Properties

Label 2106.2.b.d.649.14
Level $2106$
Weight $2$
Character 2106.649
Analytic conductor $16.816$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [2106,2,Mod(649,2106)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("2106.649"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2106, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 2106 = 2 \cdot 3^{4} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2106.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,0,-14,0,0,0,0,0,0,0,0,-2,8] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(14)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8164946657\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 34x^{12} + 435x^{10} + 2617x^{8} + 7651x^{6} + 10260x^{4} + 5589x^{2} + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 649.14
Root \(-2.42952i\) of defining polynomial
Character \(\chi\) \(=\) 2106.649
Dual form 2106.2.b.d.649.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +3.15852i q^{5} +1.57492i q^{7} -1.00000i q^{8} -3.15852 q^{10} +3.76656i q^{11} +(2.57405 + 2.52473i) q^{13} -1.57492 q^{14} +1.00000 q^{16} -7.06565 q^{17} -3.76656i q^{19} -3.15852i q^{20} -3.76656 q^{22} -3.69746 q^{23} -4.97624 q^{25} +(-2.52473 + 2.57405i) q^{26} -1.57492i q^{28} +0.218255 q^{29} +3.06910i q^{31} +1.00000i q^{32} -7.06565i q^{34} -4.97440 q^{35} -0.292126i q^{37} +3.76656 q^{38} +3.15852 q^{40} +7.38168i q^{41} +6.11671 q^{43} -3.76656i q^{44} -3.69746i q^{46} +7.13476i q^{47} +4.51964 q^{49} -4.97624i q^{50} +(-2.57405 - 2.52473i) q^{52} +14.4175 q^{53} -11.8968 q^{55} +1.57492 q^{56} +0.218255i q^{58} -10.4471i q^{59} -6.00013 q^{61} -3.06910 q^{62} -1.00000 q^{64} +(-7.97440 + 8.13019i) q^{65} -7.31599i q^{67} +7.06565 q^{68} -4.97440i q^{70} +0.772410i q^{71} -13.5342i q^{73} +0.292126 q^{74} +3.76656i q^{76} -5.93202 q^{77} -12.6807 q^{79} +3.15852i q^{80} -7.38168 q^{82} -0.363495i q^{83} -22.3170i q^{85} +6.11671i q^{86} +3.76656 q^{88} -7.06555i q^{89} +(-3.97624 + 4.05392i) q^{91} +3.69746 q^{92} -7.13476 q^{94} +11.8968 q^{95} +0.618592i q^{97} +4.51964i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 14 q^{4} - 2 q^{13} + 8 q^{14} + 14 q^{16} - 8 q^{17} - 8 q^{23} - 14 q^{25} - 4 q^{26} - 16 q^{29} + 34 q^{35} + 4 q^{43} - 10 q^{49} + 2 q^{52} + 60 q^{53} - 8 q^{56} - 28 q^{61} - 34 q^{62} - 14 q^{64}+ \cdots + 8 q^{92}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2106\mathbb{Z}\right)^\times\).

\(n\) \(1379\) \(1783\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 3.15852i 1.41253i 0.707946 + 0.706266i \(0.249622\pi\)
−0.707946 + 0.706266i \(0.750378\pi\)
\(6\) 0 0
\(7\) 1.57492i 0.595262i 0.954681 + 0.297631i \(0.0961966\pi\)
−0.954681 + 0.297631i \(0.903803\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −3.15852 −0.998811
\(11\) 3.76656i 1.13566i 0.823146 + 0.567830i \(0.192217\pi\)
−0.823146 + 0.567830i \(0.807783\pi\)
\(12\) 0 0
\(13\) 2.57405 + 2.52473i 0.713914 + 0.700234i
\(14\) −1.57492 −0.420914
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −7.06565 −1.71367 −0.856836 0.515588i \(-0.827573\pi\)
−0.856836 + 0.515588i \(0.827573\pi\)
\(18\) 0 0
\(19\) 3.76656i 0.864108i −0.901848 0.432054i \(-0.857789\pi\)
0.901848 0.432054i \(-0.142211\pi\)
\(20\) 3.15852i 0.706266i
\(21\) 0 0
\(22\) −3.76656 −0.803033
\(23\) −3.69746 −0.770974 −0.385487 0.922713i \(-0.625967\pi\)
−0.385487 + 0.922713i \(0.625967\pi\)
\(24\) 0 0
\(25\) −4.97624 −0.995247
\(26\) −2.52473 + 2.57405i −0.495140 + 0.504813i
\(27\) 0 0
\(28\) 1.57492i 0.297631i
\(29\) 0.218255 0.0405290 0.0202645 0.999795i \(-0.493549\pi\)
0.0202645 + 0.999795i \(0.493549\pi\)
\(30\) 0 0
\(31\) 3.06910i 0.551227i 0.961269 + 0.275613i \(0.0888809\pi\)
−0.961269 + 0.275613i \(0.911119\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 7.06565i 1.21175i
\(35\) −4.97440 −0.840827
\(36\) 0 0
\(37\) 0.292126i 0.0480251i −0.999712 0.0240126i \(-0.992356\pi\)
0.999712 0.0240126i \(-0.00764417\pi\)
\(38\) 3.76656 0.611017
\(39\) 0 0
\(40\) 3.15852 0.499406
\(41\) 7.38168i 1.15282i 0.817159 + 0.576412i \(0.195548\pi\)
−0.817159 + 0.576412i \(0.804452\pi\)
\(42\) 0 0
\(43\) 6.11671 0.932789 0.466395 0.884577i \(-0.345553\pi\)
0.466395 + 0.884577i \(0.345553\pi\)
\(44\) 3.76656i 0.567830i
\(45\) 0 0
\(46\) 3.69746i 0.545161i
\(47\) 7.13476i 1.04071i 0.853950 + 0.520356i \(0.174201\pi\)
−0.853950 + 0.520356i \(0.825799\pi\)
\(48\) 0 0
\(49\) 4.51964 0.645663
\(50\) 4.97624i 0.703746i
\(51\) 0 0
\(52\) −2.57405 2.52473i −0.356957 0.350117i
\(53\) 14.4175 1.98040 0.990201 0.139649i \(-0.0445973\pi\)
0.990201 + 0.139649i \(0.0445973\pi\)
\(54\) 0 0
\(55\) −11.8968 −1.60416
\(56\) 1.57492 0.210457
\(57\) 0 0
\(58\) 0.218255i 0.0286583i
\(59\) 10.4471i 1.36010i −0.733168 0.680048i \(-0.761959\pi\)
0.733168 0.680048i \(-0.238041\pi\)
\(60\) 0 0
\(61\) −6.00013 −0.768239 −0.384119 0.923283i \(-0.625495\pi\)
−0.384119 + 0.923283i \(0.625495\pi\)
\(62\) −3.06910 −0.389776
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −7.97440 + 8.13019i −0.989103 + 1.00843i
\(66\) 0 0
\(67\) 7.31599i 0.893790i −0.894586 0.446895i \(-0.852530\pi\)
0.894586 0.446895i \(-0.147470\pi\)
\(68\) 7.06565 0.856836
\(69\) 0 0
\(70\) 4.97440i 0.594555i
\(71\) 0.772410i 0.0916682i 0.998949 + 0.0458341i \(0.0145946\pi\)
−0.998949 + 0.0458341i \(0.985405\pi\)
\(72\) 0 0
\(73\) 13.5342i 1.58406i −0.610480 0.792032i \(-0.709024\pi\)
0.610480 0.792032i \(-0.290976\pi\)
\(74\) 0.292126 0.0339589
\(75\) 0 0
\(76\) 3.76656i 0.432054i
\(77\) −5.93202 −0.676016
\(78\) 0 0
\(79\) −12.6807 −1.42669 −0.713343 0.700815i \(-0.752820\pi\)
−0.713343 + 0.700815i \(0.752820\pi\)
\(80\) 3.15852i 0.353133i
\(81\) 0 0
\(82\) −7.38168 −0.815170
\(83\) 0.363495i 0.0398987i −0.999801 0.0199494i \(-0.993650\pi\)
0.999801 0.0199494i \(-0.00635050\pi\)
\(84\) 0 0
\(85\) 22.3170i 2.42062i
\(86\) 6.11671i 0.659581i
\(87\) 0 0
\(88\) 3.76656 0.401517
\(89\) 7.06555i 0.748947i −0.927238 0.374473i \(-0.877824\pi\)
0.927238 0.374473i \(-0.122176\pi\)
\(90\) 0 0
\(91\) −3.97624 + 4.05392i −0.416823 + 0.424966i
\(92\) 3.69746 0.385487
\(93\) 0 0
\(94\) −7.13476 −0.735894
\(95\) 11.8968 1.22058
\(96\) 0 0
\(97\) 0.618592i 0.0628085i 0.999507 + 0.0314042i \(0.00999792\pi\)
−0.999507 + 0.0314042i \(0.990002\pi\)
\(98\) 4.51964i 0.456552i
\(99\) 0 0
\(100\) 4.97624 0.497624
\(101\) −8.33563 −0.829426 −0.414713 0.909952i \(-0.636118\pi\)
−0.414713 + 0.909952i \(0.636118\pi\)
\(102\) 0 0
\(103\) −9.89675 −0.975156 −0.487578 0.873079i \(-0.662119\pi\)
−0.487578 + 0.873079i \(0.662119\pi\)
\(104\) 2.52473 2.57405i 0.247570 0.252407i
\(105\) 0 0
\(106\) 14.4175i 1.40036i
\(107\) −0.115559 −0.0111715 −0.00558574 0.999984i \(-0.501778\pi\)
−0.00558574 + 0.999984i \(0.501778\pi\)
\(108\) 0 0
\(109\) 14.1301i 1.35342i 0.736251 + 0.676708i \(0.236594\pi\)
−0.736251 + 0.676708i \(0.763406\pi\)
\(110\) 11.8968i 1.13431i
\(111\) 0 0
\(112\) 1.57492i 0.148816i
\(113\) −19.4194 −1.82682 −0.913410 0.407041i \(-0.866561\pi\)
−0.913410 + 0.407041i \(0.866561\pi\)
\(114\) 0 0
\(115\) 11.6785i 1.08903i
\(116\) −0.218255 −0.0202645
\(117\) 0 0
\(118\) 10.4471 0.961733
\(119\) 11.1278i 1.02009i
\(120\) 0 0
\(121\) −3.18698 −0.289726
\(122\) 6.00013i 0.543227i
\(123\) 0 0
\(124\) 3.06910i 0.275613i
\(125\) 0.0750557i 0.00671318i
\(126\) 0 0
\(127\) 5.42904 0.481750 0.240875 0.970556i \(-0.422566\pi\)
0.240875 + 0.970556i \(0.422566\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −8.13019 7.97440i −0.713065 0.699401i
\(131\) 12.6868 1.10845 0.554227 0.832365i \(-0.313014\pi\)
0.554227 + 0.832365i \(0.313014\pi\)
\(132\) 0 0
\(133\) 5.93202 0.514371
\(134\) 7.31599 0.632005
\(135\) 0 0
\(136\) 7.06565i 0.605875i
\(137\) 7.35541i 0.628415i −0.949354 0.314207i \(-0.898261\pi\)
0.949354 0.314207i \(-0.101739\pi\)
\(138\) 0 0
\(139\) −7.31119 −0.620127 −0.310063 0.950716i \(-0.600350\pi\)
−0.310063 + 0.950716i \(0.600350\pi\)
\(140\) 4.97440 0.420414
\(141\) 0 0
\(142\) −0.772410 −0.0648192
\(143\) −9.50955 + 9.69532i −0.795228 + 0.810764i
\(144\) 0 0
\(145\) 0.689364i 0.0572485i
\(146\) 13.5342 1.12010
\(147\) 0 0
\(148\) 0.292126i 0.0240126i
\(149\) 23.7638i 1.94680i 0.229107 + 0.973401i \(0.426420\pi\)
−0.229107 + 0.973401i \(0.573580\pi\)
\(150\) 0 0
\(151\) 10.3890i 0.845442i −0.906260 0.422721i \(-0.861075\pi\)
0.906260 0.422721i \(-0.138925\pi\)
\(152\) −3.76656 −0.305508
\(153\) 0 0
\(154\) 5.93202i 0.478016i
\(155\) −9.69381 −0.778626
\(156\) 0 0
\(157\) −9.14824 −0.730109 −0.365054 0.930986i \(-0.618950\pi\)
−0.365054 + 0.930986i \(0.618950\pi\)
\(158\) 12.6807i 1.00882i
\(159\) 0 0
\(160\) −3.15852 −0.249703
\(161\) 5.82319i 0.458932i
\(162\) 0 0
\(163\) 13.5935i 1.06473i −0.846516 0.532363i \(-0.821304\pi\)
0.846516 0.532363i \(-0.178696\pi\)
\(164\) 7.38168i 0.576412i
\(165\) 0 0
\(166\) 0.363495 0.0282126
\(167\) 7.16615i 0.554534i −0.960793 0.277267i \(-0.910571\pi\)
0.960793 0.277267i \(-0.0894286\pi\)
\(168\) 0 0
\(169\) 0.251488 + 12.9976i 0.0193452 + 0.999813i
\(170\) 22.3170 1.71164
\(171\) 0 0
\(172\) −6.11671 −0.466395
\(173\) −3.01163 −0.228970 −0.114485 0.993425i \(-0.536522\pi\)
−0.114485 + 0.993425i \(0.536522\pi\)
\(174\) 0 0
\(175\) 7.83716i 0.592433i
\(176\) 3.76656i 0.283915i
\(177\) 0 0
\(178\) 7.06555 0.529585
\(179\) 19.2107 1.43587 0.717936 0.696109i \(-0.245087\pi\)
0.717936 + 0.696109i \(0.245087\pi\)
\(180\) 0 0
\(181\) 9.14810 0.679973 0.339987 0.940430i \(-0.389577\pi\)
0.339987 + 0.940430i \(0.389577\pi\)
\(182\) −4.05392 3.97624i −0.300496 0.294738i
\(183\) 0 0
\(184\) 3.69746i 0.272580i
\(185\) 0.922684 0.0678371
\(186\) 0 0
\(187\) 26.6132i 1.94615i
\(188\) 7.13476i 0.520356i
\(189\) 0 0
\(190\) 11.8968i 0.863081i
\(191\) −0.263254 −0.0190484 −0.00952420 0.999955i \(-0.503032\pi\)
−0.00952420 + 0.999955i \(0.503032\pi\)
\(192\) 0 0
\(193\) 11.7167i 0.843390i 0.906738 + 0.421695i \(0.138565\pi\)
−0.906738 + 0.421695i \(0.861435\pi\)
\(194\) −0.618592 −0.0444123
\(195\) 0 0
\(196\) −4.51964 −0.322831
\(197\) 20.5283i 1.46258i 0.682066 + 0.731291i \(0.261082\pi\)
−0.682066 + 0.731291i \(0.738918\pi\)
\(198\) 0 0
\(199\) 5.95247 0.421960 0.210980 0.977490i \(-0.432335\pi\)
0.210980 + 0.977490i \(0.432335\pi\)
\(200\) 4.97624i 0.351873i
\(201\) 0 0
\(202\) 8.33563i 0.586493i
\(203\) 0.343734i 0.0241254i
\(204\) 0 0
\(205\) −23.3152 −1.62840
\(206\) 9.89675i 0.689539i
\(207\) 0 0
\(208\) 2.57405 + 2.52473i 0.178478 + 0.175058i
\(209\) 14.1870 0.981334
\(210\) 0 0
\(211\) −17.3925 −1.19735 −0.598674 0.800993i \(-0.704306\pi\)
−0.598674 + 0.800993i \(0.704306\pi\)
\(212\) −14.4175 −0.990201
\(213\) 0 0
\(214\) 0.115559i 0.00789943i
\(215\) 19.3197i 1.31759i
\(216\) 0 0
\(217\) −4.83358 −0.328125
\(218\) −14.1301 −0.957010
\(219\) 0 0
\(220\) 11.8968 0.802079
\(221\) −18.1874 17.8389i −1.22341 1.19997i
\(222\) 0 0
\(223\) 23.7456i 1.59012i 0.606528 + 0.795062i \(0.292562\pi\)
−0.606528 + 0.795062i \(0.707438\pi\)
\(224\) −1.57492 −0.105229
\(225\) 0 0
\(226\) 19.4194i 1.29176i
\(227\) 4.54135i 0.301420i −0.988578 0.150710i \(-0.951844\pi\)
0.988578 0.150710i \(-0.0481559\pi\)
\(228\) 0 0
\(229\) 11.9711i 0.791074i −0.918450 0.395537i \(-0.870558\pi\)
0.918450 0.395537i \(-0.129442\pi\)
\(230\) 11.6785 0.770057
\(231\) 0 0
\(232\) 0.218255i 0.0143292i
\(233\) −10.6895 −0.700290 −0.350145 0.936696i \(-0.613868\pi\)
−0.350145 + 0.936696i \(0.613868\pi\)
\(234\) 0 0
\(235\) −22.5353 −1.47004
\(236\) 10.4471i 0.680048i
\(237\) 0 0
\(238\) 11.1278 0.721309
\(239\) 24.0968i 1.55869i 0.626594 + 0.779346i \(0.284448\pi\)
−0.626594 + 0.779346i \(0.715552\pi\)
\(240\) 0 0
\(241\) 11.1299i 0.716941i 0.933541 + 0.358470i \(0.116702\pi\)
−0.933541 + 0.358470i \(0.883298\pi\)
\(242\) 3.18698i 0.204867i
\(243\) 0 0
\(244\) 6.00013 0.384119
\(245\) 14.2754i 0.912019i
\(246\) 0 0
\(247\) 9.50955 9.69532i 0.605078 0.616899i
\(248\) 3.06910 0.194888
\(249\) 0 0
\(250\) −0.0750557 −0.00474694
\(251\) −11.3356 −0.715499 −0.357749 0.933818i \(-0.616456\pi\)
−0.357749 + 0.933818i \(0.616456\pi\)
\(252\) 0 0
\(253\) 13.9267i 0.875565i
\(254\) 5.42904i 0.340648i
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −8.32053 −0.519020 −0.259510 0.965740i \(-0.583561\pi\)
−0.259510 + 0.965740i \(0.583561\pi\)
\(258\) 0 0
\(259\) 0.460073 0.0285876
\(260\) 7.97440 8.13019i 0.494551 0.504213i
\(261\) 0 0
\(262\) 12.6868i 0.783796i
\(263\) 14.3827 0.886872 0.443436 0.896306i \(-0.353759\pi\)
0.443436 + 0.896306i \(0.353759\pi\)
\(264\) 0 0
\(265\) 45.5381i 2.79738i
\(266\) 5.93202i 0.363715i
\(267\) 0 0
\(268\) 7.31599i 0.446895i
\(269\) −9.01366 −0.549572 −0.274786 0.961505i \(-0.588607\pi\)
−0.274786 + 0.961505i \(0.588607\pi\)
\(270\) 0 0
\(271\) 19.9094i 1.20941i 0.796449 + 0.604705i \(0.206709\pi\)
−0.796449 + 0.604705i \(0.793291\pi\)
\(272\) −7.06565 −0.428418
\(273\) 0 0
\(274\) 7.35541 0.444356
\(275\) 18.7433i 1.13026i
\(276\) 0 0
\(277\) 13.3831 0.804115 0.402058 0.915614i \(-0.368295\pi\)
0.402058 + 0.915614i \(0.368295\pi\)
\(278\) 7.31119i 0.438496i
\(279\) 0 0
\(280\) 4.97440i 0.297277i
\(281\) 0.700291i 0.0417759i −0.999782 0.0208879i \(-0.993351\pi\)
0.999782 0.0208879i \(-0.00664932\pi\)
\(282\) 0 0
\(283\) 19.4357 1.15533 0.577665 0.816274i \(-0.303964\pi\)
0.577665 + 0.816274i \(0.303964\pi\)
\(284\) 0.772410i 0.0458341i
\(285\) 0 0
\(286\) −9.69532 9.50955i −0.573297 0.562311i
\(287\) −11.6255 −0.686233
\(288\) 0 0
\(289\) 32.9235 1.93668
\(290\) −0.689364 −0.0404808
\(291\) 0 0
\(292\) 13.5342i 0.792032i
\(293\) 4.25760i 0.248732i −0.992236 0.124366i \(-0.960310\pi\)
0.992236 0.124366i \(-0.0396897\pi\)
\(294\) 0 0
\(295\) 32.9973 1.92118
\(296\) −0.292126 −0.0169795
\(297\) 0 0
\(298\) −23.7638 −1.37660
\(299\) −9.51746 9.33509i −0.550409 0.539862i
\(300\) 0 0
\(301\) 9.63330i 0.555254i
\(302\) 10.3890 0.597818
\(303\) 0 0
\(304\) 3.76656i 0.216027i
\(305\) 18.9515i 1.08516i
\(306\) 0 0
\(307\) 7.35088i 0.419537i −0.977751 0.209768i \(-0.932729\pi\)
0.977751 0.209768i \(-0.0672710\pi\)
\(308\) 5.93202 0.338008
\(309\) 0 0
\(310\) 9.69381i 0.550571i
\(311\) 2.81511 0.159630 0.0798152 0.996810i \(-0.474567\pi\)
0.0798152 + 0.996810i \(0.474567\pi\)
\(312\) 0 0
\(313\) 27.0917 1.53131 0.765657 0.643249i \(-0.222414\pi\)
0.765657 + 0.643249i \(0.222414\pi\)
\(314\) 9.14824i 0.516265i
\(315\) 0 0
\(316\) 12.6807 0.713343
\(317\) 0.756736i 0.0425025i −0.999774 0.0212513i \(-0.993235\pi\)
0.999774 0.0212513i \(-0.00676499\pi\)
\(318\) 0 0
\(319\) 0.822072i 0.0460272i
\(320\) 3.15852i 0.176567i
\(321\) 0 0
\(322\) 5.82319 0.324514
\(323\) 26.6132i 1.48080i
\(324\) 0 0
\(325\) −12.8091 12.5636i −0.710521 0.696906i
\(326\) 13.5935 0.752875
\(327\) 0 0
\(328\) 7.38168 0.407585
\(329\) −11.2366 −0.619496
\(330\) 0 0
\(331\) 32.9672i 1.81204i −0.423234 0.906021i \(-0.639105\pi\)
0.423234 0.906021i \(-0.360895\pi\)
\(332\) 0.363495i 0.0199494i
\(333\) 0 0
\(334\) 7.16615 0.392114
\(335\) 23.1077 1.26251
\(336\) 0 0
\(337\) 4.50695 0.245509 0.122755 0.992437i \(-0.460827\pi\)
0.122755 + 0.992437i \(0.460827\pi\)
\(338\) −12.9976 + 0.251488i −0.706974 + 0.0136791i
\(339\) 0 0
\(340\) 22.3170i 1.21031i
\(341\) −11.5600 −0.626007
\(342\) 0 0
\(343\) 18.1425i 0.979601i
\(344\) 6.11671i 0.329791i
\(345\) 0 0
\(346\) 3.01163i 0.161906i
\(347\) 29.9717 1.60897 0.804484 0.593975i \(-0.202442\pi\)
0.804484 + 0.593975i \(0.202442\pi\)
\(348\) 0 0
\(349\) 17.4351i 0.933278i 0.884448 + 0.466639i \(0.154535\pi\)
−0.884448 + 0.466639i \(0.845465\pi\)
\(350\) 7.83716 0.418914
\(351\) 0 0
\(352\) −3.76656 −0.200758
\(353\) 4.51846i 0.240493i −0.992744 0.120247i \(-0.961631\pi\)
0.992744 0.120247i \(-0.0383685\pi\)
\(354\) 0 0
\(355\) −2.43967 −0.129484
\(356\) 7.06555i 0.374473i
\(357\) 0 0
\(358\) 19.2107i 1.01531i
\(359\) 30.5681i 1.61332i −0.591013 0.806662i \(-0.701272\pi\)
0.591013 0.806662i \(-0.298728\pi\)
\(360\) 0 0
\(361\) 4.81302 0.253317
\(362\) 9.14810i 0.480814i
\(363\) 0 0
\(364\) 3.97624 4.05392i 0.208411 0.212483i
\(365\) 42.7481 2.23754
\(366\) 0 0
\(367\) −10.6684 −0.556886 −0.278443 0.960453i \(-0.589818\pi\)
−0.278443 + 0.960453i \(0.589818\pi\)
\(368\) −3.69746 −0.192743
\(369\) 0 0
\(370\) 0.922684i 0.0479681i
\(371\) 22.7064i 1.17886i
\(372\) 0 0
\(373\) 8.36446 0.433095 0.216548 0.976272i \(-0.430520\pi\)
0.216548 + 0.976272i \(0.430520\pi\)
\(374\) 26.6132 1.37614
\(375\) 0 0
\(376\) 7.13476 0.367947
\(377\) 0.561801 + 0.551036i 0.0289342 + 0.0283798i
\(378\) 0 0
\(379\) 26.5494i 1.36375i 0.731467 + 0.681877i \(0.238836\pi\)
−0.731467 + 0.681877i \(0.761164\pi\)
\(380\) −11.8968 −0.610290
\(381\) 0 0
\(382\) 0.263254i 0.0134693i
\(383\) 3.27501i 0.167345i −0.996493 0.0836727i \(-0.973335\pi\)
0.996493 0.0836727i \(-0.0266650\pi\)
\(384\) 0 0
\(385\) 18.7364i 0.954895i
\(386\) −11.7167 −0.596367
\(387\) 0 0
\(388\) 0.618592i 0.0314042i
\(389\) −25.5198 −1.29390 −0.646951 0.762531i \(-0.723956\pi\)
−0.646951 + 0.762531i \(0.723956\pi\)
\(390\) 0 0
\(391\) 26.1250 1.32120
\(392\) 4.51964i 0.228276i
\(393\) 0 0
\(394\) −20.5283 −1.03420
\(395\) 40.0521i 2.01524i
\(396\) 0 0
\(397\) 4.70957i 0.236367i 0.992992 + 0.118183i \(0.0377071\pi\)
−0.992992 + 0.118183i \(0.962293\pi\)
\(398\) 5.95247i 0.298371i
\(399\) 0 0
\(400\) −4.97624 −0.248812
\(401\) 14.4833i 0.723263i 0.932321 + 0.361631i \(0.117780\pi\)
−0.932321 + 0.361631i \(0.882220\pi\)
\(402\) 0 0
\(403\) −7.74865 + 7.90002i −0.385988 + 0.393528i
\(404\) 8.33563 0.414713
\(405\) 0 0
\(406\) −0.343734 −0.0170592
\(407\) 1.10031 0.0545403
\(408\) 0 0
\(409\) 16.4189i 0.811860i 0.913904 + 0.405930i \(0.133052\pi\)
−0.913904 + 0.405930i \(0.866948\pi\)
\(410\) 23.3152i 1.15145i
\(411\) 0 0
\(412\) 9.89675 0.487578
\(413\) 16.4533 0.809614
\(414\) 0 0
\(415\) 1.14810 0.0563582
\(416\) −2.52473 + 2.57405i −0.123785 + 0.126203i
\(417\) 0 0
\(418\) 14.1870i 0.693908i
\(419\) −14.3082 −0.699002 −0.349501 0.936936i \(-0.613649\pi\)
−0.349501 + 0.936936i \(0.613649\pi\)
\(420\) 0 0
\(421\) 24.0949i 1.17432i 0.809472 + 0.587158i \(0.199753\pi\)
−0.809472 + 0.587158i \(0.800247\pi\)
\(422\) 17.3925i 0.846653i
\(423\) 0 0
\(424\) 14.4175i 0.700178i
\(425\) 35.1604 1.70553
\(426\) 0 0
\(427\) 9.44971i 0.457304i
\(428\) 0.115559 0.00558574
\(429\) 0 0
\(430\) −19.3197 −0.931680
\(431\) 9.12376i 0.439476i −0.975559 0.219738i \(-0.929480\pi\)
0.975559 0.219738i \(-0.0705202\pi\)
\(432\) 0 0
\(433\) 0.372606 0.0179063 0.00895315 0.999960i \(-0.497150\pi\)
0.00895315 + 0.999960i \(0.497150\pi\)
\(434\) 4.83358i 0.232019i
\(435\) 0 0
\(436\) 14.1301i 0.676708i
\(437\) 13.9267i 0.666205i
\(438\) 0 0
\(439\) −3.82319 −0.182471 −0.0912355 0.995829i \(-0.529082\pi\)
−0.0912355 + 0.995829i \(0.529082\pi\)
\(440\) 11.8968i 0.567155i
\(441\) 0 0
\(442\) 17.8389 18.1874i 0.848508 0.865085i
\(443\) 7.96406 0.378384 0.189192 0.981940i \(-0.439413\pi\)
0.189192 + 0.981940i \(0.439413\pi\)
\(444\) 0 0
\(445\) 22.3167 1.05791
\(446\) −23.7456 −1.12439
\(447\) 0 0
\(448\) 1.57492i 0.0744078i
\(449\) 26.4088i 1.24631i 0.782098 + 0.623155i \(0.214149\pi\)
−0.782098 + 0.623155i \(0.785851\pi\)
\(450\) 0 0
\(451\) −27.8035 −1.30922
\(452\) 19.4194 0.913410
\(453\) 0 0
\(454\) 4.54135 0.213136
\(455\) −12.8044 12.5590i −0.600278 0.588776i
\(456\) 0 0
\(457\) 8.61483i 0.402985i 0.979490 + 0.201492i \(0.0645791\pi\)
−0.979490 + 0.201492i \(0.935421\pi\)
\(458\) 11.9711 0.559374
\(459\) 0 0
\(460\) 11.6785i 0.544513i
\(461\) 27.7998i 1.29477i 0.762164 + 0.647384i \(0.224137\pi\)
−0.762164 + 0.647384i \(0.775863\pi\)
\(462\) 0 0
\(463\) 36.3097i 1.68745i 0.536773 + 0.843727i \(0.319643\pi\)
−0.536773 + 0.843727i \(0.680357\pi\)
\(464\) 0.218255 0.0101323
\(465\) 0 0
\(466\) 10.6895i 0.495180i
\(467\) −13.8295 −0.639954 −0.319977 0.947425i \(-0.603675\pi\)
−0.319977 + 0.947425i \(0.603675\pi\)
\(468\) 0 0
\(469\) 11.5221 0.532040
\(470\) 22.5353i 1.03947i
\(471\) 0 0
\(472\) −10.4471 −0.480866
\(473\) 23.0389i 1.05933i
\(474\) 0 0
\(475\) 18.7433i 0.860002i
\(476\) 11.1278i 0.510043i
\(477\) 0 0
\(478\) −24.0968 −1.10216
\(479\) 28.2335i 1.29002i −0.764174 0.645010i \(-0.776853\pi\)
0.764174 0.645010i \(-0.223147\pi\)
\(480\) 0 0
\(481\) 0.737538 0.751946i 0.0336288 0.0342858i
\(482\) −11.1299 −0.506954
\(483\) 0 0
\(484\) 3.18698 0.144863
\(485\) −1.95383 −0.0887190
\(486\) 0 0
\(487\) 15.5579i 0.704995i −0.935813 0.352498i \(-0.885332\pi\)
0.935813 0.352498i \(-0.114668\pi\)
\(488\) 6.00013i 0.271613i
\(489\) 0 0
\(490\) −14.2754 −0.644895
\(491\) −14.9787 −0.675980 −0.337990 0.941150i \(-0.609747\pi\)
−0.337990 + 0.941150i \(0.609747\pi\)
\(492\) 0 0
\(493\) −1.54212 −0.0694535
\(494\) 9.69532 + 9.50955i 0.436213 + 0.427855i
\(495\) 0 0
\(496\) 3.06910i 0.137807i
\(497\) −1.21648 −0.0545666
\(498\) 0 0
\(499\) 34.1030i 1.52666i 0.646008 + 0.763330i \(0.276437\pi\)
−0.646008 + 0.763330i \(0.723563\pi\)
\(500\) 0.0750557i 0.00335659i
\(501\) 0 0
\(502\) 11.3356i 0.505934i
\(503\) 22.7259 1.01330 0.506648 0.862153i \(-0.330884\pi\)
0.506648 + 0.862153i \(0.330884\pi\)
\(504\) 0 0
\(505\) 26.3282i 1.17159i
\(506\) 13.9267 0.619118
\(507\) 0 0
\(508\) −5.42904 −0.240875
\(509\) 6.33426i 0.280761i −0.990098 0.140380i \(-0.955167\pi\)
0.990098 0.140380i \(-0.0448326\pi\)
\(510\) 0 0
\(511\) 21.3153 0.942933
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 8.32053i 0.367003i
\(515\) 31.2591i 1.37744i
\(516\) 0 0
\(517\) −26.8735 −1.18189
\(518\) 0.460073i 0.0202145i
\(519\) 0 0
\(520\) 8.13019 + 7.97440i 0.356532 + 0.349701i
\(521\) −19.5169 −0.855052 −0.427526 0.904003i \(-0.640615\pi\)
−0.427526 + 0.904003i \(0.640615\pi\)
\(522\) 0 0
\(523\) 4.76549 0.208380 0.104190 0.994557i \(-0.466775\pi\)
0.104190 + 0.994557i \(0.466775\pi\)
\(524\) −12.6868 −0.554227
\(525\) 0 0
\(526\) 14.3827i 0.627113i
\(527\) 21.6852i 0.944622i
\(528\) 0 0
\(529\) −9.32879 −0.405599
\(530\) −45.5381 −1.97805
\(531\) 0 0
\(532\) −5.93202 −0.257186
\(533\) −18.6367 + 19.0008i −0.807247 + 0.823017i
\(534\) 0 0
\(535\) 0.364994i 0.0157801i
\(536\) −7.31599 −0.316002
\(537\) 0 0
\(538\) 9.01366i 0.388606i
\(539\) 17.0235i 0.733254i
\(540\) 0 0
\(541\) 25.2325i 1.08483i 0.840111 + 0.542414i \(0.182490\pi\)
−0.840111 + 0.542414i \(0.817510\pi\)
\(542\) −19.9094 −0.855182
\(543\) 0 0
\(544\) 7.06565i 0.302937i
\(545\) −44.6301 −1.91174
\(546\) 0 0
\(547\) 28.7833 1.23069 0.615343 0.788260i \(-0.289018\pi\)
0.615343 + 0.788260i \(0.289018\pi\)
\(548\) 7.35541i 0.314207i
\(549\) 0 0
\(550\) 18.7433 0.799217
\(551\) 0.822072i 0.0350215i
\(552\) 0 0
\(553\) 19.9710i 0.849253i
\(554\) 13.3831i 0.568595i
\(555\) 0 0
\(556\) 7.31119 0.310063
\(557\) 11.4847i 0.486624i 0.969948 + 0.243312i \(0.0782339\pi\)
−0.969948 + 0.243312i \(0.921766\pi\)
\(558\) 0 0
\(559\) 15.7447 + 15.4430i 0.665931 + 0.653170i
\(560\) −4.97440 −0.210207
\(561\) 0 0
\(562\) 0.700291 0.0295400
\(563\) −14.8478 −0.625759 −0.312879 0.949793i \(-0.601294\pi\)
−0.312879 + 0.949793i \(0.601294\pi\)
\(564\) 0 0
\(565\) 61.3364i 2.58044i
\(566\) 19.4357i 0.816942i
\(567\) 0 0
\(568\) 0.772410 0.0324096
\(569\) −27.7762 −1.16444 −0.582220 0.813031i \(-0.697816\pi\)
−0.582220 + 0.813031i \(0.697816\pi\)
\(570\) 0 0
\(571\) −19.1208 −0.800180 −0.400090 0.916476i \(-0.631021\pi\)
−0.400090 + 0.916476i \(0.631021\pi\)
\(572\) 9.50955 9.69532i 0.397614 0.405382i
\(573\) 0 0
\(574\) 11.6255i 0.485240i
\(575\) 18.3994 0.767310
\(576\) 0 0
\(577\) 26.8961i 1.11970i 0.828595 + 0.559849i \(0.189141\pi\)
−0.828595 + 0.559849i \(0.810859\pi\)
\(578\) 32.9235i 1.36944i
\(579\) 0 0
\(580\) 0.689364i 0.0286243i
\(581\) 0.572474 0.0237502
\(582\) 0 0
\(583\) 54.3046i 2.24907i
\(584\) −13.5342 −0.560051
\(585\) 0 0
\(586\) 4.25760 0.175880
\(587\) 39.0047i 1.60990i 0.593344 + 0.804949i \(0.297807\pi\)
−0.593344 + 0.804949i \(0.702193\pi\)
\(588\) 0 0
\(589\) 11.5600 0.476320
\(590\) 32.9973i 1.35848i
\(591\) 0 0
\(592\) 0.292126i 0.0120063i
\(593\) 24.2756i 0.996881i 0.866924 + 0.498441i \(0.166094\pi\)
−0.866924 + 0.498441i \(0.833906\pi\)
\(594\) 0 0
\(595\) 35.1474 1.44090
\(596\) 23.7638i 0.973401i
\(597\) 0 0
\(598\) 9.33509 9.51746i 0.381740 0.389198i
\(599\) 19.0750 0.779385 0.389692 0.920945i \(-0.372581\pi\)
0.389692 + 0.920945i \(0.372581\pi\)
\(600\) 0 0
\(601\) −14.8668 −0.606431 −0.303216 0.952922i \(-0.598060\pi\)
−0.303216 + 0.952922i \(0.598060\pi\)
\(602\) −9.63330 −0.392624
\(603\) 0 0
\(604\) 10.3890i 0.422721i
\(605\) 10.0661i 0.409247i
\(606\) 0 0
\(607\) 36.7796 1.49284 0.746419 0.665476i \(-0.231771\pi\)
0.746419 + 0.665476i \(0.231771\pi\)
\(608\) 3.76656 0.152754
\(609\) 0 0
\(610\) 18.9515 0.767325
\(611\) −18.0133 + 18.3652i −0.728741 + 0.742978i
\(612\) 0 0
\(613\) 9.13501i 0.368959i 0.982836 + 0.184480i \(0.0590600\pi\)
−0.982836 + 0.184480i \(0.940940\pi\)
\(614\) 7.35088 0.296657
\(615\) 0 0
\(616\) 5.93202i 0.239008i
\(617\) 14.2610i 0.574127i 0.957912 + 0.287063i \(0.0926791\pi\)
−0.957912 + 0.287063i \(0.907321\pi\)
\(618\) 0 0
\(619\) 5.96528i 0.239765i −0.992788 0.119883i \(-0.961748\pi\)
0.992788 0.119883i \(-0.0382518\pi\)
\(620\) 9.69381 0.389313
\(621\) 0 0
\(622\) 2.81511i 0.112876i
\(623\) 11.1276 0.445820
\(624\) 0 0
\(625\) −25.1182 −1.00473
\(626\) 27.0917i 1.08280i
\(627\) 0 0
\(628\) 9.14824 0.365054
\(629\) 2.06406i 0.0822994i
\(630\) 0 0
\(631\) 3.19802i 0.127311i −0.997972 0.0636557i \(-0.979724\pi\)
0.997972 0.0636557i \(-0.0202759\pi\)
\(632\) 12.6807i 0.504410i
\(633\) 0 0
\(634\) 0.756736 0.0300538
\(635\) 17.1477i 0.680487i
\(636\) 0 0
\(637\) 11.6338 + 11.4109i 0.460947 + 0.452115i
\(638\) −0.822072 −0.0325462
\(639\) 0 0
\(640\) 3.15852 0.124851
\(641\) −30.9602 −1.22285 −0.611426 0.791301i \(-0.709404\pi\)
−0.611426 + 0.791301i \(0.709404\pi\)
\(642\) 0 0
\(643\) 29.4516i 1.16146i −0.814097 0.580729i \(-0.802768\pi\)
0.814097 0.580729i \(-0.197232\pi\)
\(644\) 5.82319i 0.229466i
\(645\) 0 0
\(646\) −26.6132 −1.04708
\(647\) 27.8656 1.09551 0.547756 0.836638i \(-0.315482\pi\)
0.547756 + 0.836638i \(0.315482\pi\)
\(648\) 0 0
\(649\) 39.3496 1.54461
\(650\) 12.5636 12.8091i 0.492787 0.502414i
\(651\) 0 0
\(652\) 13.5935i 0.532363i
\(653\) −18.9723 −0.742445 −0.371223 0.928544i \(-0.621061\pi\)
−0.371223 + 0.928544i \(0.621061\pi\)
\(654\) 0 0
\(655\) 40.0716i 1.56573i
\(656\) 7.38168i 0.288206i
\(657\) 0 0
\(658\) 11.2366i 0.438050i
\(659\) −18.1177 −0.705766 −0.352883 0.935667i \(-0.614799\pi\)
−0.352883 + 0.935667i \(0.614799\pi\)
\(660\) 0 0
\(661\) 23.7528i 0.923878i −0.886912 0.461939i \(-0.847154\pi\)
0.886912 0.461939i \(-0.152846\pi\)
\(662\) 32.9672 1.28131
\(663\) 0 0
\(664\) −0.363495 −0.0141063
\(665\) 18.7364i 0.726566i
\(666\) 0 0
\(667\) −0.806991 −0.0312468
\(668\) 7.16615i 0.277267i
\(669\) 0 0
\(670\) 23.1077i 0.892727i
\(671\) 22.5999i 0.872458i
\(672\) 0 0
\(673\) 24.2314 0.934052 0.467026 0.884244i \(-0.345325\pi\)
0.467026 + 0.884244i \(0.345325\pi\)
\(674\) 4.50695i 0.173601i
\(675\) 0 0
\(676\) −0.251488 12.9976i −0.00967261 0.499906i
\(677\) −19.5400 −0.750985 −0.375492 0.926826i \(-0.622526\pi\)
−0.375492 + 0.926826i \(0.622526\pi\)
\(678\) 0 0
\(679\) −0.974230 −0.0373875
\(680\) −22.3170 −0.855818
\(681\) 0 0
\(682\) 11.5600i 0.442654i
\(683\) 40.5718i 1.55244i −0.630465 0.776218i \(-0.717136\pi\)
0.630465 0.776218i \(-0.282864\pi\)
\(684\) 0 0
\(685\) 23.2322 0.887656
\(686\) −18.1425 −0.692683
\(687\) 0 0
\(688\) 6.11671 0.233197
\(689\) 37.1115 + 36.4004i 1.41384 + 1.38674i
\(690\) 0 0
\(691\) 29.6026i 1.12614i 0.826410 + 0.563069i \(0.190379\pi\)
−0.826410 + 0.563069i \(0.809621\pi\)
\(692\) 3.01163 0.114485
\(693\) 0 0
\(694\) 29.9717i 1.13771i
\(695\) 23.0925i 0.875949i
\(696\) 0 0
\(697\) 52.1564i 1.97556i
\(698\) −17.4351 −0.659927
\(699\) 0 0
\(700\) 7.83716i 0.296217i
\(701\) 14.6213 0.552238 0.276119 0.961123i \(-0.410952\pi\)
0.276119 + 0.961123i \(0.410952\pi\)
\(702\) 0 0
\(703\) −1.10031 −0.0414989
\(704\) 3.76656i 0.141958i
\(705\) 0 0
\(706\) 4.51846 0.170054
\(707\) 13.1279i 0.493726i
\(708\) 0 0
\(709\) 6.39968i 0.240345i −0.992753 0.120173i \(-0.961655\pi\)
0.992753 0.120173i \(-0.0383448\pi\)
\(710\) 2.43967i 0.0915592i
\(711\) 0 0
\(712\) −7.06555 −0.264793
\(713\) 11.3479i 0.424981i
\(714\) 0 0
\(715\) −30.6229 30.0361i −1.14523 1.12329i
\(716\) −19.2107 −0.717936
\(717\) 0 0
\(718\) 30.5681 1.14079
\(719\) −13.5954 −0.507022 −0.253511 0.967332i \(-0.581585\pi\)
−0.253511 + 0.967332i \(0.581585\pi\)
\(720\) 0 0
\(721\) 15.5866i 0.580474i
\(722\) 4.81302i 0.179122i
\(723\) 0 0
\(724\) −9.14810 −0.339987
\(725\) −1.08609 −0.0403364
\(726\) 0 0
\(727\) −22.2352 −0.824657 −0.412329 0.911035i \(-0.635284\pi\)
−0.412329 + 0.911035i \(0.635284\pi\)
\(728\) 4.05392 + 3.97624i 0.150248 + 0.147369i
\(729\) 0 0
\(730\) 42.7481i 1.58218i
\(731\) −43.2185 −1.59850
\(732\) 0 0
\(733\) 17.0624i 0.630213i 0.949056 + 0.315107i \(0.102040\pi\)
−0.949056 + 0.315107i \(0.897960\pi\)
\(734\) 10.6684i 0.393778i
\(735\) 0 0
\(736\) 3.69746i 0.136290i
\(737\) 27.5561 1.01504
\(738\) 0 0
\(739\) 47.4169i 1.74426i 0.489274 + 0.872130i \(0.337262\pi\)
−0.489274 + 0.872130i \(0.662738\pi\)
\(740\) −0.922684 −0.0339185
\(741\) 0 0
\(742\) −22.7064 −0.833579
\(743\) 26.2945i 0.964650i −0.875992 0.482325i \(-0.839792\pi\)
0.875992 0.482325i \(-0.160208\pi\)
\(744\) 0 0
\(745\) −75.0583 −2.74992
\(746\) 8.36446i 0.306245i
\(747\) 0 0
\(748\) 26.6132i 0.973076i
\(749\) 0.181995i 0.00664997i
\(750\) 0 0
\(751\) 33.8510 1.23524 0.617620 0.786477i \(-0.288097\pi\)
0.617620 + 0.786477i \(0.288097\pi\)
\(752\) 7.13476i 0.260178i
\(753\) 0 0
\(754\) −0.551036 + 0.561801i −0.0200675 + 0.0204596i
\(755\) 32.8137 1.19421
\(756\) 0 0
\(757\) −35.4490 −1.28841 −0.644207 0.764851i \(-0.722813\pi\)
−0.644207 + 0.764851i \(0.722813\pi\)
\(758\) −26.5494 −0.964319
\(759\) 0 0
\(760\) 11.8968i 0.431541i
\(761\) 27.3763i 0.992391i −0.868211 0.496196i \(-0.834730\pi\)
0.868211 0.496196i \(-0.165270\pi\)
\(762\) 0 0
\(763\) −22.2537 −0.805638
\(764\) 0.263254 0.00952420
\(765\) 0 0
\(766\) 3.27501 0.118331
\(767\) 26.3761 26.8914i 0.952385 0.970991i
\(768\) 0 0
\(769\) 14.8890i 0.536911i −0.963292 0.268456i \(-0.913487\pi\)
0.963292 0.268456i \(-0.0865133\pi\)
\(770\) 18.7364 0.675213
\(771\) 0 0
\(772\) 11.7167i 0.421695i
\(773\) 47.2807i 1.70057i −0.526324 0.850284i \(-0.676430\pi\)
0.526324 0.850284i \(-0.323570\pi\)
\(774\) 0 0
\(775\) 15.2726i 0.548607i
\(776\) 0.618592 0.0222061
\(777\) 0 0
\(778\) 25.5198i 0.914927i
\(779\) 27.8035 0.996165
\(780\) 0 0
\(781\) −2.90933 −0.104104
\(782\) 26.1250i 0.934227i
\(783\) 0 0
\(784\) 4.51964 0.161416
\(785\) 28.8949i 1.03130i
\(786\) 0 0
\(787\) 1.42184i 0.0506832i 0.999679 + 0.0253416i \(0.00806735\pi\)
−0.999679 + 0.0253416i \(0.991933\pi\)
\(788\) 20.5283i 0.731291i
\(789\) 0 0
\(790\) 40.0521 1.42499
\(791\) 30.5839i 1.08744i
\(792\) 0 0
\(793\) −15.4447 15.1487i −0.548456 0.537947i
\(794\) −4.70957 −0.167137
\(795\) 0 0
\(796\) −5.95247 −0.210980
\(797\) 43.6946 1.54774 0.773872 0.633342i \(-0.218317\pi\)
0.773872 + 0.633342i \(0.218317\pi\)
\(798\) 0 0
\(799\) 50.4117i 1.78344i
\(800\) 4.97624i 0.175937i
\(801\) 0 0
\(802\) −14.4833 −0.511424
\(803\) 50.9775 1.79896
\(804\) 0 0
\(805\) 18.3927 0.648256
\(806\) −7.90002 7.74865i −0.278266 0.272934i
\(807\) 0 0
\(808\) 8.33563i 0.293246i
\(809\) −5.70765 −0.200670 −0.100335 0.994954i \(-0.531992\pi\)
−0.100335 + 0.994954i \(0.531992\pi\)
\(810\) 0 0
\(811\) 50.0141i 1.75623i −0.478446 0.878117i \(-0.658800\pi\)
0.478446 0.878117i \(-0.341200\pi\)
\(812\) 0.343734i 0.0120627i
\(813\) 0 0
\(814\) 1.10031i 0.0385658i
\(815\) 42.9354 1.50396
\(816\) 0 0
\(817\) 23.0389i 0.806031i
\(818\) −16.4189 −0.574072
\(819\) 0 0
\(820\) 23.3152 0.814201
\(821\) 52.1953i 1.82163i 0.412815 + 0.910815i \(0.364546\pi\)
−0.412815 + 0.910815i \(0.635454\pi\)
\(822\) 0 0
\(823\) −37.0555 −1.29167 −0.645837 0.763475i \(-0.723491\pi\)
−0.645837 + 0.763475i \(0.723491\pi\)
\(824\) 9.89675i 0.344770i
\(825\) 0 0
\(826\) 16.4533i 0.572483i
\(827\) 14.2975i 0.497174i −0.968610 0.248587i \(-0.920034\pi\)
0.968610 0.248587i \(-0.0799662\pi\)
\(828\) 0 0
\(829\) −29.4062 −1.02132 −0.510659 0.859783i \(-0.670599\pi\)
−0.510659 + 0.859783i \(0.670599\pi\)
\(830\) 1.14810i 0.0398513i
\(831\) 0 0
\(832\) −2.57405 2.52473i −0.0892392 0.0875292i
\(833\) −31.9342 −1.10645
\(834\) 0 0
\(835\) 22.6344 0.783297
\(836\) −14.1870 −0.490667
\(837\) 0 0
\(838\) 14.3082i 0.494269i
\(839\) 12.1057i 0.417934i −0.977923 0.208967i \(-0.932990\pi\)
0.977923 0.208967i \(-0.0670102\pi\)
\(840\) 0 0
\(841\) −28.9524 −0.998357
\(842\) −24.0949 −0.830367
\(843\) 0 0
\(844\) 17.3925 0.598674
\(845\) −41.0531 + 0.794329i −1.41227 + 0.0273257i
\(846\) 0 0
\(847\) 5.01923i 0.172463i
\(848\) 14.4175 0.495101
\(849\) 0 0
\(850\) 35.1604i 1.20599i
\(851\) 1.08012i 0.0370261i
\(852\) 0 0
\(853\) 0.747177i 0.0255828i −0.999918 0.0127914i \(-0.995928\pi\)
0.999918 0.0127914i \(-0.00407175\pi\)
\(854\) 9.44971 0.323362
\(855\) 0 0
\(856\) 0.115559i 0.00394972i
\(857\) 50.0722 1.71043 0.855217 0.518269i \(-0.173424\pi\)
0.855217 + 0.518269i \(0.173424\pi\)
\(858\) 0 0
\(859\) 28.7360 0.980460 0.490230 0.871593i \(-0.336913\pi\)
0.490230 + 0.871593i \(0.336913\pi\)
\(860\) 19.3197i 0.658797i
\(861\) 0 0
\(862\) 9.12376 0.310756
\(863\) 6.03591i 0.205465i 0.994709 + 0.102732i \(0.0327585\pi\)
−0.994709 + 0.102732i \(0.967241\pi\)
\(864\) 0 0
\(865\) 9.51229i 0.323428i
\(866\) 0.372606i 0.0126617i
\(867\) 0 0
\(868\) 4.83358 0.164062
\(869\) 47.7625i 1.62023i
\(870\) 0 0
\(871\) 18.4709 18.8317i 0.625862 0.638089i
\(872\) 14.1301 0.478505
\(873\) 0 0
\(874\) −13.9267 −0.471078
\(875\) −0.118206 −0.00399611
\(876\) 0 0
\(877\) 15.9617i 0.538990i 0.963002 + 0.269495i \(0.0868567\pi\)
−0.963002 + 0.269495i \(0.913143\pi\)
\(878\) 3.82319i 0.129026i
\(879\) 0 0
\(880\) −11.8968 −0.401039
\(881\) 18.2622 0.615269 0.307635 0.951505i \(-0.400463\pi\)
0.307635 + 0.951505i \(0.400463\pi\)
\(882\) 0 0
\(883\) 6.17305 0.207740 0.103870 0.994591i \(-0.466877\pi\)
0.103870 + 0.994591i \(0.466877\pi\)
\(884\) 18.1874 + 17.8389i 0.611707 + 0.599986i
\(885\) 0 0
\(886\) 7.96406i 0.267558i
\(887\) −10.0193 −0.336414 −0.168207 0.985752i \(-0.553798\pi\)
−0.168207 + 0.985752i \(0.553798\pi\)
\(888\) 0 0
\(889\) 8.55029i 0.286767i
\(890\) 22.3167i 0.748056i
\(891\) 0 0
\(892\) 23.7456i 0.795062i
\(893\) 26.8735 0.899287
\(894\) 0 0
\(895\) 60.6772i 2.02821i
\(896\) 1.57492 0.0526143
\(897\) 0 0
\(898\) −26.4088 −0.881274
\(899\) 0.669848i 0.0223407i
\(900\) 0 0
\(901\) −101.869 −3.39376
\(902\) 27.8035i 0.925757i
\(903\) 0 0
\(904\) 19.4194i 0.645878i
\(905\) 28.8945i 0.960484i
\(906\) 0 0
\(907\) −57.5470 −1.91082 −0.955408 0.295290i \(-0.904584\pi\)
−0.955408 + 0.295290i \(0.904584\pi\)
\(908\) 4.54135i 0.150710i
\(909\) 0 0
\(910\) 12.5590 12.8044i 0.416327 0.424461i
\(911\) 15.7798 0.522808 0.261404 0.965229i \(-0.415814\pi\)
0.261404 + 0.965229i \(0.415814\pi\)
\(912\) 0 0
\(913\) 1.36912 0.0453114
\(914\) −8.61483 −0.284953
\(915\) 0 0
\(916\) 11.9711i 0.395537i
\(917\) 19.9807i 0.659821i
\(918\) 0 0
\(919\) 42.9349 1.41629 0.708146 0.706066i \(-0.249532\pi\)
0.708146 + 0.706066i \(0.249532\pi\)
\(920\) −11.6785 −0.385029
\(921\) 0 0
\(922\) −27.7998 −0.915539
\(923\) −1.95013 + 1.98822i −0.0641892 + 0.0654432i
\(924\) 0 0
\(925\) 1.45369i 0.0477969i
\(926\) −36.3097 −1.19321
\(927\) 0 0
\(928\) 0.218255i 0.00716458i
\(929\) 10.3748i 0.340387i 0.985411 + 0.170193i \(0.0544392\pi\)
−0.985411 + 0.170193i \(0.945561\pi\)
\(930\) 0 0
\(931\) 17.0235i 0.557922i
\(932\) 10.6895 0.350145
\(933\) 0 0
\(934\) 13.8295i 0.452516i
\(935\) 84.0583 2.74900
\(936\) 0 0
\(937\) −26.4110 −0.862809 −0.431404 0.902159i \(-0.641982\pi\)
−0.431404 + 0.902159i \(0.641982\pi\)
\(938\) 11.5221i 0.376209i
\(939\) 0 0
\(940\) 22.5353 0.735019
\(941\) 12.7869i 0.416842i −0.978039 0.208421i \(-0.933168\pi\)
0.978039 0.208421i \(-0.0668324\pi\)
\(942\) 0 0
\(943\) 27.2935i 0.888797i
\(944\) 10.4471i 0.340024i
\(945\) 0 0
\(946\) −23.0389 −0.749061
\(947\) 0.462902i 0.0150423i 0.999972 + 0.00752114i \(0.00239408\pi\)
−0.999972 + 0.00752114i \(0.997606\pi\)
\(948\) 0 0
\(949\) 34.1703 34.8378i 1.10921 1.13088i
\(950\) −18.7433 −0.608113
\(951\) 0 0
\(952\) −11.1278 −0.360655
\(953\) −12.0901 −0.391636 −0.195818 0.980640i \(-0.562736\pi\)
−0.195818 + 0.980640i \(0.562736\pi\)
\(954\) 0 0
\(955\) 0.831493i 0.0269065i
\(956\) 24.0968i 0.779346i
\(957\) 0 0
\(958\) 28.2335 0.912182
\(959\) 11.5841 0.374072
\(960\) 0 0
\(961\) 21.5806 0.696149
\(962\) 0.751946 + 0.737538i 0.0242437 + 0.0237792i
\(963\) 0 0
\(964\) 11.1299i 0.358470i
\(965\) −37.0076 −1.19132
\(966\) 0 0
\(967\) 29.8157i 0.958808i −0.877594 0.479404i \(-0.840853\pi\)
0.877594 0.479404i \(-0.159147\pi\)
\(968\) 3.18698i 0.102433i
\(969\) 0 0
\(970\) 1.95383i 0.0627338i
\(971\) 61.4263 1.97126 0.985632 0.168908i \(-0.0540242\pi\)
0.985632 + 0.168908i \(0.0540242\pi\)
\(972\) 0 0
\(973\) 11.5145i 0.369138i
\(974\) 15.5579 0.498507
\(975\) 0 0
\(976\) −6.00013 −0.192060
\(977\) 22.8673i 0.731589i −0.930696 0.365794i \(-0.880797\pi\)
0.930696 0.365794i \(-0.119203\pi\)
\(978\) 0 0
\(979\) 26.6128 0.850549
\(980\) 14.2754i 0.456010i
\(981\) 0 0
\(982\) 14.9787i 0.477990i
\(983\) 28.9097i 0.922076i 0.887380 + 0.461038i \(0.152523\pi\)
−0.887380 + 0.461038i \(0.847477\pi\)
\(984\) 0 0
\(985\) −64.8391 −2.06594
\(986\) 1.54212i 0.0491110i
\(987\) 0 0
\(988\) −9.50955 + 9.69532i −0.302539 + 0.308449i
\(989\) −22.6163 −0.719156
\(990\) 0 0
\(991\) 21.3095 0.676917 0.338459 0.940981i \(-0.390095\pi\)
0.338459 + 0.940981i \(0.390095\pi\)
\(992\) −3.06910 −0.0974440
\(993\) 0 0
\(994\) 1.21648i 0.0385844i
\(995\) 18.8010i 0.596032i
\(996\) 0 0
\(997\) −53.8074 −1.70410 −0.852049 0.523462i \(-0.824640\pi\)
−0.852049 + 0.523462i \(0.824640\pi\)
\(998\) −34.1030 −1.07951
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2106.2.b.d.649.14 14
3.2 odd 2 2106.2.b.c.649.1 14
9.2 odd 6 234.2.t.a.103.6 yes 28
9.4 even 3 702.2.t.a.181.7 28
9.5 odd 6 234.2.t.a.25.13 yes 28
9.7 even 3 702.2.t.a.415.8 28
13.12 even 2 inner 2106.2.b.d.649.1 14
39.38 odd 2 2106.2.b.c.649.14 14
117.25 even 6 702.2.t.a.415.7 28
117.38 odd 6 234.2.t.a.103.13 yes 28
117.77 odd 6 234.2.t.a.25.6 28
117.103 even 6 702.2.t.a.181.8 28
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.t.a.25.6 28 117.77 odd 6
234.2.t.a.25.13 yes 28 9.5 odd 6
234.2.t.a.103.6 yes 28 9.2 odd 6
234.2.t.a.103.13 yes 28 117.38 odd 6
702.2.t.a.181.7 28 9.4 even 3
702.2.t.a.181.8 28 117.103 even 6
702.2.t.a.415.7 28 117.25 even 6
702.2.t.a.415.8 28 9.7 even 3
2106.2.b.c.649.1 14 3.2 odd 2
2106.2.b.c.649.14 14 39.38 odd 2
2106.2.b.d.649.1 14 13.12 even 2 inner
2106.2.b.d.649.14 14 1.1 even 1 trivial