83645 | ||||||||||
415.1 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | −3.32246 | − | 1.91822i | 0 | −2.91802 | + | 1.68472i | 1.00000i | 0 | 3.83645 | ||||||||||
415.2 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | −2.40542 | − | 1.38877i | 0 | 0.759011 | − | 0.438215i | 1.00000i | 0 | 2.77754 | ||||||||||
415.3 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | −0.515076 | − | 0.297379i | 0 | −1.45217 | + | 0.838409i | 1.00000i | 0 | 0.594758 | ||||||||||
415.4 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.419378 | + | 0.242128i | 0 | 4.37722 | − | 2.52719i | 1.00000i | 0 | −0.484256 | ||||||||||
415.5 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 0.548308 | + | 0.316566i | 0 | 2.15366 | − | 1.24342i | 1.00000i | 0 | −0.633132 | ||||||||||
415.6 | −0.866025 | + | 0.500000i | 0 | 0.500000 | − | 0.866025i | 2.53992 | + | 1.46642i | 0 | 1.90832 | − | 1.10177i | 1.00000i | 0 | −2.93284 | ||||||||||
See all 28 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
9.c | even | 3 | 1 | inner |
13.b | even | 2 | 1 | inner |
117.t | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 702.2.t.a | 28 | |
3.b | odd | 2 | 1 | 234.2.t.a | ✓ | 28 | |
9.c | even | 3 | 1 | inner | 702.2.t.a | 28 | |
9.c | even | 3 | 1 | 2106.2.b.d | 14 | ||
9.d | odd | 6 | 1 | 234.2.t.a | ✓ | 28 | |
9.d | odd | 6 | 1 | 2106.2.b.c | 14 | ||
13.b | even | 2 | 1 | inner | 702.2.t.a | 28 | |
39.d | odd | 2 | 1 | 234.2.t.a | ✓ | 28 | |
117.n | odd | 6 | 1 | 234.2.t.a | ✓ | 28 | |
117.n | odd | 6 | 1 | 2106.2.b.c | 14 | ||
117.t | even | 6 | 1 | inner | 702.2.t.a | 28 | |
117.t | even | 6 | 1 | 2106.2.b.d | 14 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
234.2.t.a | ✓ | 28 | 3.b | odd | 2 | 1 | |
234.2.t.a | ✓ | 28 | 9.d | odd | 6 | 1 | |
234.2.t.a | ✓ | 28 | 39.d | odd | 2 | 1 | |
234.2.t.a | ✓ | 28 | 117.n | odd | 6 | 1 | |
702.2.t.a | 28 | 1.a | even | 1 | 1 | trivial | |
702.2.t.a | 28 | 9.c | even | 3 | 1 | inner | |
702.2.t.a | 28 | 13.b | even | 2 | 1 | inner | |
702.2.t.a | 28 | 117.t | even | 6 | 1 | inner | |
2106.2.b.c | 14 | 9.d | odd | 6 | 1 | ||
2106.2.b.c | 14 | 117.n | odd | 6 | 1 | ||
2106.2.b.d | 14 | 9.c | even | 3 | 1 | ||
2106.2.b.d | 14 | 117.t | even | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(702, [\chi])\).