Properties

Label 702.2.g.c.523.3
Level $702$
Weight $2$
Character 702.523
Analytic conductor $5.605$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [702,2,Mod(451,702)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("702.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(702, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([4, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.g (of order \(3\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 3 x^{11} + 4 x^{10} - 6 x^{9} + 22 x^{8} - 45 x^{7} + 75 x^{6} - 135 x^{5} + 198 x^{4} + \cdots + 729 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 523.3
Root \(-1.26151 - 1.18685i\) of defining polynomial
Character \(\chi\) \(=\) 702.523
Dual form 702.2.g.c.451.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(0.102915 - 0.178255i) q^{5} -1.55915 q^{7} +1.00000 q^{8} +(0.102915 + 0.178255i) q^{10} +(-1.94430 + 3.36763i) q^{11} +(3.60290 - 0.138360i) q^{13} +(0.779577 - 1.35027i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(1.84139 - 3.18938i) q^{17} +(-3.72573 + 6.45316i) q^{19} -0.205831 q^{20} +(-1.94430 - 3.36763i) q^{22} -3.36930 q^{23} +(2.47882 + 4.29344i) q^{25} +(-1.68162 + 3.18938i) q^{26} +(0.779577 + 1.35027i) q^{28} +(-2.43817 + 4.22303i) q^{29} +(-1.50185 + 2.60128i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(1.84139 + 3.18938i) q^{34} +(-0.160461 + 0.277926i) q^{35} +(4.38086 + 7.58788i) q^{37} +(-3.72573 - 6.45316i) q^{38} +(0.102915 - 0.178255i) q^{40} +3.49292 q^{41} -0.686517 q^{43} +3.88861 q^{44} +(1.68465 - 2.91790i) q^{46} +(1.48380 + 2.57002i) q^{47} -4.56904 q^{49} -4.95763 q^{50} +(-1.92127 - 3.05102i) q^{52} -9.52297 q^{53} +(0.400197 + 0.693162i) q^{55} -1.55915 q^{56} +(-2.43817 - 4.22303i) q^{58} +(3.30029 + 5.71626i) q^{59} +5.35098 q^{61} +(-1.50185 - 2.60128i) q^{62} +1.00000 q^{64} +(0.346130 - 0.656472i) q^{65} -3.03379 q^{67} -3.68278 q^{68} +(-0.160461 - 0.277926i) q^{70} +(1.39708 - 2.41982i) q^{71} -15.3364 q^{73} -8.76173 q^{74} +7.45146 q^{76} +(3.03147 - 5.25066i) q^{77} +(0.829455 + 1.43666i) q^{79} +(0.102915 + 0.178255i) q^{80} +(-1.74646 + 3.02496i) q^{82} +(4.34020 + 7.51744i) q^{83} +(-0.379014 - 0.656472i) q^{85} +(0.343259 - 0.594541i) q^{86} +(-1.94430 + 3.36763i) q^{88} +(-6.25792 - 10.8390i) q^{89} +(-5.61747 + 0.215725i) q^{91} +(1.68465 + 2.91790i) q^{92} -2.96760 q^{94} +(0.766870 + 1.32826i) q^{95} +6.57834 q^{97} +(2.28452 - 3.95690i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 6 q^{2} - 6 q^{4} + 3 q^{5} - 2 q^{7} + 12 q^{8} + 3 q^{10} - 4 q^{11} + 4 q^{13} + q^{14} - 6 q^{16} + q^{17} + 9 q^{19} - 6 q^{20} - 4 q^{22} + 14 q^{23} - q^{25} - 5 q^{26} + q^{28} - q^{29}+ \cdots - 27 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) 0.102915 0.178255i 0.0460251 0.0797179i −0.842095 0.539329i \(-0.818678\pi\)
0.888120 + 0.459611i \(0.152011\pi\)
\(6\) 0 0
\(7\) −1.55915 −0.589305 −0.294652 0.955605i \(-0.595204\pi\)
−0.294652 + 0.955605i \(0.595204\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0.102915 + 0.178255i 0.0325447 + 0.0563691i
\(11\) −1.94430 + 3.36763i −0.586230 + 1.01538i 0.408491 + 0.912762i \(0.366055\pi\)
−0.994721 + 0.102618i \(0.967278\pi\)
\(12\) 0 0
\(13\) 3.60290 0.138360i 0.999263 0.0383743i
\(14\) 0.779577 1.35027i 0.208351 0.360874i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.84139 3.18938i 0.446602 0.773538i −0.551560 0.834135i \(-0.685967\pi\)
0.998162 + 0.0605972i \(0.0193005\pi\)
\(18\) 0 0
\(19\) −3.72573 + 6.45316i −0.854741 + 1.48046i 0.0221435 + 0.999755i \(0.492951\pi\)
−0.876885 + 0.480701i \(0.840382\pi\)
\(20\) −0.205831 −0.0460251
\(21\) 0 0
\(22\) −1.94430 3.36763i −0.414527 0.717982i
\(23\) −3.36930 −0.702547 −0.351273 0.936273i \(-0.614251\pi\)
−0.351273 + 0.936273i \(0.614251\pi\)
\(24\) 0 0
\(25\) 2.47882 + 4.29344i 0.495763 + 0.858687i
\(26\) −1.68162 + 3.18938i −0.329794 + 0.625489i
\(27\) 0 0
\(28\) 0.779577 + 1.35027i 0.147326 + 0.255176i
\(29\) −2.43817 + 4.22303i −0.452756 + 0.784197i −0.998556 0.0537185i \(-0.982893\pi\)
0.545800 + 0.837916i \(0.316226\pi\)
\(30\) 0 0
\(31\) −1.50185 + 2.60128i −0.269740 + 0.467204i −0.968795 0.247865i \(-0.920271\pi\)
0.699054 + 0.715068i \(0.253604\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 1.84139 + 3.18938i 0.315796 + 0.546974i
\(35\) −0.160461 + 0.277926i −0.0271228 + 0.0469781i
\(36\) 0 0
\(37\) 4.38086 + 7.58788i 0.720210 + 1.24744i 0.960916 + 0.276842i \(0.0892877\pi\)
−0.240706 + 0.970598i \(0.577379\pi\)
\(38\) −3.72573 6.45316i −0.604393 1.04684i
\(39\) 0 0
\(40\) 0.102915 0.178255i 0.0162723 0.0281845i
\(41\) 3.49292 0.545502 0.272751 0.962085i \(-0.412066\pi\)
0.272751 + 0.962085i \(0.412066\pi\)
\(42\) 0 0
\(43\) −0.686517 −0.104693 −0.0523464 0.998629i \(-0.516670\pi\)
−0.0523464 + 0.998629i \(0.516670\pi\)
\(44\) 3.88861 0.586230
\(45\) 0 0
\(46\) 1.68465 2.91790i 0.248388 0.430220i
\(47\) 1.48380 + 2.57002i 0.216434 + 0.374875i 0.953715 0.300711i \(-0.0972239\pi\)
−0.737281 + 0.675586i \(0.763891\pi\)
\(48\) 0 0
\(49\) −4.56904 −0.652720
\(50\) −4.95763 −0.701115
\(51\) 0 0
\(52\) −1.92127 3.05102i −0.266432 0.423100i
\(53\) −9.52297 −1.30808 −0.654041 0.756460i \(-0.726927\pi\)
−0.654041 + 0.756460i \(0.726927\pi\)
\(54\) 0 0
\(55\) 0.400197 + 0.693162i 0.0539626 + 0.0934660i
\(56\) −1.55915 −0.208351
\(57\) 0 0
\(58\) −2.43817 4.22303i −0.320147 0.554511i
\(59\) 3.30029 + 5.71626i 0.429661 + 0.744194i 0.996843 0.0793982i \(-0.0252999\pi\)
−0.567182 + 0.823592i \(0.691967\pi\)
\(60\) 0 0
\(61\) 5.35098 0.685122 0.342561 0.939496i \(-0.388706\pi\)
0.342561 + 0.939496i \(0.388706\pi\)
\(62\) −1.50185 2.60128i −0.190735 0.330363i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.346130 0.656472i 0.0429321 0.0814253i
\(66\) 0 0
\(67\) −3.03379 −0.370637 −0.185318 0.982679i \(-0.559332\pi\)
−0.185318 + 0.982679i \(0.559332\pi\)
\(68\) −3.68278 −0.446602
\(69\) 0 0
\(70\) −0.160461 0.277926i −0.0191787 0.0332186i
\(71\) 1.39708 2.41982i 0.165803 0.287180i −0.771137 0.636669i \(-0.780312\pi\)
0.936940 + 0.349489i \(0.113645\pi\)
\(72\) 0 0
\(73\) −15.3364 −1.79499 −0.897493 0.441028i \(-0.854614\pi\)
−0.897493 + 0.441028i \(0.854614\pi\)
\(74\) −8.76173 −1.01853
\(75\) 0 0
\(76\) 7.45146 0.854741
\(77\) 3.03147 5.25066i 0.345468 0.598368i
\(78\) 0 0
\(79\) 0.829455 + 1.43666i 0.0933210 + 0.161637i 0.908907 0.417000i \(-0.136918\pi\)
−0.815586 + 0.578636i \(0.803585\pi\)
\(80\) 0.102915 + 0.178255i 0.0115063 + 0.0199295i
\(81\) 0 0
\(82\) −1.74646 + 3.02496i −0.192864 + 0.334051i
\(83\) 4.34020 + 7.51744i 0.476398 + 0.825146i 0.999634 0.0270417i \(-0.00860869\pi\)
−0.523236 + 0.852188i \(0.675275\pi\)
\(84\) 0 0
\(85\) −0.379014 0.656472i −0.0411099 0.0712044i
\(86\) 0.343259 0.594541i 0.0370145 0.0641110i
\(87\) 0 0
\(88\) −1.94430 + 3.36763i −0.207264 + 0.358991i
\(89\) −6.25792 10.8390i −0.663339 1.14894i −0.979733 0.200308i \(-0.935806\pi\)
0.316394 0.948628i \(-0.397528\pi\)
\(90\) 0 0
\(91\) −5.61747 + 0.215725i −0.588871 + 0.0226141i
\(92\) 1.68465 + 2.91790i 0.175637 + 0.304212i
\(93\) 0 0
\(94\) −2.96760 −0.306084
\(95\) 0.766870 + 1.32826i 0.0786792 + 0.136276i
\(96\) 0 0
\(97\) 6.57834 0.667929 0.333965 0.942586i \(-0.391613\pi\)
0.333965 + 0.942586i \(0.391613\pi\)
\(98\) 2.28452 3.95690i 0.230771 0.399708i
\(99\) 0 0
\(100\) 2.47882 4.29344i 0.247882 0.429344i
\(101\) 5.65246 9.79034i 0.562440 0.974175i −0.434842 0.900507i \(-0.643196\pi\)
0.997283 0.0736686i \(-0.0234707\pi\)
\(102\) 0 0
\(103\) 9.34320 16.1829i 0.920613 1.59455i 0.122144 0.992512i \(-0.461023\pi\)
0.798469 0.602036i \(-0.205644\pi\)
\(104\) 3.60290 0.138360i 0.353293 0.0135673i
\(105\) 0 0
\(106\) 4.76149 8.24714i 0.462476 0.801033i
\(107\) 5.71380 + 9.89659i 0.552374 + 0.956739i 0.998103 + 0.0615712i \(0.0196111\pi\)
−0.445729 + 0.895168i \(0.647056\pi\)
\(108\) 0 0
\(109\) −6.39848 −0.612863 −0.306432 0.951893i \(-0.599135\pi\)
−0.306432 + 0.951893i \(0.599135\pi\)
\(110\) −0.800395 −0.0763147
\(111\) 0 0
\(112\) 0.779577 1.35027i 0.0736631 0.127588i
\(113\) 6.48841 + 11.2383i 0.610378 + 1.05721i 0.991177 + 0.132548i \(0.0423159\pi\)
−0.380798 + 0.924658i \(0.624351\pi\)
\(114\) 0 0
\(115\) −0.346752 + 0.600592i −0.0323348 + 0.0560055i
\(116\) 4.87634 0.452756
\(117\) 0 0
\(118\) −6.60057 −0.607632
\(119\) −2.87101 + 4.97273i −0.263185 + 0.455850i
\(120\) 0 0
\(121\) −2.06064 3.56913i −0.187331 0.324466i
\(122\) −2.67549 + 4.63408i −0.242227 + 0.419550i
\(123\) 0 0
\(124\) 3.00370 0.269740
\(125\) 2.04959 0.183321
\(126\) 0 0
\(127\) −5.60948 9.71591i −0.497761 0.862147i 0.502236 0.864731i \(-0.332511\pi\)
−0.999997 + 0.00258339i \(0.999178\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 0.395457 + 0.627993i 0.0346838 + 0.0550787i
\(131\) −0.232322 + 0.402393i −0.0202980 + 0.0351572i −0.875996 0.482318i \(-0.839795\pi\)
0.855698 + 0.517476i \(0.173128\pi\)
\(132\) 0 0
\(133\) 5.80899 10.0615i 0.503703 0.872439i
\(134\) 1.51690 2.62734i 0.131040 0.226968i
\(135\) 0 0
\(136\) 1.84139 3.18938i 0.157898 0.273487i
\(137\) 15.3970 1.31545 0.657727 0.753256i \(-0.271518\pi\)
0.657727 + 0.753256i \(0.271518\pi\)
\(138\) 0 0
\(139\) −2.40855 4.17173i −0.204290 0.353841i 0.745616 0.666376i \(-0.232155\pi\)
−0.949906 + 0.312534i \(0.898822\pi\)
\(140\) 0.320922 0.0271228
\(141\) 0 0
\(142\) 1.39708 + 2.41982i 0.117241 + 0.203067i
\(143\) −6.53918 + 12.4022i −0.546834 + 1.03713i
\(144\) 0 0
\(145\) 0.501850 + 0.869229i 0.0416764 + 0.0721856i
\(146\) 7.66819 13.2817i 0.634624 1.09920i
\(147\) 0 0
\(148\) 4.38086 7.58788i 0.360105 0.623720i
\(149\) −8.39889 14.5473i −0.688064 1.19176i −0.972463 0.233056i \(-0.925127\pi\)
0.284399 0.958706i \(-0.408206\pi\)
\(150\) 0 0
\(151\) −0.315574 0.546591i −0.0256811 0.0444809i 0.852899 0.522076i \(-0.174842\pi\)
−0.878580 + 0.477595i \(0.841509\pi\)
\(152\) −3.72573 + 6.45316i −0.302197 + 0.523420i
\(153\) 0 0
\(154\) 3.03147 + 5.25066i 0.244283 + 0.423110i
\(155\) 0.309127 + 0.535423i 0.0248297 + 0.0430062i
\(156\) 0 0
\(157\) −8.62325 + 14.9359i −0.688210 + 1.19202i 0.284206 + 0.958763i \(0.408270\pi\)
−0.972416 + 0.233252i \(0.925063\pi\)
\(158\) −1.65891 −0.131976
\(159\) 0 0
\(160\) −0.205831 −0.0162723
\(161\) 5.25325 0.414014
\(162\) 0 0
\(163\) 1.67055 2.89347i 0.130847 0.226634i −0.793156 0.609018i \(-0.791564\pi\)
0.924003 + 0.382384i \(0.124897\pi\)
\(164\) −1.74646 3.02496i −0.136376 0.236209i
\(165\) 0 0
\(166\) −8.68039 −0.673729
\(167\) 21.1610 1.63749 0.818744 0.574159i \(-0.194671\pi\)
0.818744 + 0.574159i \(0.194671\pi\)
\(168\) 0 0
\(169\) 12.9617 0.996996i 0.997055 0.0766920i
\(170\) 0.758029 0.0581381
\(171\) 0 0
\(172\) 0.343259 + 0.594541i 0.0261732 + 0.0453333i
\(173\) 22.5833 1.71698 0.858489 0.512832i \(-0.171404\pi\)
0.858489 + 0.512832i \(0.171404\pi\)
\(174\) 0 0
\(175\) −3.86486 6.69413i −0.292156 0.506029i
\(176\) −1.94430 3.36763i −0.146557 0.253845i
\(177\) 0 0
\(178\) 12.5158 0.938102
\(179\) −5.40388 9.35979i −0.403905 0.699584i 0.590289 0.807192i \(-0.299014\pi\)
−0.994193 + 0.107609i \(0.965681\pi\)
\(180\) 0 0
\(181\) 13.6295 1.01307 0.506536 0.862219i \(-0.330926\pi\)
0.506536 + 0.862219i \(0.330926\pi\)
\(182\) 2.62191 4.97273i 0.194349 0.368603i
\(183\) 0 0
\(184\) −3.36930 −0.248388
\(185\) 1.80343 0.132591
\(186\) 0 0
\(187\) 7.16044 + 12.4022i 0.523623 + 0.906942i
\(188\) 1.48380 2.57002i 0.108217 0.187438i
\(189\) 0 0
\(190\) −1.53374 −0.111269
\(191\) −11.9124 −0.861954 −0.430977 0.902363i \(-0.641831\pi\)
−0.430977 + 0.902363i \(0.641831\pi\)
\(192\) 0 0
\(193\) 23.8109 1.71395 0.856973 0.515362i \(-0.172342\pi\)
0.856973 + 0.515362i \(0.172342\pi\)
\(194\) −3.28917 + 5.69701i −0.236149 + 0.409022i
\(195\) 0 0
\(196\) 2.28452 + 3.95690i 0.163180 + 0.282636i
\(197\) 3.84864 + 6.66603i 0.274204 + 0.474935i 0.969934 0.243368i \(-0.0782523\pi\)
−0.695730 + 0.718303i \(0.744919\pi\)
\(198\) 0 0
\(199\) 3.23845 5.60917i 0.229568 0.397623i −0.728112 0.685458i \(-0.759602\pi\)
0.957680 + 0.287835i \(0.0929354\pi\)
\(200\) 2.47882 + 4.29344i 0.175279 + 0.303592i
\(201\) 0 0
\(202\) 5.65246 + 9.79034i 0.397705 + 0.688846i
\(203\) 3.80148 6.58435i 0.266812 0.462131i
\(204\) 0 0
\(205\) 0.359475 0.622629i 0.0251068 0.0434863i
\(206\) 9.34320 + 16.1829i 0.650972 + 1.12752i
\(207\) 0 0
\(208\) −1.68162 + 3.18938i −0.116600 + 0.221144i
\(209\) −14.4879 25.0938i −1.00215 1.73577i
\(210\) 0 0
\(211\) −13.8149 −0.951059 −0.475530 0.879700i \(-0.657744\pi\)
−0.475530 + 0.879700i \(0.657744\pi\)
\(212\) 4.76149 + 8.24714i 0.327020 + 0.566416i
\(213\) 0 0
\(214\) −11.4276 −0.781174
\(215\) −0.0706531 + 0.122375i −0.00481850 + 0.00834590i
\(216\) 0 0
\(217\) 2.34161 4.05580i 0.158959 0.275325i
\(218\) 3.19924 5.54125i 0.216680 0.375301i
\(219\) 0 0
\(220\) 0.400197 0.693162i 0.0269813 0.0467330i
\(221\) 6.19305 11.7458i 0.416590 0.790106i
\(222\) 0 0
\(223\) −5.93420 + 10.2783i −0.397383 + 0.688288i −0.993402 0.114682i \(-0.963415\pi\)
0.596019 + 0.802970i \(0.296748\pi\)
\(224\) 0.779577 + 1.35027i 0.0520877 + 0.0902185i
\(225\) 0 0
\(226\) −12.9768 −0.863205
\(227\) −9.83394 −0.652701 −0.326351 0.945249i \(-0.605819\pi\)
−0.326351 + 0.945249i \(0.605819\pi\)
\(228\) 0 0
\(229\) 8.65591 14.9925i 0.571999 0.990731i −0.424362 0.905493i \(-0.639502\pi\)
0.996361 0.0852383i \(-0.0271652\pi\)
\(230\) −0.346752 0.600592i −0.0228642 0.0396019i
\(231\) 0 0
\(232\) −2.43817 + 4.22303i −0.160074 + 0.277256i
\(233\) −17.6548 −1.15660 −0.578301 0.815823i \(-0.696284\pi\)
−0.578301 + 0.815823i \(0.696284\pi\)
\(234\) 0 0
\(235\) 0.610823 0.0398457
\(236\) 3.30029 5.71626i 0.214830 0.372097i
\(237\) 0 0
\(238\) −2.87101 4.97273i −0.186100 0.322334i
\(239\) 0.631256 1.09337i 0.0408326 0.0707241i −0.844887 0.534945i \(-0.820332\pi\)
0.885719 + 0.464221i \(0.153666\pi\)
\(240\) 0 0
\(241\) −10.8891 −0.701428 −0.350714 0.936483i \(-0.614061\pi\)
−0.350714 + 0.936483i \(0.614061\pi\)
\(242\) 4.12128 0.264926
\(243\) 0 0
\(244\) −2.67549 4.63408i −0.171281 0.296667i
\(245\) −0.470224 + 0.814452i −0.0300415 + 0.0520335i
\(246\) 0 0
\(247\) −12.5306 + 23.7655i −0.797300 + 1.51217i
\(248\) −1.50185 + 2.60128i −0.0953676 + 0.165181i
\(249\) 0 0
\(250\) −1.02479 + 1.77499i −0.0648136 + 0.112260i
\(251\) 12.3336 21.3624i 0.778489 1.34838i −0.154323 0.988020i \(-0.549320\pi\)
0.932812 0.360362i \(-0.117347\pi\)
\(252\) 0 0
\(253\) 6.55094 11.3466i 0.411854 0.713352i
\(254\) 11.2190 0.703940
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −25.5375 −1.59298 −0.796492 0.604649i \(-0.793313\pi\)
−0.796492 + 0.604649i \(0.793313\pi\)
\(258\) 0 0
\(259\) −6.83044 11.8307i −0.424423 0.735122i
\(260\) −0.741586 + 0.0284788i −0.0459912 + 0.00176618i
\(261\) 0 0
\(262\) −0.232322 0.402393i −0.0143529 0.0248599i
\(263\) −6.20109 + 10.7406i −0.382376 + 0.662294i −0.991401 0.130857i \(-0.958227\pi\)
0.609026 + 0.793150i \(0.291561\pi\)
\(264\) 0 0
\(265\) −0.980060 + 1.69751i −0.0602046 + 0.104277i
\(266\) 5.80899 + 10.0615i 0.356172 + 0.616908i
\(267\) 0 0
\(268\) 1.51690 + 2.62734i 0.0926592 + 0.160490i
\(269\) −2.46813 + 4.27492i −0.150484 + 0.260646i −0.931406 0.363983i \(-0.881417\pi\)
0.780921 + 0.624629i \(0.214750\pi\)
\(270\) 0 0
\(271\) 13.7565 + 23.8269i 0.835647 + 1.44738i 0.893503 + 0.449058i \(0.148240\pi\)
−0.0578557 + 0.998325i \(0.518426\pi\)
\(272\) 1.84139 + 3.18938i 0.111651 + 0.193385i
\(273\) 0 0
\(274\) −7.69850 + 13.3342i −0.465083 + 0.805548i
\(275\) −19.2783 −1.16253
\(276\) 0 0
\(277\) −2.66768 −0.160285 −0.0801425 0.996783i \(-0.525538\pi\)
−0.0801425 + 0.996783i \(0.525538\pi\)
\(278\) 4.81710 0.288910
\(279\) 0 0
\(280\) −0.160461 + 0.277926i −0.00958937 + 0.0166093i
\(281\) 5.51262 + 9.54813i 0.328855 + 0.569594i 0.982285 0.187393i \(-0.0600039\pi\)
−0.653430 + 0.756987i \(0.726671\pi\)
\(282\) 0 0
\(283\) 4.86782 0.289362 0.144681 0.989478i \(-0.453784\pi\)
0.144681 + 0.989478i \(0.453784\pi\)
\(284\) −2.79417 −0.165803
\(285\) 0 0
\(286\) −7.47107 11.8642i −0.441774 0.701546i
\(287\) −5.44600 −0.321467
\(288\) 0 0
\(289\) 1.71857 + 2.97666i 0.101093 + 0.175097i
\(290\) −1.00370 −0.0589393
\(291\) 0 0
\(292\) 7.66819 + 13.2817i 0.448747 + 0.777252i
\(293\) −4.24723 7.35642i −0.248126 0.429767i 0.714880 0.699247i \(-0.246481\pi\)
−0.963006 + 0.269480i \(0.913148\pi\)
\(294\) 0 0
\(295\) 1.35860 0.0791008
\(296\) 4.38086 + 7.58788i 0.254633 + 0.441037i
\(297\) 0 0
\(298\) 16.7978 0.973070
\(299\) −12.1392 + 0.466177i −0.702029 + 0.0269597i
\(300\) 0 0
\(301\) 1.07039 0.0616960
\(302\) 0.631148 0.0363185
\(303\) 0 0
\(304\) −3.72573 6.45316i −0.213685 0.370114i
\(305\) 0.550698 0.953836i 0.0315328 0.0546165i
\(306\) 0 0
\(307\) −14.0572 −0.802285 −0.401142 0.916016i \(-0.631387\pi\)
−0.401142 + 0.916016i \(0.631387\pi\)
\(308\) −6.06294 −0.345468
\(309\) 0 0
\(310\) −0.618254 −0.0351144
\(311\) 4.74354 8.21605i 0.268981 0.465890i −0.699618 0.714517i \(-0.746646\pi\)
0.968599 + 0.248628i \(0.0799796\pi\)
\(312\) 0 0
\(313\) −16.9273 29.3190i −0.956790 1.65721i −0.730217 0.683215i \(-0.760581\pi\)
−0.226573 0.973994i \(-0.572752\pi\)
\(314\) −8.62325 14.9359i −0.486638 0.842882i
\(315\) 0 0
\(316\) 0.829455 1.43666i 0.0466605 0.0808183i
\(317\) 3.53923 + 6.13013i 0.198783 + 0.344302i 0.948134 0.317871i \(-0.102968\pi\)
−0.749351 + 0.662173i \(0.769634\pi\)
\(318\) 0 0
\(319\) −9.48108 16.4217i −0.530839 0.919440i
\(320\) 0.102915 0.178255i 0.00575314 0.00996474i
\(321\) 0 0
\(322\) −2.62662 + 4.54945i −0.146376 + 0.253531i
\(323\) 13.7210 + 23.7655i 0.763459 + 1.32235i
\(324\) 0 0
\(325\) 9.52496 + 15.1258i 0.528350 + 0.839030i
\(326\) 1.67055 + 2.89347i 0.0925229 + 0.160254i
\(327\) 0 0
\(328\) 3.49292 0.192864
\(329\) −2.31347 4.00705i −0.127546 0.220916i
\(330\) 0 0
\(331\) −12.9539 −0.712009 −0.356004 0.934484i \(-0.615861\pi\)
−0.356004 + 0.934484i \(0.615861\pi\)
\(332\) 4.34020 7.51744i 0.238199 0.412573i
\(333\) 0 0
\(334\) −10.5805 + 18.3260i −0.578939 + 1.00275i
\(335\) −0.312224 + 0.540788i −0.0170586 + 0.0295464i
\(336\) 0 0
\(337\) 9.11943 15.7953i 0.496767 0.860425i −0.503226 0.864155i \(-0.667854\pi\)
0.999993 + 0.00372930i \(0.00118707\pi\)
\(338\) −5.61743 + 11.7237i −0.305548 + 0.637684i
\(339\) 0 0
\(340\) −0.379014 + 0.656472i −0.0205549 + 0.0356022i
\(341\) −5.84011 10.1154i −0.316259 0.547777i
\(342\) 0 0
\(343\) 18.0379 0.973956
\(344\) −0.686517 −0.0370145
\(345\) 0 0
\(346\) −11.2917 + 19.5577i −0.607043 + 1.05143i
\(347\) −6.24852 10.8228i −0.335438 0.580996i 0.648131 0.761529i \(-0.275551\pi\)
−0.983569 + 0.180533i \(0.942218\pi\)
\(348\) 0 0
\(349\) −1.00654 + 1.74337i −0.0538787 + 0.0933206i −0.891707 0.452613i \(-0.850492\pi\)
0.837828 + 0.545934i \(0.183825\pi\)
\(350\) 7.72971 0.413171
\(351\) 0 0
\(352\) 3.88861 0.207264
\(353\) −18.0573 + 31.2761i −0.961091 + 1.66466i −0.241320 + 0.970446i \(0.577580\pi\)
−0.719770 + 0.694212i \(0.755753\pi\)
\(354\) 0 0
\(355\) −0.287563 0.498074i −0.0152623 0.0264350i
\(356\) −6.25792 + 10.8390i −0.331669 + 0.574468i
\(357\) 0 0
\(358\) 10.8078 0.571208
\(359\) −34.3296 −1.81185 −0.905923 0.423442i \(-0.860822\pi\)
−0.905923 + 0.423442i \(0.860822\pi\)
\(360\) 0 0
\(361\) −18.2621 31.6310i −0.961165 1.66479i
\(362\) −6.81475 + 11.8035i −0.358175 + 0.620377i
\(363\) 0 0
\(364\) 2.99556 + 4.75701i 0.157010 + 0.249335i
\(365\) −1.57835 + 2.73378i −0.0826145 + 0.143093i
\(366\) 0 0
\(367\) 2.52885 4.38010i 0.132005 0.228640i −0.792444 0.609944i \(-0.791192\pi\)
0.924449 + 0.381305i \(0.124525\pi\)
\(368\) 1.68465 2.91790i 0.0878183 0.152106i
\(369\) 0 0
\(370\) −0.901716 + 1.56182i −0.0468780 + 0.0811951i
\(371\) 14.8478 0.770858
\(372\) 0 0
\(373\) 13.5229 + 23.4224i 0.700191 + 1.21277i 0.968399 + 0.249406i \(0.0802353\pi\)
−0.268208 + 0.963361i \(0.586431\pi\)
\(374\) −14.3209 −0.740515
\(375\) 0 0
\(376\) 1.48380 + 2.57002i 0.0765211 + 0.132538i
\(377\) −8.20017 + 15.5525i −0.422330 + 0.800994i
\(378\) 0 0
\(379\) 3.71240 + 6.43007i 0.190693 + 0.330290i 0.945480 0.325680i \(-0.105593\pi\)
−0.754787 + 0.655970i \(0.772260\pi\)
\(380\) 0.766870 1.32826i 0.0393396 0.0681382i
\(381\) 0 0
\(382\) 5.95622 10.3165i 0.304747 0.527837i
\(383\) 15.4542 + 26.7675i 0.789673 + 1.36775i 0.926167 + 0.377113i \(0.123083\pi\)
−0.136494 + 0.990641i \(0.543584\pi\)
\(384\) 0 0
\(385\) −0.623969 1.08075i −0.0318004 0.0550800i
\(386\) −11.9054 + 20.6208i −0.605971 + 1.04957i
\(387\) 0 0
\(388\) −3.28917 5.69701i −0.166982 0.289222i
\(389\) 4.51699 + 7.82366i 0.229020 + 0.396675i 0.957518 0.288373i \(-0.0931144\pi\)
−0.728498 + 0.685048i \(0.759781\pi\)
\(390\) 0 0
\(391\) −6.20418 + 10.7460i −0.313759 + 0.543447i
\(392\) −4.56904 −0.230771
\(393\) 0 0
\(394\) −7.69727 −0.387783
\(395\) 0.341455 0.0171804
\(396\) 0 0
\(397\) 7.41951 12.8510i 0.372374 0.644971i −0.617556 0.786527i \(-0.711877\pi\)
0.989930 + 0.141556i \(0.0452104\pi\)
\(398\) 3.23845 + 5.60917i 0.162329 + 0.281162i
\(399\) 0 0
\(400\) −4.95763 −0.247882
\(401\) −16.1782 −0.807903 −0.403951 0.914780i \(-0.632363\pi\)
−0.403951 + 0.914780i \(0.632363\pi\)
\(402\) 0 0
\(403\) −5.05109 + 9.57994i −0.251613 + 0.477211i
\(404\) −11.3049 −0.562440
\(405\) 0 0
\(406\) 3.80148 + 6.58435i 0.188664 + 0.326776i
\(407\) −34.0709 −1.68883
\(408\) 0 0
\(409\) −0.973364 1.68592i −0.0481298 0.0833632i 0.840957 0.541102i \(-0.181993\pi\)
−0.889087 + 0.457739i \(0.848659\pi\)
\(410\) 0.359475 + 0.622629i 0.0177532 + 0.0307495i
\(411\) 0 0
\(412\) −18.6864 −0.920613
\(413\) −5.14565 8.91253i −0.253201 0.438557i
\(414\) 0 0
\(415\) 1.78669 0.0877052
\(416\) −1.92127 3.05102i −0.0941981 0.149589i
\(417\) 0 0
\(418\) 28.9758 1.41725
\(419\) −23.4899 −1.14756 −0.573778 0.819011i \(-0.694523\pi\)
−0.573778 + 0.819011i \(0.694523\pi\)
\(420\) 0 0
\(421\) 1.97408 + 3.41921i 0.0962108 + 0.166642i 0.910113 0.414360i \(-0.135994\pi\)
−0.813903 + 0.581001i \(0.802661\pi\)
\(422\) 6.90747 11.9641i 0.336250 0.582403i
\(423\) 0 0
\(424\) −9.52297 −0.462476
\(425\) 18.2579 0.885636
\(426\) 0 0
\(427\) −8.34299 −0.403746
\(428\) 5.71380 9.89659i 0.276187 0.478370i
\(429\) 0 0
\(430\) −0.0706531 0.122375i −0.00340720 0.00590144i
\(431\) 14.3356 + 24.8300i 0.690522 + 1.19602i 0.971667 + 0.236354i \(0.0759525\pi\)
−0.281145 + 0.959665i \(0.590714\pi\)
\(432\) 0 0
\(433\) −2.86328 + 4.95934i −0.137600 + 0.238331i −0.926588 0.376079i \(-0.877272\pi\)
0.788988 + 0.614409i \(0.210606\pi\)
\(434\) 2.34161 + 4.05580i 0.112401 + 0.194684i
\(435\) 0 0
\(436\) 3.19924 + 5.54125i 0.153216 + 0.265378i
\(437\) 12.5531 21.7426i 0.600496 1.04009i
\(438\) 0 0
\(439\) −19.4991 + 33.7735i −0.930642 + 1.61192i −0.148415 + 0.988925i \(0.547417\pi\)
−0.782227 + 0.622994i \(0.785916\pi\)
\(440\) 0.400197 + 0.693162i 0.0190787 + 0.0330452i
\(441\) 0 0
\(442\) 7.07562 + 11.2362i 0.336553 + 0.534453i
\(443\) −19.4094 33.6180i −0.922167 1.59724i −0.796055 0.605224i \(-0.793083\pi\)
−0.126112 0.992016i \(-0.540250\pi\)
\(444\) 0 0
\(445\) −2.57615 −0.122121
\(446\) −5.93420 10.2783i −0.280993 0.486693i
\(447\) 0 0
\(448\) −1.55915 −0.0736631
\(449\) 13.3263 23.0818i 0.628907 1.08930i −0.358865 0.933390i \(-0.616836\pi\)
0.987771 0.155909i \(-0.0498306\pi\)
\(450\) 0 0
\(451\) −6.79130 + 11.7629i −0.319790 + 0.553892i
\(452\) 6.48841 11.2383i 0.305189 0.528603i
\(453\) 0 0
\(454\) 4.91697 8.51644i 0.230765 0.399696i
\(455\) −0.539670 + 1.02354i −0.0253001 + 0.0479843i
\(456\) 0 0
\(457\) −5.64143 + 9.77124i −0.263895 + 0.457079i −0.967273 0.253736i \(-0.918341\pi\)
0.703379 + 0.710815i \(0.251674\pi\)
\(458\) 8.65591 + 14.9925i 0.404464 + 0.700553i
\(459\) 0 0
\(460\) 0.693504 0.0323348
\(461\) 7.76634 0.361714 0.180857 0.983509i \(-0.442113\pi\)
0.180857 + 0.983509i \(0.442113\pi\)
\(462\) 0 0
\(463\) 0.105633 0.182962i 0.00490918 0.00850295i −0.863560 0.504245i \(-0.831771\pi\)
0.868470 + 0.495742i \(0.165104\pi\)
\(464\) −2.43817 4.22303i −0.113189 0.196049i
\(465\) 0 0
\(466\) 8.82738 15.2895i 0.408921 0.708271i
\(467\) 34.8916 1.61459 0.807294 0.590149i \(-0.200931\pi\)
0.807294 + 0.590149i \(0.200931\pi\)
\(468\) 0 0
\(469\) 4.73015 0.218418
\(470\) −0.305411 + 0.528988i −0.0140876 + 0.0244004i
\(471\) 0 0
\(472\) 3.30029 + 5.71626i 0.151908 + 0.263112i
\(473\) 1.33480 2.31194i 0.0613741 0.106303i
\(474\) 0 0
\(475\) −36.9416 −1.69500
\(476\) 5.74202 0.263185
\(477\) 0 0
\(478\) 0.631256 + 1.09337i 0.0288730 + 0.0500095i
\(479\) −3.72958 + 6.45981i −0.170409 + 0.295156i −0.938563 0.345109i \(-0.887842\pi\)
0.768154 + 0.640265i \(0.221175\pi\)
\(480\) 0 0
\(481\) 16.8337 + 26.7322i 0.767549 + 1.21888i
\(482\) 5.44455 9.43023i 0.247992 0.429535i
\(483\) 0 0
\(484\) −2.06064 + 3.56913i −0.0936654 + 0.162233i
\(485\) 0.677012 1.17262i 0.0307415 0.0532459i
\(486\) 0 0
\(487\) 21.2844 36.8657i 0.964489 1.67054i 0.253509 0.967333i \(-0.418415\pi\)
0.710981 0.703211i \(-0.248251\pi\)
\(488\) 5.35098 0.242227
\(489\) 0 0
\(490\) −0.470224 0.814452i −0.0212426 0.0367932i
\(491\) 33.4196 1.50821 0.754103 0.656756i \(-0.228072\pi\)
0.754103 + 0.656756i \(0.228072\pi\)
\(492\) 0 0
\(493\) 8.97923 + 15.5525i 0.404404 + 0.700449i
\(494\) −14.3163 22.7346i −0.644120 1.02288i
\(495\) 0 0
\(496\) −1.50185 2.60128i −0.0674350 0.116801i
\(497\) −2.17827 + 3.77287i −0.0977088 + 0.169237i
\(498\) 0 0
\(499\) 3.44081 5.95966i 0.154032 0.266791i −0.778674 0.627428i \(-0.784107\pi\)
0.932706 + 0.360637i \(0.117441\pi\)
\(500\) −1.02479 1.77499i −0.0458301 0.0793801i
\(501\) 0 0
\(502\) 12.3336 + 21.3624i 0.550475 + 0.953450i
\(503\) 13.4441 23.2858i 0.599441 1.03826i −0.393463 0.919340i \(-0.628723\pi\)
0.992904 0.118921i \(-0.0379436\pi\)
\(504\) 0 0
\(505\) −1.16345 2.01515i −0.0517728 0.0896731i
\(506\) 6.55094 + 11.3466i 0.291225 + 0.504416i
\(507\) 0 0
\(508\) −5.60948 + 9.71591i −0.248881 + 0.431074i
\(509\) 34.0371 1.50867 0.754335 0.656490i \(-0.227960\pi\)
0.754335 + 0.656490i \(0.227960\pi\)
\(510\) 0 0
\(511\) 23.9118 1.05779
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 12.7687 22.1161i 0.563205 0.975499i
\(515\) −1.92312 3.33094i −0.0847427 0.146779i
\(516\) 0 0
\(517\) −11.5398 −0.507521
\(518\) 13.6609 0.600225
\(519\) 0 0
\(520\) 0.346130 0.656472i 0.0151788 0.0287882i
\(521\) −28.8015 −1.26182 −0.630909 0.775857i \(-0.717318\pi\)
−0.630909 + 0.775857i \(0.717318\pi\)
\(522\) 0 0
\(523\) 11.0647 + 19.1647i 0.483827 + 0.838013i 0.999827 0.0185751i \(-0.00591297\pi\)
−0.516000 + 0.856588i \(0.672580\pi\)
\(524\) 0.464643 0.0202980
\(525\) 0 0
\(526\) −6.20109 10.7406i −0.270380 0.468313i
\(527\) 5.53098 + 9.57994i 0.240933 + 0.417309i
\(528\) 0 0
\(529\) −11.6479 −0.506428
\(530\) −0.980060 1.69751i −0.0425711 0.0737353i
\(531\) 0 0
\(532\) −11.6180 −0.503703
\(533\) 12.5846 0.483282i 0.545101 0.0209332i
\(534\) 0 0
\(535\) 2.35215 0.101692
\(536\) −3.03379 −0.131040
\(537\) 0 0
\(538\) −2.46813 4.27492i −0.106408 0.184305i
\(539\) 8.88360 15.3869i 0.382644 0.662759i
\(540\) 0 0
\(541\) 20.1937 0.868196 0.434098 0.900866i \(-0.357067\pi\)
0.434098 + 0.900866i \(0.357067\pi\)
\(542\) −27.5130 −1.18178
\(543\) 0 0
\(544\) −3.68278 −0.157898
\(545\) −0.658502 + 1.14056i −0.0282071 + 0.0488562i
\(546\) 0 0
\(547\) −2.75008 4.76328i −0.117585 0.203663i 0.801225 0.598363i \(-0.204182\pi\)
−0.918810 + 0.394700i \(0.870849\pi\)
\(548\) −7.69850 13.3342i −0.328864 0.569609i
\(549\) 0 0
\(550\) 9.63915 16.6955i 0.411015 0.711898i
\(551\) −18.1679 31.4678i −0.773979 1.34057i
\(552\) 0 0
\(553\) −1.29325 2.23997i −0.0549945 0.0952532i
\(554\) 1.33384 2.31027i 0.0566693 0.0981542i
\(555\) 0 0
\(556\) −2.40855 + 4.17173i −0.102145 + 0.176921i
\(557\) 12.6702 + 21.9455i 0.536856 + 0.929861i 0.999071 + 0.0430936i \(0.0137214\pi\)
−0.462215 + 0.886768i \(0.652945\pi\)
\(558\) 0 0
\(559\) −2.47345 + 0.0949868i −0.104616 + 0.00401751i
\(560\) −0.160461 0.277926i −0.00678071 0.0117445i
\(561\) 0 0
\(562\) −11.0252 −0.465071
\(563\) 10.7828 + 18.6764i 0.454442 + 0.787117i 0.998656 0.0518299i \(-0.0165054\pi\)
−0.544214 + 0.838946i \(0.683172\pi\)
\(564\) 0 0
\(565\) 2.67103 0.112371
\(566\) −2.43391 + 4.21565i −0.102305 + 0.177197i
\(567\) 0 0
\(568\) 1.39708 2.41982i 0.0586204 0.101533i
\(569\) −0.285919 + 0.495226i −0.0119864 + 0.0207610i −0.871956 0.489584i \(-0.837149\pi\)
0.859970 + 0.510345i \(0.170482\pi\)
\(570\) 0 0
\(571\) −5.02115 + 8.69689i −0.210129 + 0.363953i −0.951755 0.306860i \(-0.900722\pi\)
0.741626 + 0.670814i \(0.234055\pi\)
\(572\) 14.0103 0.538029i 0.585798 0.0224961i
\(573\) 0 0
\(574\) 2.72300 4.71637i 0.113656 0.196858i
\(575\) −8.35187 14.4659i −0.348297 0.603268i
\(576\) 0 0
\(577\) −16.7133 −0.695785 −0.347892 0.937534i \(-0.613103\pi\)
−0.347892 + 0.937534i \(0.613103\pi\)
\(578\) −3.43715 −0.142966
\(579\) 0 0
\(580\) 0.501850 0.869229i 0.0208382 0.0360928i
\(581\) −6.76703 11.7208i −0.280744 0.486263i
\(582\) 0 0
\(583\) 18.5156 32.0699i 0.766836 1.32820i
\(584\) −15.3364 −0.634624
\(585\) 0 0
\(586\) 8.49447 0.350903
\(587\) 0.968663 1.67777i 0.0399810 0.0692491i −0.845342 0.534225i \(-0.820604\pi\)
0.885323 + 0.464976i \(0.153937\pi\)
\(588\) 0 0
\(589\) −11.1910 19.3833i −0.461116 0.798677i
\(590\) −0.679300 + 1.17658i −0.0279663 + 0.0484391i
\(591\) 0 0
\(592\) −8.76173 −0.360105
\(593\) −45.4544 −1.86659 −0.933294 0.359113i \(-0.883079\pi\)
−0.933294 + 0.359113i \(0.883079\pi\)
\(594\) 0 0
\(595\) 0.590942 + 1.02354i 0.0242262 + 0.0419611i
\(596\) −8.39889 + 14.5473i −0.344032 + 0.595881i
\(597\) 0 0
\(598\) 5.66589 10.7460i 0.231695 0.439435i
\(599\) −11.8317 + 20.4932i −0.483431 + 0.837327i −0.999819 0.0190274i \(-0.993943\pi\)
0.516388 + 0.856355i \(0.327276\pi\)
\(600\) 0 0
\(601\) 16.6831 28.8960i 0.680519 1.17869i −0.294304 0.955712i \(-0.595088\pi\)
0.974823 0.222981i \(-0.0715789\pi\)
\(602\) −0.535193 + 0.926981i −0.0218128 + 0.0377809i
\(603\) 0 0
\(604\) −0.315574 + 0.546591i −0.0128405 + 0.0222405i
\(605\) −0.848285 −0.0344877
\(606\) 0 0
\(607\) 14.5018 + 25.1178i 0.588610 + 1.01950i 0.994415 + 0.105542i \(0.0336578\pi\)
−0.405805 + 0.913960i \(0.633009\pi\)
\(608\) 7.45146 0.302197
\(609\) 0 0
\(610\) 0.550698 + 0.953836i 0.0222971 + 0.0386197i
\(611\) 5.70156 + 9.05420i 0.230661 + 0.366294i
\(612\) 0 0
\(613\) −2.55168 4.41964i −0.103061 0.178507i 0.809883 0.586591i \(-0.199530\pi\)
−0.912944 + 0.408084i \(0.866197\pi\)
\(614\) 7.02858 12.1739i 0.283651 0.491297i
\(615\) 0 0
\(616\) 3.03147 5.25066i 0.122141 0.211555i
\(617\) 4.56228 + 7.90210i 0.183671 + 0.318127i 0.943128 0.332431i \(-0.107869\pi\)
−0.759457 + 0.650557i \(0.774535\pi\)
\(618\) 0 0
\(619\) 4.97487 + 8.61673i 0.199957 + 0.346336i 0.948514 0.316734i \(-0.102586\pi\)
−0.748557 + 0.663070i \(0.769253\pi\)
\(620\) 0.309127 0.535423i 0.0124148 0.0215031i
\(621\) 0 0
\(622\) 4.74354 + 8.21605i 0.190199 + 0.329434i
\(623\) 9.75707 + 16.8997i 0.390909 + 0.677073i
\(624\) 0 0
\(625\) −12.1832 + 21.1018i −0.487326 + 0.844073i
\(626\) 33.8547 1.35311
\(627\) 0 0
\(628\) 17.2465 0.688210
\(629\) 32.2675 1.28659
\(630\) 0 0
\(631\) 22.5331 39.0284i 0.897027 1.55370i 0.0657504 0.997836i \(-0.479056\pi\)
0.831276 0.555860i \(-0.187611\pi\)
\(632\) 0.829455 + 1.43666i 0.0329939 + 0.0571472i
\(633\) 0 0
\(634\) −7.07846 −0.281122
\(635\) −2.30921 −0.0916381
\(636\) 0 0
\(637\) −16.4618 + 0.632174i −0.652239 + 0.0250476i
\(638\) 18.9622 0.750719
\(639\) 0 0
\(640\) 0.102915 + 0.178255i 0.00406809 + 0.00704613i
\(641\) 36.5673 1.44432 0.722160 0.691726i \(-0.243149\pi\)
0.722160 + 0.691726i \(0.243149\pi\)
\(642\) 0 0
\(643\) 12.6078 + 21.8373i 0.497201 + 0.861178i 0.999995 0.00322872i \(-0.00102773\pi\)
−0.502794 + 0.864407i \(0.667694\pi\)
\(644\) −2.62662 4.54945i −0.103504 0.179273i
\(645\) 0 0
\(646\) −27.4421 −1.07969
\(647\) −0.159617 0.276465i −0.00627519 0.0108689i 0.862871 0.505425i \(-0.168664\pi\)
−0.869146 + 0.494556i \(0.835331\pi\)
\(648\) 0 0
\(649\) −25.6670 −1.00752
\(650\) −17.8618 + 0.685940i −0.700599 + 0.0269048i
\(651\) 0 0
\(652\) −3.34109 −0.130847
\(653\) 39.4731 1.54470 0.772350 0.635197i \(-0.219081\pi\)
0.772350 + 0.635197i \(0.219081\pi\)
\(654\) 0 0
\(655\) 0.0478189 + 0.0828248i 0.00186844 + 0.00323623i
\(656\) −1.74646 + 3.02496i −0.0681878 + 0.118105i
\(657\) 0 0
\(658\) 4.62694 0.180377
\(659\) 42.1963 1.64373 0.821866 0.569680i \(-0.192933\pi\)
0.821866 + 0.569680i \(0.192933\pi\)
\(660\) 0 0
\(661\) 29.3289 1.14076 0.570380 0.821381i \(-0.306796\pi\)
0.570380 + 0.821381i \(0.306796\pi\)
\(662\) 6.47693 11.2184i 0.251733 0.436015i
\(663\) 0 0
\(664\) 4.34020 + 7.51744i 0.168432 + 0.291733i
\(665\) −1.19567 2.07096i −0.0463660 0.0803083i
\(666\) 0 0
\(667\) 8.21491 14.2286i 0.318083 0.550935i
\(668\) −10.5805 18.3260i −0.409372 0.709053i
\(669\) 0 0
\(670\) −0.312224 0.540788i −0.0120623 0.0208925i
\(671\) −10.4039 + 18.0201i −0.401639 + 0.695659i
\(672\) 0 0
\(673\) 22.1964 38.4452i 0.855607 1.48195i −0.0204745 0.999790i \(-0.506518\pi\)
0.876081 0.482164i \(-0.160149\pi\)
\(674\) 9.11943 + 15.7953i 0.351267 + 0.608413i
\(675\) 0 0
\(676\) −7.34428 10.7267i −0.282472 0.412564i
\(677\) 0.870301 + 1.50741i 0.0334484 + 0.0579343i 0.882265 0.470753i \(-0.156018\pi\)
−0.848817 + 0.528687i \(0.822684\pi\)
\(678\) 0 0
\(679\) −10.2566 −0.393614
\(680\) −0.379014 0.656472i −0.0145345 0.0251746i
\(681\) 0 0
\(682\) 11.6802 0.447258
\(683\) −7.31521 + 12.6703i −0.279909 + 0.484816i −0.971362 0.237605i \(-0.923638\pi\)
0.691453 + 0.722421i \(0.256971\pi\)
\(684\) 0 0
\(685\) 1.58459 2.74459i 0.0605440 0.104865i
\(686\) −9.01896 + 15.6213i −0.344345 + 0.596424i
\(687\) 0 0
\(688\) 0.343259 0.594541i 0.0130866 0.0226667i
\(689\) −34.3103 + 1.31760i −1.30712 + 0.0501966i
\(690\) 0 0
\(691\) 9.02749 15.6361i 0.343422 0.594824i −0.641644 0.767003i \(-0.721747\pi\)
0.985066 + 0.172178i \(0.0550806\pi\)
\(692\) −11.2917 19.5577i −0.429244 0.743473i
\(693\) 0 0
\(694\) 12.4970 0.474381
\(695\) −0.991506 −0.0376100
\(696\) 0 0
\(697\) 6.43182 11.1402i 0.243623 0.421967i
\(698\) −1.00654 1.74337i −0.0380980 0.0659876i
\(699\) 0 0
\(700\) −3.86486 + 6.69413i −0.146078 + 0.253014i
\(701\) 20.6019 0.778122 0.389061 0.921212i \(-0.372799\pi\)
0.389061 + 0.921212i \(0.372799\pi\)
\(702\) 0 0
\(703\) −65.2877 −2.46237
\(704\) −1.94430 + 3.36763i −0.0732787 + 0.126922i
\(705\) 0 0
\(706\) −18.0573 31.2761i −0.679594 1.17709i
\(707\) −8.81305 + 15.2646i −0.331449 + 0.574086i
\(708\) 0 0
\(709\) −19.6723 −0.738808 −0.369404 0.929269i \(-0.620438\pi\)
−0.369404 + 0.929269i \(0.620438\pi\)
\(710\) 0.575126 0.0215841
\(711\) 0 0
\(712\) −6.25792 10.8390i −0.234526 0.406210i
\(713\) 5.06018 8.76448i 0.189505 0.328232i
\(714\) 0 0
\(715\) 1.53778 + 2.44202i 0.0575096 + 0.0913264i
\(716\) −5.40388 + 9.35979i −0.201952 + 0.349792i
\(717\) 0 0
\(718\) 17.1648 29.7303i 0.640585 1.10952i
\(719\) 15.9912 27.6975i 0.596370 1.03294i −0.396982 0.917827i \(-0.629942\pi\)
0.993352 0.115117i \(-0.0367244\pi\)
\(720\) 0 0
\(721\) −14.5675 + 25.2316i −0.542521 + 0.939675i
\(722\) 36.5243 1.35929
\(723\) 0 0
\(724\) −6.81475 11.8035i −0.253268 0.438673i
\(725\) −24.1751 −0.897840
\(726\) 0 0
\(727\) −3.26856 5.66131i −0.121224 0.209966i 0.799027 0.601296i \(-0.205349\pi\)
−0.920251 + 0.391329i \(0.872015\pi\)
\(728\) −5.61747 + 0.215725i −0.208197 + 0.00799530i
\(729\) 0 0
\(730\) −1.57835 2.73378i −0.0584173 0.101182i
\(731\) −1.26415 + 2.18956i −0.0467561 + 0.0809839i
\(732\) 0 0
\(733\) −2.15768 + 3.73721i −0.0796956 + 0.138037i −0.903119 0.429391i \(-0.858728\pi\)
0.823423 + 0.567428i \(0.192062\pi\)
\(734\) 2.52885 + 4.38010i 0.0933417 + 0.161673i
\(735\) 0 0
\(736\) 1.68465 + 2.91790i 0.0620969 + 0.107555i
\(737\) 5.89862 10.2167i 0.217278 0.376337i
\(738\) 0 0
\(739\) −4.64539 8.04606i −0.170884 0.295979i 0.767845 0.640635i \(-0.221329\pi\)
−0.938729 + 0.344656i \(0.887996\pi\)
\(740\) −0.901716 1.56182i −0.0331477 0.0574136i
\(741\) 0 0
\(742\) −7.42389 + 12.8586i −0.272540 + 0.472052i
\(743\) 2.95653 0.108464 0.0542322 0.998528i \(-0.482729\pi\)
0.0542322 + 0.998528i \(0.482729\pi\)
\(744\) 0 0
\(745\) −3.45750 −0.126673
\(746\) −27.0459 −0.990220
\(747\) 0 0
\(748\) 7.16044 12.4022i 0.261812 0.453471i
\(749\) −8.90869 15.4303i −0.325516 0.563811i
\(750\) 0 0
\(751\) 19.7803 0.721792 0.360896 0.932606i \(-0.382471\pi\)
0.360896 + 0.932606i \(0.382471\pi\)
\(752\) −2.96760 −0.108217
\(753\) 0 0
\(754\) −9.36877 14.8778i −0.341190 0.541817i
\(755\) −0.129910 −0.00472790
\(756\) 0 0
\(757\) 17.1539 + 29.7115i 0.623470 + 1.07988i 0.988835 + 0.149017i \(0.0476109\pi\)
−0.365365 + 0.930864i \(0.619056\pi\)
\(758\) −7.42480 −0.269681
\(759\) 0 0
\(760\) 0.766870 + 1.32826i 0.0278173 + 0.0481810i
\(761\) −3.08031 5.33526i −0.111661 0.193403i 0.804779 0.593575i \(-0.202284\pi\)
−0.916440 + 0.400172i \(0.868950\pi\)
\(762\) 0 0
\(763\) 9.97621 0.361163
\(764\) 5.95622 + 10.3165i 0.215488 + 0.373237i
\(765\) 0 0
\(766\) −30.9084 −1.11677
\(767\) 12.6815 + 20.1385i 0.457902 + 0.727158i
\(768\) 0 0
\(769\) −30.2498 −1.09084 −0.545418 0.838164i \(-0.683629\pi\)
−0.545418 + 0.838164i \(0.683629\pi\)
\(770\) 1.24794 0.0449726
\(771\) 0 0
\(772\) −11.9054 20.6208i −0.428486 0.742160i
\(773\) −24.3047 + 42.0971i −0.874181 + 1.51413i −0.0165485 + 0.999863i \(0.505268\pi\)
−0.857633 + 0.514263i \(0.828066\pi\)
\(774\) 0 0
\(775\) −14.8912 −0.534909
\(776\) 6.57834 0.236149
\(777\) 0 0
\(778\) −9.03398 −0.323884
\(779\) −13.0137 + 22.5404i −0.466263 + 0.807592i
\(780\) 0 0
\(781\) 5.43272 + 9.40974i 0.194398 + 0.336707i
\(782\) −6.20418 10.7460i −0.221861 0.384275i
\(783\) 0 0
\(784\) 2.28452 3.95690i 0.0815900 0.141318i
\(785\) 1.77493 + 3.07427i 0.0633500 + 0.109725i
\(786\) 0 0
\(787\) 17.7768 + 30.7903i 0.633673 + 1.09755i 0.986795 + 0.161977i \(0.0517870\pi\)
−0.353121 + 0.935578i \(0.614880\pi\)
\(788\) 3.84864 6.66603i 0.137102 0.237468i
\(789\) 0 0
\(790\) −0.170727 + 0.295708i −0.00607420 + 0.0105208i
\(791\) −10.1164 17.5222i −0.359699 0.623017i
\(792\) 0 0
\(793\) 19.2790 0.740363i 0.684618 0.0262911i
\(794\) 7.41951 + 12.8510i 0.263308 + 0.456064i
\(795\) 0 0
\(796\) −6.47691 −0.229568
\(797\) 12.5860 + 21.7996i 0.445818 + 0.772180i 0.998109 0.0614717i \(-0.0195794\pi\)
−0.552290 + 0.833652i \(0.686246\pi\)
\(798\) 0 0
\(799\) 10.9290 0.386640
\(800\) 2.47882 4.29344i 0.0876394 0.151796i
\(801\) 0 0
\(802\) 8.08912 14.0108i 0.285637 0.494737i
\(803\) 29.8186 51.6473i 1.05227 1.82259i
\(804\) 0 0
\(805\) 0.540640 0.936416i 0.0190551 0.0330043i
\(806\) −5.77092 9.16434i −0.203272 0.322800i
\(807\) 0 0
\(808\) 5.65246 9.79034i 0.198853 0.344423i
\(809\) 6.11750 + 10.5958i 0.215080 + 0.372529i 0.953297 0.302034i \(-0.0976655\pi\)
−0.738217 + 0.674563i \(0.764332\pi\)
\(810\) 0 0
\(811\) 28.9188 1.01548 0.507739 0.861511i \(-0.330481\pi\)
0.507739 + 0.861511i \(0.330481\pi\)
\(812\) −7.60296 −0.266812
\(813\) 0 0
\(814\) 17.0355 29.5063i 0.597093 1.03420i
\(815\) −0.343849 0.595565i −0.0120445 0.0208617i
\(816\) 0 0
\(817\) 2.55778 4.43020i 0.0894853 0.154993i
\(818\) 1.94673 0.0680658
\(819\) 0 0
\(820\) −0.718950 −0.0251068
\(821\) −1.00461 + 1.74004i −0.0350611 + 0.0607277i −0.883024 0.469329i \(-0.844496\pi\)
0.847962 + 0.530056i \(0.177829\pi\)
\(822\) 0 0
\(823\) −18.7352 32.4503i −0.653067 1.13114i −0.982375 0.186922i \(-0.940149\pi\)
0.329308 0.944223i \(-0.393185\pi\)
\(824\) 9.34320 16.1829i 0.325486 0.563758i
\(825\) 0 0
\(826\) 10.2913 0.358080
\(827\) −14.0136 −0.487299 −0.243650 0.969863i \(-0.578345\pi\)
−0.243650 + 0.969863i \(0.578345\pi\)
\(828\) 0 0
\(829\) −5.74472 9.95015i −0.199522 0.345583i 0.748851 0.662738i \(-0.230606\pi\)
−0.948374 + 0.317155i \(0.897272\pi\)
\(830\) −0.893345 + 1.54732i −0.0310085 + 0.0537083i
\(831\) 0 0
\(832\) 3.60290 0.138360i 0.124908 0.00479678i
\(833\) −8.41338 + 14.5724i −0.291506 + 0.504904i
\(834\) 0 0
\(835\) 2.17779 3.77205i 0.0753656 0.130537i
\(836\) −14.4879 + 25.0938i −0.501075 + 0.867887i
\(837\) 0 0
\(838\) 11.7449 20.3428i 0.405722 0.702731i
\(839\) −30.9451 −1.06834 −0.534172 0.845376i \(-0.679377\pi\)
−0.534172 + 0.845376i \(0.679377\pi\)
\(840\) 0 0
\(841\) 2.61067 + 4.52182i 0.0900232 + 0.155925i
\(842\) −3.94816 −0.136063
\(843\) 0 0
\(844\) 6.90747 + 11.9641i 0.237765 + 0.411821i
\(845\) 1.15624 2.41309i 0.0397759 0.0830129i
\(846\) 0 0
\(847\) 3.21285 + 5.56482i 0.110395 + 0.191210i
\(848\) 4.76149 8.24714i 0.163510 0.283208i
\(849\) 0 0
\(850\) −9.12893 + 15.8118i −0.313120 + 0.542339i
\(851\) −14.7604 25.5658i −0.505981 0.876384i
\(852\) 0 0
\(853\) 19.1080 + 33.0960i 0.654246 + 1.13319i 0.982082 + 0.188452i \(0.0603471\pi\)
−0.327837 + 0.944734i \(0.606320\pi\)
\(854\) 4.17150 7.22525i 0.142746 0.247243i
\(855\) 0 0
\(856\) 5.71380 + 9.89659i 0.195294 + 0.338258i
\(857\) 1.95053 + 3.37842i 0.0666289 + 0.115405i 0.897415 0.441187i \(-0.145442\pi\)
−0.830786 + 0.556591i \(0.812109\pi\)
\(858\) 0 0
\(859\) 5.64034 9.76935i 0.192446 0.333326i −0.753614 0.657317i \(-0.771691\pi\)
0.946060 + 0.323991i \(0.105025\pi\)
\(860\) 0.141306 0.00481850
\(861\) 0 0
\(862\) −28.6712 −0.976546
\(863\) 31.5354 1.07348 0.536739 0.843749i \(-0.319656\pi\)
0.536739 + 0.843749i \(0.319656\pi\)
\(864\) 0 0
\(865\) 2.32417 4.02558i 0.0790241 0.136874i
\(866\) −2.86328 4.95934i −0.0972981 0.168525i
\(867\) 0 0
\(868\) −4.68323 −0.158959
\(869\) −6.45085 −0.218830
\(870\) 0 0
\(871\) −10.9304 + 0.419757i −0.370364 + 0.0142229i
\(872\) −6.39848 −0.216680
\(873\) 0 0
\(874\) 12.5531 + 21.7426i 0.424615 + 0.735454i
\(875\) −3.19562 −0.108032
\(876\) 0 0
\(877\) 1.54424 + 2.67470i 0.0521452 + 0.0903182i 0.890920 0.454161i \(-0.150061\pi\)
−0.838775 + 0.544479i \(0.816727\pi\)
\(878\) −19.4991 33.7735i −0.658063 1.13980i
\(879\) 0 0
\(880\) −0.800395 −0.0269813
\(881\) 10.9208 + 18.9154i 0.367932 + 0.637277i 0.989242 0.146288i \(-0.0467326\pi\)
−0.621310 + 0.783565i \(0.713399\pi\)
\(882\) 0 0
\(883\) −53.5887 −1.80340 −0.901701 0.432359i \(-0.857681\pi\)
−0.901701 + 0.432359i \(0.857681\pi\)
\(884\) −13.2687 + 0.509550i −0.446273 + 0.0171380i
\(885\) 0 0
\(886\) 38.8187 1.30414
\(887\) 28.3532 0.952006 0.476003 0.879444i \(-0.342085\pi\)
0.476003 + 0.879444i \(0.342085\pi\)
\(888\) 0 0
\(889\) 8.74605 + 15.1486i 0.293333 + 0.508068i
\(890\) 1.28807 2.23101i 0.0431763 0.0747835i
\(891\) 0 0
\(892\) 11.8684 0.397383
\(893\) −22.1129 −0.739982
\(894\) 0 0
\(895\) −2.22457 −0.0743591
\(896\) 0.779577 1.35027i 0.0260438 0.0451092i
\(897\) 0 0
\(898\) 13.3263 + 23.0818i 0.444704 + 0.770250i
\(899\) −7.32352 12.6847i −0.244253 0.423059i
\(900\) 0 0
\(901\) −17.5355 + 30.3724i −0.584192 + 1.01185i
\(902\) −6.79130 11.7629i −0.226125 0.391661i
\(903\) 0 0
\(904\) 6.48841 + 11.2383i 0.215801 + 0.373779i
\(905\) 1.40268 2.42952i 0.0466268 0.0807600i
\(906\) 0 0
\(907\) −2.33306 + 4.04097i −0.0774679 + 0.134178i −0.902157 0.431408i \(-0.858017\pi\)
0.824689 + 0.565587i \(0.191350\pi\)
\(908\) 4.91697 + 8.51644i 0.163175 + 0.282628i
\(909\) 0 0
\(910\) −0.616578 0.979138i −0.0204394 0.0324581i
\(911\) −11.4290 19.7956i −0.378660 0.655858i 0.612208 0.790697i \(-0.290282\pi\)
−0.990868 + 0.134839i \(0.956948\pi\)
\(912\) 0 0
\(913\) −33.7546 −1.11712
\(914\) −5.64143 9.77124i −0.186602 0.323204i
\(915\) 0 0
\(916\) −17.3118 −0.571999
\(917\) 0.362225 0.627393i 0.0119617 0.0207183i
\(918\) 0 0
\(919\) −24.5610 + 42.5410i −0.810194 + 1.40330i 0.102534 + 0.994729i \(0.467305\pi\)
−0.912728 + 0.408568i \(0.866028\pi\)
\(920\) −0.346752 + 0.600592i −0.0114321 + 0.0198009i
\(921\) 0 0
\(922\) −3.88317 + 6.72585i −0.127885 + 0.221504i
\(923\) 4.69874 8.91167i 0.154661 0.293331i
\(924\) 0 0
\(925\) −21.7187 + 37.6179i −0.714107 + 1.23687i
\(926\) 0.105633 + 0.182962i 0.00347132 + 0.00601250i
\(927\) 0 0
\(928\) 4.87634 0.160074
\(929\) 6.12850 0.201069 0.100535 0.994934i \(-0.467945\pi\)
0.100535 + 0.994934i \(0.467945\pi\)
\(930\) 0 0
\(931\) 17.0230 29.4847i 0.557907 0.966323i
\(932\) 8.82738 + 15.2895i 0.289151 + 0.500823i
\(933\) 0 0
\(934\) −17.4458 + 30.2170i −0.570843 + 0.988730i
\(935\) 2.94768 0.0963993
\(936\) 0 0
\(937\) 25.2006 0.823267 0.411634 0.911349i \(-0.364958\pi\)
0.411634 + 0.911349i \(0.364958\pi\)
\(938\) −2.36508 + 4.09643i −0.0772224 + 0.133753i
\(939\) 0 0
\(940\) −0.305411 0.528988i −0.00996142 0.0172537i
\(941\) 4.42221 7.65949i 0.144160 0.249692i −0.784899 0.619623i \(-0.787285\pi\)
0.929059 + 0.369931i \(0.120619\pi\)
\(942\) 0 0
\(943\) −11.7687 −0.383241
\(944\) −6.60057 −0.214830
\(945\) 0 0
\(946\) 1.33480 + 2.31194i 0.0433980 + 0.0751676i
\(947\) −18.0475 + 31.2593i −0.586466 + 1.01579i 0.408225 + 0.912881i \(0.366148\pi\)
−0.994691 + 0.102908i \(0.967185\pi\)
\(948\) 0 0
\(949\) −55.2553 + 2.12195i −1.79366 + 0.0688813i
\(950\) 18.4708 31.9924i 0.599272 1.03797i
\(951\) 0 0
\(952\) −2.87101 + 4.97273i −0.0930499 + 0.161167i
\(953\) −11.1990 + 19.3973i −0.362772 + 0.628340i −0.988416 0.151769i \(-0.951503\pi\)
0.625644 + 0.780109i \(0.284836\pi\)
\(954\) 0 0
\(955\) −1.22597 + 2.12345i −0.0396715 + 0.0687131i
\(956\) −1.26251 −0.0408326
\(957\) 0 0
\(958\) −3.72958 6.45981i −0.120497 0.208707i
\(959\) −24.0063 −0.775204
\(960\) 0 0
\(961\) 10.9889 + 19.0333i 0.354480 + 0.613978i
\(962\) −31.5676 + 1.21228i −1.01778 + 0.0390853i
\(963\) 0 0
\(964\) 5.44455 + 9.43023i 0.175357 + 0.303727i
\(965\) 2.45051 4.24440i 0.0788846 0.136632i
\(966\) 0 0
\(967\) 16.9168 29.3008i 0.544008 0.942249i −0.454661 0.890665i \(-0.650240\pi\)
0.998669 0.0515845i \(-0.0164271\pi\)
\(968\) −2.06064 3.56913i −0.0662314 0.114716i
\(969\) 0 0
\(970\) 0.677012 + 1.17262i 0.0217376 + 0.0376506i
\(971\) −6.05561 + 10.4886i −0.194334 + 0.336596i −0.946682 0.322170i \(-0.895588\pi\)
0.752348 + 0.658766i \(0.228921\pi\)
\(972\) 0 0
\(973\) 3.75530 + 6.50437i 0.120389 + 0.208520i
\(974\) 21.2844 + 36.8657i 0.681997 + 1.18125i
\(975\) 0 0
\(976\) −2.67549 + 4.63408i −0.0856403 + 0.148333i
\(977\) 6.34927 0.203131 0.101566 0.994829i \(-0.467615\pi\)
0.101566 + 0.994829i \(0.467615\pi\)
\(978\) 0 0
\(979\) 48.6692 1.55548
\(980\) 0.940449 0.0300415
\(981\) 0 0
\(982\) −16.7098 + 28.9423i −0.533232 + 0.923584i
\(983\) −2.80169 4.85267i −0.0893601 0.154776i 0.817881 0.575388i \(-0.195149\pi\)
−0.907241 + 0.420612i \(0.861816\pi\)
\(984\) 0 0
\(985\) 1.58433 0.0504811
\(986\) −17.9585 −0.571914
\(987\) 0 0
\(988\) 26.8468 1.03099i 0.854112 0.0328001i
\(989\) 2.31308 0.0735516
\(990\) 0 0
\(991\) 7.05719 + 12.2234i 0.224179 + 0.388290i 0.956073 0.293129i \(-0.0946966\pi\)
−0.731894 + 0.681419i \(0.761363\pi\)
\(992\) 3.00370 0.0953676
\(993\) 0 0
\(994\) −2.17827 3.77287i −0.0690905 0.119668i
\(995\) −0.666573 1.15454i −0.0211318 0.0366013i
\(996\) 0 0
\(997\) 43.6668 1.38294 0.691471 0.722404i \(-0.256963\pi\)
0.691471 + 0.722404i \(0.256963\pi\)
\(998\) 3.44081 + 5.95966i 0.108917 + 0.188650i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.g.c.523.3 12
3.2 odd 2 234.2.g.d.211.5 yes 12
9.2 odd 6 234.2.f.c.133.1 12
9.7 even 3 702.2.f.d.289.3 12
13.9 even 3 702.2.f.d.685.3 12
39.35 odd 6 234.2.f.c.139.1 yes 12
117.61 even 3 inner 702.2.g.c.451.3 12
117.74 odd 6 234.2.g.d.61.5 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.f.c.133.1 12 9.2 odd 6
234.2.f.c.139.1 yes 12 39.35 odd 6
234.2.g.d.61.5 yes 12 117.74 odd 6
234.2.g.d.211.5 yes 12 3.2 odd 2
702.2.f.d.289.3 12 9.7 even 3
702.2.f.d.685.3 12 13.9 even 3
702.2.g.c.451.3 12 117.61 even 3 inner
702.2.g.c.523.3 12 1.1 even 1 trivial